1
|
Jakubowski H, Witucki Ł. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int J Mol Sci 2025; 26:746. [PMID: 39859460 PMCID: PMC11765536 DOI: 10.3390/ijms26020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| |
Collapse
|
2
|
Tenopoulou M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J 2025; 292:11-27. [PMID: 39180244 PMCID: PMC11705221 DOI: 10.1111/febs.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The structure of fibrinogen and resulting fibrin formed during the coagulation process have important biological functions in human physiology and pathology. Fibrinogen post-translational modifications (PTMs) increase the complexity of the protein structure and many studies have emphasized the potential associations of post-translationally altered fibrinogen with the formation of a fibrin clot with a prothrombotic phenotype. However, the mechanisms by which PTMs exert their action on fibrinogen, and their causal association with disease pathogenesis are relatively unexplored. Moreover, the significance of fibrinogen PTMs in health has yet to be appreciated. In this review, the impact of fibrinogen PTMs on fibrinogen functionality is discussed from a biochemical perspective, emphasizing the potential mechanisms by which PTMs mediate the acquisition of altered fibrinogen properties. A brief discussion on dysfibrinogenemias of genetic origin, attributed to single point variations of the fibrinogen molecule is also provided, highlighting the influence that amino acid properties have on fibrinogen structure, properties, and molecular interactions that arise during thrombus formation.
Collapse
|
3
|
Ma CF, Yang L, Degen AA, Ding LM. The water extract of Rheum palmatum has antioxidative properties and inhibits ROS production in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118602. [PMID: 39084270 DOI: 10.1016/j.jep.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum palmatum (RP) is a widely used traditional herb, which possesses antioxidant properties, inhibits ROS production and reduces fever. AIM OF THE STUDY The aim of this study was to examine the antioxidative properties of the water extract of RP on oxidative-stressed mice. MATERIALS & METHODS Forty mice were administered with DL-homocysteine (DL-Hcy) to induce oxidative stress and were divided into four groups: 1) CK: NaCl and water; 2) DL-Hcy: DL-Hcy and water; 3) DL-Hcy+50RP: DL-Hcy with 50 mg kg-1 body weight (BW) d-1 RP; and 4) DL-Hcy+150RP: DL-Hcy with 150 mg kg-1 BW d-1 RP. Rhein (0.3 mg g-1 dry matter) was the main active ingredient in RP. RESULTS When compared with Dl-Hcy mice, the mice with supplementary RP mitigated oxidative stress by reducing the liver concentrations of superoxide dismutase (SOD) by 27% and glutathione peroxidase (GSH-Px) by 32%, and the reactive oxygen species (ROS) in the kidney and spleen. These responses were more pronounced in DL-Hcy+150RP than DL-Hcy+50RP mice. RP also exhibited therapeutic effects on liver steatosis, chronic kidney nephritis and intestinal villus width shortening caused by oxidative stress, and concomitantly decreased the serum glucose concentration (RP vs. DL-HCY, 2.3 vs. 4.1 mmol L-1). CONCLUSION It was concluded that RP possesses antioxidant and therapeutic properties that can mitigate lesions on organs and prevent diabetes in oxidative-stressed mice. This study highlights the potential of RP as a medicinal supplement for animals in the future.
Collapse
Affiliation(s)
- Cheng-Fang Ma
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China; Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Yang
- Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lu-Ming Ding
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U. Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage. Int J Mol Sci 2024; 25:11599. [PMID: 39519150 PMCID: PMC11546175 DOI: 10.3390/ijms252111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has been a threat to the health of people, the mechanism of which, however, remains poorly understood. It is clinically related to loss of nephron function, glomerular sclerosis, or necrosis, resulting in renal functional declines. The mechanisms underlying hypertension's development and progression to organ damage, including hypertensive renal damage, remain to be fully elucidated. As a developing approach, epigenetics has been postulated to elucidate the phenomena that otherwise cannot be explained by genetic studies. The main epigenetic hallmarks, such as DNA methylation, histone acetylation, deacetylation, noncoding RNAs, and protein N-homocysteinylation have been linked with hypertension. In addition to contributing to endothelial dysfunction and oxidative stress, biologically active gases, including NO, CO, and H2S, are crucial regulators contributing to vascular remodeling since their complex interplay conducts homeostatic functions in the renovascular system. Importantly, epigenetic modifications also directly contribute to the pathogenesis of kidney damage via protein N-homocysteinylation. Hence, epigenetic modulation to intervene in renovascular damage is a potential therapeutic approach to treat renal disease and dysfunction. This review illustrates some of the epigenetic hallmarks and their mediators, which have the ability to diminish the injury triggered by hypertension and renal disease. In the end, we provide potential therapeutic possibilities to treat renovascular diseases in hypertension.
Collapse
Affiliation(s)
- Lu Ren
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| |
Collapse
|
5
|
Cheng Y, Li L, Lv Y, Zhang L, Chen W, Xu G. Association between cerebral small vessel disease and plasma levels of LDL cholesterol and homocysteine: Implications for cognitive function. J Med Biochem 2024; 43:696-703. [PMID: 39712503 PMCID: PMC11662953 DOI: 10.5937/jomb0-50100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 12/24/2024] Open
Abstract
Background Investigate the correlation between low-density lipoprotein (LDL) cholesterol, homocysteine and cognitive function in patients with cerebral small vessel disease (CSVD). Methods 240 patients with CSVD confirmed by head MRI in the Department of Neurology from January 2020 to December 2023 were retrospectively included in the study. All the patients had complete blood biochemical examination, and their cognitive function was evaluated by Montreal Cognitive Assessment Scale (MoCA), and after correcting for the factor of years of education, the patients were divided into a group of normal cognition (MoCA 26, 70 patients) and a group of cognitive function (MoCA 26, 70 patients) according to the scores. After correcting for the factor of years of education, the patients were divided into the normal cognitive function group (70 cases with MoCA 26) and the cognitive dysfunction group (170 cases with MoCA <26) according to their scores. The general information of the two groups and the patients' cognitive function characteristics, including visuospatial and executive ability, naming, attention and calculation, language, abstraction, delayed memory, and orientation, were compared, and the independent influences on the occurrence of cognitive dysfunction in patients with CSVD were analyzed by two-category multifactorial logistic regression. Results Compared with the group with normal cognitive function, the cognitive dysfunction group had lower years of education and higher homocysteine, and the differences were statistically significant (P < 0.05). Compared with the group with normal cognitive functioning, the cognitive dysfunction group had lower MoCA total scores, lower visuospatial and executive ability, naming, attention and calculation, language, abstraction, delayed memory, and orientation scores, and the differences were statistically significant (P < 0.05). Two-category multifactorial logistic regression analysis showed that low-density lipoprotein cholesterol (OR=2.756, 95% CI: 0.673-0.938, P=0.012) and homocysteine (OR=1.859, 95% CI: 1.024-1.324, P=0.016) were the independent factors influencing cognitive dysfunction in CSVD patients. The lower the risk of cognitive impairment in CSVD patients, the higher the plasma LDL cholesterol and homocysteine levels, the higher the risk of cognitive impairment in CSVD patients. Conclusions Plasma LDL cholesterol and homocysteine levels are associated with and may be predictors of cognitive dysfunction in patients with CSVD.
Collapse
Affiliation(s)
- Yan Cheng
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| | - Lichao Li
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| | - Yafei Lv
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| | - Long Zhang
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| | - Wenhua Chen
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| | - Gongda Xu
- Gansu Medical College, Affiliated Hospital, Department of Neurology, Pingliang, China
| |
Collapse
|
6
|
Hou S, Liu H, Hu Y, Zhang J, Deng X, Li Z, Zhang Y, Li X, Li Y, Ma L, Yao J, Chen X. Discovery of a novel homocysteine thiolactone hydrolase and the catalytic activity of its natural variants. Protein Sci 2024; 33:e5098. [PMID: 38980003 PMCID: PMC11232049 DOI: 10.1002/pro.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shurong Hou
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Huan Liu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yihui Hu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xingyu Deng
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xiaoxuan Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yishuang Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Lei Ma
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of JinanJinanChina
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
7
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Guo T, Zhou L, Xiong M, Xiong J, Huang J, Li Y, Zhang G, Chen G, Wang Z, Xiao T, Hu D, Bao A, Zhang Z. N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson's disease. Aging Cell 2024; 23:e14124. [PMID: 38380563 PMCID: PMC11113254 DOI: 10.1111/acel.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lingyan Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Huang
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yiming Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guoxin Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guiqin Chen
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Hao Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tingting Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Dan Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Anyu Bao
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
9
|
Salmani F, Mohammadi M, Seif R, Khatami SH, Noori S, Tehrani HS, Riazi G, Balalaie S, Moosavi-Movahedi AA, Fard AM, Mahnam K, Keramatinia A, Tafakhori A, Aghamollaii V, Toutounchi AH, Shahmohammadi MR, Karima S. Lysine ε-aminolysis and incorporation of sulfhydryl groups into human brain tau 4R/1N and 306VQIVYK 311 enhances the formation of beta structures and toxicity. Int J Biol Macromol 2024; 263:130223. [PMID: 38365146 DOI: 10.1016/j.ijbiomac.2024.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Marjan Mohammadi
- Student Research Committee, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Seif
- Student Research Committee, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Shokoofeh Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Karim Mahnam
- Faculty of Science, Department of Biology, Nanotechnology Research Center, Sharekord University, Sharekord, Iran
| | - Aliasghar Keramatinia
- Department of Community Medicine,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery, Imam Hosein medical and educational center, Shahid Beheshti University of Medical Sciences,Tehran,Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
10
|
Demir Özer E, Yildirim M. The modification of nisin with homocysteine thiolactone and its effect on antimicrobial activity. Braz J Microbiol 2024; 55:191-199. [PMID: 38082122 PMCID: PMC10920495 DOI: 10.1007/s42770-023-01207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024] Open
Abstract
The aim of the present study is to make an important contribution to the literature by focusing on the preparation of the N-homocysteine conjugate of nisin and evaluating the effect of the N-homocysteinylation reaction on its antimicriobial activity. The modification process was monitored using both acetic acid urea polyacrylamide gel electrophoresis (AAU-PAGE) and tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis (tricine SDS-PAGE). The antibacterial effectiveness of modified nisin was assessed against Staphylococcus aureus ATCC 6538, Enterococcus faecium ATCC 9097, Bacillus subtilis ATCC 6633, Lactococcus lactis ssp. cremoris AÜ, Listeria monocytogenes NCTC 5348, and Escherichia coli RSKK. Optimal conditions for achieving the highest N-homocysteinylation degree (6.30%) were determined as 6 mg/mL nisin, 150 mM homocysteine thiolactone, 150 rpm shaking rate, pH of 3.0, and a reaction time of 6 h. The modified nisin obtained did not have a significant inhibitory effect on the strains tested except E. faecium. E. faecium was inhibited by the modified nisin and its antibacterial activity was determined as approximately 10% of the antibacterial activity of unmodified nisin. On the other hand, hydrolysis of nisin by trypsin and thermolysin resulted in significant specific side chain modifications induced by the homocysteine-thiolactone reaction, especially at Lys12 and Lys22. The results provide valuable insights into the potential of N-homocysteinylation to improve the antibacterial properties of nisin and also suggest that the effects of specific modifications identified during the modification process should be investigated.
Collapse
Affiliation(s)
- Ezgi Demir Özer
- Department of Gastronomy and Culinary Arts, Cappadocia University, Nevşehir, Turkey.
| | - Metin Yildirim
- Department of Food Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
11
|
Zhou L. Homocysteine and Parkinson's disease. CNS Neurosci Ther 2024; 30:e14420. [PMID: 37641911 PMCID: PMC10848096 DOI: 10.1111/cns.14420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Homocysteine (Hcy) is an important metabolite in methionine metabolism. When the metabolic pathway of homocysteine is abnormal, it will accumulate in the body and eventually lead to hyperhomocysteinemia. In recent years, many studies have found that hyperhomocysteinemia is related to the occurrence and development of Parkinson's disease. This study reviews the roles of homocysteine in the pathogenesis of Parkinson's disease and illustrates the harmful effects of hyperhomocysteinemia on Parkinson's disease.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
12
|
Witucki Ł, Jakubowski H. Homocysteine metabolites inhibit autophagy, elevate amyloid beta, and induce neuropathy by impairing Phf8/H4K20me1-dependent epigenetic regulation of mTOR in cystathionine β-synthase-deficient mice. J Inherit Metab Dis 2023; 46:1114-1130. [PMID: 37477632 DOI: 10.1002/jimd.12661] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The loss of cystathionine β-synthase (CBS), an important homocysteine (Hcy)-metabolizing enzyme or the loss of PHF8, an important histone demethylase participating in epigenetic regulation, causes severe intellectual disability in humans. Similar neuropathies were also observed in Cbs-/- and Phf8-/- mice. How CBS or PHF8 depletion can cause neuropathy was unknown. To answer this question, we examined a possible interaction between PHF8 and CBS using Cbs-/- mouse and neuroblastoma cell models. We quantified gene expression by RT-qPCR and western blotting, mTOR-bound H4K20me1 by chromatin immunoprecipitation (CHIP) assay, and amyloid β (Aβ) by confocal fluorescence microscopy using anti-Aβ antibody. We found significantly reduced expression of Phf8, increased H4K20me1, increased mTOR expression and phosphorylation, and increased App, both on protein and mRNA levels in brains of Cbs-/- mice versus Cbs+/- sibling controls. Autophagy-related Becn1, Atg5, and Atg7 were downregulated while p62, Nfl, and Gfap were upregulated on protein and mRNA levels, suggesting reduced autophagy and increased neurodegeneration in Cbs-/- brains. In mouse neuroblastoma N2a or N2a-APPswe cells, treatments with Hcy-thiolactone, N-Hcy-protein or Hcy, or Cbs gene silencing by RNA interference significantly reduced Phf8 expression and increased total H4K20me1 as well as mTOR promoter-bound H4K20me1. This led to transcriptional mTOR upregulation, autophagy downregulation, and significantly increased APP and Aβ levels. The Phf8 gene silencing increased Aβ, but not APP, levels. Taken together, our findings identify Phf8 as a regulator of Aβ synthesis and suggest that neuropathy of Cbs deficiency is mediated by Hcy metabolites, which transcriptionally dysregulate the Phf8 → H4K20me1 → mTOR → autophagy pathway thereby increasing Aβ accumulation.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Alkaissi H, McFarlane SI. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023; 15:e42259. [PMID: 37605676 PMCID: PMC10440097 DOI: 10.7759/cureus.42259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Cardiovascular diseases and osteoporosis, seemingly unrelated disorders that occur with advanced age, share major pathogenetic mechanisms contributing to accelerated atherosclerosis and bone loss. Hyperhomocysteinemia (hHcy) is among these mechanisms that can cause both vascular and bone disease. In its more severe form, hHcy can present early in life as homocystinuria, an inborn error of metabolic pathways of the sulfur-containing amino acid methionine. In its milder forms, hHcy may go undiagnosed and untreated into adulthood. As such, hHcy may serve as a potential therapeutic target for cardiovascular disease, osteoporosis, thrombophilia, and neurodegeneration, collectively representing accelerated aging. Multiple trials to lower cardiovascular risk and improve bone density with homocysteine-lowering agents, yet none has proven to be clinically meaningful. To understand this unmet clinical need, this review will provide mechanistic insight into the pathogenesis of vascular and bone disease in hHcy, using homocystinuria as a model for accelerated atherosclerosis and bone density loss, a model for accelerated aging.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, Brooklyn, USA
- Internal Medicine, Veterans Affairs Medical Center, Brooklyn, USA
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Samy I McFarlane
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
14
|
Kumari K, Sharma GS, Gupta A, Singh KS, Singh LR. Functionally active cross-linked protein oligomers formed by homocysteine thiolactone. Sci Rep 2023; 13:5620. [PMID: 37024663 PMCID: PMC10079695 DOI: 10.1038/s41598-023-32694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Deposition of high-order protein oligomers is a common hallmark of a large number of human diseases and therefore, has been of immense medical interest. From the past several decades, efforts are being made to characterize protein oligomers and explore how they are linked with the disease pathologies. In general, oligomers are non-functional, rather cytotoxic in nature while the functional (non-cytotoxic) oligomers are quite rare. In the present study, we identified new protein oligomers of Ribonuclease-A and Lysozyme that contain functionally active fractions. These functional oligomers are disulfide cross-linked, native-like, and obtained as a result of the covalent modification of the proteins by the toxic metabolite, homocysteine thiolactone accumulated under hyperhomocysteinemia (a condition responsible for cardiovascular complications including atherosclerosis). These results have been obtained from the extensive analysis of the nature of oligomers, functional status, and structural integrity of the proteins using orthogonal techniques. The study implicates the existence of such oligomers as protein sinks that may sequester toxic homocysteines in humans.
Collapse
Affiliation(s)
- Kritika Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, 110075, India
| | - Akshita Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | |
Collapse
|
15
|
Zhou L, Guo T, Meng L, Zhang X, Tian Y, Dai L, Niu X, Li Y, Liu C, Chen G, Liu C, Ke W, Zhang Z, Bao A, Zhang Z. N-homocysteinylation of α-synuclein promotes its aggregation and neurotoxicity. Aging Cell 2023; 22:e13745. [PMID: 36437524 PMCID: PMC10014048 DOI: 10.1111/acel.13745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Epidemiological evidence indicates that high level of homocysteine (Hcy) is associated with an increased risk of PD. However, the molecular mechanisms remain elusive. Here, we report that homocysteine thiolactone (HTL), a reactive thioester of Hcy, covalently modifies α-synuclein on the K80 residue. The levels of α-synuclein K80Hcy in the brain are increased in an age-dependent manner in the TgA53T mice, correlating with elevated levels of Hcy and HTL in the brain during aging. The N-homocysteinylation of α-synuclein stimulates its aggregation and forms fibrils with enhanced seeding activity and neurotoxicity. Intrastriatal injection of homocysteinylated α-synuclein fibrils induces more severe α-synuclein pathology and motor deficits when compared with unmodified α-synuclein fibrils. Increasing the levels of Hcy aggravates α-synuclein neuropathology in a mouse model of PD. In contrast, blocking the N-homocysteinylation of α-synuclein ameliorates α-synuclein pathology and degeneration of dopaminergic neurons. These findings suggest that the covalent modification of α-synuclein by HTL promotes its aggregation. Targeting the N-homocysteinylation of α-synuclein could be a novel therapeutic strategy against PD.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Bag S, Konar M, Roy P, DasGupta S, Dasgupta S. Homocysteine thiolactone and H 2 O 2 induce amino acid modifications and alter the fibrillation propensity of the Aβ 25-35 peptide. FEBS Lett 2023; 597:1041-1051. [PMID: 36694268 DOI: 10.1002/1873-3468.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Of the proteinaceous β-sheet-rich amyloid fibrillar structures, the Aβ25-35 peptide, a component of the full-length Aβ involved in Alzheimer's disease, has similar toxicity to the parent peptide. In this study, the effects of homocysteine thiolactone (HCTL) and hydrogen peroxide (H2 O2 ) on the conformation and fibrillation propensity of the Aβ25-35 peptide were investigated. Both HCTL and H2 O2 induced amino acid modifications along with alteration in aggregation propensity. Methionine (Met)-35 was oxidized by H2 O2 and aggregation was attenuated following the increased hydrophilicity of the peptide due to sulfoxide/sulfone formation. The HCTL-modified lysine (Lys-28) residue destabilizes the structure of the peptide, which leads to fibrillation. Our studies provide important information regarding the relationship between amino acid modifications and the amyloid fibrillation process.
Collapse
Affiliation(s)
- Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,Sister Nivedita University, New Town, India
| | - Mouli Konar
- Department of Chemistry, Indian Institute of Technology Kharagpur, India
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, India
| | - Sunando DasGupta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
17
|
Capatina N, Burton GJ, Yung HW. Elevated homocysteine activates unfolded protein responses and causes aberrant trophoblast differentiation and mouse blastocyst development. Physiol Rep 2022; 10:e15467. [PMID: 36117391 PMCID: PMC9483615 DOI: 10.14814/phy2.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Hyperhomocysteinemia may arise from folate/vitamin B12 deficiency, genetic polymorphisms, kidney disease, or hypothyroidism. It is associated with an increased risk of early pregnancy loss and placenta-related complications of pregnancy, including pre-eclampsia and fetal growth restriction. While the majority of studies of hyperhomocysteinemia focus on epigenetic changes secondary to metabolic disruption, the effects of homocysteine toxicity on placental development remain unexplored. Here, we investigated the influence of hyperhomocysteinemia on early blastocyst development and trophoblast differentiation. Exposure of cultured blastocysts to high homocysteine levels reduces cell number in the trophectoderm layer, most likely through increased apoptosis. Homocysteine also promotes differentiation of a trophoblast stem cell line. Both effects diminish the stem cell pool, and are mediated in an endoplasmic reticulum (ER) unfolded protein response (UPRER )-dependent manner. Targeted alleviation of UPRER may therefore provide a new therapeutic intervention to improve pregnancy outcome in women with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Nadejda Capatina
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Chen SM, Tang XQ. Homocysteinylation and Sulfhydration in Diseases. Curr Neuropharmacol 2022; 20:1726-1735. [PMID: 34951391 PMCID: PMC9881069 DOI: 10.2174/1570159x20666211223125448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.
Collapse
Affiliation(s)
- Si-Min Chen
- Emergency Intensive Care Unit, Department of Emergency, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, P.R. China; ,The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China,Address correspondence to this author at the The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China 69 Chuanshan Road, Hengyang 421001, Hunan Province, P.R. China; E-mails: ;
| |
Collapse
|
19
|
D’Souza SW, Glazier JD. Homocysteine Metabolism in Pregnancy and Developmental Impacts. Front Cell Dev Biol 2022; 10:802285. [PMID: 35846363 PMCID: PMC9280125 DOI: 10.3389/fcell.2022.802285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Homocysteine is a metabolite generated by methionine cycle metabolism, comprising the demethylated derivative of methionine. Homocysteine can be metabolised by the transsulphuration pathway to cystathionine, which requires vitamin B6, or can undergo remethylation to methionine. Homocysteine remethylation to methionine is catalysed by methionine synthase activity which requires vitamin B12, regenerating methionine to allow synthesis of the universal methyl donor S-adenosylmethionine required for methylation and gene transcription regulation. The methyl-group donated for homocysteine remethylation comes from 5-methyltetrahydrofolate generated by the folate cycle, which allows tetrahydrofolate to be returned to the active folate pool for nucleotide biosynthesis. Therefore the integrated actions of the methionine and folate cycles, required to metabolise homocysteine, also perpetuate methylation and nucleotide synthesis, vitally important to support embryonic growth, proliferation and development. Dysregulated activities of these two interdependent metabolic cycles, arising from maternal suboptimal intake of nutrient co-factors such as folate and vitamin B12 or gene polymorphisms resulting in reduced enzymatic activity, leads to inefficient homocysteine metabolic conversion causing elevated concentrations, known as hyperhomocysteinemia. This condition is associated with multiple adverse pregnancy outcomes including neural tube defects (NTDs). Raised homocysteine is damaging to cellular function, binding to proteins thereby impairing their function, with perturbed homocysteine metabolism impacting negatively on embryonic development. This review discusses the "cross-talk" of maternal-fetal homocysteine interrelationships, describes the placental transport of homocysteine, homocysteine impacts on pregnancy outcomes, homocysteine and methylation effects linking to NTD risk and proposes a putative pathway for embryonic provision of folate and vitamin B12, homocysteine-modulating nutrients that ameliorate NTD risk.
Collapse
Affiliation(s)
- Stephen W. D’Souza
- Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022; 14:nu14071412. [PMID: 35406025 PMCID: PMC9003430 DOI: 10.3390/nu14071412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma homocysteine (HCY) is an established risk factor for cardiovascular disease CVD and stroke. However, more than two decades of intensive research activities has failed to demonstrate that Hcy lowering through B-vitamin supplementation results in a reduction in CVD risk. Therefore, doubts about a causal involvement of hyperhomocysteinemia (HHcy) and B-vitamin deficiencies in atherosclerosis persist. Existing evidence indicates that HHcy increases oxidative stress, causes endoplasmatic reticulum (ER) stress, alters DNA methylation and, thus, modulates the expression of numerous pathogenic and protective genes. Moreover, Hcy can bind directly to proteins, which can change protein function and impact the intracellular redox state. As most mechanistic evidence is derived from experimental studies with rather artificial settings, the relevance of these results in humans remains a matter of debate. Recently, it has also been proposed that HHcy and B-vitamin deficiencies may promote CVD through accelerated telomere shortening and telomere dysfunction. This review provides a critical overview of the existing literature regarding the role of HHcy and B-vitamin deficiencies in CVD. At present, the CVD risk associated with HHcy and B vitamins is not effectively actionable. Therefore, routine screening for HHcy in CVD patients is of limited value. However, B-vitamin depletion is rather common among the elderly, and in such cases existing deficiencies should be corrected. While Hcy-lowering with high doses of B vitamins has no beneficial effects in secondary CVD prevention, the role of Hcy in primary disease prevention is insufficiently studied. Therefore, more intervention and experimental studies are needed to address existing gaps in knowledge.
Collapse
|
21
|
Guéant JL, Guéant-Rodriguez RM, Kosgei VJ, Coelho D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B 12 metabolism. Crit Rev Biochem Mol Biol 2021; 57:133-155. [PMID: 34608838 DOI: 10.1080/10409238.2021.1979459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Viola J Kosgei
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
22
|
Purgat K, Kośka I, Kubalczyk P. The Use of Single Drop Microextraction and Field Amplified Sample Injection for CZE Determination of Homocysteine Thiolactone in Urine. Molecules 2021; 26:5687. [PMID: 34577158 PMCID: PMC8468900 DOI: 10.3390/molecules26185687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Two cheap, simple and reproducible methods for the electrophoretic determination of homocysteine thiolactone (HTL) in human urine have been developed and validated. The first method utilizes off-line single drop microextraction (SDME), whereas the second one uses off-line SDME in combination with field amplified sample injection (FASI). The off-line SDME protocol consists of the following steps: urine dilution with 0.2 mol/L, pH 8.2 phosphate buffer (1:2, v/v), chloroform addition, drop formation and extraction of HTL. The pre-concentration of HTL inside a separation capillary was performed by FASI. For sample separation, the 0.1 mol/L pH 4.75 phosphate buffer served as the background electrolyte, and HTL was detected at 240 nm. A standard fused-silica capillary (effective length 55.5 cm, 75 μm id) and a separation voltage of 21 kV (~99 μA) were used. Electrophoretic separation was completed within 7 min, whereas the LOD and LOQ for HTL were 0.04 and 0.1 μmol/L urine, respectively. The calibration curve in urine was linear in the range of 0.1-0.5 μmol/L, with R2 = 0.9991. The relative standard deviation of the points of the calibration curve varied from 2.4% to 14.9%. The intra- and inter-day precision and recovery were 6.4-10.2% (average 6.0% and 6.7%) and 94.9-102.7% (average 99.7% and 99.5%), respectively. The analytical procedure was successfully applied to the analysis of spiked urine samples obtained from apparently healthy volunteers.
Collapse
Affiliation(s)
- Krystian Purgat
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
| | - Izabella Kośka
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
- Doctoral School of Exact and Natural Sciences, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland
| | - Paweł Kubalczyk
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
| |
Collapse
|
23
|
Maksimovic I, David Y. Non-enzymatic Covalent Modifications as a New Chapter in the Histone Code. Trends Biochem Sci 2021; 46:718-730. [PMID: 33965314 PMCID: PMC8364488 DOI: 10.1016/j.tibs.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
The interior of the cell abounds with reactive species that can accumulate as non-enzymatic covalent modifications (NECMs) on biological macromolecules. These adducts interfere with many cellular processes, for example, by altering proteins' surface topology, enzymatic activity, or interactomes. Here, we discuss dynamic NECMs on chromatin, which serves as the cellular blueprint. We first outline the chemistry of NECM formation and then focus on the recently identified effects of their accumulation on chromatin structure and transcriptional output. We next describe the known cellular regulatory mechanisms that prevent or reverse NECM formation. Finally, we discuss recently developed chemical biology platforms for probing and manipulating these NECMs in vitro and in vivo.
Collapse
Affiliation(s)
- Igor Maksimovic
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Kameda T, Horiuchi Y, Shimano S, Yano K, Lai SJ, Ichimura N, Tohda S, Kurihara Y, Tozuka M, Ohkawa R. Effect of myeloperoxidase oxidation and N-homocysteinylation of high-density lipoprotein on endothelial repair function. Biol Chem 2021; 403:265-277. [PMID: 34448387 DOI: 10.1515/hsz-2021-0247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Endothelial cell (EC) migration is essential for healing vascular injuries. Previous studies suggest that high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the major protein constituent of HDL, have endothelial healing functions. In cardiovascular disease, HDL is modified by myeloperoxidase (MPO) and N-homocysteine, resulting in apoA-I/apoA-II heterodimer and N-homocysteinylated (N-Hcy) apoA-I formation. This study investigated whether these modifications attenuate HDL-mediated endothelial healing. Wound healing assays were performed to analyze the effect of MPO-oxidized HDL and N-Hcy HDL in vitro. HDL obtained from patients with varying troponin I levels were also examined. MPO-oxidized HDL reduces EC migration compared to normal HDL in vitro, and N-Hcy HDL showed a decreasing trend toward EC migration. EC migration after treatment with HDL from patients was decreased compared to HDL isolated from healthy controls. Increased apoA-I/apoA-II heterodimer and N-Hcy apoA-I levels were also detected in HDL from patients. Wound healing cell migration was significantly negatively correlated with the ratio of apoA-I/apoA-II heterodimer to total apoA-II and N-Hcy apoA-I to total apoA-I. MPO-oxidized HDL containing apoA-I/apoA-II heterodimers had a weaker endothelial healing function than did normal HDL. These results indicate that MPO-oxidized HDL and N-Hcy HDL play a key role in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Takahiro Kameda
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuna Horiuchi
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu City, Chiba, 279-0021, Japan
| | - Shitsuko Shimano
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kouji Yano
- Division of Clinical Medicine, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shao-Jui Lai
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Naoya Ichimura
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuji Tohda
- Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuriko Kurihara
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| | - Minoru Tozuka
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Life Science Research Center, Nagano Children's Hospital, 3100 Toyoshina, Azumino, 399-8288, Japan
| | - Ryunosuke Ohkawa
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
25
|
Balint B, Hergalant S, Camadro JM, Blaise S, Vanalderwiert L, Lignières L, Guéant-Rodriguez RM, Guéant JL. Fetal Programming by Methyl Donor Deficiency Produces Pathological Remodeling of the Ascending Aorta. Arterioscler Thromb Vasc Biol 2021; 41:1928-1941. [PMID: 33827257 DOI: 10.1161/atvbaha.120.315587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brittany Balint
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Sébastien Hergalant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | | | | | - Laurent Lignières
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, France (J.-M.C., L.L.)
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| | - Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux) (B.B., S.H., R.-M.G.-R., J.-L.G.), Université de Lorraine, France
- Department of Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center (R.-M.G.-R., J.-L.G.), Université de Lorraine, France
| |
Collapse
|
26
|
Włoczkowska O, Perła-Kaján J, Smith AD, de Jager C, Refsum H, Jakubowski H. Anti- N-homocysteine-protein autoantibodies are associated with impaired cognition. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2021; 7:e12159. [PMID: 33816764 PMCID: PMC8010366 DOI: 10.1002/trc2.12159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Introduction Elevated homocysteine (Hcy) and related metabolites accelerate Alzheimer's disease. Hcy-lowering B vitamins slow brain atrophy/cognitive decline in mild cognitive impairment (MCI). Modification with Hcy-thiolactone generates auto-immunogenic N-Hcy-protein. We tested a hypothesis that anti-N-Hcy-protein autoantibodies predict cognition in individuals with MCI participating in a randomized, double-blind, placebo-controlled VITACOG trial of B vitamins. Methods Participants with MCI (n = 196, 76.8 years old, 60% women) were randomly assigned to receive a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg), and B6 (20 mg) (n = 98) or placebo (n = 98) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of patients (n = 167) by magnetic resonance imaging. Anti N-Hcy-protein auto-antibodies were quantified by enzyme-linked immunosorbent assay. Associations among anti-N-Hcy-protein autoantibodies, cognition, and brain atrophy were examined by multiple regression analysis. Results At baseline, anti-N-Hcy-protein autoantibodies were significantly associated with impaired global cognition (Mini-Mental State Examination [MMSE]), episodic memory (Hopkins Verbal Learning Test-revised), and attention/processing speed (Map Search). At the end of the study, anti-N-Hcy-protein autoantibodies were associated with impaired global cognition (MMSE) and attention/processing speed (Trail Making A). In the placebo group, baseline anti-N-Hcy-protein autoantibodies predicted, independently of Hcy, global cognition (Telephone Inventory for Cognitive Status modified [TICS-m]; MMSE) and attention/processing speed (Trail Making A) but not brain atrophy, at the end of study. B-vitamin treatment abrogated association of anti-N-Hcy-protein autoantibodies with cognition. Discussion These findings suggest that anti-N-Hcy-protein autoantibodies can impair functional (attention/processing speed and global cognition), but not structural (brain atrophy), aspects of cognition. Anti-N-Hcy-protein autoantibodies are a new factor associated with impaired cognition, which could be ameliorated by B vitamins.
Collapse
Affiliation(s)
- Olga Włoczkowska
- Department of Biochemistry and Biotechnology Poznań University of Life Sciences Poznań Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology Poznań University of Life Sciences Poznań Poland
| | - A David Smith
- OPTIMA Department of Pharmacology University of Oxford Oxford UK
| | - Celeste de Jager
- OPTIMA Department of Pharmacology University of Oxford Oxford UK
| | - Helga Refsum
- Department of Nutrition Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology Poznań University of Life Sciences Poznań Poland.,Department of Microbiology Biochemistry and Molecular Genetics New Jersey Medical School International Center for Public Health Rutgers University Newark New Jersey USA
| |
Collapse
|
27
|
Grzegorzewska AE, Adamska P, Iwańczyk-Skalska E, Ostromecka K, Niepolski L, Marcinkowski W, Mostowska A, Warchoł W, Żaba C, Jagodziński PP. Paraoxonase 1 concerning dyslipidaemia, cardiovascular diseases, and mortality in haemodialysis patients. Sci Rep 2021; 11:6773. [PMID: 33762698 PMCID: PMC7990965 DOI: 10.1038/s41598-021-86231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Paraoxonase 1 (PON1) is known for preventing atherosclerosis through lipid-modifying features, antioxidant activity, anti-inflammatory, anti-apoptosis, anti-thrombosis, and anti-adhesion properties. Uremic patients requiring haemodialysis (HD) are especially prone to atherosclerosis and its complications. We analysed the PON1 gene (PON1) polymorphisms and serum PON1 (paraoxonase) activity concerning dyslipidaemia and related cardiovascular diseases and mortality to show how they associate under uremic conditions modified by maintenance HD treatment. The rs662 AA + AG (OR 1.76, 95%CI 1.10-2.80, P = 0.018), rs854560 TT (OR 1.48, 95%CI 1.04-2.11, P = 0.031), and rs854560 AT + TT (OR 1.28, 95%CI 1.01-1.63, P = 0.040) contributed to the prevalence of atherogenic dyslipidaemia diagnosed by the triglyceride (TG)/HDL-cholesterol ratio ≥ 3.8. The normalized serum PON1 activity positively correlated with atherogenic dyslipidaemia (ẞ 0.67 ± 0.25, P = 0.008). The PON1 rs854560 allele T was involved in the higher prevalence of ischemic cerebral stroke (OR 1.38, 1.02-1.85, P = 0.034). The PON1 rs705379 TT genotype contributed to cardiovascular (HR 1.27, 95% CI 1.03-1.57, P = 0.025) and cardiac (HR 1.34, 95% CI 1.05-1.71, P = 0.018) mortality. All P-values were obtained in multiple regression analyses, including clinical variables. Multifaceted associations of PON1 with dyslipidaemia, ischemic cerebral stroke, and cardiovascular mortality in HD patients provide arguments for the consideration of PON1 and its protein product as therapeutic targets in the prevention of atherosclerosis and its complications in uremic patients.
Collapse
Affiliation(s)
- Alicja E. Grzegorzewska
- grid.22254.330000 0001 2205 0971Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Paulina Adamska
- grid.22254.330000 0001 2205 0971Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Ewa Iwańczyk-Skalska
- grid.22254.330000 0001 2205 0971Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Kamila Ostromecka
- grid.22254.330000 0001 2205 0971Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Leszek Niepolski
- B. Braun Avitum Poland, Dialysis Center, 64-300 Nowy Tomyśl, Poland
| | | | - Adrianna Mostowska
- grid.22254.330000 0001 2205 0971Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Wojciech Warchoł
- grid.22254.330000 0001 2205 0971Department of Ophthalmology and Optometry, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Czesław Żaba
- grid.22254.330000 0001 2205 0971Department of Forensic Medicine, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Paweł P. Jagodziński
- grid.22254.330000 0001 2205 0971Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| |
Collapse
|
28
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:2051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
29
|
Jakubowski H. Proteomic exploration of cystathionine β-synthase deficiency: implications for the clinic. Expert Rev Proteomics 2021; 17:751-765. [PMID: 33320032 DOI: 10.1080/14789450.2020.1865160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Homocystinuria due to cystathionine β-synthase (CBS) deficiency, the most frequent inborn error of sulfur amino acid metabolism, is characterized biochemically by severely elevated homocysteine (Hcy) and related metabolites, such as Hcy-thiolactone and N-Hcy-protein. CBS deficiency reduces life span and causes pathological abnormalities affecting most organ systems in the human body, including the cardiovascular (thrombosis, stroke), skeletal/connective tissue (osteoporosis, thin/non-elastic skin, thin hair), and central nervous systems (mental retardation, seizures), as well as the liver (fatty changes), and the eye (ectopia lentis, myopia). Molecular basis of these abnormalities were largely unknown and available treatments remain ineffective. Areas covered: Proteomic and transcriptomic studies over the past decade or so, have significantly contributed to our understanding of mechanisms by which the CBS enzyme deficiency leads to clinical manifestations associated with it. Expert opinion: Recent findings, discussed in this review, highlight the involvement of dysregulated proteostasis in pathologies associated with CBS deficiency, including thromboembolism, stroke, neurologic impairment, connective tissue/collagen abnormalities, hair defects, and hepatic toxicity. To ameliorate these pathologies, pharmacological, enzyme replacement, and gene transfer therapies are being developed.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań, Poland.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, International Center for Public Health , Newark, NJ USA
| |
Collapse
|
30
|
Guerra-Castellano A, Márquez I, Pérez-Mejías G, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int J Mol Sci 2020; 21:E8483. [PMID: 33187249 PMCID: PMC7697256 DOI: 10.3390/ijms21228483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain; (A.G.-C.); (I.M.); (G.P.-M.); (A.D.-Q.); (M.A.D.l.R.)
| |
Collapse
|
31
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
32
|
Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots. Talanta 2020; 218:121214. [DOI: 10.1016/j.talanta.2020.121214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
|
33
|
Jiang S, Hsieh W, Chen W, Liao J, Chiang P, Lin YA. Synthesis of Thiol‐Containing Oligopeptides via Tandem Activation of γ‐Thiolactones by Silver‐DABCO Pair. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng‐Yuan Jiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wen‐Tsai Hsieh
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wei‐Shuo Chen
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Jia‐Shiang Liao
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Po‐Yu Chiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Yuya A. Lin
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
34
|
Chan JC, Maze I. Nothing Is Yet Set in (Hi)stone: Novel Post-Translational Modifications Regulating Chromatin Function. Trends Biochem Sci 2020; 45:829-844. [PMID: 32498971 PMCID: PMC7502514 DOI: 10.1016/j.tibs.2020.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023]
Abstract
Histone post-translational modifications (PTMs) have emerged as exciting mechanisms of biological regulation, impacting pathways related to cancer, immunity, brain function, and more. Over the past decade alone, several histone PTMs have been discovered, including acylation, lipidation, monoaminylation, and glycation, many of which appear to have crucial roles in nucleosome stability and transcriptional regulation. In this review, we discuss novel histone PTMs identified within the past 10 years, with an extended focus on enzymatic versus nonenzymatic mechanisms underlying modification and adduction. Furthermore, we consider how these novel histone PTMs might fit within the framework of a so-called 'histone code', emphasizing the physiological relevance of these PTMs in metabolism, development, and disease states.
Collapse
Affiliation(s)
- Jennifer C Chan
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
35
|
Kaye AD, Jeha GM, Pham AD, Fuller MC, Lerner ZI, Sibley GT, Cornett EM, Urits I, Viswanath O, Kevil CG. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv Ther 2020; 37:4149-4164. [PMID: 32845472 PMCID: PMC7497502 DOI: 10.1007/s12325-020-01474-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Introduction Folic acid is the most important dietary determinant of homocysteine (Hcy). Hcy serves as a critical intermediate in methylation reactions. It is created from methionine and either converted back to methionine or transformed into cysteine. This process is aided through several enzymes and three vitamins, folic acid, B12, and B6. Daily supplementation with 0.5–5.0 mg of folic acid typically lowers plasma Hcy levels by approximately 25%. Hyperhomocysteinemia is a known risk factor for coronary artery disease. In this regard, elevated levels of Hcy have been found in a majority of patients with vascular disease. Methods A literature review of folic acid supplementation for various disease states including cardiovascular disease was conducted. This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors. Results In this review, we discuss the biochemistry of folic acid, Hcy biosynthesis, Hcy and hydrogen sulfide bioavailability, pathogenesis of hyperhomocysteinemia and its role as a risk factor for disease, and treatment studies with folic acid supplementation in disease states. Conclusion Folic acid supplementation should be recommended to any patient who has an elevated Hcy level, and this level should be measured and treated at an early age, since folic acid is easily obtained and may likely reduce vascular disease and other deleterious pathologic processes in high-risk populations.
Collapse
|
36
|
Colasanti T, Sabatinelli D, Mancone C, Giorgi A, Pecani A, Spinelli FR, Di Giamberardino A, Navarini L, Speziali M, Vomero M, Barbati C, Perricone C, Ceccarelli F, Finucci A, Celia AI, Currado D, Afeltra A, Schininà ME, Barnaba V, Conti F, Valesini G, Alessandri C. Homocysteinylated alpha 1 antitrypsin as an antigenic target of autoantibodies in seronegative rheumatoid arthritis patients. J Autoimmun 2020; 113:102470. [DOI: 10.1016/j.jaut.2020.102470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
|
37
|
Abstract
The ‘amyloid hypothesis’ dominates Alzheimer’s disease (AD) research but has failed to deliver effective therapies. Amyloid precursor protein (APP) and presenilin-1 (PSEN1) genetic mutations are undoubtedly pathogenic, albeit by unclear mechanisms. Conversely, high dose B-vitamins convincingly slow brain atrophy in a pre-stage state of sporadic AD. Here we suggest a link between sporadic and genetic AD: 1) Increased serum homocysteine, a marker of B-vitamin deficiencies, is a significant risk factor for sporadic AD. It also correlates with elevated levels of antichymotrypsin, a serine protease inhibitor. 2) Family members with codon 717 APP mutations and dementia have low serum vitamin B12 values. Overexpression of the APP domain coding for a Kunitz type serine protease inhibitor might explain this. 3) PSEN1 mutations disrupt lysosomal function due to reduced proteolytic activity. They also trap cobalamin (B12) within lysosomes, leading to intracellular deficiency of the vitamin. In summary, APP and PSEN1 mutations both confer a risk for reduced protease activity and B12 bio-availability. Comparably, sporadic AD features a constellation of increased protease inhibition and B-vitamin deficiencies, the central part of which is believed to be B12. These concordant observations in three disparate AD etiologies suggest a common neuropathogenic pathway. This hypothesis is evaluable in laboratory and clinical trials.
Collapse
Affiliation(s)
- Björn Regland
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Andrew McCaddon
- University of Chester, Chester Medical School, Bache Hall, Chester, UK
| |
Collapse
|
38
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
39
|
Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie 2020; 173:100-106. [PMID: 32105811 DOI: 10.1016/j.biochi.2020.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 11/23/2022]
Abstract
Homocysteine (Hcy) is a non-protein forming amino acid which is the direct metabolic precursor of methionine. Increased concentration of serum Hcy is considered a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature. Serum Hcy is associated with atherosclerosis, hypertension and aneurysms of the aorta in humans, though the precise mechanisms by which Hcy contributes to these conditions remain elusive. Results from clinical trials that successfully lowered serum Hcy without reducing features of vascular disease in cardiovascular patients have cast doubt on whether or not Hcy directly impacts the vasculature. However, studies in animals and in cell culture suggest that Hcy has a vast array of toxic effects on the vasculature, with demonstrated roles in endothelial dysfunction, medial remodeling and adventitial inflammation. It is hypothesized that rather than serum Hcy, tissue-bound Hcy and the incorporation of Hcy into proteins could underlie the toxic effects of Hcy on the vasculature. In this review, we present evidence for Hcy-associated vascular disease in humans, and we critically examine the possible mechanisms by which Hcy specifically impacts the endothelial, medial and adventitial layers of the arterial wall. Deciphering the mechanisms by which Hcy interacts with proteins in the arterial wall will allow for a better understanding of the pathomechanisms of hyperhomocysteinemia and will help to define a better means of prevention at the appropriate window of life.
Collapse
|
40
|
Urquhart BL, House AA. Assessing Plasma Total Homocysteine in Patients with End-Stage Renal Disease. Perit Dial Int 2020. [DOI: 10.1177/089686080702700502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is a risk factor for cardiovascular disease; however, in light of several recent randomized trials, the issue of causality has been cast into doubt. Patients with end-stage renal disease are particularly interesting as they consistently have elevated tHcy and their leading causes of morbidity and mortality are related to cardiovascular disease. In the present article, we review the early evidence for the homocysteine theory of atherosclerosis, homocysteine metabolism, mechanisms of toxicity, and pertinent available clinical investigations. Where appropriate, the sparse evidence of homocysteine in peritoneal dialysis is reviewed. We conclude by addressing the difficulties associated with lowering plasma tHcy in patients with end-stage renal disease and suggest some novel methods for lowering tHcy in this resistant population. Finally, to address the issue of causality, we recommend that clinicians and scientists await the results of the FAVORIT trial before abandoning homocysteine as a modifiable risk factor for cardiovascular disease, as this study has recruited patients from a population with consistently elevated plasma tHcy who are known to respond to vitamin therapy.
Collapse
Affiliation(s)
- Bradley L. Urquhart
- Departments of Medicine The University of Western Ontario, London, Ontario, Canada
- Physiology/Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Andrew A. House
- Departments of Medicine The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Higher Levels of Low Molecular Weight Sulfur Compounds and Homocysteine Thiolactone in the Urine of Autistic Children. Molecules 2020; 25:molecules25040973. [PMID: 32098164 PMCID: PMC7070266 DOI: 10.3390/molecules25040973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, the levels of concentration of homocysteine thiolactone (HTL), cysteine (Cys), and cysteinylglycine (CysGly) in the urine of autistic and non-autistic children were investigated and compared. HTL has never been analyzed in autistic children. The levels of low molecular weight sulfur compounds in the urine of both groups were determined by validated methods based on high-performance liquid chromatography with spectrofluorometric and diode-array detectors. The statistical data show a significant difference between the examined groups. Children with autism were characterized by a significantly higher level of HTL (p = 5.86 × 10−8), Cys (p = 1.49 × 10−10) and CysGly (p = 1.06 × 10−8) in urine compared with the control group. A difference in the p-value of <0.05 is statistically significant. Higher levels of HTL, Cys, and CysGly in the urine of 41 children with autism, aged 3 to 17, were observed. The obtained results may indicate disturbances in the metabolism of methionine, Cys, and glutathione in some autistic patients. These preliminary results suggest that further research with more rigorous designs and a large number of subjects is needed.
Collapse
|
42
|
Purgat K, Olejarz P, Kośka I, Głowacki R, Kubalczyk P. Determination of homocysteine thiolactone in human urine by capillary zone electrophoresis and single drop microextraction. Anal Biochem 2020; 596:113640. [PMID: 32092290 DOI: 10.1016/j.ab.2020.113640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
A simple, fast, sensitive and reproducible capillary zone electrophoresis (CZE) method with single drop microextraction (SDME) for determination of homocysteine thiolactone (HTL) in human urine has been developed and validated. The method is characterized by good precision, high accuracy, short analysis time and low consumption of reagents. The procedure consists only of few steps: urine sample centrifugation, dilution with phosphate buffer and methanol, chloroform addition onto the top of donor phase, on-line SDME in CE system, sample separation by CZE and ultraviolet detection of HTL at 240 nm. The background electrolyte was 0.1 M pH 4.75 phosphate buffer. Effective separation was achieved within 6.04 min under the separation voltage of 24 kV (~110 μA). The LOQ and LOD for HTL were 50 and 25 nM urine, respectively. The calibration curve in urine showed linearity in the range of 50-200 nM, with R2 0.9995. The intra- and inter-day precision and recovery were 4.0-14.5% (average 8.7% and 9.3%) and 92.7-115.5% (average 103.6% and 104.8%), respectively. The procedure was successfully applied to analysis of urine samples.
Collapse
Affiliation(s)
- Krystian Purgat
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Patrycja Olejarz
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Izabella Kośka
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Poland
| | - Rafał Głowacki
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Paweł Kubalczyk
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland.
| |
Collapse
|
43
|
Nikolic T, Srejovic I, Stojic I, Jeremic J, Folic M, Matic S, Rakocevic M, Jancic S, Jakovljevic B, Obrenovic R, Djuric D, Zivkovic V. Atherogenic Impact of Homocysteine: Can HMG-CoA Reductase Inhibitors Additionally Influence Hyperhomocysteinaemia? SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2017-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The strong association among the risk of coronary artery diseases (CAD), high levels of LDL-C and low levels of HDLC is well established. Hyperhomocysteinaemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) and causes endothelial dysfunction, a hallmark of atherosclerosis. In this study, we ascertained the influence of statins on the atherogenic index, as an indicator and a significant adjunct for predicting atherosclerosis in hyperhomocysteinaemic male Wistar albino rats. For 4 weeks, the animals were fed with one of the following diets (Mucedola SRL., Milan, Italy): standard rodent chow; a diet enriched in methionine with no deficiency in B vitamins or a diet enriched in methio-nine and deficient in B vitamins. The animals were simultaneously exposed to a pharmacology treatment with atorvastatin at dose of 3 mg/kg/day i.p. or simvastatin, at dose of 5 mg/kg/day i.p. We measured weight gain, food intake, and FER and determined the concentrations of biochemical parameters of dyslipidaemia (TC, TGs, LDL-C, VLDL-C, and HDL-C), AI, and CRR. A histopathological examination was conducted on portions of the right and left liver lobes from each animal. A connection between Hhcy and dyslipidaemia was indicated by the findings of biochemical and histological analyses, suggesting that Hhcy was a pro-atherogenic state. An improvement in the lipid profile along with a decrease in the atherogenic index by statins suggests that atorvastatin and simvastatin could be useful antiatherogenic agents, with protective activities during hyperhomocysteinaemia.
Collapse
Affiliation(s)
- Tamara Nikolic
- Department of Pharmacy , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Ivan Srejovic
- Department of Physiology , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Isidora Stojic
- Department of Pharmacy , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Jovana Jeremic
- Department of Pharmacy , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Marko Folic
- Department of Pharmacy , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Stevan Matic
- Department of Pathology , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Milena Rakocevic
- Department of Pathology , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | - Snezana Jancic
- Department of Pathology , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| | | | - Radmila Obrenovic
- Institute for Medical Biochemistry , Clinical Centre of Serbia , Belgrade , Serbia
| | - Dusan Djuric
- Faculty of Medicine , Institute of Medical Physiology “Richard Burian” , University of Belgrade , Belgrade , Serbia
| | - Vladimir Zivkovic
- Department of Physiology , University of Kragujevac , Faculty of Medical Sciences , Kragujevac , Serbia
| |
Collapse
|
44
|
Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019; 165:19-31. [PMID: 31269461 DOI: 10.1016/j.biochi.2019.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Homocysteine (Hcy) is a key metabolite generated during methionine metabolism. The elevated levels of Hcy in the blood are reffered to as hyperhomocystenimeia (HHcy). The HHcy is caused by impaired metabolism/deficiency of either folate or B12 or defects in Hcy metabolism. Accumulating evidence suggests that HHcy is associated with cardiovascular and brain diseases including atherosclerosis, endothelial injury, and stroke etc. Vitamin B12 (cobalamin; B12) is a water-soluble vitamin essential for two metabolic reactions. It acts as a co-factor for methionine synthase and L-methylmalonyl-CoA mutase. Besides, it is also vital for DNA synthesis and maturation of RBC. Deficiency of B12 is associated with haematological and neurological disorders. Hyperhomocysteinemia (HHcy)-induced toxicity is thought to be mediated by the accumulation of Hcy and its metabolites, homocysteinylated proteins. Cellular protein quality control (PQC) is essential for the maintenance of proteome integrity, and cell viability and its failure contributes to the development of multiple diseases. Chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), and autophagy are analogous strategies of PQC that maintain cellular proteome integrity. Recently, multiple studies reported that HHcy responsible for perturbation of PQC by reducing chaperone levels, activating UPR, and impairing autophagy. Besides, HHcy also induce cytotoxicity, inflammation, protein aggregation and apoptosis. It has been shown that some of the factors including altered SIRT1-HSF1 axis and irreversible homocysteinylation of proteins are responsible for folate and/or B12 deficiency or HHcy-induced impairment of PQC. Therefore, this review highlights the current understanding of HHcy in the context of cellular PQC and their pathophysiological and clinical consequences, epigenomic changes, therapeutic implications of B12, and chemical chaperones based on cell culture and experimental animal models.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India.
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
45
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
46
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
47
|
Bacchetti T, Ferretti G, Sahebkar A. The role of paraoxonase in cancer. Semin Cancer Biol 2019; 56:72-86. [PMID: 29170064 DOI: 10.1016/j.semcancer.2017.11.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/20/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
The paraoxonase (PON) gene family includes three proteins, PON1, PON2 and PON3. PON1 and PON3 are both associated with high-density lipoprotein (HDL) particles and exert anti-oxidant and anti-inflammatory properties. PON2 and PON3 are intracellular enzymes which modulate mitochondrial superoxide anion production and endoplasmic reticulum (ER) stress-induced apoptosis. The pleiotropic roles exerted by PONs have been mainly investigated in cardiovascular and neurodegenerative diseases. In recent years, overexpression of PON2 and PON3 has been observed in cancer cells and it has been proposed that both enzymes could be involved in tumor survival and stress resistance. Moreover, a lower activity of serum PON1 has been reported in cancer patients. This review summarizes literature data on the role of PONs in human cancers and their potential role as a target for antitumor drugs.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Ancona, Italy.
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Polytechnic University of Marche, Ancona, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Silla Y, Varshney S, Ray A, Basak T, Zinellu A, Sabareesh V, Carru C, Sengupta S. Hydrolysis of homocysteine thiolactone results in the formation of Protein-Cys-S-S-homocysteinylation. Proteins 2019; 87:625-634. [PMID: 30869815 DOI: 10.1002/prot.25681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 11/07/2022]
Abstract
An increased level of homocysteine, a reactive thiol amino acid, is associated with several complex disorders and is an independent risk factor for cardiovascular disease. A majority (>80%) of circulating homocysteine is protein bound. Homocysteine exclusively binds to protein cysteine residues via thiol disulfide exchange reaction, the mechanism of which has been reported. In contrast, homocysteine thiolactone, the cyclic thioester of homocysteine, is believed to exclusively bind to the primary amine group of lysine residue leading to N-homocysteinylation of proteins and hence studies on binding of homocysteine thiolactone to proteins thus far have only focused on N-homocysteinylation. Although it is known that homocysteine thiolactone can hydrolyze to homocysteine at physiological pH, surprisingly the extent of S-homocysteinylation during the exposure of homocysteine thiolactone with proteins has never been looked into. In this study, we clearly show that the hydrolysis of homocysteine thiolactone is pH dependent, and at physiological pH, 1 mM homocysteine thiolactone is hydrolysed to ~0.71 mM homocysteine within 24 h. Using albumin, we also show that incubation of HTL with albumin leads to a greater proportion of S-homocysteinylation (0.41 mol/mol of albumin) than N-homocysteinylation (0.14 mol/mol of albumin). S-homocysteinylation at Cys34 of HSA on treatment with homocysteine thiolactone was confirmed using LC-MS. Further, contrary to earlier reports, our results indicate that there is no cross talk between the cysteine attached to Cys34 of albumin and homocysteine attached to lysine residues.
Collapse
Affiliation(s)
- Yumnam Silla
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, Delhi, India
| | - Swati Varshney
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, Delhi, India
| | - Arjun Ray
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, Delhi, India
| | - Trayambak Basak
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, Delhi, India
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Varatharajan Sabareesh
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU Sassari), Sassari, Italy
| | - Shantanu Sengupta
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, Delhi, India
| |
Collapse
|
49
|
Bossenmeyer‐Pourié C, Smith AD, Lehmann S, Deramecourt V, Sablonnière B, Camadro J, Pourié G, Kerek R, Helle D, Umoret R, Guéant‐Rodriguez R, Rigau V, Gabelle A, Sequeira JM, Quadros EV, Daval J, Guéant J. N‐homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer's disease and vascular dementia. J Pathol 2019; 248:291-303. [DOI: 10.1002/path.5254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Carine Bossenmeyer‐Pourié
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - A David Smith
- OPTIMA, Department of PharmacologyUniversity of Oxford Oxford UK
| | - Sylvain Lehmann
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | - Vincent Deramecourt
- Inserm U837, Jean‐Pierre Aubert Research Centre and Université de Lille Nord de France Lille France
| | - Bernard Sablonnière
- Inserm U837, Jean‐Pierre Aubert Research Centre and Université de Lille Nord de France Lille France
| | - Jean‐Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592Université Paris Diderot Paris France
| | - Grégory Pourié
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Racha Kerek
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Deborah Helle
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Remy Umoret
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Rosa‐Maria Guéant‐Rodriguez
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Valérie Rigau
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | - Audrey Gabelle
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | | | - Edward V Quadros
- Department of MedicineSUNY Downstate Medical Center New York NY USA
| | - Jean‐Luc Daval
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Jean‐Louis Guéant
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| |
Collapse
|
50
|
Sex affects N-homocysteinylation at lysine residue 212 of albumin in mice. Sci Rep 2019; 9:2669. [PMID: 30804445 PMCID: PMC6389882 DOI: 10.1038/s41598-019-38784-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 01/29/2023] Open
Abstract
The modification of protein lysine residues by the thioester homocysteine (Hcy)-thiolactone has been implicated in cardiovascular and neurodegenerative diseases. However, only a handful of proteins carrying Hcy on specific lysine residues have been identified and quantified in humans or animals. In the present work, we developed a liquid chromatography/mass spectrometry targeted assay, based on multiple reaction monitoring, for quantification of N-Hcy-Lys212 (K212Hcy) and N-Hcy-Lys525 (K525Hcy) sites in serum albumin in mice. Using this assay, we found that female (n = 20) and male (n = 13) Cbs−/− mice had significantly elevated levels of K212Hcy and K525Hcy modifications in serum albumin relative to their female (n = 19) and male (n = 17) Cbs+/− littermates. There was significantly more K212Hcy modification in Cbs−/− males than in Cbs−/− females (5.78 ± 4.21 vs. 3.15 ± 1.38 units, P = 0.023). Higher K212Hcy levels in males than in females were observed also in Cbs+/− mice (2.72 ± 0.81 vs. 1.89 ± 1.07 units, P = 0.008). In contrast, levels of the K525Hcy albumin modification were similar between males and females, both in Cbs−/− and Cbs+/− mice. These findings suggest that the sex-specific K212Hcy modification in albumin might have an important biological function in mice that is not affected by the Cbs genotype.
Collapse
|