1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
3
|
Fritsch H, Giovanetti M, Clemente LG, da Rocha Fernandes G, Fonseca V, de Lima MM, Falcão M, de Jesus N, de Cerqueira EM, Venâncio da Cunha R, de Oliveira Francisco MVL, de Siqueira IC, de Oliveira C, Xavier J, Ferreira JGG, Queiroz FR, Smith E, Tisoncik-Go J, Van Voorhis WC, Rabinowitz PM, Wasserheit JN, Gale M, de Filippis AMB, Alcantara LCJ. Unraveling the Complexity of Chikungunya Virus Infection Immunological and Genetic Insights in Acute and Chronic Patients. Genes (Basel) 2024; 15:1365. [PMID: 39596565 PMCID: PMC11593632 DOI: 10.3390/genes15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The chikungunya virus (CHIKV), transmitted by infected Aedes mosquitoes, has caused a significant number of infections worldwide. In Brazil, the emergence of the CHIKV-ECSA genotype in 2014 posed a major public health challenge due to its association with more severe symptoms. Objectives/Methods: This study aimed to shed new light on the host immune response by examining the whole-blood transcriptomic profile of both CHIKV-acute and chronically infected individuals from Feira de Santana, Bahia, Brazil, a region heavily affected by CHIKV, Dengue, and Zika virus epidemics. Results: Our data reveal complex symptomatology characterized by arthralgia and post-chikungunya neuropathy in individuals with chronic sequelae, particularly affecting women living in socially vulnerable situations. Analysis of gene modules suggests heightened metabolic processes, represented by an increase in NADH, COX5A, COA3, CYC1, and cap methylation in patients with acute disease. In contrast, individuals with chronic manifestations exhibit a distinct pattern of histone methylation, probably mediated by NCOA3 in the coactivation of different nuclear receptors, KMT2 genes, KDM3B and TET2, and with alterations in the immunological response, majorly led by IL-17RA, IL-6R, and STAT3 Th17 genes. Conclusion: Our results emphasize the complexity of CHIKV disease progression, demonstrating the heterogeneous gene expression and symptomatologic scenario across both acute and chronic phases. Moreover, the identification of specific gene modules associated with viral pathogenesis provides critical insights into the molecular mechanisms underlying these distinct clinical manifestations.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
- Institut National de la Santé et de la Recherche Médicale, U1259—MAVIVHe, Université de Tours, 37032 Tours, France
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Luan Gaspar Clemente
- Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | | | - Vagner Fonseca
- Departamento de Ciências Exatas e da Terra, Universidade Estadual da Bahia, Salvador 41150-000, Brazil;
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Maricelia Maia de Lima
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Melissa Falcão
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Neuza de Jesus
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Erenilde Marques de Cerqueira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
| | | | | | | | - Carla de Oliveira
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
| | - Jorge Gomes Goulart Ferreira
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Fábio Ribeiro Queiroz
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | | | - Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
4
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2024; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Mao R, Zhu Z, Yang F, Sun D, Zhou X, Cao W, Qin X, Dang W, Liu H, Tian H, Zhang K, Wu Q, Liu X, Zheng H. Picornavirus VP3 protein induces autophagy through the TP53-BAD-BAX axis to promote viral replication. Autophagy 2024; 20:1928-1947. [PMID: 38752369 PMCID: PMC11346532 DOI: 10.1080/15548627.2024.2350270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis. FMDV infection induced both autophagy and apoptosis in vivo and in vitro. FMDV VP3 protein facilitated the phosphorylation and translocation of TP53 from the nucleus into the mitochondria, resulting in BAD-mediated apoptosis and BECN1-mediated autophagy. The amino acid Gly129 in VP3 is essential for its interaction with TP53, and crucial for induction of autophagy and apoptosis. VP3-induced autophagy and apoptosis are both essential for FMDV replication, while, autophagy plays a more important role in VP3-mediated pathogenesis. Mutation of Gly129 to Ala129 in VP3 abrogated the autophagic regulatory function of VP3, which significantly decreased the viral replication and pathogenesis of FMDV. This suggested that VP3-induced autophagy benefits viral replication and pathogenesis. Importantly, this Gly is conserved and showed a common function in various picornaviruses. This study provides insight for developing broad-spectrum antivirals and genetic engineering attenuated vaccines against picornaviruses.Abbreviations: 3-MA, 3-methyladenine; ATG, autophagy related; BAD, BCL2 associated agonist of cell death; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCL2, BCL2 apoptosis regulator; BID, BH3 interacting domain death agonist; BIP-V5, BAX inhibitor peptide V5; CFLAR/FLIP, CASP8 and FADD like apoptosis regulator; CPE, cytopathic effects; CQ, chloroquine; CV, coxsackievirus; DAPK, death associated protein kinase; DRAM, DNA damage regulated autophagy modulator; EV71, enterovirus 71; FMDV, foot-and-mouth disease virus; HAV, hepatitis A virus; KD, knockdown; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MOI, multiplicity of infection; MTOR, mechanistic target of rapamycin kinase; PML, promyelocytic leukemia; PV, poliovirus; SVA, Seneca Valley virus; TCID50, 50% tissue culture infectious doses; TOR, target of rapamycin. TP53/p53, tumor protein p53; WCL, whole-cell lysate.
Collapse
Affiliation(s)
- Ruoqing Mao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dehui Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoli Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingfeng Wu
- Analysis and Test Group, Center for Technical Development and Analysis Service, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
de Lima RC, Valente LMM, Familiar Macedo D, de-Oliveira-Pinto LM, dos Santos FB, Mazzei JL, Siani AC, Nunes PCG, de Azeredo EL. Antiviral and Virucidal Activities of Uncaria tomentosa (Cat's Claw) against the Chikungunya Virus. Viruses 2024; 16:369. [PMID: 38543735 PMCID: PMC10974475 DOI: 10.3390/v16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.
Collapse
Affiliation(s)
- Raquel Curtinhas de Lima
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Ligia Maria Marino Valente
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil;
| | - Débora Familiar Macedo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Flavia Barreto dos Santos
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - José Luiz Mazzei
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Antonio Carlos Siani
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Priscila Conrado Guerra Nunes
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Elzinandes Leal de Azeredo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| |
Collapse
|
7
|
Smith SC, Krystofiak E, Ogden KM. Mammalian orthoreovirus can exit cells in extracellular vesicles. PLoS Pathog 2024; 20:e1011637. [PMID: 38206991 PMCID: PMC10807757 DOI: 10.1371/journal.ppat.1011637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Evan Krystofiak
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Zou X, Lei Q, Luo X, Yin J, Chen S, Hao C, Shiyu L, Ma D. Advances in biological functions and applications of apoptotic vesicles. Cell Commun Signal 2023; 21:260. [PMID: 37749626 PMCID: PMC10519056 DOI: 10.1186/s12964-023-01251-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Apoptotic vesicles are extracellular vesicles generated by apoptotic cells that were previously regarded as containing waste or harmful substances but are now thought to play an important role in signal transduction and homeostasis regulation. METHODS In the present review, we reviewed many articles published over the past decades on the subtypes and formation of apoptotic vesicles and the existing applications of these vesicles. RESULTS Apoptotic bodies were once regarded as vesicles released by apoptotic cells, however, apoptotic vesicles are now regarded to include apoptotic bodies, apoptotic microvesicles and apoptotic exosomes, which exhibit variation in terms of biogenesis, sizes and properties. Applications of apoptotic vesicles were first reported long ago, but such reports have been rarer than those of other extracellular vesicles. At present, apoptotic vesicles have been utilized mainly in four aspects, including in direct therapeutic applications, in their engineering as carriers, in their construction as vaccines and in their utilization in diagnosis. CONCLUSION Building on a deeper understanding of their composition and characteristics, some studies have utilized apoptotic vesicles to treat diseases in more novel ways. However, their limitations for clinical translation, such as heterogeneity, have also emerged. In general, apoptotic vesicles have great application potential, but there are still many barriers to overcome in their investigation. Video Abstract.
Collapse
Affiliation(s)
- Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Qian Lei
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Jingyao Yin
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Liu Shiyu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi Province, 710032, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China.
| |
Collapse
|
9
|
Smith SC, Krystofiak E, Ogden KM. Mammalian orthoreovirus can exit cells in extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555250. [PMID: 37693509 PMCID: PMC10491149 DOI: 10.1101/2023.08.29.555250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Evan Krystofiak
- Department of Cell & Developmental Biology, Vanderbilt University
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
10
|
Bedoui Y, De Larichaudy D, Daniel M, Ah-Pine F, Selambarom J, Guiraud P, Gasque P. Deciphering the Role of Schwann Cells in Inflammatory Peripheral Neuropathies Post Alphavirus Infection. Cells 2022; 12:cells12010100. [PMID: 36611893 PMCID: PMC9916230 DOI: 10.3390/cells12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Old world alphaviruses (e.g., chikungunya) are known to cause severe acute and chronic debilitating arthralgia/arthritis. However, atypical neurological manifestations and, in particular, unexpected cases of acute inflammatory Guillain-Barre syndrome (GBS) have been associated with the arthritogenic alphaviruses. The pathogenesis of alphavirus-associated GBS remains unclear. We herein addressed for the first time the role of Schwann cells (SC) in peripheral neuropathy post-alphaviral infection using the prototypical ONNV alphavirus model. We demonstrated that human SC expressed the recently identified alphavirus receptor MxRA8 and granting viral entry and robust replication. A canonical innate immune response was engaged by ONNV-infected SC with elevated gene expression for RIG-I, MDA5, IFN-β, and ISG15 and inflammatory chemokine CCL5. Transcription levels of prostaglandin E2-metabolizing enzymes including cPLA2α, COX-2, and mPGES-1 were also upregulated in ONNV-infected SC. Counterintuitively, we found that ONNV failed to affect SC regenerative properties as indicated by elevated expression of the pro-myelinating genes MPZ and MBP1 as well as the major pro-myelin transcription factor Egr2. While ONNV infection led to decreased expression of CD55 and CD59, essential to control complement bystander cytotoxicity, it increased TRAIL expression, a major pro-apoptotic T cell signal. Anti-apoptotic Bcl2 transcription levels were also increased in infected SC. Hence, our study provides new insights regarding the remarkable immunomodulatory role of SC of potential importance in the pathogenesis of GBS following alphavirus infection.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Correspondence:
| | - Dauriane De Larichaudy
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Matthieu Daniel
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Service D’anatomopathologie du CHU Sud de La Réunion, 97410 Saint Pierre, France
| | - Jimmy Selambarom
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
11
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
12
|
Characterization and Involvement of Exosomes Originating from Chikungunya Virus-Infected Epithelial Cells in the Transmission of Infectious Viral Elements. Int J Mol Sci 2022; 23:ijms232012117. [PMID: 36292974 PMCID: PMC9603488 DOI: 10.3390/ijms232012117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
The Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that affects the world's popula-tion with chikungunya disease. Adaptation of the viral life cycle to their host cells' environment is a key step for establishing their infection and pathogenesis. Recently, the accumulating evidence advocates a principal role of extracellular vesicles (EVs), including exosomes, in both the infection and pathogenesis of infectious diseases. However, the participation of exosomes in CHIKV infec-tion and transmission is not well clarified. Here, we demonstrated that the CHIKV RNA and pro-teins were captured in exosomes, which were released by viral-infected epithelial cells. A viral genomic element in the isolated exosomes was infectious to naïve mammalian epithelial cells. The assay of particle size distribution and transmission electron microscopy (TEM) revealed CHIKV-derived exosomes with a size range from 50 to 250 nm. Treatments with RNase A, Triton X-100, and immunoglobulin G antibodies from CHIKV-positive patient plasma indicated that in-fectious viral elements are encompassed inside the exosomes. Interestingly, our viral plaque for-mation also exhibited that infectious viral elements might be securely transmitted to neighboring cells by a secreted exosomal pathway. Taken together, our recent findings emphasize the evidence for a complementary means of CHIKV infection and suggest the role of exosome-mediated CHIKV transmission.
Collapse
|
13
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022; 14:v14050969. [PMID: 35632709 PMCID: PMC9147731 DOI: 10.3390/v14050969] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain–Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.
Collapse
|
15
|
Concomitant pyroptotic and apoptotic cell death triggered in macrophages infected by Zika virus. PLoS One 2022; 17:e0257408. [PMID: 35446851 PMCID: PMC9022797 DOI: 10.1371/journal.pone.0257408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious neurological disorders including microcephaly in infected fetuses. As a mosquito-borne arbovirus, it enters the bloodstream and replicates in various organs. During pregnancy, it can be transmitted from the blood of the viremic mother to the fetus by crossing the placental barrier. Monocytes and macrophages are considered the earliest blood cell types to be infected by ZIKV. As a first line defense, these cells are crucial components in innate immunity and host responses and may impact viral pathogenesis in humans. Previous studies have shown that ZIKV infection can activate inflammasomes and induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV could infect and induce cell death in human and murine macrophages. In addition to the presence of cleaved caspase-3, indicating that apoptosis was involved, we identified the cleaved caspase-1 and gasdermin D (GSDMD) as well as increased secretion of IL-1β and IL-18. This suggests that the inflammasome was activated and that may lead to pyroptosis in infected macrophages. The pyroptosis was NLRP3-dependent and could be suppressed in the macrophages treated with shRNA to target and knockdown caspase-1. It was also be inhibited by an inhibitor for caspase-1, indicating that the pyroptosis was triggered via a canonical approach. Our findings in this study demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected macrophages, with two mechanisms involved in the cell death, which may have potentially significant impacts on viral pathogenesis in humans.
Collapse
|
16
|
Archila ED, López LS, Castellanos JE, Calvo EP. Molecular and biological characterization of an Asian-American isolate of Chikungunya virus. PLoS One 2022; 17:e0266450. [PMID: 35385544 PMCID: PMC8985947 DOI: 10.1371/journal.pone.0266450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus is an arthropod-transmitted virus that causes chikungunya fever, a disease characterized by severe muscle and joint pain. In 2013, the virus was introduced to the Americas and caused approximately 2.7 million cases of infection during the subsequent two years. The lack of knowledge regarding the biological behavior of the viral strains circulating during the outbreak motivated the characterization of an isolate from the Colombian outbreak, starting from analysis of the complete genome to the biological behavior in vitro. The full genome was retrieved using next-generation sequencing. The infective and replicative capacities were evaluated in HEK293T, Huh-7, and MRC-5 cell lines. The infection rates were determined by flow cytometry, and the cytopathic effect was assessed by a resazurin fluorescent metabolic assay. The viral yield was quantified using the virus plaque formation assay, while the viral proteins and genomic RNA kinetics were subsequently evaluated by western-blot and RT-qPCR. The COL7624 isolate clustered with other American and Caribbean sequences in the Asian American lineage. The T669A substitution in E2 protein distinguished it from other Colombian sequences reported in 2014. After 48 h post infection (hpi), the three cell lines analyzed reached infection percentages exceeding 65%, generating a high load of infectious viral progeny. The infection kinetics indicated that the replication peak of this CHIKV isolate is around 24 hpi, although gRNA is detectable in the culture supernatant from 4 hpi onwards. The infection caused the overexpression of interferon and pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-8. The COL7624 CHIKV isolate exhibited a high infective and replicative capacity as well as activation of cellular immune responses, similar to isolates belonging to the other genotypes.
Collapse
Affiliation(s)
- Edwin D. Archila
- Laboratorio de Virología, Universidad El Bosque, Bogotá D.C., Colombia
| | - Lady S. López
- Laboratorio de Virología, Universidad El Bosque, Bogotá D.C., Colombia
| | | | - Eliana P. Calvo
- Laboratorio de Virología, Universidad El Bosque, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
17
|
Qadri SW, Kumar N, Santhoshkumar R, Desai A, Ravi V, Venkataswamy MM. Infection of human microglial cell line CHME-3 to study neuropathogenesis of chikungunya virus. J Neurovirol 2022; 28:374-382. [DOI: 10.1007/s13365-022-01070-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 02/02/2023]
|
18
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
19
|
Liao S, Apaijai N, Luo Y, Wu J, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Chattipakorn N, Chattipakorn SC. Cell death inhibitors protect against brain damage caused by cardiac ischemia/reperfusion injury. Cell Death Dis 2021; 7:312. [PMID: 34689160 PMCID: PMC8542034 DOI: 10.1038/s41420-021-00698-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Cognitive impairment has been reported in patients with myocardial infarction despite a successful reperfusion therapy. Several modes of cell death are involved in brain damage during cardiac ischemia/reperfusion (I/R) injury. Although apoptosis, necroptosis, and ferroptosis inhibitors provided neuroprotection against cerebral I/R injury, the effects of these cell death inhibitors on the brain following cardiac I/R injury have never been investigated. We hypothesized that apoptosis, necroptosis, and ferroptosis inhibitors attenuate brain damage following cardiac I/R injury. One-hundred and twenty-six male rats were used: 6 rats were assigned to sham operation and 120 rats were subjected to 30-min regional cardiac ischemia and 120-min reperfusion. Rats in cardiac I/R group were pretreated with either vehicle (n = 12) or one of cell death inhibitors. Rats treated with apoptosis, necroptosis, or ferroptosis inhibitor were subdivided into three different doses including low (L), medium (M), and high (H) doses (n = 12/group). Z-VAD, necrostatin-1 (Nec-1), and ferrostatin-1 (Fer-1) were used as apoptosis, necroptosis, and ferroptosis inhibitor, respectively. Rats were sacrificed at the end of reperfusion, and the brain was used to analyze dendritic spine density, Alzheimer's disease (AD)-related proteins, blood-brain barrier (BBB) tight junction proteins, mitochondrial function, inflammation, and cell death. Our data showed that cardiac I/R led to brain damage and only apoptosis occurred in the hippocampus after cardiac I/R injury. In the cardiac I/R group, treatment with M-Z-VAD and all doses of Nec-1 decreased hippocampal apoptosis and amyloid beta aggregation, thereby reducing dendritic spine loss. M- and H-Fer-1 also reduced dendritic spine loss by suppressing ACSL4, TNF-α, amyloid beta, and tau hyperphosphorylation. Moreover, Bax/Bcl-2 was decreased in all treatment regimen except L-Z-VAD. Additionally, M-Z-VAD and M-Fer-1 partially attenuated mitochondrial dysfunction. Only L-Nec-1 preserved BBB proteins. In conclusion, cell death inhibitors prevented hippocampal dendritic spine loss caused by cardiac I/R injury through different mechanisms.
Collapse
Affiliation(s)
- Suchan Liao
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nattayaporn Apaijai
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ying Luo
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jun Wu
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Titikorn Chunchai
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kodchanan Singhanat
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Busarin Arunsak
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Juthipong Benjanuwattra
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C. Chattipakorn
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
20
|
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99:108045. [PMID: 34435582 DOI: 10.1016/j.intimp.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
AIM Andrographolide, the major bioactive compound of the plant Andrographis paniculata, exerts anti-inflammatory, cyto-, neuro- and hepato-protective effects. Traditional remedies for infectious diseases include A. paniculata for maladies like fever, pain, rashes which are associated with chikungunya and other arboviral diseases. Since andrographolide and A. paniculata have potent antiviral properties, the present review aims to provide a comprehensive report of symptoms and immunological molecules involved in chikungunya virus (CHIKV) infection and the therapeutic role of andrographolide in the mitigation of chikungunya and associated symptoms. MATERIALS AND METHODS Studies on the therapeutic role of A. paniculata and andrographolide in chikungunya and other viral infections published between 1991 and 2021 were searched on various databases. RESULTS AND DISCUSSION The havoc created by chikungunya is due to the associated debilitating symptoms including arthralgia and myalgia which sometimes remains for years. The authors reviewed and summarized the various symptoms and immunological molecules related to CHIKV replication and associated inflammation, oxidative and unfolded protein stress, apoptosis and arthritis. Additionally, the authors suggested andrographolide as a remedy for chikungunya and other arboviral infections by highlighting its role in the regulation of molecules involved in unfolded protein response pathway, immunomodulation, inflammation, virus multiplication, oxidative stress, apoptosis and arthritis. CONCLUSION The present review demonstrated the major complications associated with chikungunya and the role of andrographolide in alleviating the chikungunya associated symptoms to encourage further investigations using this promising compound towards early development of an anti-CHIKV drug. Chemical Compound studied: andrographolide (PubChem CID: 5318517).
Collapse
Affiliation(s)
- Swati Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110029, India.
| | - K P Mishra
- Defence Research and Development Organization (DRDO)-HQ, Rajaji Marg, New Delhi 110011, India
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - S B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
21
|
Kirui J, Abidine Y, Lenman A, Islam K, Gwon YD, Lasswitz L, Evander M, Bally M, Gerold G. The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry. Cells 2021; 10:cells10071828. [PMID: 34359995 PMCID: PMC8303237 DOI: 10.3390/cells10071828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.
Collapse
Affiliation(s)
- Jared Kirui
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Yara Abidine
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Lisa Lasswitz
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Gisa Gerold
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
22
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
23
|
Infection of Mammals and Mosquitoes by Alphaviruses: Involvement of Cell Death. Cells 2020; 9:cells9122612. [PMID: 33291372 PMCID: PMC7762023 DOI: 10.3390/cells9122612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Alphaviruses, such as the chikungunya virus, are emerging and re-emerging viruses that pose a global public health threat. They are transmitted by blood-feeding arthropods, mainly mosquitoes, to humans and animals. Although alphaviruses cause debilitating diseases in mammalian hosts, it appears that they have no pathological effect on the mosquito vector. Alphavirus/host interactions are increasingly studied at cellular and molecular levels. While it seems clear that apoptosis plays a key role in some human pathologies, the role of cell death in determining the outcome of infections in mosquitoes remains to be fully understood. Here, we review the current knowledge on alphavirus-induced regulated cell death in hosts and vectors and the possible role they play in determining tolerance or resistance of mosquitoes.
Collapse
|
24
|
CXCL10 Signaling Contributes to the Pathogenesis of Arthritogenic Alphaviruses. Viruses 2020; 12:v12111252. [PMID: 33147869 PMCID: PMC7692144 DOI: 10.3390/v12111252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.
Collapse
|
25
|
Yang L, Geng T, Yang G, Ma J, Wang L, Ketkar H, Yang D, Lin T, Hwang J, Zhu S, Wang Y, Dai J, You F, Cheng G, Vella AT, Flavell RA, Fikrig E, Wang P. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Commun Biol 2020; 3:556. [PMID: 33033362 PMCID: PMC7545163 DOI: 10.1038/s42003-020-01285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1) mediates the endocytosis of modified low-density lipoproteins and plays an important antiviral role. However, the molecular mechanism underlying MSR1 antiviral actions remains elusive. We report that MSR1 activates autophagy to restrict infection of Chikungunya virus (CHIKV), an arthritogenic alphavirus that causes acute and chronic crippling arthralgia. Msr1 expression was rapidly upregulated after CHIKV infection in mice. Msr1 knockout mice had elevated viral loads and increased susceptibility to CHIKV arthritis along with a normal type I IFN response. Induction of LC3 lipidation by CHIKV, a marker of autophagy, was reduced in Msr1-/- cells. Mechanistically, MSR1 interacted with ATG12 through its cytoplasmic tail and this interaction was enhanced by CHIKV nsP1 protein. MSR1 repressed CHIKV replication through ATG5-ATG12-ATG16L1 and this was dependent on the FIP200-and-WIPI2-binding domain, but not the WD40 domain of ATG16L1. Our results elucidate an antiviral role for MSR1 involving the autophagic function of ATG5-ATG12-ATG16L1.
Collapse
Affiliation(s)
- Long Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Tingting Geng
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Guang Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.258164.c0000 0004 1790 3548Department of Parasitology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinzhu Ma
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Leilei Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Harshada Ketkar
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Duomeng Yang
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Tao Lin
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jesse Hwang
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Shu Zhu
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.59053.3a0000000121679639Present Address: Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 China
| | - Yanlin Wang
- grid.208078.50000000419370394Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jianfeng Dai
- grid.263761.70000 0001 0198 0694Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Fuping You
- grid.11135.370000 0001 2256 9319School of Basic Medical Sciences, Peking University, Beijing, China
| | - Gong Cheng
- grid.12527.330000 0001 0662 3178Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T. Vella
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Richard. A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Erol Fikrig
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Penghua Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
26
|
Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L. Andrographolide Mitigates Unfolded Protein Response Pathway and Apoptosis Involved in Chikungunya Virus Infection. Comb Chem High Throughput Screen 2020; 24:849-859. [PMID: 32819227 DOI: 10.2174/1386207323999200818165029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an arthropod-borne RNA virus which induces host Endoplasmic Reticulum (ER) stress by accumulating unfolded or misfolded proteins. ER stress activates the unfolded protein response (UPR) pathway to enable proper protein folding and maintain cellular homeostasis. There is no approved drug or vaccine available for CHIKV treatment, therefore, a pharmacological countermeasure is warranted for preventing CHIKV infection. OBJECTIVE With a view to find a treatment modality for chikungunya infection, "andrographolide", a plant-derived diterpenoid with reported antiviral, anti-inflammatory and immunomodulatory effects, was used to investigate its role in chikungunya induced unfolded protein stress and apoptosis. METHODS Cells and supernatant collected on andrographolide and VER-155008, a GRP78 inhibitor, treatment in CHIKV infected and mock-infected THP-1 cells were tested for differential expression of UPR pathway proteins including GRP78, PERK, EIF-2α, IRE-1α, XBP-1 and ATF6. Furthermore, the inflammasome and apoptosis pathway proteins, i.e., caspase-1, caspase-3 and PARP, were tested by immunoblotting, and cytokines, i.e., IL-1β, IL-6 and IFN-γ were tested by ELISA. RESULTS Andrographolide treatment in CHIKV infected THP-1 cells significantly reduced IRE1α and downstream spliced XBP1 protein expression. Furthermore, CHIKV induced apoptosis and viral protein expression were also reduced on andrographolide treatment. A comparative analysis of andrographolide versus VER-155008, confirmed that andrographolide surpasses the effects of VER-155008 in suppressing the CHIKV induced ER stress. CONCLUSION The study, therefore, confirms that andrographolide is a potential remedy for chikungunya infection and suppresses CHIKV induced ER stress and apoptosis.
Collapse
Affiliation(s)
- Swati Gupta
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Kamla Prasad Mishra
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| |
Collapse
|
27
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| |
Collapse
|
28
|
Increased serum levels of galectin-9 in patients with chikungunya fever. Virus Res 2020; 286:198062. [PMID: 32565125 DOI: 10.1016/j.virusres.2020.198062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Chikungunya fever (CHIKF) is an arboviral disease that has caused an epidemic burst of chronic inflammatory joint disease in Latin America in the last few years. Efforts are being spent in understanding the mechanisms by which it may cause such articular damage and in determining possible biomarkers of the disease. Galectins (GAL) are a family of animal lectins with an affinity for beta-galactosides. They have multiple functions including working as receptors in innate immunity and as a control for inflammatory responses in both innate and adaptive immunity. They regulate functions of immune cells, such as lymphocytes and macrophages, which have a main role in the chikungunya inflammatory process. Galectins are also involved in chronification of viral diseases, participate in the immunopathogenesis of chronic joint diseases such as rheumatoid arthritis, and have a role in inflammation in other arboviral diseases, such as dengue. Thus, we intended to determine the serum levels of galectin-1, -3, -4, -7, and -9 in patients with subacute and chronic articular manifestations of CHIKF and to evaluate their associations with clinical manifestations. We evaluated 44 patients with clinical manifestations of CHIKF and serological confirmation with IgM and/or IgG chikungunya virus (CHIKV) antibodies. Forty-nine age- and gender-matched healthy individuals served as controls. Anti-CHIKV IgM and IgG antibodies and galectins serum levels were measured by ELISA. We found higher levels of GAL-9 (patients median 2192 [1500-2631] pg/mL, controls median 46.88 [46.88-46.88] pg/mL, p < 0.0001) and lower levels of GAL-3 (patients median 235.5 [175.5-351.8] pg/mL, controls median 2236.0 [1256.0-2236.0] pg/mL, p < 0.0001) in patients than in controls. There was no statistical difference in levels of GAL-1, -4 and -7 between patients and control groups. There was no difference in GAL-9 serum levels between patients with subacute or chronic symptoms (median 2148 [1500-2722] pg/mL x 2212 [1844-2500] pg/mL, p = 0.3626). A significant association of GAL-9 with joint stiffness, both in its duration and intensity, was found. These results may reflect the participation of GAL-9 in the immunopathogenesis of the inflammatory process in chikungunya fever, as morning stiffness may reflect the systemic inflammatory process.
Collapse
|
29
|
Imre G. The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:211-253. [PMID: 32381176 PMCID: PMC7102569 DOI: 10.1016/bs.ircmb.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis, necroptosis and pyroptosis represent three distinct types of regulated cell death forms, which play significant roles in response to viral and bacterial infections. Whereas apoptosis is characterized by cell shrinkage, nuclear condensation, bleb formation and retained membrane integrity, necroptosis and pyroptosis exhibit osmotic imbalance driven cytoplasmic swelling and early membrane damage. These three cell death forms exert distinct immune stimulatory potential. The caspase driven apoptotic cell demise is considered in many circumstances as anti-inflammatory, whereas the two lytic cell death modalities can efficiently trigger immune response by releasing damage associated molecular patterns to the extracellular space. The relevance of these cell death modalities in infections can be best demonstrated by the presence of viral proteins that directly interfere with cell death pathways. Conversely, some pathogens hijack the cell death signaling routes to initiate a targeted attack against the immune cells of the host, and extracellular bacteria can benefit from the destruction of intact extracellular barriers upon cell death induction. The complexity and the crosstalk between these cell death modalities reflect a continuous evolutionary race between pathogens and host. This chapter discusses the current advances in the research of cell death signaling with regard to viral and bacterial infections and describes the network of the cell death initiating molecular mechanisms that selectively recognize pathogen associated molecular patterns.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
31
|
Macromolecular Synthesis Shutoff Resistance by Myeloid Cells Is Critical to IRF7-Dependent Systemic Interferon Alpha/Beta Induction after Alphavirus Infection. J Virol 2019; 93:JVI.00872-19. [PMID: 31578290 DOI: 10.1128/jvi.00872-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.
Collapse
|
32
|
Turpin J, Frumence E, Desprès P, Viranaicken W, Krejbich-Trotot P. The ZIKA Virus Delays Cell Death Through the Anti-Apoptotic Bcl-2 Family Proteins. Cells 2019; 8:cells8111338. [PMID: 31671831 PMCID: PMC6912272 DOI: 10.3390/cells8111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.
Collapse
Affiliation(s)
- Jonathan Turpin
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Etienne Frumence
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Philippe Desprès
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Wildriss Viranaicken
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Pascale Krejbich-Trotot
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| |
Collapse
|
33
|
Agrawal M, Pandey N, Rastogi M, Dogra S, Singh SK. Chikungunya virus modulates the miRNA expression patterns in human synovial fibroblasts. J Med Virol 2019; 92:139-148. [PMID: 31483508 DOI: 10.1002/jmv.25588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes. CHIKV infection leads to polyarthritis and polyarthralgia among patients. The synovial fibroblasts are the primary target for CHIKV. The microRNAs (miRNAs) are the small endogenous noncoding RNAs which posttranscriptionally regulate the expression of genes by binding to their target messenger RNAs (mRNAs) through their 3'-untranslated regions. The miRNAs are the key regulators for various pathological processes including viral infection, cancer, cardiovascular disease, and neurodegeneration. This study was designed to dissect out the roles of miRNAs during CHIKV (Ross Strain E1: A226V) infection in primary human synovial fibroblasts. The miRNA microarray profiling was performed on the primary human synovial fibroblasts infected by CHIKV. The gene target prediction analysis, enrichment, and network analysis were performed by various bioinformatics analyses. The subset of 26 differentially expressed microRNAs (DEMs) were identified through microarray profiling and were further screened for gene predictions, Gene Ontology, pathway enrichment, and miRNA-mRNA network using various bioinformatics tools. The bioinformatics analysis indicates the role of DEMs by suppressing the immune response which may contribute to CHIKV persistence in human primary synovial fibroblasts. Our study provides the plausible roles of DEMs, miRNAs, and mRNA interactions and pathways involved in the molecular pathogenesis of CHIKV.
Collapse
Affiliation(s)
- Meghna Agrawal
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Neha Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Smriti Dogra
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
34
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
35
|
Amaral JK, Taylor PC, Teixeira MM, Morrison TET, Schoen RT. The Clinical Features, Pathogenesis and Methotrexate Therapy of Chronic Chikungunya Arthritis. Viruses 2019; 11:E289. [PMID: 30909365 PMCID: PMC6466451 DOI: 10.3390/v11030289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Chikungunya fever (CHIKF) is an emerging viral infection that has spread widely, along with its Aedes vectors, throughout the tropics and beyond, causing explosive epidemics of acute illness and persistent disabling arthritis. The rheumatic symptoms associated with chikungunya virus (CHIKV) infection include polyarthralgia, polyarthritis, morning stiffness, joint edema, and erythema. Chronic CHIK arthritis (CCA) often causes severe pain and associated disability. The pathogenesis of CCA is not well understood. Proposed hypotheses include the persistence of a low level of replicating virus in the joints, the persistence of viral RNA in the synovium, and the induction of autoimmunity. In this review, we describe the main hypotheses of CCA pathogenesis, some of which support methotrexate (MTX) treatment which has been shown to be effective in preliminary studies in CCA.
Collapse
Affiliation(s)
- J Kennedy Amaral
- Department of Infectious Diseases and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil. jkennedy-@hotmail.com
| | - Peter C Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LDR, UK.
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Thomas E Tem Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Robert T Schoen
- Section of Rheumatology, Allery and Immunology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
36
|
Matusali G, Colavita F, Bordi L, Lalle E, Ippolito G, Capobianchi MR, Castilletti C. Tropism of the Chikungunya Virus. Viruses 2019; 11:v11020175. [PMID: 30791607 PMCID: PMC6410217 DOI: 10.3390/v11020175] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus that displays a large cell and organ tropism, and causes a broad range of clinical symptoms in humans. It is maintained in nature through both urban and sylvatic cycles, involving mosquito vectors and human or vertebrate animal hosts. Although CHIKV was first isolated in 1953, its pathogenesis was only more extensively studied after its re-emergence in 2004. The unexpected spread of CHIKV to novel tropical and non-tropical areas, in some instances driven by newly competent vectors, evidenced the vulnerability of new territories to this infectious agent and its associated diseases. The comprehension of the exact CHIKV target cells and organs, mechanisms of pathogenesis, and spectrum of both competitive vectors and animal hosts is pivotal for the design of effective therapeutic strategies, vector control measures, and eradication actions.
Collapse
Affiliation(s)
- Giulia Matusali
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Francesca Colavita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Licia Bordi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Eleonora Lalle
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Concetta Castilletti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| |
Collapse
|
37
|
Nanbo A, Kawaoka Y. Molecular Mechanism of Externalization of Phosphatidylserine on the Surface of Ebola Virus Particles. DNA Cell Biol 2019; 38:115-120. [PMID: 30615471 DOI: 10.1089/dna.2018.4485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped filamentous virus that causes severe hemorrhagic fever in humans and nonhuman primates with up to 90% fatality. Accumulating evidence indicates that various viruses, including EBOV, exploit the host apoptotic clearance machinery to enhance their entry into host cells by externalizing phosphatidylserine (PS) in the viral envelope. PS is typically distributed in the inner layer of the plasma membrane (PM) in normal cells. Progeny EBOV virions bud from the PM of infected cells, suggesting that PS is likely flipped to the outer leaflet of the envelope of Ebola virions. Currently, the intracellular dynamics of PS during EBOV infection are poorly understood. This review summarizes recent progress in determining the molecular mechanism of externalization of PS in the envelope of EBOV particles. We also discuss future directions and how viral apoptotic mimicry could be targeted for therapeutics.
Collapse
Affiliation(s)
- Asuka Nanbo
- 1 Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Kawaoka
- 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,3 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,4 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Remenyi R, Gao Y, Hughes RE, Curd A, Zothner C, Peckham M, Merits A, Harris M. Persistent Replication of a Chikungunya Virus Replicon in Human Cells Is Associated with Presence of Stable Cytoplasmic Granules Containing Nonstructural Protein 3. J Virol 2018; 92:e00477-18. [PMID: 29875241 PMCID: PMC6069192 DOI: 10.1128/jvi.00477-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne human pathogen, causes a disabling disease characterized by severe joint pain that can persist for weeks, months, or even years in patients. The nonstructural protein 3 (nsP3) plays essential roles during acute infection, but little is known about the function of nsP3 during chronic disease. Here, we used subdiffraction multicolor microscopy for spatial and temporal analysis of CHIKV nsP3 within human cells that persistently replicate replicon RNA. Round cytoplasmic granules of various sizes (i) contained nsP3 and stress granule assembly factors 1 and 2 (G3BP1/2), (ii) were next to double-stranded RNA foci and nsP1-positive structures, and (iii) were close to the nuclear membrane and the nuclear pore complex protein Nup98. Analysis of protein turnover and mobility by live-cell microscopy revealed that the granules could persist for hours to days, accumulated newly synthesized protein, and moved through the cytoplasm at various speeds. The granules also had a static internal architecture and were stable in cell lysates. Refractory cells that had cleared the noncytotoxic replicon regained the ability to respond to arsenite-induced stress. In summary, nsP3 can form uniquely stable granular structures that persist long-term within the host cell. This continued presence of viral and cellular protein complexes has implications for the study of the pathogenic consequences of lingering CHIKV infection and the development of strategies to mitigate the burden of chronic musculoskeletal disease brought about by a medically important arthropod-borne virus (arbovirus).IMPORTANCE Chikungunya virus (CHIKV) is a reemerging alphavirus transmitted by mosquitos and causes transient sickness but also chronic disease affecting muscles and joints. No approved vaccines or antivirals are available. Thus, a better understanding of the viral life cycle and the role of viral proteins can aid in identifying new therapeutic targets. Advances in microscopy and development of noncytotoxic replicons (A. Utt, P. K. Das, M. Varjak, V. Lulla, A. Lulla, A. Merits, J Virol 89:3145-3162, 2015, https://doi.org/10.1128/JVI.03213-14) have allowed researchers to study viral proteins within controlled laboratory environments over extended durations. Here we established human cells that stably replicate replicon RNA and express tagged nonstructural protein 3 (nsP3). The ability to track nsP3 within the host cell and during persistent replication can benefit fundamental research efforts to better understand long-term consequences of the persistence of viral protein complexes and thereby provide the foundation for new therapeutic targets to control CHIKV infection and treat chronic disease symptoms.
Collapse
Affiliation(s)
- Roland Remenyi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Yanni Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ruth E Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alistair Curd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
39
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
40
|
Caruso S, Poon IKH. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol 2018; 9:1486. [PMID: 30002658 PMCID: PMC6031707 DOI: 10.3389/fimmu.2018.01486] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
The many functions of extracellular vesicles (EVs) like exosomes and microvesicles released from healthy cells have been well characterized, particularly in relation to their roles in immune modulation. Apoptotic bodies, a major class of EV released as a product of apoptotic cell disassembly, and other types of EVs released from dying cells are also becoming recognized as key players in this emerging field. There is now increasing evidence to suggest that EVs produced during apoptosis have important immune regulatory roles, a concept relevant across different disease settings including autoimmunity, cancer, and infection. Therefore, this review focuses on how the formation of EVs during apoptosis could be a key mechanism of immune modulation by dying cells.
Collapse
Affiliation(s)
| | - Ivan K. H. Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Chang AY, Martins KAO, Encinales L, Reid SP, Acuña M, Encinales C, Matranga CB, Pacheco N, Cure C, Shukla B, Ruiz Arteta T, Amdur R, Cazares LH, Gregory M, Ward MD, Porras A, Rico Mendoza A, Dong L, Kenny T, Brueggemann E, Downey LG, Kamalapathy P, Lichtenberger P, Falls O, Simon GL, Bethony JM, Firestein GS. Chikungunya Arthritis Mechanisms in the Americas: A Cross-Sectional Analysis of Chikungunya Arthritis Patients Twenty-Two Months After Infection Demonstrating No Detectable Viral Persistence in Synovial Fluid. Arthritis Rheumatol 2018; 70:585-593. [PMID: 29266856 DOI: 10.1002/art.40383] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine if chikungunya virus persists in synovial fluid after infection, potentially acting as a causative mechanism of persistent arthritis. METHODS We conducted a cross-sectional study of 38 Colombian participants with clinical chikungunya virus infection during the 2014-2015 epidemic who reported chronic arthritis and 10 location-matched controls without chikungunya virus or arthritis. Prior chikungunya virus infection status was serologically confirmed, and the presence of synovial fluid chikungunya virus, viral RNA, and viral proteins was determined by viral culture, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and mass spectrometry, respectively. Biomarkers were assessed by multiplex analysis. RESULTS Patients with serologically confirmed chikungunya arthritis (33 of 38 [87%]) were predominantly female (82%) and African Colombian (55%) or white Colombian (33%), with moderate disease activity (mean ± SD Disease Activity Score in 28 joints 4.52 ± 0.77) a median of 22 months after infection (interquartile range 21-23 months). Initial symptoms of chikungunya virus infection included joint pain (97%), swelling (97%), stiffness (91%), and fever (91%). The most commonly affected joints were the knees (87%), elbows (76%), wrists (75%), ankles (56%), fingers (56%), and toes (56%). Synovial fluid samples from all patients with chikungunya arthritis were negative for chikungunya virus on qRT-PCR, showed no viral proteins on mass spectrometry, and cultures were negative. Case and control plasma cytokine and chemokine concentrations did not differ significantly. CONCLUSION This is one of the largest observational studies involving analysis of the synovial fluid of chikungunya arthritis patients. Synovial fluid analysis revealed no detectable chikungunya virus. This finding suggests that chikungunya virus may cause arthritis through induction of potential host autoimmunity, suggesting a role for immunomodulating agents in the treatment of chikungunya arthritis, or that low-level viral persistence exists in synovial tissue only and is undetectable in synovial fluid.
Collapse
Affiliation(s)
| | - Karen A O Martins
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | | | | | | | | | | | | | | | | | | | | | - Lisa H Cazares
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Melissa Gregory
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Michael D Ward
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | | | | | - Lian Dong
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Tara Kenny
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Ernie Brueggemann
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Lydia G Downey
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | | | | | | | - Gary L Simon
- The George Washington University, Washington, DC
| | | | | |
Collapse
|
42
|
Cavalheiro MG, Costa LSDA, Campos HS, Alves LS, Assunção-Miranda I, Poian ATDA. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. AN ACAD BRAS CIENC 2018; 88:1485-99. [PMID: 27627069 DOI: 10.1590/0001-3765201620150685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.
Collapse
Affiliation(s)
- Mariana G Cavalheiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Leandro Silva DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Holmes S Campos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Letícia S Alves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Andrea T DA Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| |
Collapse
|
43
|
Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, Zandi K. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Res 2018; 150:101-111. [DOI: 10.1016/j.antiviral.2017.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/08/2017] [Accepted: 12/16/2017] [Indexed: 12/31/2022]
|
44
|
Nanbo A, Maruyama J, Imai M, Ujie M, Fujioka Y, Nishide S, Takada A, Ohba Y, Kawaoka Y. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLoS Pathog 2018; 14:e1006848. [PMID: 29338048 PMCID: PMC5786336 DOI: 10.1371/journal.ppat.1006848] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. Although Ebola virus causes severe hemorrhagic fever with a high mortality rate, there are no approved therapeutics. The viral entry process is one of the targets for antiviral development. Previous studies suggest that binding of phosphatidylserine, a component of the viral envelop, to the receptors promotes the entry of Ebola virus. Ebola virus is released from the surface membrane of infected cells. However, phosphatidylserine normally distributes in the inner layer of the cell surface membrane, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the membrane in infected cells for Ebola virus to acquire it. Because the mechanism by which phosphatidylserine changes its orientation in Ebola virus-infected cells is poorly understood, we studied and identified a cellular enzyme, XK-related protein 8 (Xkr8), as a responsible factor involved in this process. We demonstrated that the Ebola virus glycoprotein promoted the incorporation of Xkr8 in viral particles, which flips phosphatidylserine on their surface, enhancing their entry to cells. Our findings provide new insights into the mechanism of Ebola virus infection, which may be exploited for the development of therapeutics against Ebola virus infection.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail: (AN); (YK)
| | - Junki Maruyama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Michiko Ujie
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinya Nishide
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (AN); (YK)
| |
Collapse
|
45
|
Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017; 176:206-223. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
Collapse
|
46
|
Lim SM, van den Ham HJ, Oduber M, Martina E, Zaaraoui-Boutahar F, Roose JM, van IJcken WFJ, Osterhaus ADME, Andeweg AC, Koraka P, Martina BEE. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front Microbiol 2017; 8:1556. [PMID: 28861067 PMCID: PMC5562671 DOI: 10.3389/fmicb.2017.01556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
Collapse
Affiliation(s)
| | | | - Minoushka Oduber
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | | | | | - Jeroen M Roose
- Artemis One Health Research FoundationDelft, Netherlands
| | | | - Albert D M E Osterhaus
- Artemis One Health Research FoundationDelft, Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary MedicineHannover, Germany
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Penelope Koraka
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Byron E E Martina
- Artemis One Health Research FoundationDelft, Netherlands.,Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| |
Collapse
|
47
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
48
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
49
|
Nayak TK, Mamidi P, Kumar A, Singh LPK, Sahoo SS, Chattopadhyay S, Chattopadhyay S. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages. Viruses 2017; 9:v9010003. [PMID: 28067803 PMCID: PMC5294972 DOI: 10.3390/v9010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.
Collapse
Affiliation(s)
- Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Abhishek Kumar
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Laishram Pradeep K Singh
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
50
|
Cherabuddi K, Iovine NM, Shah K, White SK, Paisie T, Salemi M, Morris JG, Lednicky JA. Zika and Chikungunya virus co-infection in a traveller returning from Colombia, 2016: virus isolation and genetic analysis. JMM Case Rep 2016; 3:e005072. [PMID: 28348794 PMCID: PMC5343122 DOI: 10.1099/jmmcr.0.005072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction: Zikavirus (ZIKV) and Chikungunyavirus (CHIKV) can share the same mosquito vector, and co-infections by these viruses can occur in humans. While infections with these viruses share commonalities, CHIKV is unique in causing arthritis and arthralgias that may persist for a year or more. These infections are commonly diagnosed by RT–PCR-based methods during the acute phase of infection. Even with the high specificity and sensitivity characteristic of PCR, false negatives can occur, highlighting the need for additional diagnostic methods for confirmation. Case presentation: On her return to the USA, a traveller to Colombia, South America developed an illness consistent with Zika, Chikungunya and/or Dengue. RT-PCR of her samples was positive only for ZIKV. However, arthralgias persisted for months, raising concerns about co-infection with CHIKV or Mayaro viruses. Cell cultures inoculated with her original clinical samples demonstrated two types of cytopathic effects, and both ZIKV and CHIKV were identified in the supernatants. On phylogenetic analyses, both viruses were found to be related to strains found in Colombia. Conclusion: These findings highlight the need to consider CHIKV co-infection in patients with prolonged rheumatological symptoms after diagnosis with ZIKV, and the usefulness of cell culture as an amplification step for low-viremia blood and other samples.
Collapse
Affiliation(s)
- Kartikeya Cherabuddi
- Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida , Gainesville, FL , USA
| | - Nicole M Iovine
- Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kairav Shah
- Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida , Gainesville, FL , USA
| | - Sarah K White
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Taylor Paisie
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - J Glenn Morris
- Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|