1
|
Dey P. Comparable hepatocellular metabolomic signatures under glucose and palmitic acid treatment relative to butyrate in relation to metabolic dysfunction-associated fatty liver disease. Arch Physiol Biochem 2025:1-11. [PMID: 40372011 DOI: 10.1080/13813455.2025.2500651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Among the dietary factors, glucose, and fatty acids are known to trigger fatty liver disease, while butyrate attenuates steatosis. OBJECTIVE To decipher the hepatocellular altered metabolome under nutrient perturbation relevant to fatty liver disease. METHODS HepG2 cells were cultured under the influence of sub-lethal doses of glucose, palmitic acid (PA), and butyrate. Following the treatment, intracellular metabolites were extracted and derivatized for GCMS analysis. Chemical class enrichment, metabolic pathway analysis, and metabolomic interactome analysis were undertaken. RESULTS Glucose, PA and butyrate caused loss of cell viability at 160 mM, 1600 µM, and 40 mM concentration, respectively. A total of 39, 47, 52, and 51 metabolites were identified in control, glucose, PA, and butyrate, respectively, among which 2-ethylhexanoic acid in control and 2-ethylhexan-1-ol in glucose, PA and butyrate were the most abundant metabolites. Pathways related to the mitochondrial electron transport chain were highly enriched in glucose and PA treatments, leading to increased free radicals. The metabolites identified under glucose and PA treatment were linked to the metabolomic markers of metabolic liver diseases. CONCLUSION Our data showed that the hepatocellular metabolome of HepG2 cells under glucose and PA treatment is closely related, while the metabolome and pathways associated with butyrate treatment are associated with energy metabolism and alleviation of fatty liver.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
2
|
Gautam H, Ahmad SN, Banaganapalli B, Popowich S, Chow-Lockerbie B, Ayalew LE, Mandal R, Wishart DS, Tikoo S, Gomis S. Elevated butyric acid and histamine in feces and serum as an indicator of onset of necrotic enteritis in broiler chickens. Front Microbiol 2025; 16:1581309. [PMID: 40415938 PMCID: PMC12098369 DOI: 10.3389/fmicb.2025.1581309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/10/2025] [Indexed: 05/27/2025] Open
Abstract
Background Clostridium perfringens (CP) induced necrotic enteritis (NE) is an economically significant intestinal disease of broiler chickens. Identifying potential biological markers during the development of NE might facilitate early disease control measures. Therefore, the current study aimed to identify the metabolites and metabolic pathways changes associated with the onset of NE in serum and feces of CP-infected broiler chickens. Methodology The protein content of the feed was abruptly altered from 20% to 28% using a well-established NE model before challenging the birds with CP. Then, we performed a targeted, fully quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) -based assay for analyzing the metabolomics profile of serum, feces, and jejunal contents in NE birds. The data were analyzed to understand the trend of metabolite distribution, relationships between metabolites and pathway impacts. Results Birds with NE showed metabolic variations including lipids, amino acids, and organic acids, across all the biological samples analyzed. This variation was higher in serum samples (310/597 metabolites, 51.92%), compared to fecal (182/608 metabolites, 29.93%), and jejunal samples (125/607 metabolites, 20.59%). A robust statistical analysis of these metabolites identified 19 common metabolites, including butyric acid and histamine. Pathway analysis identified that six of them were enriched in key pathways, like tricarboxylic acid cycle (TCA cycle) (citric acid and cis-aconitic acid), glyoxylate and dicarboxylate metabolism (citric acid and cis-aconitic acid), arginine-proline metabolism (spermine and creatinine), butanoate metabolism (butyric acid), and histidine metabolism (histamine). These pathways were related to energy synthesis, nitrogen metabolism, and immune response in NE birds. Conclusion This study highlights metabolic differences in birds with NE and underscores butyric acid and histamine as potential early biomarkers for NE diagnosis. The upregulation of these metabolites across serum, jejunal and fecal samples reflects their local and systemic impacts on the disease. These biomarkers play key roles in several NE hallmark features, including gut barrier disruption, dysbiosis of microbes and tissue injury through immune system activation, and systemic inflammation. Future studies need to validate our findings across field conditions and different predisposing factors.
Collapse
Affiliation(s)
- Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shaik Noor Ahmad
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lisanework E. Ayalew
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada
| | - David S. Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Suresh Tikoo
- Department of Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Lai W, Li D, Wang J, Geng Q, Xia Y, Fu Y, Li W, Feng Y, Jin L, Yang R, Huang Z, Lin Y, Zhang H, Chen S, Chen L. Exhaled breath is feasible for mild cognitive impairment detection: A diagnostic study with portable micro-gas chromatography. J Alzheimers Dis 2025; 104:751-762. [PMID: 39956982 DOI: 10.1177/13872877251319553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BackgroundMild cognitive impairment (MCI) is an important prodromal stage of Alzheimer's disease (AD), affecting 69 million individuals worldwide. At present, there is a lack of a community-applicable tool for MCI screening. Exhaled breath volatile organic compounds (VOCs) have been used to distinguish MCI from cognitively normal (CN) individuals only in small sample size studies and the efficacy has not been compared with blood biomarkers.ObjectiveThis diagnostic study aimed to assess the feasibility of using exhaled breath VOCs detection by a portable micro-gas chromatography (μGC) device as a screening tool to discriminate MCI from CN individuals in a community population.MethodsA detection model was developed and optimized from five distinct machine learning algorithms based on the differential VOCs between 240 MCI and 241 CN individuals. Among these 481 participants, five plasma biomarkers were measured in 397 individuals (166 MCI and 231 CN).ResultsThe final model (481 individuals) incorporating eight differential VOCs showed good performance with an area under the receiver-operating characteristic curve (AUC) of 0.84 (95% confidence interval (95% CI): 0.83-0.85). The AUC of the VOC model (0.80, 95% CI: 0.69-0.90) was higher than that of the plasma model (0.77, 95% CI: 0.65-0.88) (397 individuals).ConclusionsThe detection of exhaled breath VOCs by a portable μGC device is feasible for MCI screening in community populations, potentially facilitating early detection and intervention strategies for individuals at high risk.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Debo Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Junqi Wang
- Jingjinji National Center of Technology Innovation, Beijing, P. R. China
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Qian Geng
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Yilin Xia
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yutong Fu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wanling Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yong Feng
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Ling Jin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ruiqi Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zijie Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuhang Lin
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Han Zhang
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Sitong Chen
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
- Joint Research Institution of Altitude Health, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
4
|
Yao CK, Green K, Day AS, Ardalan ZM, Slater R, Bryant RV, Gibson PR, Probert C. Distinct Profiles of Fecal Volatile Organic Compounds Discriminate Ulcerative Colitis Patients With an Ileoanal Pouch From Those With an Intact Colon. Mol Nutr Food Res 2025; 69:e70003. [PMID: 40018833 PMCID: PMC11962224 DOI: 10.1002/mnfr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Fecal volatile organic compounds (VOCs) offer insights into gut microbiota function that may drive the pathogenesis of ulcerative colitis (UC). This cross-sectional study aimed to compare dietary intake and VOC patterns in UC patients with an ileoanal pouch compared to those with an intact colon. Seven-day food records and fecal samples were collected from UC patients with an intact colon (n = 28) or an ileoanal pouch (n = 11). Fecal VOC profiles were analyzed using gas chromatography-mass spectrometry. Dietary intake in both groups was largely similar. The mean Jaccard similarity index of VOC was 0.55 (95% CI:0.53, 0.56) in the pouch compared with 0.48 (0.47, 0.49) in the colon group (p < 0.01). A lower proportion of VOC classes was detected in the pouch, including sulfide (9% vs. 57%; p < 0.01), branched-chain fatty acids (BCFAs; 45%-64% vs. 93%-96%; p < 0.01), and ketones (45%-64% vs. 93%-96%; p < 0.01), along with a higher proportion of butyric acid (91% vs. 29%; p < 0.001). Unrelated to diet, VOC profiles show less functional diversity, reduced protein and greater carbohydrate fermentation, and altered production of secondary metabolites in the UC-pouch compared with the intact colon. These differences in the metabolic environment of the gut microbiota provide insights into pathogenesis and suggest that microbial-targeted interventions should be tailored accordingly.
Collapse
Affiliation(s)
- Chu K. Yao
- Department of GastroenterologySchool of Translational MedicineMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kraig Green
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Alice S. Day
- Inflammatory Bowel Disease ServiceDepartment of GastroenterologyThe Queen Elizabeth HospitalSouth AustraliaAustralia
- Basil Hetzel Research InstituteSouth AustraliaAustralia
- School of Medicine and Health SciencesUniversity of AdelaideNorth TerraceAdelaideSouth AustraliaAustralia
| | - Zaid M. Ardalan
- Department of GastroenterologySchool of Translational MedicineMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rachael Slater
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Robert V. Bryant
- Inflammatory Bowel Disease ServiceDepartment of GastroenterologyThe Queen Elizabeth HospitalSouth AustraliaAustralia
- Basil Hetzel Research InstituteSouth AustraliaAustralia
- School of Medicine and Health SciencesUniversity of AdelaideNorth TerraceAdelaideSouth AustraliaAustralia
| | - Peter R. Gibson
- Department of GastroenterologySchool of Translational MedicineMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chris Probert
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
5
|
Wang Y, Wang X, Yang L, Wang K, Zhang F, Yue H, Wang J, Peng M, Fan P, Qiu X, Zhang H, Lin W, Lin Y, Chen S, Geng Q, Sima C, Liu D, Lu P, Zhang H. Exploring exhaled volatile organic compounds as potential biomarkers in anti-MDA5 antibody-positive interstitial lung disease. Mol Cell Biochem 2025:10.1007/s11010-025-05249-4. [PMID: 40102365 DOI: 10.1007/s11010-025-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Interstitial lung diseases (ILDs) are a group of pulmonary disorders characterized by fibrosis, inflammation, and lung tissue deterioration. Anti-melanoma differentiation-associated gene 5-positive dermatomyositis-associated interstitial lung disease (MDA5-ILD), a subtype, is associated with high mortality due to rapid progression and severe lung damage. Volatile organic compounds (VOCs) in exhaled breath, reflecting metabolic changes, have been identified as potential non-invasive biomarkers for various diseases, including respiratory conditions. However, their role in MDA5-ILD has not been extensively studied. This retrospective cohort study included 45 exhaled breath samples from 19 ILD patients, with 31 samples from 9 patients with MDA5-ILD and 10 samples from 7 patients with non-MDA5-ILD. VOCs were collected using thermal desorption tubes and analyzed via gas chromatography-mass spectrometry (GC-MS). Clinical data, including the APACHE II score, were integrated with VOC profiles. Two logistic regression models were developed: Model 1 based on 11 clinical indicators, and Model 2 integrating 11 clinical indicators with 5 VOC features. Model performance was evaluated using receiver operating characteristic (ROC) curve analysis, sensitivity, specificity, and accuracy metrics. Five VOCs-N-(2-Aziridinyl)ethanamine, Cyclohexanone, Nonanal, Dodecamethylcyclohexasiloxane, and 4-Methyltetradecane-were identified as significant biomarkers distinguishing MDA5-ILD from non-MDA5-ILD. Model 2, which integrated VOC data, outperformed Model 1, achieving an area under the curve (AUC) of 0.93 compared to 0.70. Model 2 also demonstrated enhanced accuracy (84.6% vs. 76.9%), specificity (66.7% vs. 33.3%), precision (90.0% vs. 81.8%), and F1-score (90.0% vs. 85.7%). Additionally, 1,3-Pentadiene and 3-Methylundecane were identified as potential markers of disease severity, with 1,3-Pentadiene negatively correlating and 3-Methylundecane positively correlating with both APACHE II scores and creatinine levels. VOCs in exhaled breath significantly enhance the diagnostic sensitivity and accuracy for detecting MDA5-ILD. In addition, VOCs show promise as disease severity markers, potentially aiding in the assessment of disease severity and progression. While the integration of VOCs holds great potential for improving diagnostic performance, further validation through larger, multicenter studies is necessary.
Collapse
Affiliation(s)
- Yuxuan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuewen Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luqin Yang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengqin Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huihui Yue
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junqi Wang
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
- Jingjinji National Center of Technology Innovation, Beijing, 100000, China
| | - Minhua Peng
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Pengnan Fan
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Xiangcheng Qiu
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Han Zhang
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Wei Lin
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Yuhang Lin
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Sitong Chen
- Chromx Health Co. Ltd., Greater Bay Area National Center of Nanotechnology Innovation Building, Guangzhou, 510555, China
| | - Qian Geng
- Innovation Center of Social & Technology for Aging of Jiangsu Industrial Technology Research Institute, Nanjing, 210042, China
| | - Chaotan Sima
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deming Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ping Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Huilan Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Lins LC, DE-Meira JEC, Pereira CW, Crispim AC, Gischewski MDR, Lins-Neto MÁDF, Moura FA. FECAL CALPROTECTIN AND INTESTINAL METABOLITES: WHAT IS THEIR IMPORTANCE IN THE ACTIVITY AND DIFFERENTIATION OF PATIENTS WITH INFLAMMATORY BOWEL DISEASES? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2025; 38:e1870. [PMID: 40052996 PMCID: PMC11870234 DOI: 10.1590/0102-6720202500001e1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/01/2024] [Indexed: 03/10/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), lacks a known etiology. Although clinical symptoms, imaging, and colonoscopy are common diagnostic tools, fecal calprotectin (FC) serves as a widely used biomarker to track disease activity. Metabolomics, within the omics sciences, holds promise for identifying disease progression biomarkers. This approach involves studying metabolites in biological media to uncover pathological factors. AIMS The purpose of this study was to explore fecal metabolomics in IBD patients, evaluate its potential in differentiating subtypes, and assess disease activity using FC. METHODS Cross-sectional study including IBD patients, clinical data, and FC measurements (=200 μg/g as an indicator of active disease). RESULTS Fecal metabolomics utilized chromatography mass spectrometry/solid phase microextraction with MetaboAnalyst 5.0 software for analysis. Of 52 patients (29 UC, 23 CD), 36 (69.2%) exhibited inflammatory activity. We identified 56 fecal metabolites, with hexadecanoic acid, squalene, and octadecanoic acid notably distinguishing CD from UC. For UC, octadecanoic and hexadecanoic acids correlated with disease activity, whereas octadecanoic acid was most relevant in CD. CONCLUSIONS These findings highlight the potential of metabolomics as a noninvasive complement for evaluating IBD, aiding diagnosis, and assessing disease activity.
Collapse
Affiliation(s)
- Lucas Correia Lins
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| | | | | | - Alessandre Carmo Crispim
- Universidade Federal de Alagoas, Postgraduate Program in Chemistry and Biotechnology - Maceió (AL), Brazil
| | | | | | - Fabiana Andréa Moura
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| |
Collapse
|
7
|
Bai PR, An N, Wang YZ, Chen YY, Zhu QF, Feng YQ. iTASO: A Novel Photosensitive Probe for High-Throughput and Selective Submetabolomic Analysis via Flow Injection-Mass Spectrometry. Anal Chem 2025; 97:1495-1499. [PMID: 39804786 DOI: 10.1021/acs.analchem.4c06108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH2, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling. The iTASO-ONH2 probe effectively and selectively labels carbonyl compounds, forming highly stable labeled products. Upon UV exposure, the labeled products rapidly release sulfonic acid-containing photolysis products, detectable with high sensitivity in ESI-negative mode and low matrix effect, offering femtomole-level detection sensitivity. The iTASO-ONH2-based FI-MS strategy was applied to fecal samples from chronic sleep-deprived and control mice, revealing 192 potential carbonyl compounds of which 37 exhibited significant alterations. Additionally, three other photosensitive probes─iTASO-NH2, iTASO-NHS, and iTASO-MAL─were synthesized to selectively label carboxyl, amino, and thiol metabolites, respectively, underscoring the versatility of the iTASO-based FI-MS strategy for submetabolomic analysis across diverse metabolite classes.
Collapse
Affiliation(s)
- Pei-Rong Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Quan-Fei Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Arulvasan W, Greenwood J, Ball ML, Chou H, Coplowe S, Birch O, Gordon P, Ratiu A, Lam E, Tardelli M, Szkatulska M, Swann S, Levett S, Mead E, van Schooten FJ, Smolinska A, Boyle B, Allsworth M. Optimized breath analysis: customized analytical methods and enhanced workflow for broader detection of VOCs. Metabolomics 2025; 21:17. [PMID: 39832034 PMCID: PMC11747010 DOI: 10.1007/s11306-024-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified. OBJECTIVES To develop a complementary analytical method for the detection and identification of additional VOCs from breath. To develop and implement upgrades to the methodology for identifying features determined to be "on-breath" by comparing breath samples against paired background samples applying three metrics: standard deviation, paired t-test, and receiver-operating-characteristic (ROC) curve. METHODS A thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS)-based analytical method utilizing a PEG phase GC column was developed for the detection of biologically relevant VOCs. The multi-step VOC identification methodology was upgraded through several developments: candidate VOC grouping schema, ion abundance correlation based spectral library creation approach, hybrid alkane-FAMES retention indexing, relative retention time matching, along with additional quality checks. In combination, these updates enable highly accurate identification of breath-borne VOCs, both on spectral and retention axes. RESULTS A total of 621 features were statistically determined as on-breath by at least one metric (standard deviation, paired t-test, or ROC). A total of 38 on-breath VOCs were able to be confidently identified from comparison to chemical standards. CONCLUSION The total confirmed on-breath VOCs is now 186. We present an updated methodology for high-confidence VOC identification, and a new set of VOCs commonly found on-breath.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ella Mead
- Owlstone Medical Ltd., Cambridge, UK
| | - Frederik-Jan van Schooten
- Faculty of Health, Medicine and Life Sciences, Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | - Agnieszka Smolinska
- Faculty of Health, Medicine and Life Sciences, Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | | | | |
Collapse
|
9
|
Weiß BM, Birkemeyer C, Kücklich M, Widdig A. Chemical signatures of social information in Barbary macaques. Sci Rep 2025; 15:1902. [PMID: 39805877 PMCID: PMC11730623 DOI: 10.1038/s41598-024-84619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
Primates are well-known for their complex social lives and intricate social relationships, which requires them to obtain and update social knowledge about conspecifics. The sense of smell may provide access to social information that is unavailable in other sensory domains or enhance the precision and reliability of other sensory cues. However, the cognition of social information in catarrhine primates has been studied primarily in the visual and auditory domain. We assessed the social information content of body odor in a catarrhine primate, the Barbary macaque (Macaca sylvanus), in three semi-free ranging groups at Affenberg Salem, Germany. In particular, we related socially relevant attributes (identity, genetic relatedness, rank, sex, age, group membership) to chemical profiles of body odor. We applied non-invasive active sampling via thermal desorption tubes and analyzed samples by gas chromatography-mass spectrometry. We found robust evidence for individual odor signatures and limited support for kin signatures. Chemical profiles were also related to group membership, but little to rank, sex or age. The detected associations between chemical profiles and socially relevant attributes form the theoretical foundations for olfactory information transfer, highlighting the potential of body odor to provide valuable social information in this highly visually oriented primate.
Collapse
Affiliation(s)
- Brigitte M Weiß
- Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
- Department of Human Behaviour, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Claudia Birkemeyer
- now Claudia Wiesner, Mass Spectrometry Group, Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Marlen Kücklich
- Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany
- Department of Human Behaviour, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany
- Department of Human Behaviour, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Pueschel L, Nothacker S, Kuhn L, Wedemeyer H, Lenzen H, Wiestler M. Exploring Dietary- and Disease-Related Influences on Flatulence and Fecal Odor Perception in Inflammatory Bowel Disease. J Clin Med 2024; 14:137. [PMID: 39797221 PMCID: PMC11720819 DOI: 10.3390/jcm14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) affects gastrointestinal function and may alter fecal and flatulence odor (intestinal odor) due to changes in inflammation, the gut microbiome, and metabolism. Investigating the relationship between dietary habits and intestinal odor in IBD is critical given the relationship between diet, gut health, and microbiome diversity. Methods: We performed a cohort analysis of a monocentric, cross-sectional study at a tertiary referral center and compared the perception of fecal and flatulence odor in 233 IBD patients (n = 117 women) with that of 96 healthy controls (HCs) (n = 67 women). In addition to a short screening questionnaire on highly processed foods (sQ-HPF), dietary behavior (Food Frequency Questionnaire (FFQ)), clinical (HBI, PMS) and biochemical (CRP, fecal calprotectin) parameters of disease activity, and adherence to a Mediterranean diet were assessed. Results: A notable predisposition towards elevated levels of intestinal malodor was identified in the IBD cohort when compared to the HC group. The analysis of dietary behavior in conjunction with intestinal malodor revealed more pronounced associations in the HC collective than in the IBD collective. The data further indicated that, in comparison to those in remission, IBD individuals with an active disease status exhibited a higher prevalence of intestinal malodor. In an adjusted logistic regression analysis of the influence of disease- and diet-specific factors on flatulence and fecal malodor in IBD, male sex was identified as a significant risk factor. Conclusions: This study highlights the significance of dietary factors in the management of IBD symptoms, with a particular focus on flatulence and fecal odor. Individuals with IBD demonstrated a higher propensity for intestinal malodor compared to HC, with active disease status further amplifying this prevalence. Dietary behavior showed stronger associations with malodor in the HC group than in IBD individuals, suggesting distinct interaction patterns between diet and gut health in these populations.
Collapse
Affiliation(s)
- Lea Pueschel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Sonja Nothacker
- School for Dietitians, Hannover Medical School, 30625 Hannover, Germany;
| | - Leonie Kuhn
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| | - Henrike Lenzen
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
- Department of Gastroenterology, Hepatology, Interventional Endoscopy and Diabetology, Academic Teaching Hospital Braunschweig, 38126 Braunschweig, Germany
| | - Miriam Wiestler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.P.); (L.K.); (H.W.); or (H.L.)
| |
Collapse
|
11
|
RIBALDONE DG, AREZZO A, CARDENIA V, CAVIGLIA GP, ABATE ML, RADICE E, SARACCO GM, ASTEGIANO M, MORINO M. Volatile organic metabolites to predict clinical response in patients with inflammatory bowel diseases treated with biological therapy. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 36. [DOI: 10.23736/s2724-542x.24.03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
12
|
Kumar J, Yadav N, Mishra V, Koppisetti HVSRM, Roy A, Mitra A, Mahalingam V. Orotic acid-capped Tb(III)-doped calcium sulphate nanorods for the selective detection of tryptophan. NANOSCALE 2024; 16:20679-20688. [PMID: 39431852 DOI: 10.1039/d4nr02774d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lanthanide-based luminescent materials have gained huge attention due to their applications in optoelectronic devices, sensing, bio-imaging, anti-counterfeiting, and more. In this work, we report a luminescence-based sensor for the detection of tryptophan using orotic acid-capped Tb3+-doped CaSO4 nanorods (NRs). Orotic acid (OA) was found to play a dual role as a capping agent to control the growth of the nanorods and as a sensitizer for Tb3+ ions. The resulting nanorods exhibited excellent dispersibility and strong photoluminescence signals characteristic of Tb3+ ions in the visible region. Nearly 10-fold enhancement in the emission intensity was noted through OA sensitization compared to direct excitation of Tb3+ ions (acceptors). Interestingly, the strong emission intensity of the NRs reduced significantly with the addition of tryptophan. In contrast, hardly any change was noted with the addition of other amino acids and metal ions, suggesting greater selectivity for tryptophan. Moreover, there is barely any notable interference from other amino acids toward the detection of tryptophan. The limit of detection is found to be ∼0.61 μM. Finally, the sensing study was extended to biological samples to detect tryptophan present in blood plasma, urine, and saliva samples. The nanorods demonstrated high detection abilities, indicating the potential of the developed materials for biomedical applications.
Collapse
Affiliation(s)
- Jaydeep Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Neha Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Viplove Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
13
|
Barbosa JMG, David LC, Gabriela de Oliveira C, Elcana de Oliveira A, Antoniosi Filho NR. Influence of sex, age, ethnicity/race, and body mass index on the cerumen volatilome using two data analysis approaches: binary and semiquantitative. Mol Omics 2024. [PMID: 39494608 DOI: 10.1039/d4mo00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Human cerumen analysis is an innovative and non-invasive trend in diagnosing diseases. Recently, new cerumen volatile-based methods using binary (volatile presence/absence) and semiquantitative (volatile intensity) data approaches have shown great potential in detecting biomarkers for cancer, chronic and rare diseases, and xenobiotic exposures. However, to date, the impacts of demographic factors such as body mass index (BMI), sex, age, and ethnicity/race in cerumen data have not been widely described, which can hamper interpretation in biomarker discovery investigations. This study examined the effects of such factors in cerumen, defining the baseline volatile organic metabolites (VOMs) across different physiological groups. Cerumen samples from seventy volunteers were analyzed using headspace/gas chromatography-mass spectrometry (HS/GC-MS) and multivariate statistical analysis using binary and semiquantitative data approaches. In the binary data approach, several VOMs exhibited patterns of high occurrence in some specific demographic groups. However, no pattern of discrimination that could be attributed to demographic factors was observed. In the semiquantitative approach, the relative abundance of cerumen VOMs was more impacted by sex and BMI than age and ethnicity/race. In summary, we describe how cerumen VOM occurrence and abundance are affected by patient phenotype, which can pave the way for more personalized medicine in future cerumen volatile-based methods.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Lurian Caetano David
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Camilla Gabriela de Oliveira
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Anselmo Elcana de Oliveira
- Laboratório de Química Teórica e Computacional (LQTC), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-970, Goiânia, GO, Brazil
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração e Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
15
|
Lv H, Li HY, Zhang HN, Liu Y. Delayed diagnosis in inflammatory bowel disease: Time to consider solutions. World J Gastroenterol 2024; 30:3954-3958. [PMID: 39351057 PMCID: PMC11438659 DOI: 10.3748/wjg.v30.i35.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we discuss a recently published manuscript by Blüthner et al in the World Journal of Gastroenterology, with a specific focus on the delayed diagnosis of inflammatory bowel disease (IBD). IBD, which includes Crohn's disease and ulcerative colitis, is a chronic intestinal disorder. A time lag may exist between the onset of inflammation and the appearance of signs and symptoms, potentially leading to an incorrect or delayed diagnosis, a situation referred to as the delayed diagnosis of IBD. Early diagnosis is crucial for effective patient treatment and prognosis, yet delayed diagnosis remains common. The reasons for delayed diagnosis of IBD are numerous and not yet fully understood. One key factor is the nonspecific nature of IBD symptoms, which can easily be mistaken for other conditions. Additionally, the lack of specific diagnostic methods for IBD contributes to these delays. Delayed diagnosis of IBD can result in numerous adverse consequences, including increased intestinal damage, fibrosis, a higher risk of colorectal cancer, and a decrease in the quality of life of the patient. Therefore, it is essential to diagnose IBD promptly by raising physician awareness, enhancing patient education, and developing new diagnostic methods.
Collapse
Affiliation(s)
- Hao Lv
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Hao-Yu Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Hao-Nan Zhang
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
16
|
Thwaites PA, Slater R, Probert C, Gibson PR. Recent advances in measuring the effects of diet on gastrointestinal physiology: Sniffing luminal gases and fecal volatile organic compounds. JGH Open 2024; 8:e70006. [PMID: 39081578 PMCID: PMC11284451 DOI: 10.1002/jgh3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Despite the huge pool of ideas on how diet can be manipulated to ameliorate or prevent illnesses, our understanding of how specific changes in diet influence the gastrointestinal tract is limited. This review aims to describe two innovative investigative techniques that are helping lift the veil of mystery about the workings of the gut. First, the gas-sensing capsule is a telemetric swallowable device that provides unique information on gastric physiology, small intestinal microbial activity, and fermentative patterns in the colon. Its ability to accurately measure regional and whole-gut transit times in ambulant humans has been confirmed. Luminal concentrations of hydrogen and carbon dioxide are measured by sampling through the gastrointestinal tract, and such application has enabled mapping of the relative amounts of fermentation of carbohydrates in proximal-versus-distal colon after manipulation of the types and amounts of dietary fiber. Second, changes in the smell of feces, via analysis of volatile organic compounds, occur in response to the diet, and by the presence and therapy of irritable bowel syndrome and inflammatory bowel disease. Such information is likely to aid our understanding of what dietary change can do to the colonic luminal microenvironment, and may value-add to diagnosis and therapeutic design. In conclusion, such methodologies enable a more complete physiological profile of the gastrointestinal tract to be created. Systematic description in various cohorts and effects of dietary interventions, particularly when co-ordinated with the analysis of microbiome, are needed.
Collapse
Affiliation(s)
- Phoebe A Thwaites
- Department of GastroenterologySchool of Translational Medicine, Monash UniversityMelbourneVictoriaAustralia
| | - Rachael Slater
- Institute of Systems, Molecules and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Christopher Probert
- Institute of Systems, Molecules and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Peter R Gibson
- Department of GastroenterologySchool of Translational Medicine, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Chang H, Liu L, Zhang Q, Xu G, Wang J, Chen P, Li C, Guo X, Yang Z, Zhang F. A comparative metabolomic analysis reveals the metabolic variations among cartilage of Kashin-Beck disease and osteoarthritis. Bone Joint Res 2024; 13:362-371. [PMID: 39013544 PMCID: PMC11251783 DOI: 10.1302/2046-3758.137.bjr-2023-0403.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Aims The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions.
Collapse
Affiliation(s)
- Hong Chang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingping Zhang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Gangyao Xu
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Jianpeng Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ping Chen
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Cheng Li
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Xianni Guo
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Zhengjun Yang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Xiong M, Liu Z, Wang B, Sokolich T, Graham N, Chen M, Wang WL, Boldin MP. The epithelial C15ORF48/miR-147-NDUFA4 axis is an essential regulator of gut inflammation, energy metabolism, and the microbiome. Proc Natl Acad Sci U S A 2024; 121:e2315944121. [PMID: 38917002 PMCID: PMC11228508 DOI: 10.1073/pnas.2315944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Thomas Sokolich
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Natalie Graham
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Meirong Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Wei-Le Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Mark P. Boldin
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| |
Collapse
|
19
|
Scanu M, Toto F, Petito V, Masi L, Fidaleo M, Puca P, Baldelli V, Reddel S, Vernocchi P, Pani G, Putignani L, Scaldaferri F, Del Chierico F. An integrative multi-omic analysis defines gut microbiota, mycobiota, and metabolic fingerprints in ulcerative colitis patients. Front Cell Infect Microbiol 2024; 14:1366192. [PMID: 38779566 PMCID: PMC11109417 DOI: 10.3389/fcimb.2024.1366192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches. Methods The 16S rRNA- and ITS2-based metataxonomics and gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis. Results In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions. Conclusion In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.
Collapse
Affiliation(s)
- Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Toto
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina Petito
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Letizia Masi
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- CNIS Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, Rome, Italy
| | - Pierluigi Puca
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valerio Baldelli
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovambattista Pani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Research Area of Immunology, Rheumatology and Infectious Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Martínez-Moral MP, Tena MT, Martín-Carnicero A, Martínez A. Highly sensitive serum volatolomic biomarkers for pancreatic cancer diagnosis. Clin Chim Acta 2024; 557:117895. [PMID: 38561063 DOI: 10.1016/j.cca.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The discovery of new diagnostic tools for the early detection of diseases with poor prognosis such as pancreatic adenocarcinoma (PAC) is of high importance. The results from a control-case study (20 PAC patients, 19 healthy controls) for the search of new biomarkers of pancreatic cancer based in differences in the serum volatolome are presented in this work. Volatolomics were performed following a non-targeted HS-SPME-GC/MS approach, and a total of 433 volatile organic compounds (VOCs) was detected in the human serum samples. Of these, 125 VOC indexes showed a significant variation when controls and patients were compared (p-value < 0.05). Bonferroni corrected p-values < 0.05 were found for 40 features. PCA analysis showed the control-PAC discrimination capability of VOCs in serum, and PLS-DA was performed to select the best candidate biomarkers for the diagnosis of PAC. For the 40 selected VOCs, calculated areas under the curve (AUC) ranged from 0.98 to 0.85, and 11 of them were successfully validated using an independent set of samples (5 PAC patients, 5 healthy controls). Four of the proposed PAC biomarkers were identified as toluene, 2-ethyl-1-hexanol, pentylbenzene, and butoxymethylbenzene. Combinations of the identified PAC biomarkers were tested and showed AUC > 0.90, with the more promising candidate being butoxymethylbenzene (AUC = 0.98).
Collapse
Affiliation(s)
- María-Pilar Martínez-Moral
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain; Department of Chemistry, University of La Rioja, C/ Madre de Dios 51, 26006 Logroño, Spain.
| | - María Teresa Tena
- Department of Chemistry, University of La Rioja, C/ Madre de Dios 51, 26006 Logroño, Spain.
| | - Alfonso Martín-Carnicero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain; Medical Oncology Department, Hospital San Pedro, C/Piqueras 98, 26006 Logroño, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain.
| |
Collapse
|
21
|
Barbosa JMG, Cunha ALRR, David LC, Camelo ÍN, Martins NM, Galvão FS, Mendonça DR, Venâncio MT, Cunha RDS, Filho ARC, Veloso IM, Fernandes JJR, Jorge da Cunha PH, Antoniosi Filho NR. A veterinary cerumenomic assay for bovine laminitis identification. Vet Res Commun 2024; 48:1003-1013. [PMID: 38051450 DOI: 10.1007/s11259-023-10271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
Bovine laminitis disorder results in animal welfare and economic concerns in dairy and beef farms worldwide. However, the affected metabolic pathways, pathophysiologic characteristics, and inflammatory mechanisms remain unclear, hampering the development of new diagnostics. Using cerumen (earwax) as a source of volatile metabolites (cerumenomic) that carry valuable biological information has interesting implications for veterinary medicine. Nonetheless, up to now, no applications of veterinary cerumenomic assays have been made to identify bovine laminitis. This work aims to develop a veterinary cerumenomic assay for bovine laminitis identification that is non-invasive, robust, accurate, and sensitive to detecting the metabolic disturbances in bovine volatile metabolome. Twenty earwax samples (10 from healthy/control calves and 10 from laminitis calves) were collected from Nellore cattle, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analysis and biomarker selection in two multivariate approaches: semiquantitative (intensity data) and semiqualitative (binary data). Following the analysis, cerumen volatile metabolites were indicated as candidate biomarkers for identifying bovine laminitis by monitoring their intensity or occurrence. In the semiquantitative strategy, the p-cresol presented the highest diagnostic figures of merit (area under the curve: 0.845, sensitivity: 0.700, and specificity: 0.900). Regarding the binary approach, a panel combining eight variables/volatiles, with formamide being the most prominent one, showed an area under the curve, sensitivity, and specificity of 0.97, 0.81, and 0.90, respectively. In summary, this work describes the first veterinary cerumenomic assay for bovine laminitis that indicates new metabolites altered during the inflammatory condition, paving the way for developing laminitis early diagnosis by monitoring the cerumen metabolites.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Ana Luiza Reis R Cunha
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Lurian C David
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Ícaro N Camelo
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Nauyla M Martins
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Felipe S Galvão
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Débora R Mendonça
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Marianna T Venâncio
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Roberta Dias S Cunha
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Alessandro R Costa Filho
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Izadora M Veloso
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Juliano José R Fernandes
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Paulo Henrique Jorge da Cunha
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
22
|
Bhosle A, Bae S, Zhang Y, Chun E, Avila-Pacheco J, Geistlinger L, Pishchany G, Glickman JN, Michaud M, Waldron L, Clish CB, Xavier RJ, Vlamakis H, Franzosa EA, Garrett WS, Huttenhower C. Integrated annotation prioritizes metabolites with bioactivity in inflammatory bowel disease. Mol Syst Biol 2024; 20:338-361. [PMID: 38467837 PMCID: PMC10987656 DOI: 10.1038/s44320-024-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Ludwig Geistlinger
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Gleb Pishchany
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wendy S Garrett
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
23
|
Thaiwatcharamas K, Loilome W, Ho PN, Chusilp S, Tanming P, Klanrit P, Phetcharaburanin J. Children with Hirschsprung disease exhibited alterations in host-microbial co-metabolism after pull-through operation. Pediatr Surg Int 2024; 40:87. [PMID: 38512700 DOI: 10.1007/s00383-024-05667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE This study aims to compare the fecal metabolome in post pull-through HD with and without HAEC patients and healthy young children using nuclear magnetic resonance (NMR) spectroscopy. METHODS Fresh fecal samples were collected from children under 5 years of age in both post-pull-through HD patients and healthy Thai children. A total of 20 fecal samples were then analyzed using NMR spectroscopy. RESULTS Thirty-four metabolites identified among HD and healthy children younger than 5 years were compared. HD samples demonstrated a significant decrease in acetoin, phenylacetylglutamine, and N-acetylornithine (corrected p value = 0.01, 0.04, and 0.004, respectively). Succinate and xylose significantly decreased in HD with HAEC group compared to HD without HAEC group (corrected p value = 0.04 and 0.02, respectively). Moreover, glutamine and glutamate metabolism, and alanine, aspartate, and glutamate metabolism were the significant pathways involved, with pathway impact 0.42 and 0.50, respectively (corrected p value = 0.02 and 0.04, respectively). CONCLUSION Differences in class, quantity, and metabolism of protein and other metabolites in young children with HD after pull-through operation were identified. Most of the associated metabolic pathways were correlated with the amino acids metabolism, which is required to maintain intestinal integrity and function.
Collapse
Affiliation(s)
| | - Watcharin Loilome
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phuc N Ho
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sinobol Chusilp
- Department of Surgery, Division of Pediatric Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Patchareeporn Tanming
- Department of Surgery, Division of Pediatric Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
24
|
Kiziloluk S, Yildirim M, Bingol H, Alatas B. Multi-feature fusion and dandelion optimizer based model for automatically diagnosing the gastrointestinal diseases. PeerJ Comput Sci 2024; 10:e1919. [PMID: 38435605 PMCID: PMC10909187 DOI: 10.7717/peerj-cs.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
It is a known fact that gastrointestinal diseases are extremely common among the public. The most common of these diseases are gastritis, reflux, and dyspepsia. Since the symptoms of these diseases are similar, diagnosis can often be confused. Therefore, it is of great importance to make these diagnoses faster and more accurate by using computer-aided systems. Therefore, in this article, a new artificial intelligence-based hybrid method was developed to classify images with high accuracy of anatomical landmarks that cause gastrointestinal diseases, pathological findings and polyps removed during endoscopy, which usually cause cancer. In the proposed method, firstly trained InceptionV3 and MobileNetV2 architectures are used and feature extraction is performed with these two architectures. Then, the features obtained from InceptionV3 and MobileNetV2 architectures are merged. Thanks to this merging process, different features belonging to the same images were brought together. However, these features contain irrelevant and redundant features that may have a negative impact on classification performance. Therefore, Dandelion Optimizer (DO), one of the most recent metaheuristic optimization algorithms, was used as a feature selector to select the appropriate features to improve the classification performance and support vector machine (SVM) was used as a classifier. In the experimental study, the proposed method was also compared with different convolutional neural network (CNN) models and it was found that the proposed method achieved better results. The accuracy value obtained in the proposed model is 93.88%.
Collapse
Affiliation(s)
- Soner Kiziloluk
- Computer Engineering, Malatya Turgut Ozal University, Malatya, Turkey
| | - Muhammed Yildirim
- Computer Engineering, Malatya Turgut Ozal University, Malatya, Turkey
| | - Harun Bingol
- Software Engineering, Malatya Turgut Ozal University, Malatya, Turkey
| | - Bilal Alatas
- Software Engineering, Firat (Euphrates) University, Elazig, Turkey
| |
Collapse
|
25
|
Zhang Y, Yao H, Xue C, Xu Y, Yi C, Sun Y, Cui S, Hoa ND, Jouyban A, Jin H, Cui D. Au Nanostars Coated with a Thin Film of MIL-100 (Fe) for SERS-Based Sensing of Volatile Organic Compound Indicators in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:2735-2743. [DOI: 10.1021/acsanm.3c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, People’s Republic of China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chenghan Yi
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiyang Sun
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Nguyen Duc Hoa
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
26
|
Mallikarjun A, Charendoff I, Moore MB, Wilson C, Nguyen E, Hendrzak AJ, Poulson J, Gibison M, Otto CM. Assessing Different Chronic Wasting Disease Training Aids for Use with Detection Dogs. Animals (Basel) 2024; 14:300. [PMID: 38254469 PMCID: PMC10812555 DOI: 10.3390/ani14020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic wasting disease (CWD) is a highly infectious, fatal prion disease that affects cervid species. One promising method for CWD surveillance is the use of detection dog-handler teams wherein dogs are trained on the volatile organic compound signature of CWD fecal matter. However, using fecal matter from CWD-positive deer poses a biohazard risk; CWD prions can bind to soil particles and remain infectious in contaminated areas for extended periods of time, and it is very difficult to decontaminate the affected areas. One solution is to use noninfectious training aids that can replicate the odor of fecal matter from CWD-positive and CWD-negative deer and are safe to use in the environment. Trained CWD detection dogs' sensitivity and specificity for different training aid materials (cotton, GetXent tubes, and polydimethylsiloxane, or PDMS) incubated with fecal matter from CWD-positive and CWD-negative deer at two different temperatures (21 °C and 37 °C) for three different lengths of time (6 h, 24 h, and 48 h) were evaluated. Cotton incubated at 21 °C for 24 h was identified as the best aid for CWD based on the dogs' performance and practical needs for training aid creation. Implications for CWD detection training and for training aid selection in general are discussed.
Collapse
Affiliation(s)
- Amritha Mallikarjun
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Ila Charendoff
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Madison B. Moore
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Clara Wilson
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Elizabeth Nguyen
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Abigail J. Hendrzak
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Jean Poulson
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
| | - Michelle Gibison
- Wildlife Futures Program, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA;
| | - Cynthia M. Otto
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA (M.B.M.); (C.W.); (E.N.); (A.J.H.); (J.P.); (C.M.O.)
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
27
|
Martínez-Martínez M, Martínez-Martínez M, Soria-Guerra R, Gamiño-Gutiérrez S, Senés-Guerrero C, Santacruz A, Flores-Ramírez R, Salazar-Martínez A, Portales-Pérez D, Bach H, Martínez-Gutiérrez F. Influence of feeding practices in the composition and functionality of infant gut microbiota and its relationship with health. PLoS One 2024; 19:e0294494. [PMID: 38170702 PMCID: PMC10763948 DOI: 10.1371/journal.pone.0294494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
Establishing the infant's gut microbiota has long-term implications on health and immunity. Breastfeeding is recognized as the best practice of infant nutrition in comparison with formula feeding. We evaluated the effects of the primary feeding practices by analyzing the infant growth and the potential association with gut diseases. A cross-sectional and observational study was designed. This study included 55 mothers with infants, who were divided according to their feeding practices in breastfeeding (BF), formula feeding (FF), and combined breast and formula feeding (CF). Anthropometric measurements of the participants were recorded. Additionally, non-invasive fecal samples from the infants were collected to analyze the microbiota by sequencing, immunoglobulin A (IgA) concentration (ELISA), and volatile organic compounds (gas chromatography with an electronic nose). Results showed that the microbiota diversity in the BF group was the highest compared to the other two groups. The IgA levels in the BF group were twice as high as those in the FF group. Moreover, the child´s growth in the BF group showed the best infant development when the data were compared at birth to the recollection time, as noted by the correlation with a decreased concentration of toxic volatile organic compounds. Interestingly, the CF group showed a significant difference in health status when the data were compared with the FF group. We conclude that early health practices influence children's growth, which is relevant to further research about how those infants' health evolved.
Collapse
Affiliation(s)
| | | | - Ruth Soria-Guerra
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| | | | | | - Arlette Santacruz
- Posgrado en Biotecnología, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - Rogelio Flores-Ramírez
- Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud -CIACYT, Universidad Autónoma de San Luis Potosí, SLP, Mexico
| | | | - Diana Portales-Pérez
- Instituto Mexicano del Seguro Social, Torreón, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Fidel Martínez-Gutiérrez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosí, SLP, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| |
Collapse
|
28
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
29
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
30
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Wolfschluckner V, Obermüller B, Horvath A, Rodriguez-Blanco G, Fuchs P, Miekisch W, Mittl B, Flucher C, Till H, Singer G. Metabolomic Alterations of Volatile Organic Compounds and Bile Acids as Biomarkers of Microbial Shifts in a Murine Model of Short Bowel Syndrome. Nutrients 2023; 15:4949. [PMID: 38068807 PMCID: PMC10708115 DOI: 10.3390/nu15234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. β-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.
Collapse
Affiliation(s)
- Vanessa Wolfschluckner
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Patricia Fuchs
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Wolfram Miekisch
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Christina Flucher
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| |
Collapse
|
32
|
Abu Bakar NH, Chiu HY, Urban PL. Mass Specthoscope: A Hand-held Extendable Probe for Localized Noninvasive Sampling of Skin Volatome for Online Analysis. Anal Chem 2023; 95:17143-17150. [PMID: 37935619 DOI: 10.1021/acs.analchem.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Human skin emits a unique set of volatile organic compounds (VOCs). These VOCs can be probed in order to obtain physiological information about the individuals. However, extracting the VOCs that emanate from human skin for analysis is troublesome and time-consuming. Therefore, we have developed "Mass Specthoscope"─a convenient tool for rapid sampling and detecting VOCs emitted by human skin. The hand-held probe with a pressurized tip and wireless button enables sampling VOCs from surfaces and their transfer to the atmospheric pressure chemical ionization source of quadrupole time-of-flight mass spectrometer. The system was characterized using chemical standards (acetone, benzaldehyde, sulcatone, α-pinene, and decanal). The limits of detection are in the range from 2.25 × 10-5 to 3.79 × 10-5 mol m-2. The system was initially tested by detecting VOCs emanating from porcine skin spiked with VOCs as well as unspiked fresh and spoiled ham. In the main test, the skin of nine healthy participants was probed with the Mass Specthoscope. The sampling regions included the armpit, forearm, and forehead. Numerous skin-related VOC signals were detected. In the final test, one participant ingested a fenugreek drink, and the participant's skin surface was probed using the Mass Specthoscope hourly during the 8 h period. The result revealed a gradual release of fenugreek-related VOCs from the skin. We believe that this analytical approach has the potential to be used in metabolomic studies and following further identification of disease biomarkers─also in noninvasive diagnostics.
Collapse
Affiliation(s)
- Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Hsien-Yi Chiu
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S. Road, Taipei 100, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Taipei 100, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
33
|
Johnson VJ, Rider CV, Luster MI, Brix A, Burleson GR, Cora M, Elmore SA, Frawley RP, Lopez FR, Mutlu E, Shockley KR, Pierfelice J, Burback B, Co CA, Germolec DR. Immunotoxicity of N-butylbenzenesulfonamide: impacts on immune function in adult mice and developmentally exposed rats. Toxicol Sci 2023; 196:71-84. [PMID: 37584675 PMCID: PMC10613960 DOI: 10.1093/toxsci/kfad083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
N-butylbenzenesulfonamide (NBBS) is a high-production volume plasticizer that is an emerging contaminant of concern for environmental and human health. To understand the risks and health effects of exposure to NBBS, studies were conducted in adult-exposed mice and developmentally exposed rats to evaluate the potential for NBBS to modulate the immune system. Beginning between 8 and 9 weeks of age, dosed feed containing NBBS at concentrations of 0, 313, 625, 1250, 2500, and 5000 ppm was continuously provided to B6C3F1/N female mice for 28 days. Dosed feed was also continuously provided to time-mated Harlan Sprague Dawley (Sprague Dawley SD) rats at concentrations of 0-, 250-, 500-, and 1000-ppm NBBS from gestation day 6 to postnatal day 28 and in F1 rats until 11-14 weeks of age. Functional assessments of innate, humoral, and cell-mediated immunity were conducted in adult female mice and F1 rats following exposure to NBBS. In female mice, NBBS treatment suppressed the antibody-forming cell (AFC) response to SRBC with small increases in T-cell responses and natural killer (NK)-cell activity. In developmentally exposed rats, NBBS treatment-related immune effects were sex dependent. A positive trend in NK-cell activity occurred in male F1 rats while a negative trend occurred in female F1 rats. The AFC response to SRBC was decreased in female F1 rats but not in male F1 rats. These data provide evidence that oral exposure to NBBS has the potential to produce immunomodulatory effects on both innate and adaptive immune responses, and these effects appear to have some dependence on species, sex, and period of exposure (developmental vs adult).
Collapse
Affiliation(s)
- Victor J Johnson
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Cynthia V Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Michael I Luster
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Amy Brix
- Experimental Pathology Laboratories, Inc, Research Triangle Park, North Carolina 27709, United States
| | - Gary R Burleson
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Michelle Cora
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Susan A Elmore
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Rachel P Frawley
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Franklin R Lopez
- Charles River Laboratories, Durham, North Carolina 27703, United States
| | - Esra Mutlu
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Keith R Shockley
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | | | | | - Caroll A Co
- Social and Scientific Systems Inc., a DLH Holdings Corp Company, Durham, North Carolina 27703, United States
| | - Dori R Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
34
|
Diwan B, Yadav R, Singh A, Kumar D, Sharma R. Murine sterile fecal filtrate is a potent pharmacological agent that exerts age-independent immunomodulatory effects in RAW264.7 macrophages. BMC Complement Med Ther 2023; 23:362. [PMID: 37833682 PMCID: PMC10576334 DOI: 10.1186/s12906-023-04193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Sterile fecal filtrate (SFF) is being considered a safer alternative to fecal microbiota transplantation (FMT) therapy; however, its bioactive potency is very little understood. The present study thus assessed the age-dependent immunostimulatory and immunomodulatory attributes of murine SFF in vitro. METHODS SFF from young (Y-SFF) and old (O-SFF) Swiss albino mice were prepared. Immunostimulatory and immunomodulatory effects of SFF were evaluated in resting and lipopolysaccharide (LPS) stimulated macrophage cells by measuring intracellular reactive oxygen species (ROS), nitric oxide (NO) production, inflammatory cytokines profile, as well as gene expression of oxidative and inflammatory transcription factors. SFF were also evaluated for native antioxidant capacity by measuring DPPH and ABTS free radical scavenging activity. Bioactive components present in SFF were also determined by GC/MS analysis. RESULTS Both Y-SFF and O-SFF induced potent immunostimulatory effects characterized by changes in cell morphology, a significant increase in NO production, ROS levels, and an increased ratio of pro-inflammatory (IL-6, TNF-α, IL-1β) to anti-inflammatory (IL-10) secretory proteins although no significant aggravation in the transcription of NF-κB and Nrf-2 could be observed. Application of LPS to cells significantly augmented a pro-oxidative and pro-inflammatory response which was much higher in comparison to Y-SFF or O-SFF application alone and mediated by strong suppression of Nrf-2 gene expression. Pre-treatment of macrophages with both Y-SFF and O-SFF robustly attenuated cellular hyperresponsiveness to LPS characterized by significantly decreased levels of NO, ROS, and inflammatory cytokines while a concomitant increase in anti-inflammatory protein (IL-10) was observed. Further, both Y-SFF and O-SFF strongly resisted LPS-induced downregulation of Nrf-2 expression although O-SFF appeared to protect cells slightly better from the overall LPS threat. Neat SFF samples exhibited moderate antioxidant capacity and GC/MS analysis of SFF revealed diverse volatile organic compounds characterized by alkanes, organosulphur compounds, furans, amides, amino acids, and antimicrobial elements. CONCLUSION Our results indicate that SFF is a potent stimulant of macrophages and confers strong anti-inflammatory effects regardless of donor age thereby suggesting its therapeutic efficacy in lieu of FMT therapy.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rahul Yadav
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Anamika Singh
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Dinesh Kumar
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
35
|
Gordon AR, Lundström JN, Kimball BA, Karshikoff B, Sorjonen K, Axelsson J, Lekander M, Olsson MJ. Human scent as a first-line defense against disease. Sci Rep 2023; 13:16709. [PMID: 37794120 PMCID: PMC10550911 DOI: 10.1038/s41598-023-43145-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Individuals may have a different body odor, when they are sick compared to healthy. In the non-human animal literature, olfactory cues have been shown to predict avoidance of sick individuals. We tested whether the mere experimental activation of the innate immune system in healthy human individuals can make an individuals' body odor be perceived as more aversive (intense, unpleasant, and disgusting). Following an endotoxin injection (lipopolysaccharide; 0.6 ng/kg) that creates a transient systemic inflammation, individuals smelled more unpleasant compared to a placebo group (saline injection). Behavioral and chemical analyses of the body odor samples suggest that the volatile components of samples from "sick" individuals changed qualitatively rather than quantitatively. Our findings support the hypothesis that odor cues of inflammation in axillary sweat are detectable just a few hours after experimental activation of the innate immune system. As such, they may trigger behavioral avoidance, hence constituting a first line of defense against pathogens of infected conspecifics.
Collapse
Affiliation(s)
- Amy R Gordon
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Lukt och smakmottagningen, Karolinska University Hospital, 141 86, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, 106 54, Stockholm, Sweden
| | | | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Department of Social Studies, University of Stavanger, 4021, Stavanger, Norway
| | - Kimmo Sorjonen
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
36
|
Rubio-Sánchez R, Ubeda C, Ríos-Reina R. Feasibility of using volatile urine fingerprints for the differentiation of sexually transmitted infections. Appl Microbiol Biotechnol 2023; 107:6363-6376. [PMID: 37615721 PMCID: PMC10560160 DOI: 10.1007/s00253-023-12711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Sexually transmitted infections (STIs) are a public health problem worldwide, and current diagnostic methods have certain limitations. In recent years, volatile organic compounds (VOCs) have been studied as an alternative diagnostic method. Due to this, this study aimed to detect, in vaginal swabs and urine samples, VOCs emitted by highly prevalent STIs-causing bacteria (Chlamydia trachomatis, Mycoplasma genitalium, and Neisseria gonorrhoeae) to identify potential biomarkers that allow the detection of these STIs. VOCs detected in urine samples showed a better differentiation of patients with STIs due to C. trachomatis from those not infected, with 2,6-dimethyl-4-heptanone as the volatile compound most related to the presence of this bacterium. Among the VOCs most related to M. genitalium in urine, 4-methyltetradecane and 2-methylpentadecane stood out, while 3,4,4-trimethyl-2-cyclohexen-1-one was the VOC most closely related to N. gonorrhoeae infection. Moreover, C12 alcohols were the main VOC family associated with positive samples in all three bacteria, which could indicate the presence of aldehyde reductases in their metabolism. In contrast, alcohols such as 3-methyl-1-heptanol and 1-octanol, as well as dimethyl esters, were more associated with negative samples and may be useful in ruling out an STI caused by one of these three bacteria. In short, the VOCs identified as potential biomarkers in patients with infection by C. trachomatis, M. genitalium, or N. gonorrhoeae could be used in the early diagnosis of these STIs, quickly interrupting the chain of transmission, especially interesting in asymptomatic patients. KEY POINTS: • Sexually transmitted infections are a serious public health problem worldwide. • The study of VOCs in multiple infections is increasing in recent years. • The identification of volatile biomarkers could allow new diagnostic methods.
Collapse
Affiliation(s)
- Ricardo Rubio-Sánchez
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de Valme, 41014 Seville, Spain
| | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Rocío Ríos-Reina
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
37
|
Mansour E, Saliba W, Broza YY, Frankfurt O, Zuri L, Ginat K, Palzur E, Shamir A, Haick H. Continuous Monitoring of Psychosocial Stress by Non-Invasive Volatilomics. ACS Sens 2023; 8:3215-3224. [PMID: 37494456 DOI: 10.1021/acssensors.3c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Stress is becoming increasingly commonplace in modern times, making it important to have accurate and effective detection methods. Currently, detection methods such as self-evaluation and clinical questionnaires are subjective and unsuitable for long-term monitoring. There have been significant studies into biomarkers such as HRV, cortisol, electrocardiography, and blood biomarkers, but the use of multiple electrodes for electrocardiography or blood tests is impractical for real-time stress monitoring. To this end, there is a need for non-invasive sensors to monitor stress in real time. This study looks at the possibility of using breath and skin VOC fingerprinting as stress biomarkers. The Trier social stress test (TSST) was used to induce acute stress and HRV, cortisol, and anxiety levels were measured before, during, and after the test. GC-MS and sensor array were used to collect and measure VOCs. A prediction model found eight different stress-related VOCs with an accuracy of up to 78%, and a molecularly capped gold nanoparticle-based sensor revealed a significant difference in breath VOC fingerprints between the two groups. These stress-related VOCs either changed or returned to baseline after the stress induction, suggesting different metabolic pathways at different times. A correlation analysis revealed an association between VOCs and cortisol levels and a weak correlation with either HRV or anxiety levels, suggesting that VOCs may include complementary information in stress detection. This study shows the potential of VOCs as stress biomarkers, paving the way into developing a real-time, objective, non-invasive stress detection tool for well-being and early detection of stress-related diseases.
Collapse
Affiliation(s)
- Elias Mansour
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Walaa Saliba
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Y Broza
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ora Frankfurt
- Maale Hacarmel Mental Health Center, Tirat Carmel 3911917, Israel
| | - Liat Zuri
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Karen Ginat
- Mazor Mental Health Center, Akko 2423314, Israel
| | - Eilam Palzur
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel
| | - Alon Shamir
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Mazor Mental Health Center, Akko 2423314, Israel
| | - Hossam Haick
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
38
|
Dalis C, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Markel TA. Volatile Organic Compound Assessment as a Screening Tool for Early Detection of Gastrointestinal Diseases. Microorganisms 2023; 11:1822. [PMID: 37512994 PMCID: PMC10385474 DOI: 10.3390/microorganisms11071822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal (GI) diseases have a high prevalence throughout the United States. Screening and diagnostic modalities are often expensive and invasive, and therefore, people do not utilize them effectively. Lack of proper screening and diagnostic assessment may lead to delays in diagnosis, more advanced disease at the time of diagnosis, and higher morbidity and mortality rates. Research on the intestinal microbiome has demonstrated that dysbiosis, or unfavorable alteration of organismal composition, precedes the onset of clinical symptoms for various GI diseases. GI disease diagnostic research has led to a shift towards non-invasive methods for GI screening, including chemical-detection tests that measure changes in volatile organic compounds (VOCs), which are the byproducts of bacterial metabolism that result in the distinct smell of stool. Many of these tools are expensive, immobile benchtop instruments that require highly trained individuals to interpret the results. These attributes make them difficult to implement in clinical settings. Alternatively, electronic noses (E-noses) are relatively cheaper, handheld devices that utilize multi-sensor arrays and pattern recognition technology to analyze VOCs. The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the literature surrounding several intestinal diseases in which headspace VOCs can be used to detect or predict disease.
Collapse
Affiliation(s)
- Costa Dalis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
39
|
Seong SH, Kim HS, Lee YM, Kim JS, Park S, Oh J. Exploration of Potential Breath Biomarkers of Chronic Kidney Disease through Thermal Desorption-Gas Chromatography/Mass Spectrometry. Metabolites 2023; 13:837. [PMID: 37512544 PMCID: PMC10385797 DOI: 10.3390/metabo13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Breath volatile organic compound (VOC) analysis is a non-invasive tool for assessing health status; the compositional profile of these compounds in the breath of patients with chronic kidney disease is believed to change with decreasing renal function. We aimed to identify breath VOCs for recognizing patients with chronic kidney disease. Using thermal desorption-gas chromatography/mass spectrometry, untargeted analysis of breath markers was performed using breath samples of healthy controls (n = 18) versus non-dialysis (n = 21) and hemodialysis (n = 12) patients with chronic kidney disease in this cross-sectional study. A total of 303 VOCs alongside 12 clinical variables were used to determine the breath VOC profile. Metabolomic analysis revealed that age, systolic blood pressure, and fifty-eight breath VOCs differed significantly between the chronic kidney disease group (non-dialysis + hemodialysis) and healthy controls. Thirty-six VOCs and two clinical variables that showed significant associations with chronic kidney disease in the univariate analysis were further analyzed. Different spectra of breath volatile organic compounds between the control and chronic kidney disease groups were obtained. A multivariate model incorporating age, 2-methyl-pentane, and cyclohexanone showed high performance (accuracy, 86%) in identifying patients with chronic kidney disease with odds ratios of 0.18 (95% CI, 0.07-2.49, p = 0.013); 2.10 (0.94-2.24, p = 0.025); and 2.31 (0.88-2.64, p = 0.008), respectively. Hence, this study showed that renal dysfunction induces a characteristic profile of breath VOCs that can be used as non-invasive potential biomarkers in screening tests for CKD.
Collapse
Affiliation(s)
- Si-Hyun Seong
- Mass Spectrometry & Advanced Instrumentation Group, Korea Basic Science Institute, Cheonju 28119, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Sik Kim
- Mass Spectrometry & Advanced Instrumentation Group, Korea Basic Science Institute, Cheonju 28119, Republic of Korea
- ASTA Corporation, Research & Development Center, Suwon 16229, Republic of Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea
| | - Sangwoo Park
- Koscom Fund Services Corporation, Seoul 07330, Republic of Korea
| | - Jieun Oh
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea
| |
Collapse
|
40
|
Katsaounou K, Yiannakou D, Nikolaou E, Brown C, Vogazianos P, Aristodimou A, Chi J, Costeas P, Agapiou A, Frangou E, Tsiaoussis G, Potamitis G, Antoniades A, Shammas C, Apidianakis Y. Fecal Microbiota and Associated Volatile Organic Compounds Distinguishing No-Adenoma from High-Risk Colon Adenoma Adults. Metabolites 2023; 13:819. [PMID: 37512526 PMCID: PMC10383435 DOI: 10.3390/metabo13070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiota and the metabolites they produce within the large intestine interact with the host epithelia under the influence of a range of host-derived metabolic, immune, and homeostatic factors. This complex host-microbe interaction affects intestinal tumorigenesis, but established microbial or metabolite profiles predicting colorectal cancer (CRC) risk are missing. Here, we aimed to identify fecal bacteria, volatile organic compounds (VOC), and their associations that distinguish healthy (non-adenoma, NA) from CRC prone (high-risk adenoma, HRA) individuals. Analyzing fecal samples obtained from 117 participants ≥15 days past routine colonoscopy, we highlight the higher abundance of Proteobacteria and Parabacteroides distasonis, and the lower abundance of Lachnospiraceae species, Roseburia faecis, Blautia luti, Fusicatenibacter saccharivorans, Eubacterium rectale, and Phascolarctobacterium faecium in the samples of HRA individuals. Volatolomic analysis of samples from 28 participants revealed a higher concentration of five compounds in the feces of HRA individuals, isobutyric acid, methyl butyrate, methyl propionate, 2-hexanone, and 2-pentanone. We used binomial logistic regression modeling, revealing 68 and 96 fecal bacteria-VOC associations at the family and genus level, respectively, that distinguish NA from HRA endpoints. For example, isobutyric acid associations with Lachnospiraceae incertae sedis and Bacteroides genera exhibit positive and negative regression lines for NA and HRA endpoints, respectively. However, the same chemical associates with Coprococcus and Colinsella genera exhibit the reverse regression line trends. Thus, fecal microbiota and VOC profiles and their associations in NA versus HRA individuals indicate the significance of multiple levels of analysis towards the identification of testable CRC risk biomarkers.
Collapse
Affiliation(s)
- Kyriaki Katsaounou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | | | | | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
41
|
Zhao W, Whelton HL, Blong JC, Shillito LM, Jenkins DL, Bull ID. Volatile organic compounds (VOCs) as a rapid means for assessing the source of coprolites. iScience 2023; 26:106806. [PMID: 37255664 PMCID: PMC10225897 DOI: 10.1016/j.isci.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
The odor of rehydrated coprolites can be used as an informal means of fecal identification. To date, the analysis of volatiles emitted by coprolites from different sources has not been attempted, and the possibility of utilizing volatile organic compounds (VOCs) as fecal biomarkers unexplored. VOCs released by coprolites from the Paisley Caves, were analyzed using solid-phase microextraction (SPME), to assess the variance of results from different coprolites (carnivores, herbivores, or humans). Coprolites from carnivores can be clearly distinguished from those produced by herbivores and humans; these latter two are separated to a lesser degree. Eight discriminatory compounds differentiated between the coprolite sources, and their identities were verified using reference standards. Coprolites and their associated sediments could not be differentiated between using this method, suggesting leaching of VOCs into the burial matrix. This work provides an alternative, more rapid way to assess coprolite origin.
Collapse
Affiliation(s)
- Wanyue Zhao
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Helen L. Whelton
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - John C. Blong
- Department of Anthropology, Washington State University, College Hall, Pullman, WA 99164-4910, USA
| | - Lisa-Marie Shillito
- School of History, Classics and Archaeology, Armstrong Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Dennis L. Jenkins
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA
| | - Ian D. Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
42
|
Kato M, Yamaguchi M, Ooka A, Takahashi R, Suzuki T, Onoda K, Yoshikawa Y, Tsunematsu Y, Sato M, Yoshioka Y, Igarashi M, Hayakawa S, Shoji K, Shoji Y, Ishikawa T, Watanabe K, Miyoshi N. Non-target GC-MS analyses of fecal VOCs in NASH-hepatocellular carcinoma model STAM mice. Sci Rep 2023; 13:8924. [PMID: 37264108 DOI: 10.1038/s41598-023-36091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
The increased incidence of obesity in the global population has increased the risk of several chronic inflammation-related diseases, including non-alcoholic steatohepatitis (NASH)-hepatocellular carcinoma (HCC). The progression from NASH to HCC involves a virus-independent liver carcinogenic mechanism; however, we currently lack effective treatment and prevention strategies. Several reports have suggested that fecal volatile organic compounds (VOCs) are strongly associated with NASH-HCC; therefore, we explored the biomarkers involved in its pathogenesis and progression. Fecal samples collected from control and NASH-HCC model STAM mice were subjected to headspace autosampler gas chromatography-electron ionization-mass spectrometry. Non-target profiling analysis identified diacetyl (2,3-butandione) as a fecal VOC that characterizes STAM mice. Although fecal diacetyl levels were correlated with the HCC in STAM mice, diacetyl is known as a cytotoxic/tissue-damaging compound rather than genotoxic or mutagenic; therefore, we examined the effect of bioactivity associated with NASH progression. We observed that diacetyl induced several pro-inflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2, monocyte chemoattractant protein-1, and transforming growth factor-β, in mouse macrophage RAW264.7 and Kupffer KPU5 cells. Additionally, we observed that diacetyl induced α-smooth muscle actin, one of the hallmarks of fibrosis, in an ex vivo cultured hepatic section, but not in in vitro hepatic stellate TWNT-1 cells. These results suggest that diacetyl would be a potential biomarker of fecal VOC in STAM mice, and its ability to trigger the macrophage-derived inflammation and fibrosis may partly contribute to NASH-HCC carcinogenesis.
Collapse
Affiliation(s)
- Mai Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Akira Ooka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Ryota Takahashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Keita Onoda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Yuko Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuta Tsunematsu
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Michio Sato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Miki Igarashi
- Advanced Clinical Research Center, Institute of Neurological Disorders, Kawasaki, Kanagawa, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kumiko Shoji
- Basic Nutrition, Kagawa Nutrition University, Saitama, Japan
| | - Yutaka Shoji
- Department of Food Science and Nutrition, Shizuoka Eiwa Gakuin University Junior College, Shizuoka, Japan
| | - Tomohisa Ishikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Kenji Watanabe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, 422-8526, Japan.
| |
Collapse
|
43
|
Riccio G, Berenguer CV, Perestrelo R, Pereira F, Berenguer P, Ornelas CP, Sousa AC, Vital JA, Pinto MDC, Pereira JAM, Greco V, Câmara JS. Differences in the Volatilomic Urinary Biosignature of Prostate Cancer Patients as a Feasibility Study for the Detection of Potential Biomarkers. Curr Oncol 2023; 30:4904-4921. [PMID: 37232828 DOI: 10.3390/curroncol30050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed.
Collapse
Affiliation(s)
- Giulia Riccio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina V Berenguer
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Pedro Berenguer
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
- RO-RAM-Registo Oncológico da Região Autónoma da Madeira, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Cristina P Ornelas
- Centro de Saúde do Bom Jesus, SESARAM, EPERAM, Rua das Hortas, nº67, 9050-024 Funchal, Portugal
| | - Ana Célia Sousa
- Centro de Investigação Dra Maria Isabel Mendonça, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - João Aragão Vital
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Maria do Carmo Pinto
- Serviço de Urologia, Hospital Dr. Nélio Mendonça, SESARAM, EPERAM-Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, nº57, 9004-514 Funchal, Portugal
| | - Jorge A M Pereira
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Univesità Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - José S Câmara
- CQM-Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
44
|
Xiang C, Yang H, Zhao Z, Deng F, Lv Y, Yang Y, Duan Y, Li W, Hu B. Volatolomics analysis of exhaled breath and gastric-endoluminal gas for distinguishing early upper gastrointestinal cancer from benign. J Breath Res 2023; 17:036004. [PMID: 37094569 DOI: 10.1088/1752-7163/accfb8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 04/26/2023]
Abstract
Exhaled breath and gastric-endoluminal gas (volatile products of diseased tissues) contain a large number of volatile organic compounds, which are valuable for early diagnosis of upper gastrointestinal (UGI) cancer. In this study, exhaled breath and gastric-endoluminal gas of patients with UGI cancer and benign disease were analyzed by gas chromatography-mass spectrometry (GC-MS) and ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOFMS) to construct UGI cancer diagnostic models. Breath samples of 116 UGI cancer and 77 benign disease subjects and gastric-endoluminal gas samples of 114 UGI cancer and 76 benign disease subjects were collected. Machine learning (ML) algorithms were used to construct UGI cancer diagnostic models. Classification models based on exhaled breath for distinguishing UGI cancer from the benign group have area under the curve (AUC) of receiver operating characteristic curve values of 0.959 and 0.994 corresponding to GC-MS and UVP-TOFMS analysis, respectively. The AUC values of models based on gastric-endoluminal gas for UGI cancer and benign group classification are 0.935 and 0.929 corresponding to GC-MS and UVP-TOFMS analysis, respectively. This work indicates that volatolomics analysis of exhaled breath and gastric-endoluminal diseased tissues have great potential in early screening of UGI cancer. Moreover, gastric-endoluminal gas can be a means of gas biopsy to provide auxiliary information for the examination of tissue lesions during gastroscopy.
Collapse
Affiliation(s)
- Chengfang Xiang
- School of Chemistry, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhongjun Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Fulong Deng
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yantong Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yanting Yang
- Aliben Sci & Technol Co Ltd, Chengdu 611930, People's Republic of China
| | - Yixiang Duan
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
- Aliben Sci & Technol Co Ltd, Chengdu 611930, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
45
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
46
|
Santos LS, Rossi DA, Braz RF, Fonseca BB, Guidotti–Takeuchi M, Alves RN, Beletti ME, Almeida-Souza HO, Maia LP, Santos PDS, de Souza JB, de Melo RT. Roles of viable but non-culturable state in the survival of Campylobacter jejuni. Front Cell Infect Microbiol 2023; 13:1122450. [PMID: 37056707 PMCID: PMC10086134 DOI: 10.3389/fcimb.2023.1122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Despite being considered fragile and fastidious, Campylobacter jejuni is the most prevalent cause of foodborne bacterial gastroenteritis, and chicken meat is considered the main vehicle of transmission to humans. This agent can survive adverse conditions in the form of biofilms, but extreme stress (nutritional, oxidative and thermal) promotes the acquisition of a state called viable but not culturable (VBNC). The emergence of this pathogen worldwide and the recent international requirements in its control instigated us to qualitatively and quantitatively estimate the time required for the acquisition of the VBNC form in 27 strains of C. jejuni, characterize morphological aspects, determine its adaptive and invasive potential and perform comparative metabolomic evaluation. Extreme stress promoted the complete acquisition of the VBNC form in a mean time of 26 days. Starting from an average initial count of 7.8 log CFU/mL, the first four days determined the greatest average reduction of the culturable form of 3.2 log CFU/mL. The scanning and transmission image analyses showed a transition from the typical viable form (VT) to the VBNC form, with initial acquisition of the straight rod shape, followed by loss of the flagella and subdivision into two to 11 imperfect cocci arranged in a chain and rich in cellular content, until their individual release. RT-PCR identified the presence of ciaB and p19 transcripts in the 27 cultivable C. jejuni strains, a character maintained in the VBNC form only for p19 and in 59.3% (16/27) of the VBNC strains for the ciaB gene. The average inoculation of 1.8 log CFU/mL of C. jejuni VBNC into primary chicken embryo hepatocyte cells promoted the occurrence of apoptosis processes significantly after 24 hours of contact by one of the strains tested. In C. jejuni VBNC, we detected higher expression of metabolites linked to protective and adaptation mechanisms and of volatile organic precursor compounds indicative of metabolism interruption. The oscillations in the time of acquisition of the VBNC form together with the presence of transcripts for ciaB and p19, the identification of cell lysis and metabolites that ensure the maintenance of the pathogen alert to the fact that C. jejuni VBNC remains virulent and adapted to stress, which makes evident the potential danger of this latent form, which is not detectable by official methodologies.
Collapse
Affiliation(s)
- Leticia Silva Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | | | | | | | | - Larissa Prado Maia
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
- *Correspondence: Roberta Torres de Melo,
| |
Collapse
|
47
|
Alustiza M, Ripoll L, Canals A, Murcia O, Martínez-Roca A, García-Heredia A, Giner-Calabuig M, Jover R, Vidal L. A novel non-invasive colorectal cancer diagnostic method: Volatile organic compounds as biomarkers. Clin Chim Acta 2023; 542:117273. [PMID: 36863694 DOI: 10.1016/j.cca.2023.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Population-based fecal tests for colorectal cancer (CRC) screening have shown to reduce mortality thanks to the early detection of the disease. However, currently available fecal tests are limited in their sensitivity and specificity. Our aim is to look for volatile organic compounds in fecal samples as biomarkers for CRC detection. MATERIAL AND METHODS Eighty participants were included; 24 had adenocarcinoma, 24 had adenomatous polyps and 32 presented no neoplasms. Fecal samples were collected 48 h preceding the colonoscopy from all participants, except CRC patient samples that were collected after 3-4 weeks from the colonoscopy. Magnetic headspace adsorptive extraction (Mag-HSAE) followed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was performed on stool samples to identify volatile organic compounds as biomarkers. RESULTS p-Cresol was significantly more abundant in the cancer samples (P < 0.001) with an area under the curve (AUC) of 0.85 (CI 95%; 0.737-0.953), having a sensitivity and specificity of 83% and 82%, respectively. In addition, 3(4H)-dibenzofuranone,4a,9b-dihydro-8,9b-dimethyl- (3(4H)-DBZ) was also more abundant in the cancer samples (P < 0.001) with an AUC of 0.77 (CI 95%; 0.635-0.905), sensitivity of 78% and specificity of 75%. When combined (p-cresol and 3(4H)-DBZ), the AUC was 0.86, sensitivity 87% and specificity 79%. p-Cresol also appeared to be promising as a biomarker for pre-malignant lesions with an AUC of 0.69 (CI 95%; 0.534-0.862), sensitivity 83% and specificity 63%, P = 0.045. CONCLUSIONS Volatile organic compounds emitted from feces and determined by a sensitive analytical methodology (Mag-HSAE-TD-GC-MS), employing a magnetic graphene oxide as extractant phase, could be used as a potential screening technology for CRC and pre-malignant lesions.
Collapse
Affiliation(s)
- Miren Alustiza
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Laura Ripoll
- Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Antonio Canals
- Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Oscar Murcia
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Alejandro Martínez-Roca
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Anabel García-Heredia
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Mar Giner-Calabuig
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Rodrigo Jover
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Lorena Vidal
- Laboratorio de Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, 03080 Alicante, Spain.
| |
Collapse
|
48
|
Cruz E, Haeberle AL, Westerman TL, Durham ME, Suyemoto MM, Knodler LA, Elfenbein JR. Nonredundant Dimethyl Sulfoxide Reductases Influence Salmonella enterica Serotype Typhimurium Anaerobic Growth and Virulence. Infect Immun 2023; 91:e0057822. [PMID: 36722978 PMCID: PMC9933680 DOI: 10.1128/iai.00578-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative dmsABC operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an S. Typhimurium mutant with loss of function in all three putative DMSO reductases (ΔdmsA3) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of S. Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.
Collapse
Affiliation(s)
- E. Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - A. L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - T. L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. E. Durham
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. M. Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L. A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - J. R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Zhang VRY, Ramachandran GK, Loo EXL, Soh AYS, Yong WP, Siah KTH. Volatile organic compounds as potential biomarkers of irritable bowel syndrome: A systematic review. Neurogastroenterol Motil 2023:e14536. [PMID: 36780514 DOI: 10.1111/nmo.14536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disease characterized by intermittent abdominal pain with altered bowel habits. Due to the condition's chronicity, patients suffer from poor quality of life, while the healthcare burden continues to grow. There is currently no reliable biomarker for the diagnosis of IBS, and the current approach depends on ruling-out organic diseases such as inflammatory bowel disease (IBD) and colorectal cancer by markers of inflammation like fecal calprotectin and C-reactive protein, or invasive procedures like a colonoscopy. Volatile organic compounds (VOCs) are growing in popularity as a biomarker due to its accuracy and ease of use. PURPOSE This systematic review of Medline and Cochrane's databases aimed to identify VOCs in the diagnosis of IBS. 57% of the studies proved that VOCs could identify IBS patients from healthy controls with AUC ranging from 0.83 to 0.99. Studies that distinguished IBS from IBD patients had slightly higher AUC of 0.87-0.98. Combining VOC into panels allowed the creation of discriminative algorithms. Though current research is limited by areas of heterogeneity in VOC sampling and small sample sizes, our review shows that VOC analysis has the potential to be a noninvasive point-of-care test that differentiates IBS from other organic gastrointestinal diseases.
Collapse
Affiliation(s)
| | | | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Paediatrics and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alex Yu Sen Soh
- Division of Gastroenterology & Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology & Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
50
|
Fournier E, Ratel J, Denis S, Leveque M, Ruiz P, Mazal C, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Engel E, Lagarde F, Etienne-Mesmin L, Mercier-Bonin M, Blanquet-Diot S. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130383. [PMID: 36444070 DOI: 10.1016/j.jhazmat.2022.130383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Carine Mazal
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Erwan Engel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| | | |
Collapse
|