1
|
Catalão CHR, da Costa LHA, Dos Santos JR, Alberici LC, Falconi-Sobrinho LL, Coimbra NC, Dominguini D, Dal-Pizzol F, Barichello T, Rocha MJA. Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 2024; 481:1585-1602. [PMID: 39466125 PMCID: PMC11957353 DOI: 10.1042/bcj20240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
Collapse
Affiliation(s)
- Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luis Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | | | - Norberto Cysne Coimbra
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria José Alves Rocha
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
2
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Saputra WD, Shono H, Ohsaki Y, Sultana H, Komai M, Shirakawa H. Geranylgeraniol Inhibits Lipopolysaccharide-Induced Inflammation in Mouse-Derived MG6 Microglial Cells via NF-κB Signaling Modulation. Int J Mol Sci 2021; 22:ijms221910543. [PMID: 34638882 PMCID: PMC8508820 DOI: 10.3390/ijms221910543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.
Collapse
Affiliation(s)
- Wahyu Dwi Saputra
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Hiroki Shono
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
4
|
Orjuela A, Lakey-Beitia J, Mojica-Flores R, Hegde ML, Lans I, Alí-Torres J, Rao KS. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease. J Alzheimers Dis 2021; 82:S321-S333. [PMID: 33337368 DOI: 10.3233/jad-200941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-β (Aβ) fibrils due to the misfolding/aggregation of the Aβ peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aβ42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. OBJECTIVE To computationally assess the interaction between Aβ peptide and a set of curcumin derivatives previously explored in experimental assays. METHODS The interactions of ten ligands with Aβ monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in silico evaluation of the interaction between these derivatives and the Aβ42 peptide, both in the monomeric and fibril forms. RESULTS The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aβ42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aβ42 monomers occur in a region critical for peptide aggregation. CONCLUSION Results showed that a single substitution in curcumin improved the interaction of the ligands with the Aβ monomer more so than a double substitution. Our molecular docking studies thus provide important insights for further developing/validating novel curcumin-derived molecules with high therapeutic potential for AD.
Collapse
Affiliation(s)
- Adrian Orjuela
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Randy Mojica-Flores
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | - Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| |
Collapse
|
5
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
6
|
Ötzkan S, Muller WE, Gibson Wood W, Eckert GP. Effects of 7,8-Dihydroxyflavone on Lipid Isoprenoid and Rho Protein Levels in Brains of Aged C57BL/6 Mice. Neuromolecular Med 2020; 23:130-139. [PMID: 33377988 PMCID: PMC7929957 DOI: 10.1007/s12017-020-08640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Synaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.
Collapse
Affiliation(s)
- Sarah Ötzkan
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - Walter E Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - W Gibson Wood
- Department of Pharmacology, Geriatric Research, Education and Clinical Center, University of Minnesota School of Medicine, VAMC, Minneapolis, MN, 55417, USA
| | - Gunter P Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany.
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Mol Biol Cell 2020; 32:247-259. [PMID: 33296223 PMCID: PMC8098827 DOI: 10.1091/mbc.e20-05-0345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer’s disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding.
Collapse
Affiliation(s)
- Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Utpal Das
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Louie Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rodrigo Dos Santos Chaves
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
8
|
Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int J Mol Sci 2019; 20:ijms20225553. [PMID: 31703296 PMCID: PMC6888440 DOI: 10.3390/ijms20225553] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder that affects the aging population worldwide. Endogenous and exogenous factors are involved in triggering this complex and multifactorial disease, whose hallmark is Amyloid-β (Aβ), formed by cleavage of amyloid precursor protein by β- and γ-secretase. While there is no definitive cure for AD to date, many neuroprotective natural products, such as polyphenol and carotenoid compounds, have shown promising preventive activity, as well as helping in slowing down disease progression. In this article, we focus on the chemistry as well as structure of carotenoid compounds and their neuroprotective activity against Aβ aggregation using molecular docking analysis. In addition to examining the most prevalent anti-amyloidogenic carotenoid lutein, we studied cryptocapsin, astaxanthin, fucoxanthin, and the apocarotenoid bixin. Our computational structure-based drug design analysis and molecular docking simulation revealed important interactions between carotenoids and Aβ via hydrogen bonding and van der Waals interactions, and shows that carotenoids are powerful anti-amyloidogenic molecules with a potential role in preventing AD, especially since most of them can cross the blood-brain barrier and are considered nutraceutical compounds. Our studies thus illuminate mechanistic insights on how carotenoids inhibit Aβ aggregation. The potential role of carotenoids as novel therapeutic molecules in treating AD and other neurodegenerative disorders are discussed.
Collapse
|
9
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
10
|
Brioschi M, Martinez Fernandez A, Banfi C. Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential. Expert Rev Proteomics 2017; 14:515-528. [PMID: 28521569 DOI: 10.1080/14789450.2017.1332998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Protein prenylation is a ubiquitous covalent post-translational modification characterized by the addition of farnesyl or geranylgeranyl isoprenoid groups to a cysteine residue located near the carboxyl terminal of a protein. It is essential for the proper localization and cellular activity of numerous proteins, including Ras family GTPases and G-proteins. In addition to its roles in cellular physiology, the prenylation process has important implications in human diseases and in the recent years, it has become attractive target of inhibitors with therapeutic potential. Areas covered: This review attempts to summarize the basic aspects of prenylation integrating them with biological functions in diseases and giving an account of the current status of prenylation inhibitors as potential therapeutics. We also summarize the methodologies for the characterization of this modification. Expert commentary: The growing body of evidence suggesting an important role of prenylation in diseases and the subsequent development of inhibitors of the enzymes responsible for this modification lead to the urgent need to identify the full spectrum of prenylated proteins that are altered in the disease or affected by drugs. Proteomic tools to analyze prenylated proteins are recently emerging, thanks to the advancement in the field of mass spectrometry coupled to enrichment strategies.
Collapse
|
11
|
Sathya M, Moorthi P, Premkumar P, Kandasamy M, Jayachandran KS, Anusuyadevi M. Resveratrol Intervenes Cholesterol- and Isoprenoid-Mediated Amyloidogenic Processing of AβPP in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 60:S3-S23. [PMID: 28059793 DOI: 10.3233/jad-161034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deterioration of cholesterol metabolism has recently been a frontier subject of investigation in the field of Alzheimer's disease (AD). Though amyloid-β protein precursor (AβPP) primes the pathological cascade, changes in cholesterol levels and its intermediates, geranyl geranyl pyrophosphate and farnesyl pyrophosphate, is expected to have a different consequence on AβPP processing and amyloid-β (Aβ) generation. However, the use of statins (HMG-COA reductase inhibitor) has been widely implicated in slowing down the pathogenic progression of AD, while the epidemiological reports on its biological effect remains controversial. Considering this fact, the choice of drug that could maintain cholesterol homeostasis without altering its biosynthesis may yield a better therapeutic efficacy on AD. Thus, the present study focused on determining the influence of cholesterol and isoprenoids on amyloidogenic-cleavage of AβPP, in addition to resveratrol as a potent therapeutic drug in CHO-APPswe cell lines. High levels of cholesterol were found to enhance the maturation of AβPP and altered the expression and subcellular localization of ADAM10, BACE1, and PS1 thereby promoting Aβ generation, whereas high isoprenoids increased both maturation as well as amyloidogenic-cleavage of AβPP, which was evident through β-CTF production. Interestingly, the therapeutic efficacy of resveratrol maintained cholesterol homeostasis and reduced the amyloidogenic burden through its ability to enhance SIRT1 expression and thereby regulating differential expression of AD determinants.
Collapse
Affiliation(s)
- Mohan Sathya
- Molecular Gerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Ponnusamy Moorthi
- Molecular Gerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Palanisamy Premkumar
- Molecular Gerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Mahesh Kandasamy
- UGC-Faculty Recharge Program (UGC-FRP), University Grant Commission, Laboratory of Stem Cells and Neurodegeneration, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
12
|
Gao S, Yu R, Zhou X. The Role of Geranylgeranyltransferase I-Mediated Protein Prenylation in the Brain. Mol Neurobiol 2015; 53:6925-6937. [DOI: 10.1007/s12035-015-9594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
13
|
Xia W, Mo H. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 2015; 31:1-9. [PMID: 27133418 DOI: 10.1016/j.jnutbio.2015.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.
Collapse
Affiliation(s)
- Weiming Xia
- Geriatric Research Education and Clinical Center, ENR Memorial Veterans Hospital, Bedford, MA.
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA; Center for Obesity Reversal, Georgia State University, Atlanta, GA.
| |
Collapse
|
14
|
Son SM, Kang S, Choi H, Mook-Jung I. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener 2015; 10:56. [PMID: 26520569 PMCID: PMC4628355 DOI: 10.1186/s13024-015-0054-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022] Open
Abstract
Background Insulin degrading enzyme (IDE) is a major protease of amyloid beta peptide (Aβ), a prominent toxic protein in Alzheimer’s disease (AD) pathogenesis. Previous studies suggested that statins promote IDE secretion; however, the underlying mechanism is unknown, as IDE has no signal sequence. Results In this study, we found that simvastatin (0.2 μM for 12 h) induced the degradation of extracellular Aβ40, which depended on IDE secretion from primary astrocytes. In addition, simvastatin increased IDE secretion from astrocytes in a time- and dose-dependent manner. Moreover, simvastatin-mediated IDE secretion was mediated by an autophagy-based unconventional secretory pathway, and autophagic flux regulated simvastatin-mediated IDE secretion. Finally, simvastatin activated autophagy via the LKB1-AMPK-mTOR signaling pathway in astrocytes. Conclusions These results demonstrate a novel pathway for statin-mediated IDE secretion from astrocytes. Modulation of this pathway could provide a potential therapeutic target for treatment of Aβ pathology by enhancing extracellular clearance of Aβ. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0054-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Min Son
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | - Seokjo Kang
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Heesun Choi
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Marschalek N, Albert F, Afshordel S, Meske V, Eckert GP, Ohm TG. Geranylgeranyl pyrophosphate is crucial for neuronal survival but has no special role in Purkinje cell degeneration in Niemann Pick type C1 disease. J Neurochem 2015; 133:153-61. [DOI: 10.1111/jnc.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/19/2014] [Accepted: 09/18/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Nils Marschalek
- Institut für Integrative Neuroanatomie, Charité; Universitätsmedizin Berlin; Berlin Germany
| | - Frank Albert
- Institut für Integrative Neuroanatomie, Charité; Universitätsmedizin Berlin; Berlin Germany
| | - Sarah Afshordel
- Pharmakologisches Institut für Naturwissenschaftler, Biozentrum, Campus Riedberg; Goethe-Universität; Frankfurt am Main Germany
| | - Volker Meske
- Institut für Integrative Neuroanatomie, Charité; Universitätsmedizin Berlin; Berlin Germany
| | - Gunter P. Eckert
- Pharmakologisches Institut für Naturwissenschaftler, Biozentrum, Campus Riedberg; Goethe-Universität; Frankfurt am Main Germany
| | - Thomas G. Ohm
- Institut für Integrative Neuroanatomie, Charité; Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
16
|
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, Pappolla MA, Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res 2015; 12:32-46. [PMID: 25523424 PMCID: PMC4820400 DOI: 10.2174/1567205012666141218140953] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Polyphenols as therapeutic molecules in Alzheimer's disease through modulating amyloid pathways. Mol Neurobiol 2014; 51:466-79. [PMID: 24826916 DOI: 10.1007/s12035-014-8722-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative condition. The complex pathology of this disease includes oxidative stress, metal deposition, formation of aggregates of amyloid and tau, enhanced immune responses, and disturbances in cholinesterase. Drugs targeted toward reduction of amyloidal load have been discovered, but there is no effective pharmacological treatment for combating the disease so far. Natural products have become an important avenue for drug discovery research. Polyphenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols and their role in modulating amyloid precursor protein (APP) processing. We also provide new hypotheses on how these therapeutic molecules may modulate APP processing, prevent Aβ aggregation, and favor disruption of preformed fibrils. Finally, the role of polyphenols in modulating Alzheimer's pathology is discussed.
Collapse
|
18
|
Afshordel S, Wood WG, Igbavboa U, Muller WE, Eckert GP. Impaired geranylgeranyltransferase-I regulation reduces membrane-associated Rho protein levels in aged mouse brain. J Neurochem 2014; 129:732-42. [PMID: 24428713 PMCID: PMC3999261 DOI: 10.1111/jnc.12654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho-GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho-GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase-I. We examined age-related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase-I in brain tissue of 3- and 23-month-old C57BL/6 mice. We report a shift in the cellular localization of Rho-GTPases toward reduced levels of membrane-associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age-related reduction in membrane-associated Rho proteins was associated with a reduction in GGTase-Iβ levels that regulates binding of GGPP to Rho-GTPases. Proteins prenylated by GGTase-II were not reduced in aged brain indicating a specific targeting of GGTase-I in the aged brain. Inhibition of GGTase-I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane-associated Rho proteins in aged brain in association with down-regulation of GGTase-Iβ. This down-regulation could be one of the mechanisms causing age-related weakening of synaptic plasticity.
Collapse
Affiliation(s)
- Sarah Afshordel
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - W. Gibson Wood
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Urule Igbavboa
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Walter E. Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Shinohara M, Sato N, Shimamura M, Kurinami H, Hamasaki T, Chatterjee A, Rakugi H, Morishita R. Possible modification of Alzheimer's disease by statins in midlife: interactions with genetic and non-genetic risk factors. Front Aging Neurosci 2014; 6:71. [PMID: 24795626 PMCID: PMC4005936 DOI: 10.3389/fnagi.2014.00071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/30/2014] [Indexed: 12/28/2022] Open
Abstract
The benefits of statins, commonly prescribed for hypercholesterolemia, in treating Alzheimer's disease (AD) have not yet been fully established. A recent randomized clinical trial did not show any therapeutic effects of two statins on cognitive function in AD. Interestingly, however, the results of the Rotterdam study, one of the largest prospective cohort studies, showed reduced risk of AD in statin users. Based on the current understanding of statin actions and AD pathogenesis, it is still worth exploring whether statins can prevent AD when administered decades before the onset of AD or from midlife. This review discusses the possible beneficial effects of statins, drawn from previous clinical observations, pathogenic mechanisms, which include β-amyloid (Aβ) and tau metabolism, genetic and non-genetic risk factors (apolipoprotein E, cholesterol, sex, hypertension, and diabetes), and other clinical features (vascular dysfunction and oxidative and inflammatory stress) of AD. These findings suggest that administration of statins in midlife might prevent AD in late life by modifying genetic and non-genetic risk factors for AD. It should be clarified whether statins inhibit Aβ accumulation, tau pathological features, and brain atrophy in humans. To answer this question, a randomized controlled study using amyloid positron emission tomography (PET), tau-PET, and magnetic resonance imaging would be useful. This clinical evaluation could help us to overcome this devastating disease.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Munehisa Shimamura
- Division of Vascular Medicine and Epigenetics, Department of Child Development, United Graduate School of Child Development, Osaka University Office for University-Industry CollaborationSuita, Japan
| | - Hitomi Kurinami
- Division of Vascular Medicine and Epigenetics, Department of Child Development, United Graduate School of Child Development, Osaka University Office for University-Industry CollaborationSuita, Japan
| | - Toshimitsu Hamasaki
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Amarnath Chatterjee
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| |
Collapse
|
20
|
Evidence of a novel mechanism for partial γ-secretase inhibition induced paradoxical increase in secreted amyloid β protein. PLoS One 2014; 9:e91531. [PMID: 24658363 PMCID: PMC3962361 DOI: 10.1371/journal.pone.0091531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACE1 (β-secretase) and α-secretase cleave the Alzheimer's amyloid β protein (Aβ) precursor (APP) to C-terminal fragments of 99 aa (CTFβ) and 83 aa (CTFα), respectively, which are further cleaved by γ-secretase to eventually secrete Aβ and Aα (a.k.a. P3) that terminate predominantly at residues 40 and 42. A number of γ-secretase inhibitors (GSIs), such as N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), have been developed with the goal of reducing Aβ to treat Alzheimer's disease (AD). Although most studies show that DAPT inhibits Aβ in a dose-dependent manner several studies have also detected a biphasic effect with an unexpected increase at low doses of DAPT in cell cultures, animal models and clinical trials. In this article, we confirm the increase in Aβ40 and Aβ42 in SH-SY5Y human neuroblastoma cells treated with low doses of DAPT and identify one of the mechanisms for this paradox. We studied the pathway by first demonstrating that stimulation of Aβ, a product of γ-secretase, was accompanied by a parallel increase of its substrate CTFβ, thereby demonstrating that the inhibitor was not anomalously stimulating enzyme activity at low levels. Secondly, we have demonstrated that inhibition of an Aβ degrading activity, endothelin converting enzyme (ECE), yielded more Aβ, but abolished the DAPT-induced stimulation. Finally, we have demonstrated that Aα, which is generated in the secretory pathway before endocytosis, is not subject to the DAPT-mediated stimulation. We therefore conclude that impairment of γ-secretase can paradoxically increase Aβ by transiently skirting Aβ degradation in the endosome. This study adds to the growing body of literature suggesting that preserving γ-secretase activity, rather than inhibiting it, is important for prevention of neurodegeneration.
Collapse
|
21
|
Hottman DA, Li L. Protein prenylation and synaptic plasticity: implications for Alzheimer's disease. Mol Neurobiol 2014; 50:177-85. [PMID: 24390573 DOI: 10.1007/s12035-013-8627-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein-protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer's disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer's disease.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 2001 6th St SE, MTRF 4-208, Minneapolis, MN, 55455, USA
| | | |
Collapse
|
22
|
Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem 2013; 288:35952-60. [PMID: 24136196 DOI: 10.1074/jbc.m113.503904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.
Collapse
Affiliation(s)
- Shaowu Cheng
- Departments of Experimental and Clinical Pharmacology University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
23
|
Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP. Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int 2013; 62:433-45. [PMID: 23411415 DOI: 10.1016/j.neuint.2013.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/24/2022]
Abstract
Statins are widely used cholesterol-lowering drugs that may reduce the incidence of stroke and the progression of Alzheimer's disease (AD). However, how statins exert these beneficial effects remains poorly understood. Thus, this study evaluated the roles of Rac1 geranylgeranylation and the relationship between Rac1 and αN-catenin in the protective activity of atorvastatin (ATV) in a cortical neuronal culture model of glutamate (GLU) excitotoxicity. We found that ATV-induced neuroprotection and plasticity were blocked by isoprenoids, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), inhibition of farnesylation (FTI-277) and geranylgeranylation (GGTI-286), down-regulation of GGTase-Iβ and Rac activity and promotion of active RhoA. Additionally, ATV rescued the distribution of dendritic αN-catenin and increased the number and length of dendritic branches; these effects were reversed by GGTI-286, GGTase-Iβ shRNA, Rac1 shRNA and a dominant-negative version of Rac1 (T17N). In summary, our findings suggest that ATV requires GGTase-Iβ, prenylation and active Rac1 to induce protection and plasticity. In this regard, αN-catenin is a marker for stable interactions between adhesion proteins and the actin cytoskeleton and is necessary for the neuroprotective action of ATV.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
24
|
Brain Isoprenoids Farnesyl Pyrophosphate and Geranylgeranyl Pyrophosphate are Increased in Aged Mice. Mol Neurobiol 2012; 46:179-85. [DOI: 10.1007/s12035-012-8285-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/27/2012] [Indexed: 12/13/2022]
|
25
|
Li L, Zhang W, Cheng S, Cao D, Parent M. Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease. Mol Neurobiol 2012; 46:64-77. [PMID: 22418893 DOI: 10.1007/s12035-012-8253-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 12/18/2022]
Abstract
Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.
Collapse
Affiliation(s)
- Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 2001 6th St SE, MTRF 4-208, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
26
|
Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, Doerschuk CM. Interferon-γ production by neutrophils during bacterial pneumonia in mice. Am J Respir Crit Care Med 2011; 183:1391-401. [PMID: 21169470 PMCID: PMC3114063 DOI: 10.1164/rccm.201004-0592oc] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 12/17/2010] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Neutrophils are usually the first circulating leukocytes to respond during bacterial pneumonia. Their expression of oxidants, proteases, and other mediators present in granules is well documented, but their ability to produce mediators through transcription and translation after migration to an inflammatory site has been appreciated only more recently. Interferon (IFN)-γ is a cytokine with many functions important in host defense and immunity. OBJECTIVES To examine the expression and function of IFN-γ in bacterial pneumonias. METHODS IFN-γ mRNA and protein were measured in digests of mouse lungs with 24-hour bacterial pneumonia. Bacterial clearance was studied with IFN-γ-deficient mice. MEASUREMENTS AND MAIN RESULTS Streptococcus pneumoniae and Staphylococcus aureus each induce expression of IFN-γ mRNA and protein by neutrophils by 24 hours. Only neutrophils that have migrated into pneumonic tissue produce IFN-γ. Deficiency of Hck/Fgr/Lyn, Rac2, or gp91(phox) prevents IFN-γ production. IFN-γ enhances bacterial clearance and is required for formation of neutrophil extracellular traps. In contrast, Pseudomonas aeruginosa and Escherichia coli induce production of IFN-γ mRNA but not protein. During pneumonia induced by E. coli but not S. pneumoniae, neutrophils produce microRNAs that target the 3' untranslated region of the IFN-γ gene. CONCLUSIONS S. pneumoniae and S. aureus, but not P. aeruginosa and E. coli, induce emigrated neutrophils to produce IFN-γ within 24 hours. Hck/Fgr/Lyn, Rac2, and NADPH oxidase are required for IFN-γ production. IFN-γ facilitates bacterial clearance at least in part through regulating formation of neutrophil extracellular traps. Differential expression by neutrophils of microRNAs that target the 3' untranslated region of the IFN-γ gene may contribute to the pathogen-specific regulation of translation.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - John C. Gomez
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pauline E. Chugh
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Clifford A. Lowell
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary C. Dinauer
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dirk P. Dittmer
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Claire M. Doerschuk
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
27
|
Sambamurti K, Greig NH, Utsuki T, Barnwell EL, Sharma E, Mazell C, Bhat NR, Kindy MS, Lahiri DK, Pappolla MA. Targets for AD treatment: conflicting messages from γ-secretase inhibitors. J Neurochem 2011; 117:359-74. [PMID: 21320126 PMCID: PMC3076515 DOI: 10.1111/j.1471-4159.2011.07213.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current evidence suggests that Alzheimer's disease (AD) is a multi-factorial disease that starts with accumulation of multiple proteins. We have previously proposed that inhibition of γ-secretase may impair membrane recycling causing neurodegeneration starting at synapses (Sambamurti K., Suram A., Venugopal C., Prakasam A., Zhou Y., Lahiri D. K. and Greig N. H. A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr. Alzheimer Res., 3, 2006, 81). We also proposed familal AD mutations increase Aβ42 by inhibiting γ-secretase. Herein, we discuss the failure of Eli Lilly's γ-secretase inhibitor, semagacestat, in clinical trials in the light of our hypothesis, which extends the problem beyond toxicity of Aβ aggregates. We elaborate that γ-secretase inhibitors lead to accumulation of amyloid precursor protein C-terminal fragments that can later be processed by γ-secretase to yields bursts of Aβ to facilitate aggregation. Although we do not exclude a role for toxic Aβ aggregates, inhibition of γ-secretase can affect numerous substrates other than amyloid precursor protein to affect multiple pathways and the combined accumulation of multiple peptides in the membrane may impair its function and turnover. Taken together, protein processing and turnover pathways play an important role in maintaining cellular homeostasis and unless we clearly see consistent disease-related increase in their levels or activity, we need to focus on preserving their function rather than inhibiting them for treatment of AD and similar diseases.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, Lütjohann D, Wunderlich P, Walter J. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 2010; 285:37405-14. [PMID: 20876579 DOI: 10.1074/jbc.m110.149468] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidemiological studies indicate that intake of statins decrease the risk of developing Alzheimer disease. Cellular and in vivo studies suggested that statins might decrease the generation of the amyloid β-peptide (Aβ) from the β-amyloid precursor protein. Here, we show that statins potently stimulate the degradation of extracellular Aβ by microglia. The statin-dependent clearance of extracellular Aβ is mainly exerted by insulin-degrading enzyme (IDE) that is secreted in a nonconventional pathway in association with exosomes. Stimulated IDE secretion and Aβ degradation were also observed in blood of mice upon peripheral treatment with lovastatin. Importantly, increased IDE secretion upon lovastatin treatment was dependent on protein isoprenylation and up-regulation of exosome secretion by fusion of multivesicular bodies with the plasma membrane. These data demonstrate a novel pathway for the nonconventional secretion of IDE via exosomes. The modulation of this pathway could provide a new strategy to enhance the extracellular clearance of Aβ.
Collapse
Affiliation(s)
- Irfan Y Tamboli
- Departments of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zingg JM, Meydani M, Azzi A. alpha-Tocopheryl phosphate--an active lipid mediator? Mol Nutr Food Res 2010; 54:679-92. [PMID: 20169583 DOI: 10.1002/mnfr.200900404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vitamin E (alpha-tocopherol, alphaT) derivative, alpha-tocopheryl phosphate (alphaTP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that alphaT can become phosphorylated and alphaTP dephosphorylated, suggesting the existence of enzyme(s) with alphaT kinase or alphaTP phosphatase activity, respectively. As a supplement in animal studies, alphaTP can reach plasma concentrations similar to alphaT and only a part is dephosphorylated; thus, alphaTP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of alphaTP have been described: in the test tube alphaTP modulates the activity of several enzymes; in cell culture alphaTP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies alphaTP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, alphaTP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of alphaTP are examined and the possible functions of alphaTP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
30
|
Merlo S, Spampinato S, Canonico PL, Copani A, Sortino MA. Alzheimer's disease: brain expression of a metabolic disorder? Trends Endocrinol Metab 2010; 21:537-44. [PMID: 20541952 DOI: 10.1016/j.tem.2010.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is of rapidly increasing health, social and economic impact. Recent evidence suggests a strict link between metabolic disorders and AD. In the last decade much attention has focused specifically on the connection between dysfunction of lipid metabolism and AD. Here we discuss aspects of lipid regulation, including changes in cholesterol levels, function of apolipoproteins and leptin, and how these relate to AD pathogenesis. Despite the vast literature available, many aspects still need clarification. Nevertheless, the route is already delineated to directly connect aspects of lipid regulation to AD. This could represent a starting point to identify novel potential targets for a preventive and/or treatment strategy of the disease.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Experimental and Clinical Pharmacology, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
31
|
Hooff GP, Wood WG, Müller WE, Eckert GP. Isoprenoids, small GTPases and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:896-905. [PMID: 20382260 PMCID: PMC2886181 DOI: 10.1016/j.bbalip.2010.03.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer's disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.
Collapse
Affiliation(s)
- Gero P. Hooff
- Department of Pharmacology, Campus Riedberg, Biocenter N260, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - W. Gibson Wood
- Department of Pharmacology, School of Medicine, University of Minnesota, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417, USA
| | - Walter E. Müller
- Department of Pharmacology, Campus Riedberg, Biocenter N260, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Campus Riedberg, Biocenter N260, Goethe University, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
32
|
Cholesterol and statins in Alzheimer's disease: Current controversies. Exp Neurol 2010; 223:282-93. [DOI: 10.1016/j.expneurol.2009.09.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 02/07/2023]
|
33
|
Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, Yamashita T, Uchiyama Y, Rakugi H, Morishita R. Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 2010; 285:22091-102. [PMID: 20472556 DOI: 10.1074/jbc.m110.102277] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies suggest that statins (hydroxymethylglutaryl-CoA reductase inhibitors) could reduce the risk of Alzheimer disease. Although one possible explanation is through an effect on beta-amyloid (Abeta) metabolism, its effect remains to be elucidated. Here, we explored the molecular mechanisms of how statins influence Abeta metabolism. Fluvastatin at clinical doses significantly reduced Abeta and amyloid precursor protein C-terminal fragment (APP-CTF) levels among APP metabolites in the brain of C57BL/6 mice. Chronic intracerebroventricular infusion of lysosomal inhibitors blocked these effects, indicating that up-regulation of the lysosomal degradation of endogenous APP-CTFs is involved in reduced Abeta production. Biochemical analysis suggested that this was mediated by enhanced trafficking of APP-CTFs from endosomes to lysosomes, associated with marked changes of Rab proteins, which regulate endosomal function. In primary neurons, fluvastatin enhanced the degradation of APP-CTFs through an isoprenoid-dependent mechanism. Because our previous study suggests additive effects of fluvastatin on Abeta metabolism, we examined Abeta clearance rates by using the brain efflux index method and found its increased rates at high Abeta levels from brain. As LRP1 in brain microvessels was increased, up-regulation of LRP1-mediated Abeta clearance at the blood-brain barrier might be involved. In cultured brain microvessel endothelial cells, fluvastatin increased LRP1 and the uptake of Abeta, which was blocked by LRP1 antagonists, through an isoprenoid-dependent mechanism. Overall, the present study demonstrated that fluvastatin reduced Abeta level by an isoprenoid-dependent mechanism. These results have important implications for the development of disease-modifying therapy for Alzheimer disease as well as understanding of Abeta metabolism.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Alzheimer's disease (AD) is a complex neurological disorder resulting from both genetic and environmental factors with the latter being particularly important for the sporadic form of the disease. As such, diets rich in saturated fatty acids and alcohol, and deficient in antioxidants and vitamins appear to promote the onset of the disease, while diets rich in unsaturated fatty acids, vitamins, antioxidants, and wine likely suppress its onset. In addition, evidence suggests that diets rich in polyphenols and some spices suppress the onset of AD by scavenging free radicals and preventing oxidative damage. Metal ions are known to catalyze the production of free radicals and induce mental retardation or dementia, and several studies have also identified metals such as Pb, Fe, Al, Cu, and Zn in AD pathogenesis. While specific metal chelators have been tested for therapy, they have not been very successful, probably due to their late administration, i.e., after brain damage has been triggered. Since several dietary polyphenols are known to chelate metals, their routine use may also be protective against the onset of AD. In this review, we summarize beneficial dietary techniques in the fight against AD.
Collapse
Affiliation(s)
- Balenahalli N. Ramesh
- Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR Unit, Mysore, India
| | | | - Annamalai Prakasam
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - K.S. Jagannatha Rao
- Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR Unit, Mysore, India
| |
Collapse
|
36
|
Ablonczy Z, Prakasam A, Fant J, Fauq A, Crosson C, Sambamurti K. Pigment epithelium-derived factor maintains retinal pigment epithelium function by inhibiting vascular endothelial growth factor-R2 signaling through gamma-secretase. J Biol Chem 2009; 284:30177-86. [PMID: 19723623 PMCID: PMC2781573 DOI: 10.1074/jbc.m109.032391] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/28/2009] [Indexed: 01/02/2023] Open
Abstract
Wet age-related macular degeneration (AMD) attacks the integrity of the retinal pigment epithelium (RPE) barrier system. The pathogenic process was hypothesized to be mediated by vascular endothelial growth factor (VEGF) and antagonized by pigment epithelium-derived factor (PEDF). To dissect these functional interactions, monolayer cultures of RPE cells were established, and changes in transepithelial resistance were evaluated after administration of PEDF, placenta growth factor (VEGF-R1 agonist), and VEGF-E (VEGF-R2 agonist). A recently described mechanism of VEGF inhibition in endothelia required the release of VEGF-R1 intracellular domain by gamma-secretase. To evaluate this pathway in the RPE, cells were pretreated with inhibitors DAPT or LY411575. Processing of VEGF receptors was assessed by Western blot analysis. Administration of VEGF-E rapidly increased RPE permeability, and PEDF inhibited the VEGF-E response dose-dependently. Both gamma-secretase antagonists prevented the inhibitory effects of PEDF. The co-administration of PEDF and VEGF-E depleted the amount of VEGF-R2 in the membrane and increased the amount of VEGF-R2 ectodomain in the media. Therefore, the inhibitory effect of PEDF appears to be mediated via the processing of VEGF-R2 by gamma-secretase. gamma-Secretase generates the amyloid-beta (Abeta) peptide of Alzheimer disease from its precursor (amyloid precursor protein). This peptide is also a component of drusen in dry AMD. The results support the hypothesis that misregulation of gamma-secretase may not only lead to Abeta deposits in dry AMD but can also be damaging to RPE function by blocking the protective effects of PEDF to prevent VEGF from driving the dry to wet AMD transition.
Collapse
Affiliation(s)
| | - Annamalai Prakasam
- Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - James Fant
- From the Departments of
Ophthalmology and
| | - Abdul Fauq
- the
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | | | - Kumar Sambamurti
- Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
37
|
Lockrow J, Prakasam A, Huang P, Bimonte-Nelson H, Sambamurti K, Granholm AC. Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 2009; 216:278-89. [PMID: 19135442 PMCID: PMC2704550 DOI: 10.1016/j.expneurol.2008.11.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) individuals develop several neuropathological hallmarks seen in Alzheimer's disease, including cognitive decline and the early loss of cholinergic markers in the basal forebrain. These deficits are replicated in the Ts65Dn mouse, which contains a partial trisomy of murine chromosome 16, the orthologous genetic segment to human chromosome 21. Oxidative stress levels are elevated early in DS, and may contribute to the neurodegeneration seen in these individuals. We evaluated oxidative stress in Ts65Dn mice, and assessed the efficacy of long-term antioxidant supplementation on memory and basal forebrain pathology. We report that oxidative stress was elevated in the adult Ts65Dn brain, and that supplementation with the antioxidant vitamin E effectively reduced these markers. Also, Ts65Dn mice receiving vitamin E exhibited improved performance on a spatial working memory task and showed an attenuation of cholinergic neuron pathology in the basal forebrain. This study provides evidence that vitamin E delays onset of cognitive and morphological abnormalities in a mouse model of DS, and may represent a safe and effective treatment early in the progression of DS neuropathology.
Collapse
Affiliation(s)
- Jason Lockrow
- Department of Neuroscience, and the Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Annamalai Prakasam
- Department of Neuroscience, and the Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Peng Huang
- Oncology Biostatistics Division, Johns Hopkins University, Baltimore Maryland, 21205, USA
| | - Heather Bimonte-Nelson
- Department of Psychology, Behavioral Neuroscience Division, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, USA
| | - Kumar Sambamurti
- Department of Neuroscience, and the Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann-Charlotte Granholm
- Department of Neuroscience, and the Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
38
|
Marzolo MP, Bu G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin Cell Dev Biol 2009; 20:191-200. [PMID: 19041409 PMCID: PMC2691858 DOI: 10.1016/j.semcdb.2008.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/13/2008] [Indexed: 12/30/2022]
Abstract
Amyloid-beta (Abeta) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Abeta is produced through proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Maria-Paz Marzolo
- FONDAP Center for Cell Regulation and Pathology (CRCP), Departamento de, Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad, Católica de Chile and MIFAB, Santiago, Chile
| | - Guojun Bu
- Departments of Pediatrics, and Cell Biology & Physiology, Hope Center for, Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
39
|
Sambamurti K, Jagannatha Rao KS, Pappolla MA. Frontiers in the pathogenesis of Alzheimer's disease. Indian J Psychiatry 2009; 51 Suppl 1:S56-60. [PMID: 21416019 PMCID: PMC3038543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive dementia and brain deposits of the amyloid β protein (Aβ) as senile plaques and the microtubule-associated protein, Tau, as neurofibrillary tangles (NFT). The current treatment of AD is limited to drugs that attempt to correct deficits in the cholinergic pathway or glutamate toxicity. These drugs show some improvement over a short period of time but the disease ultimately requires treatment to prevent and stop the neurodegeneration that affects multiple pathways. The currently favored hypothesis is that Aβ aggregates to toxic forms that induce neurodegeneration. Drugs that reduce Aβ successfully treat transgenic mouse models of AD, but the most promising anti-Aβ vaccination approach did not successfully treat AD in a clinical trial. These studies suggest that AD pathogenesis is a complex phenomenon and requires a more broad-based approach to identify mechanisms of neurodegeneration. Multiple hypotheses have been proposed and the field is ready for a new generation of ideas to develop early diagnostic approaches and develop successful treatment plans.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403 Charleston, SC 29425
| | | | | |
Collapse
|
40
|
Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 2008; 106:475-85. [PMID: 18410513 PMCID: PMC3897170 DOI: 10.1111/j.1471-4159.2008.05415.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings suggest that hypercholesterolemia may contribute to the onset of Alzheimer's disease-like dementia but the underlying mechanisms remain unknown. In this study, we evaluated the cognitive performance in rodent models of hypercholesterolemia in relation to neuroinflammatory changes and amyloid precursor protein (APP) processing, the two key parameters of Alzheimer's disease pathogenesis. Groups of normal C57BL/6 and low density lipoprotein receptor (LDLR)-deficient mice were fed a high fat/cholesterol diet for an 8-week period and tested for memory in a radial arm maze. It was found that the C57BL/6 mice receiving a high fat diet were deficient in handling an increasing working memory load compared with counterparts receiving a control diet while the hypercholesterolemic LDLR-/- mice showed impaired working memory regardless of diet. Immunohistochemical analysis revealed the presence of activated microglia and astrocytes in the hippocampi from high fat-fed C57BL/6 mice and LDLR-/- mice. Consistent with a neuroinflammatory response, the hyperlipidemic mice showed increased expression of cytokines/mediators including tumor necrosis factor-alpha, interleukin-1beta and -6, nitric oxide synthase 2, and cycloxygenase 2. There was also an induced expression of the key APP processing enzyme i.e. beta-site APP cleaving enzyme 1 in both high fat/cholesterol-fed C57BL/6 and LDLR-/- mice accompanied by an increased generation of C-terminal fragments of APP. Although ELISA for beta-amyloid failed to record significant changes in the non-transgenic mice, a threefold increase in beta-amyloid 40 accumulation was apparent in a strain of transgenic mice expressing wild-type human APP on high fat/cholesterol diet. The findings link hypercholesterolemia with cognitive dysfunction potentially mediated by increased neuroinflammation and APP processing in a non-transgenic mouse model.
Collapse
Affiliation(s)
| | - Annamalai Prakasam
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Ran Zhang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Mark S. Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Narayan R. Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
41
|
Venugopal C, Demos CM, Rao KSJ, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:278-94. [PMID: 18673212 PMCID: PMC2921875 DOI: 10.2174/187152708784936626] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most popular current hypothesis is that Alzheimer's disease (AD) is caused by aggregates of the amyloid peptide (Abeta), which is generated by cleavage of the Abeta protein precursor (APP) by beta-secretase (BACE-1) followed by gamma-secretase. BACE-1 cleavage is limiting for the production of Abeta, making it a particularly good drug target for the generation of inhibitors that lower Abeta. A landmark discovery in AD was the identification of BACE-1 (a.k.a. Memapsin-2) as a novel class of type I transmembrane aspartic protease. Although BACE-2, a homologue of BACE-1, was quickly identified, follow up studies using knockout mice demonstrated that BACE-1 was necessary and sufficient for most neuronal Abeta generation. Despite the importance of BACE-1 as a drug target, development has been slow due to the incomplete understanding of its function and regulation and the difficulties in developing a brain penetrant drug that can specifically block its large catalytic pocket. This review summarizes the biological properties of BACE-1 and attempts to use phylogenetic perspectives to understand its function. The article also addresses the challenges in discovering a selective drug-like molecule targeting novel mechanisms of BACE-1 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Sambamurti
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
42
|
Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 2008; 14:133-45. [PMID: 18560126 PMCID: PMC2670571 DOI: 10.3233/jad-2008-14202] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diets rich in cholesterol and/or saturated fats have been shown to be detrimental to cognitive performance. Therefore, we fed a cholesterol (2%) and saturated fat (hydrogenated coconut oil, Sat Fat 10%) diet to 16-month old rats for 8 weeks to explore the effects on the working memory performance of middle-aged rats. Lipid profiles revealed elevated plasma triglycerides, total cholesterol, HDL, and LDL for the Sat-Fat group as compared to an iso-caloric control diet (12% soybean oil). Weight gain and food consumption were similar in both groups. Sat-Fat treated rats committed more working memory errors in the water radial arm maze, especially at higher memory loads. Cholesterol, amyloid-beta peptide of 40 (Abeta40) or 42 (Abeta42) residues, and nerve growth factor in cortical regions was unaffected, but hippocampal Map-2 staining was reduced in rats fed a Sat-Fat diet, indicating a loss of dendritic integrity. Map-2 reduction correlated with memory errors. Microglial activation, indicating inflammation and/or gliosis, was also observed in the hippocampus of Sat-Fat fed rats. These data suggest that saturated fat, hydrogenated fat and cholesterol can profoundly impair memory and hippocampal morphology.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
44
|
Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, Jing N. Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. J Biol Chem 2008; 283:17721-30. [PMID: 18436531 PMCID: PMC2427353 DOI: 10.1074/jbc.m800013200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.
Collapse
Affiliation(s)
- Chengyong Shen
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|