1
|
Castañeda-Lopez ME, Garza-Veloz I, Lopez-Hernandez Y, Barbosa-Cisneros OY, Martinez-Fierro ML. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested. Immunol Invest 2016; 45:450-70. [PMID: 27245510 DOI: 10.3109/08820139.2016.1168831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- M E Castañeda-Lopez
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - I Garza-Veloz
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - Y Lopez-Hernandez
- c CONACyT Research Fellow, Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud , Universidad Autonoma de Zacatecas , Mexico
| | - O Y Barbosa-Cisneros
- d Laboratory of Cell and Molecular Biology, Unidad Academica de Ciencias Quimicas de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - M L Martinez-Fierro
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| |
Collapse
|
2
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
3
|
Liu X, Wu J, Yammine M, Zhou J, Posocco P, Viel S, Liu C, Ziarelli F, Fermeglia M, Pricl S, Victorero G, Nguyen C, Erbacher P, Behr JP, Peng L. Structurally Flexible Triethanolamine Core PAMAM Dendrimers Are Effective Nanovectors for DNA Transfection in Vitro and in Vivo to the Mouse Thymus. Bioconjug Chem 2011; 22:2461-73. [DOI: 10.1021/bc200275g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoxuan Liu
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiangyu Wu
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Miriam Yammine
- INSERM U928, 163 avenue de Luminy, 13288
Marseille cedex 09, France
| | - Jiehua Zhou
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Paola Posocco
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | - Stephane Viel
- Aix-Marseille Université, LCP UMR 6264, Campus de Saint Jérôme,
av. Escadrille Normandie Niémen, case 512, 13013 Marseille,
France
| | - Cheng Liu
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fabio Ziarelli
- Aix-Marseille Université, Fédération des Sciences Chimiques, Spectropole,
av. Escadrille Normandie Niémen, case 511, 13013 Marseille,
France
| | - Maurizio Fermeglia
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | - Sabrina Pricl
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | | | - Catherine Nguyen
- INSERM U928, 163 avenue de Luminy, 13288
Marseille cedex 09, France
| | - Patrick Erbacher
- Polyplus-transfection SA, Bioparc, Boulevard S. Brandt, BP90018, 67401 Illkirch,
France
| | - Jean-Paul Behr
- Laboratoire de Chimie Génétique,
Faculté de Pharmacie, CNRS UMR7514, 67401 Illkirch, France
| | - Ling Peng
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
| |
Collapse
|
4
|
Aichinger M, Hinterberger M, Klein L. Probing gene function in thymic epithelial cells. Eur J Cell Biol 2011; 91:24-30. [PMID: 21392839 DOI: 10.1016/j.ejcb.2011.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/22/2011] [Indexed: 01/12/2023] Open
Abstract
Thymic epithelial cells (TECs) provide a highly specialized microenvironment for the generation of a functional and self-tolerant T cell repertoire. Much of our current view of TEC biology is derived from gain- or loss-of-function approaches, which have significantly contributed to our understanding of gene function in TEC development and T cell repertoire selection. Here, we will review transgenic and viral strategies that have been used to manipulate gene expression in TECs, highlight some of the shortcomings of particular currently available tools and provide a brief outline of our own attempts to more rapidly and/or more specifically assess gene function in TECs.
Collapse
Affiliation(s)
- Martin Aichinger
- Institute for Immunology, Ludwig-Maximilians-Universität, Goethestrasse 31, Munich, Germany
| | | | | |
Collapse
|
5
|
Moreau A, Vicente R, Dubreil L, Adjali O, Podevin G, Jacquet C, Deschamps JY, Klatzmann D, Cherel Y, Taylor N, Moullier P, Zimmermann VS. Efficient intrathymic gene transfer following in situ administration of a rAAV serotype 8 vector in mice and nonhuman primates. Mol Ther 2008; 17:472-9. [PMID: 19088703 DOI: 10.1038/mt.2008.272] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The thymus is the primary site of T-cell development and plays a key role in the induction of self-tolerance. We previously showed that the intrathymic (i.t.) injection of a transgene-expressing lentiviral vector (LV) in mice can result in the correction of a T cell-specific genetic defect. Nevertheless, the efficiency of thymocyte transduction did not exceed 0.1-0.3% and we were unable to detect any thymus transduction in macaques. As such, we initiated studies to assess the capacity of recombinant adeno-associated virus (rAAV) vectors to transduce murine and primate thymic cells. In vivo administration of AAV serotype 2-derived single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors pseudotyped with capsid proteins of serotypes 1, 2, 4, 5, and 8 demonstrated that murine thymus transduction was significantly enhanced by scAAV2/8. Transgene expression was detected in 5% of thymocytes and, notably, transduced cells represented 1% of peripheral T lymphocytes. Moreover, i.t. administration of scAAV2/8 particles in macaques, by endoscopic-mediated guidance, resulted in significant gene transfer. Thus, in healthy animals, where thymic gene transfer does not provide a selective advantage, scAAV2/8 is a unique tool promoting the in situ transduction of thymocytes with the subsequent export of gene-modified lymphocytes to the periphery.
Collapse
Affiliation(s)
- Aurélie Moreau
- Institut National de la Santé et de la Recherche Médicale U649-Laboratoire de Thérapie Génique, CHU Hôtel-Dieu, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang J, Lee CCI, Sutcliffe JL, Cherry SR, Tarantal AF. Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol Imaging 2008. [PMID: 18384718 DOI: 10.2310/7290.2008.00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noninvasive positron emission tomography (PET) provides a potential method for in vivo tracking of radiolabeled cells. The goal of this study was to assess the potential toxicity of 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) (PTSM) on rhesus monkey CD34+ hematopoietic and mesenchymal stem cells in vitro in preparation for developing imaging protocols posttransplantation. CD34+ hematopoietic cells were radiolabeled with 0 to 40 microCi/mL 64Cu-PTSM and viability and colony formation were assessed. Rhesus monkey mesenchymal stem cells (rhMSCs) were placed in culture postradiolabeling for assessments of growth and differentiation toward adipogenic, osteogenic, and chondrogenic lineages. The results indicated that CD34+ cells radiolabeled with 20 microCi/mL and rhMSCs radiolabeled with 10 microCi/mL 64Cu-PTSM did not result in adverse effects on growth or differentiation. Nonradioactive copper was also evaluated and showed that the presence of copper was not harmful to the cells. CD34+ cells and rhMSCs radiolabeled with the optimized concentrations of 20 and 10 microCi/mL, respectively, were also assessed using the microPET scanner. Studies showed that a minimum of 2.50x10(4) CD34+ cells (1.1 pCi/cell) and 6.25x10(3) rhMSCs (4.4 pCi/cell) could be detected. These studies indicate that CD34+ hematopoietic cells and rhMSCs can be safely radiolabeled with 64Cu-PTSM without adverse cellular effects.
Collapse
Affiliation(s)
- Joanne Huang
- Center of Excellence in Translational Human Stem Cell Research, Department of Biomedical Engineering, College of Engineering, School of Medicine, University of California, Davis, CA 95616-8542, USA
| | | | | | | | | |
Collapse
|
7
|
Green KL, Gaston K. Development of a topical protein therapeutic for human papillomavirus and associated cancers. BioDrugs 2007; 20:209-18. [PMID: 16831020 DOI: 10.2165/00063030-200620040-00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human papillomaviruses (HPVs) are the causative agents of several disease states, including genital warts and cervical cancer. There are around 500 million cases of genital warts per annum worldwide and around 450,000 cases of cervical cancer. Although HPV vaccines should eventually reduce the incidence of these diseases, new and effective treatments are still urgently required. The E2 (early) proteins from some HPV types induce growth arrest and apoptosis, and these proteins could be used as therapeutics for HPV-induced disease. A major obstacle to this approach concerns the delivery of the protein to HPV-transformed cells and/or HPV-infected cells in vivo. One possible solution is to use recombinant viruses to deliver E2. Another possible solution is to use purified E2 proteins or E2 fusion proteins. The herpes simplex virus VP22 protein is one of a small number of proteins that have been shown to cross the cell membrane with high efficiency. VP22-E2 fusion proteins produced in bacterial cells are able to enter mammalian cells and induce apoptosis. This suggests that VP22-E2 fusion proteins could be topically applied as a treatment for HPV-induced diseases, most probably post-surgery. In this review, we discuss this and other approaches to the topical delivery of selective therapeutic agents against HPV-associated conditions.
Collapse
Affiliation(s)
- Katie L Green
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
8
|
Abstract
One of the prerequisites for the successful application of gene vaccination and therapy is the development of efficient gene delivery vectors. The rate-limiting nature of vectors was clearly manifested during the first wave of gene therapy testing, resulting in the demand for more effective and suitable vector systems. Adenoviral (Ad) vectors have recently played a central role in the development of gene-vector technology due to their practical advantages and potential applications. A large number of preclinical and clinical studies both have generated an overwhelming amount of data and literature on this vector system. It is the intention of this article to provide a systematic and broad spectrum review of this system, outlining the principle, potential, and limitations, and evaluating the rational development of this delivery approach. Recombinant adenoviruses (Ad), helper cell lines, and related technologies have been developed and applied to many indications owing to progress in virological research, molecular and cellular biology, eukaryotic protein expression, recombinant vaccines, and gene therapy. The technical depth this article covers should be useful to both the experienced researcher and to beginners in this field.
Collapse
Affiliation(s)
- W W Zhang
- Gene Therapy Unit, Baxter Healthcare Corporation, Route 120 & Wilson Road, WG2-3S, Round Lake, IL 60073-0490, USA
| |
Collapse
|
9
|
Schagen FHE, Ossevoort M, Toes REM, Hoeben RC. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2005; 50:51-70. [PMID: 15094159 DOI: 10.1016/s1040-8428(03)00172-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2003] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since they have a well-characterized genomic organization, can be grown to high titres and efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in most immunocompetent mice. This constituted a major limitation of this early vector type. In contrast, persistent transgene expression can be established in immunodeficient mice. This suggests that the immunogenicity of adenoviral vectors limits the effective period of adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent the limitations imposed onto gene therapy by the immune system. Improvements in vector design have significantly improved the performance of the adenovirus vectors. Based on these results it is reasonable to anticipate that new modifications of the vectors will overcome some of the immunological barriers and will further expand the applicability of adenovirus-derived vectors.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
10
|
Zerbini LF, Libermann TA, Ventura AM. Insertion of an exogenous domain in the adenovirus type 2 fiber globular region. Biochem Biophys Res Commun 2002; 296:897-903. [PMID: 12200132 DOI: 10.1016/s0006-291x(02)02005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenoviruses have been used for gene therapy or immunization due to their ability to efficiently infect a broad range of cells and tissues. These applications as well as specificity could be improved further by redirecting binding of the virus to specific cell types. In this regard, modification of viral genes encoding coat proteins is an option to achieve improvement in retargeting. In this report, we describe a substitution in the adenovirus type 2 fiber globular region by the 44 amino acid C4 domain of human immunodeficiency virus type 1 gp120. In vitro translation analysis and immunoprecipitation assays show that the incorporation of the C4 domain into the fiber protein does not ablate its trimerization property and demonstrates the availability of the C4 epitope for interaction with monoclonal anti-C4 antibody. The recombinant adenovirus containing this modified fiber was also characterized by immunoprecipitation with the same antibody, showing the viability of such kind of modification.
Collapse
Affiliation(s)
- L F Zerbini
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | | | | |
Collapse
|
11
|
Bromberg JS, Boros P, Ding Y, Fu S, Ku T, Qin L, Sung R. Gene transfer methods for transplantation. Methods Enzymol 2002; 346:199-224. [PMID: 11883069 DOI: 10.1016/s0076-6879(02)46057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- J S Bromberg
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tran ND, Porada CD, Almeida-Porada G, Glimp HA, Anderson WF, Zanjani ED. Induction of stable prenatal tolerance to beta-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood 2001; 97:3417-23. [PMID: 11369632 DOI: 10.1182/blood.v97.11.3417] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The successful transduction of hematopoietic stem cells and long-term (28 months) transgene expression within the hematopoietic system following the direct injection of high-titer retroviral vectors into preimmune fetal sheep was previously demonstrated. The present studies extended these analyses for 40 months postinjection and evaluated whether the longevity of transgene expression in this model system was the result of induction of prenatal tolerance to the transgene product. The intraperitoneal injection of retroviral vectors into preimmune sheep fetuses transduces thymic epithelial cells thought to present antigen and thus define self during immune system development. To directly demonstrate induction of tolerance, postnatal sheep were boosted with purified beta-galactosidase and showed that the peripheral blood lymphocytes from in utero-transduced sheep exhibited significantly lower stimulation indices to transduced autologous cells than did control animals and that the in utero-transduced sheep had a reduced ability to mount an antibody response to the vector-encoded beta-galactosidase protein compared with control sheep. Collectively, our results provide evidence that the direct injection of retroviral vectors into preimmune sheep fetuses induces cellular and humoral tolerance to the vector/transgene products and provide an explanation for the duration and stability of transgene expression seen in this model. These results also suggest that even relatively low levels of gene transfer in utero may render the recipient tolerant to the exogenous gene and thus potentially permit the successful postnatal treatment of the recipient. (Blood. 2001;97:3417-3423)
Collapse
Affiliation(s)
- N D Tran
- Department of Veterans Affairs Medical Center, 1000 Locust St., Reno, NV 89502-2597, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sung RS, Qin L, Bromberg JS. TNFα and IFNγ Induced by Innate Anti-adenoviral Immune Responses Inhibit Adenovirus-Mediated Transgene Expression. Mol Ther 2001; 3:757-67. [PMID: 11356080 DOI: 10.1006/mthe.2001.0318] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transient nature of adenovirus-mediated transgene expression has been attributed to adaptive immune responses to adenoviral proteins and transgene products. However, the cytokines interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) inhibit transgene expression from adenoviral vectors in vitro by a transcription-related mechanism, and their early induction following vector administration in vivo suggests a contribution of innate immunity in regulating transgene expression. In this study, the significance of cytokine expression and its relation to adaptive and innate immunities were determined in TNFalpha-knockout mice, IFNgamma-knockout mice, or anti-IFNgamma mAb-injected animals. Adenoviral LacZ reporter expression directed by human cytomegalovirus (HCMV) promoters was greater in magnitude and duration than that by the murine CMV (MCMV) promoter. beta-Galactosidase reporter gene expression up to day 7 was greater in cytokine-deficient animals compared with wild type. Decrements in transgene expression occurred in advance of adaptive immune responses and were not due to alterations in specific adaptive immunity or vector clearance in cytokine-depleted mice. We conclude that TNFalpha and IFNgamma inhibit early adenovirus-mediated transgene expression by HCMV and MCMV promoters in vivo. Cytokine inhibition of expression is independent of adaptive immunity and is likely secondary to innate immune responses to adenovirus infection.
Collapse
Affiliation(s)
- R S Sung
- Recanati-Miller Transplant Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6754, USA.
| | | | | |
Collapse
|
14
|
Goomer RS, Deftos LJ, Terkeltaub R, Maris T, Lee MC, Harwood FL, Amiel D. High-efficiency non-viral transfection of primary chondrocytes and perichondrial cells for ex-vivo gene therapy to repair articular cartilage defects. Osteoarthritis Cartilage 2001; 9:248-56. [PMID: 11300748 DOI: 10.1053/joca.2000.0382] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Primary perichondrial cells and chondrocytes have been used to repair articular cartilage defects in tissue engineering studies involving various animal models. Transfection of these cells with a gene that induces chondrocytic phenotype may form an ideal method to affect tissue engineering of articular cartilage. DESIGN A protocol for high-efficiency transfection of primary perichondrial and cartilage cells was optimized. Plasmids carrying the marker beta-galactosidase (beta-gal), PTHrP and TGF-beta1 genes driven by a strong mammalian promoter were transfected into primary perichondrial cells and chondrocytes. A three-step method was used to achieve high efficiency of transfection: (1) permeabilization of primary cells using a mild detergent, (2) association of plasmid DNAs with a polycationic (poly-l-lysine) core covalently linked to a receptor ligand (transferrin), (3) introduction of cationic liposomes to form the quaternary complex. For in-vivo assessment, polylactic acid (PLA) scaffolds seeded with beta-gal transfected perichondrial cells were implanted into experimentally created osteochondral defects in rabbit knees for 1 week. RESULTS The efficiency of transfection was determined to be over 70%in vitro. The transformed cells continued to express beta-gal, in vivo for the entire test period of 7 days. Furthermore, primary perichondrial cells transfected with TGF-beta1 and PTHrP over-expressed their cognate gene products. CONCLUSION The ability to transfect autologous primary perichondrial cells and chondrocytes with high efficiency using a non-viral system may form a first step towards tissue engineering with these transformed cells to repair articular cartilage defects.
Collapse
Affiliation(s)
- R S Goomer
- Department of Orthopedics, University of California, San Diego School of Medicine, 9500 Gilman Dr., La Jolla, California, 92093-0630, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Goomer RS, Maris TM, Gelberman R, Boyer M, Silva M, Amiel D. Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop Relat Res 2000:S189-200. [PMID: 11039769 DOI: 10.1097/00003086-200010001-00025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heretofore, nonviral methods have been used primarily for in vitro transfection of cultured cell lines. These methods were substantially less efficient when compared with the use of viruses, particularly when used in vivo. Herein a three-step, highly efficient method of nonviral gene delivery is presented. Using this method, genes have been delivered successfully into tissues of orthopaedic importance with high-efficiency by nonviral means. Transforming growth factor-beta 1, parathyroid hormone related protein, and a marker gene were transfected into primary perichondrium and cartilage cells with efficiencies in excess of 70%. They overexpressed their cognate gene products showing efficacy of expression in a rabbit model of osteochondral defect repair. Using the same method, a marker gene was delivered into a canine model for intrasynovial flexor tendon injury and repair. This was achieved by direct gene delivery during surgery. An estimated 5 additional minutes were required during surgery to complete the transfection steps. High efficiency gene delivery was achieved in the flexor tendons, tendon sheaths, tendon pulleys, surrounding tissues, and skin. The efficiency of transfection approached 100% in the exposed superficial tissue layers and transfected cells were found several layers below the exposed tissue surfaces. The data show the potential of direct nonviral gene therapy in orthopaedics for ex vivo and in vivo applications.
Collapse
Affiliation(s)
- R S Goomer
- Department of Orthopaedics, University of California, San Diego-School of Medicine, La Jolla 92093-0630, USA
| | | | | | | | | | | |
Collapse
|
16
|
Martin SG, Murray JC. Gene-transfer systems for human endothelial cells. stewart.martin@nottingham.ac.uk. Adv Drug Deliv Rev 2000; 41:223-33. [PMID: 10699317 DOI: 10.1016/s0169-409x(99)00068-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By virtue of its location and importance in a number of pathophysiological processes the endothelium represents an attractive target tissue for gene-transfer and gene-therapy strategies. Although it is important to maximise gene-transfer to endothelial cells in such strategies primary human endothelial cells have proven to be rather intransigent to a variety of transfection techniques both in vitro and in vivo. We report on the variety of techniques in current use, revealing their strengths and weaknesses, indicate the steps that should ideally be taken to optimise expression and discuss the usefulness and future directions for viral mediated transduction.
Collapse
Affiliation(s)
- S G Martin
- University of Nottingham, Laboratory of Molecular Oncology, Cancer Research Campaign Department of Clinical Oncology, City Hospital, Nottingham, UK
| | | |
Collapse
|
17
|
Toxicity Associated with Repeated Administration of First-Generation Adenovirus Vectors Does Not Occur with a Helper-Dependent Vector. Mol Med 2000. [DOI: 10.1007/bf03402113] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Harvey BG, Worgall S, Ely S, Leopold PL, Crystal RG. Cellular immune responses of healthy individuals to intradermal administration of an E1-E3- adenovirus gene transfer vector. Hum Gene Ther 1999; 10:2823-37. [PMID: 10584928 DOI: 10.1089/10430349950016555] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In animals, Ad-mediated gene transfer initiates anti-Ad host immune responses that vary, depending on vector design, dose, host, and transgene. To begin to understand whether the anti-Ad vector responses in humans simulate those in animals, Ad(GV)CD.10, an E1-E3- Ad5 vector encoding the E. coli cytosine deaminase gene, was administered by the intradermal route to six normal individuals (8 x 10(7) to 8 x 10(9) particle units, each dose administered to two sites; n = 2 per group). No adverse events were observed. Polymerase chain reaction/Southern analysis demonstrated vector genome in the skin through 28 days in all individuals except one of two at the lowest dose. Local induration, independent of vector dose and baseline systemic anti-Ad5 neutralizing antibodies, developed in all subjects (6 to 17 mm, peak by day 3). Biopsies revealed a mild to moderate T cell (CD3+, CD4+, CD8+), B cell, and macrophage infiltrate at day 3, all decreased by day 28. Langerhans cells accumulated primarily in the papillary dermis. The day 3 cellular response was dose independent. On day 28, CD4+ and CD8+ T lymphocytes and macrophages showed dose dependency. There was minimal systemic Ad5-specific lymphocyte proliferation induced by Ad vector administration in three individuals studied, and no Ad5-specific cytotoxic T lymphocytes (evaluated in two subjects) could be detected. Thus, intradermal administration of an E1-E3- Ad vector to normal subjects induces mild/moderate local cellular responses, even in Ad-immunized individuals. These observations provide a baseline to determine if these human anti-Ad vector host responses can be circumvented by using "stealth" vectors and/or immunosuppression.
Collapse
Affiliation(s)
- B G Harvey
- Department of Medicine, Weill Medical College of Cornell University-New York Presbyterian Hospital, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Gene therapy for the treatment of disease in children and adults is being actively pursued at many medical centers. However, a number of genetic disorders result in irreversible damage to the fetus before birth. In these cases, as well as for those with genetic diseases who may benefit from therapy before symptoms are manifested, in utero gene therapy (IUGT) could be beneficial. Although some successes with in utero gene transfer have been reported in animals, significant questions remain to be answered before IUGT clinical trials would be acceptable. This review analyzes the state of the art and delineates the studies that still need to be performed before it would be appropriate to consider human IUGT.
Collapse
Affiliation(s)
- E D Zanjani
- Veterans Administration Medical Center, University of Nevada, Reno, NV 89520, USA.
| | | |
Collapse
|
20
|
Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M, Schoemaker R, Veghel R, Houtsmuller A, Schultheiss HP, Lamers J, Poller W. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6:1520-35. [PMID: 10490761 DOI: 10.1038/sj.gt.3301030] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recombinant adenoviral vectors are broadly applied in gene therapy protocols. However, adenovector-mediated gene transfer has limitations in vivo. One of these is the low gene transfer rate into organs other than the liver after systemic intravenous vector injection. Local direct injection into the target organ has been used as one possible solution, but increases necessary equipment and methodology and is traumatic to the target. Wild-type adenovirus infection as well as adenovector-mediated gene transfer depends on virus interaction with the Coxsackie adenovirus receptor (CAR) mediating virus attachment to the cell surface, and on interaction with alphavbeta3 and alphavbeta5 integrins mediating virus entry into the cell. In order to assess the receptor-associated potential of different tissues to act as adenovector targets, we have therefore determined CAR and alphav-integrin expression in multiple organs from different species. In addition, we have newly determined several human, rat, pig and dog CAR-mRNA sequences. Sequence comparison and structural analyses of known and of newly determined sequences suggests a potential adenovirus binding site between amino acids 29 and 128 of the CAR. With respect to the virus receptor expression patterns we found that CAR-mRNA expression was extremely variable between different tissues, with the highest levels in the liver, whereas alphav-integrin expression was far more homogenous among different organs. Both CAR and alphav-integrin showed similar expression patterns among different species. There was no correlation, however, between the adenovector expression patterns after intravenous, intracardiac and aortic root injection, respectively, and the virus receptor patterns. In summary, many organs carry both receptors required to make them potential adenovector targets. In sharp contrast, their actual targeting clearly indicates that adenovirus receptor expression is necessary but not sufficient for vector transfer after systemic injection. The apparently very important role of anatomical barriers, in particular the endothelium, requires close attention when developing non-traumatic, organ-specific gene therapy protocols.
Collapse
Affiliation(s)
- H Fechner
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Freie Universität, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harvey BG, Hackett NR, El-Sawy T, Rosengart TK, Hirschowitz EA, Lieberman MD, Lesser ML, Crystal RG. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol 1999; 73:6729-42. [PMID: 10400771 PMCID: PMC112758 DOI: 10.1128/jvi.73.8.6729-6742.1999] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Administration of adenovirus (Ad) vectors to immunologically naive experimental animals almost invariably results in the induction of systemic anti-Ad neutralizing antibodies. To determine if the human systemic humoral host responses to Ad vectors follow a similar pattern, we evaluated the systemic (serum) anti-Ad serotype 5 (Ad5) neutralizing antibodies in humans after administration of first generation (E1(-) E3(-)) Ad5-based gene transfer vectors to different hosts. AdGVCFTR.10 (carrying the normal human cystic fibrosis [CF] transmembrane regulator cDNA) was sprayed (8 x 10(7) to 2 x 10(10) particle units [PU]) repetitively (every 3 months or every 2 weeks) to the airway epithelium of 15 individuals with CF. AdGVCD.10 (carrying the Escherichia coli cytosine deaminase gene) was administered (8 x 10(8) to 8 x 10(9) PU; once a week, twice) directly to liver metastasis of five individuals with colon cancer and by the intradermal route (8 x 10(7) to 8 x 10(9) PU, single administration) to six healthy individuals. AdGVVEGF121.10 (carrying the human vascular endothelial growth factor 121 cDNA) was administered (4 x 10(8) to 4 x 10(9.5) PU, single administration) directly to the myocardium of 11 individuals with ischemic heart disease. Ad vector administration to the airways of individuals with CF evoked no or minimal serum neutralizing antibodies, even with repetitive administration. In contrast, intratumor administration of an Ad vector to individuals with metastatic colon cancer resulted in a robust antibody response, with anti-Ad neutralizing antibody titers of 10(2) to >10(4). Healthy individuals responded to single intradermal Ad vector variably, from induction of no neutralizing anti-Ad antibodies to titers of 5 x 10(3). Likewise, individuals with ischemic heart disease had a variable response to single intramyocardial vector administration, ranging from minimal neutralizing antibody levels to titers of 10(4). Evaluation of the data from all trials showed no correlation between the peak serum neutralizing anti-Ad response and the dose of Ad vector administered (P > 0.1, all comparisons). In contrast, there was a striking correlation between the peak anti-Ad5 neutralizing antibody levels evoked by vector administration and the level of preexisting anti-Ad5 antibodies (P = 0.0001). Thus, unlike the case for experimental animals, administration of Ad vectors to humans does not invariably evoke a systemic anti-Ad neutralizing antibody response. In humans, the extent of the response is dictated by preexisting antibody titers and modified by route of administration but is not dose dependent. Since the extent of anti-Ad neutralizing antibodies will likely modify the efficacy of administration of Ad vectors, these observations are of fundamental importance in designing human gene therapy trials and in interpreting the efficacy of Ad vector-mediated gene transfer.
Collapse
Affiliation(s)
- B G Harvey
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University-New York Presbyterian Hospital, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Z, Rostami S, Koeberlein B, Barker CF, Naji A. Cardiac allograft tolerance induced by intra-arterial infusion of recombinant adenoviral CTLA4Ig. Transplantation 1999; 67:1517-23. [PMID: 10401757 DOI: 10.1097/00007890-199906270-00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Systemic administration of soluble recombinant fusion protein of cytotoxic T lymphocyte antigen 4 (CTLA4Ig) induces blockade of the CD28/B7 costimulatory pathway and promotes survival of allogeneic and xenogeneic grafts. We tested the efficacy of local expression of CTLA4Ig gene in the myocardium, induced by transduction with a recombinant adenovirus encoding the CTLA4Ig gene, on the survival of rat cardiac allografts. METHODS The donor hearts were perfused ex vivo with recombinant adenovirus encoding CTLA4Ig cDNA (AdCTLA4Ig) via intra-aorta coronary artery before transplantation. The distribution and duration of CTLA4Ig transgene expression in the myocardium was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) or in situ RT-PCR after transplantation. RESULTS In situ RT-PCR demonstrated abundant expression of CTLA4Ig transgene in the endo-myocardium of AdCTLA4Ig-perfused cardiac grafts. Lewis and Brown Norway cardiac allografts transduced with AdCTLA4Ig survived indefinitely in nonimmunosuppressed Wistar Furth recipients. However, donor-strain skin grafts were rejected by long-term recipients of cardiac allografts, which also triggered the rejection of the primary heart grafts. CONCLUSIONS A single ex vivo intra-aortic infusion of recombinant adenovirus encoding the CTLA4Ig gene induced efficient transduction of the endo-myocardium and promoted the permanent survival of cardiac allografts in nonimmunosuppressed hosts. Despite the beneficial effect of local immunosuppression on cardiac allograft survival, the strategy failed to promote a state of donor-specific peripheral tolerance.
Collapse
Affiliation(s)
- Z Yang
- Department of Surgery, University of Pennsylvania Medical Center, Philadelphia 19104-4283, USA
| | | | | | | | | |
Collapse
|
23
|
Bakker TR, Renno T, Jongeneel CV. Impaired Fetal Thymocyte Development After Efficient Adenovirus-Mediated Inhibition of NF-κB Activation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We introduce a new experimental system combining adenovirus-mediated gene transfer and fetal thymic organ culture (FTOC). This system allowed us to efficiently express in developing thymocytes a mutant form of the NF-κB inhibitor IκBα (mut-IκB) and to study the maturation defects occurring when NF-κB activation is inhibited during fetal development. Fetal thymocytes infected with adenovirus containing mut-IκB were found to develop normally until the CD44−CD25+, CD4−CD8− double-negative stage, while production of more mature double-positive and single-positive populations was strongly decreased. Proliferation, as measured by the percentage of cells in cycle appeared normal, as did rearrangement and expression of the TCR β-chain. However, apoptosis was much higher in FTOC infected with adenovirus containing mut-IκB than in FTOC infected with a control virus. Taken together, these results suggest that NF-κB plays a crucial role in ensuring the differentiation and survival of thymocytes in the early stages of their development.
Collapse
Affiliation(s)
- Talitha R. Bakker
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland; and
- †Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Toufic Renno
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland; and
| | - C. Victor Jongeneel
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
24
|
Yang EY, Cass DL, Sylvester KG, Wilson JM, Adzick NS. BAPS Prize--1997. Fetal gene therapy: efficacy, toxicity, and immunologic effects of early gestation recombinant adenovirus. British Association of Paediatric Surgeons. J Pediatr Surg 1999; 34:235-41. [PMID: 10052795 DOI: 10.1016/s0022-3468(99)90181-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/PURPOSE Advancements in gene transfer technology and prenatal diagnosis have allowed investigators to consider an in utero gene therapy approach for fatal genetic diseases. The authors sought to develop fetoscopic techniques for gene delivery and investigate the efficacy and safety of recombinant adenoviral vectors in the fetus. METHODS Fetal sheep between 60 and 130 days' gestation (dGA) underwent either fetoscopic intratracheal injection or umbilical vein (UV) injection of recombinant adenovirus, AdCMVlacZ. At death, fetal organs were examined for beta-galactosidase expression, histopathology, and CD45 immunostaining. Fetal serum was compared with preimmune serum for transaminase levels and the presence of antiadenoviral neutralizing antibodies. RESULTS Fetoscopic intratracheal delivery of AdCMVlacZ in late-gestation sheep fetuses resulted in efficient alveolar gene transfer, but, antiadenoviral immunologic reactions limited the longevity of transgene expression to 14 days. This prompted an examination of whether early gestational exposure could induce tolerance in the fetus to adenoviral and transgene antigens. AdCMVlacZ (1 x 10(11) particles) was injected via UV into fetuses at 60 dGA. Within 3 days, beta-galactosidase expression was localized to the fetal liver, adrenal glands, kidneys, and endocardium. Although adrenal expression was nearly constant over 28 days, expression in fetal liver disappeared within 14 to 28 days. Loss of hepatic expression did not appear to be immune mediated because there was no evidence of hepatic inflammation or appearance of antiadenoviral neutralizing antibodies. Fetuses injected with AdCMVlacZ at 60 dGA were reinjected with 1 x 10(13) particles at 125 dGA and antiadenoviral humoral immune responses were recorded. Despite early-gestation adenovirus injection, fetuses still responded to the late-gestation adenoviral exposure, developing antiadenoviral neutralizing antibodies similar to control fetuses. CONCLUSIONS The authors developed fetoscopic access for pulmonary adenovirus delivery in late-gestation sheep. Although initial alveolar transduction was highly efficient, antiadenoviral immune responses limited the duration of transgene expression. In contrast, early-gestation adenoviral delivery did not elicit antiadenoviral immune responses despite achieving efficient transduction of many fetal tissues. Furthermore, early-gestation adenovirus delivery did not affect late-gestation antiadenoviral immune responses. These findings suggest that the early-gestation sheep fetus is not amenable to adenoviral tolerance induction by UV injection and that it is incompetent of immunologic response to adenovirus. For the purposes of in utero gene therapy, recombinant adenovirus may be applied optimally to genetic diseases requiring transient in utero expression.
Collapse
Affiliation(s)
- E Y Yang
- Department of Surgery, Children's Hospital of Philadelphia and Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Zhang HG, Liu D, Heike Y, Yang P, Wang Z, Wang X, Curiel DT, Zhou T, Mountz JD. Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen presenting cells. Nat Biotechnol 1998; 16:1045-9. [PMID: 9831033 DOI: 10.1038/3488] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major problem associated with adenovirus gene therapy is the T cell-mediated immune response, which is elicited by inoculation of the adenovirus vector and leads to rapid clearance of the virus and loss of transgene expression. In this study, the immune response to adenovirus was prevented by induction of specific T-cell tolerance by pretreatment with adenovirus-infected antigen-presenting cells (APC) that express Fas ligand. Compared with control-treated mice, the tolerized mice showed prolonged expression of lacZ upon administration of AdCMVlacZ 1 week after tolerance induction. In contrast to the control mice, the tolerized mice did not display proliferation of CD3+ T cells in the spleen in response to AdCMVlacZ. Tolerance induction also was indicated by the lower production of interferon-gamma and interleukin-2 by peripheral T cells isolated from AdCMVlacZ-challenged tolerized mice than by AdCMVlacZ-challenged control-treated mice. The T-cell tolerance was specific for the adenovirus as the T-cell responses to irrelative murine cytomegalovirus remained unimpaired. Our results indicate that adenovirus-specific T-cell tolerance can be induced by APCs that coexpress Fas ligand and adenovirus antigens. We propose that this new strategy can be used to induce tolerance to adenovirus vector gene therapy with resultant prolonged expression of the transgene.
Collapse
Affiliation(s)
- H G Zhang
- The University of Alabama at Birmingham, Department of Medicine, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J. Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 1998; 95:13159-64. [PMID: 9789058 PMCID: PMC23744 DOI: 10.1073/pnas.95.22.13159] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Indexed: 01/19/2023] Open
Abstract
Although adenovirus can infect a wide range of cell types, lymphocytes are not generally susceptible to adenovirus infection, in part because of the absence of the expression of the cellular receptor for the adenoviral fiber protein. The cellular receptor for adenovirus and coxsackievirus (CAR) recently was cloned and shown to mediate adenoviral entry by interaction with the viral fiber protein. We show that the ectopic expression of CAR in various lymphocyte cell lines, which are almost completely resistant to adenovirus infection, is sufficient to facilitate the efficient transduction of these cells by recombinant adenoviruses. Furthermore, this property of CAR does not require its cytoplasmic domain, consistent with the idea that CAR primarily serves as a high affinity binding site for the adenoviral fiber protein, and that viral entry is mediated by interaction of the viral penton base proteins with cellular integrins. As a demonstration of their functional utility, we used CAR-expressing lymphocytes transduced with an adenovirus expressing Fas ligand to efficiently kill Fas receptor-expressing tumor cells. The ability to efficiently manipulate gene expression in lymphocyte cells by using adenovirus vectors should facilitate the functional characterization of pathways affecting lymphocyte physiology.
Collapse
Affiliation(s)
- R P Leon
- Department of Biochemistry and Molecular Genetics, University of Colorado Cancer Center, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sugawara T, Di Bartolo V, Miyazaki T, Nakauchi H, Acuto O, Takahama Y. An Improved Retroviral Gene Transfer Technique Demonstrates Inhibition of CD4−CD8− Thymocyte Development by Kinase-Inactive ZAP-70. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
ZAP-70 is a Syk family tyrosine kinase that plays an essential role in initiating TCR signals. Deficiency in ZAP-70 causes a defect in the development at CD4+CD8+ thymocytes due to defective TCR-mediated positive and negative selection. Using a newly devised retrovirus gene transfer and an efficient green fluorescence protein detection technique in fetal thymus organ cultures, the present study shows that forced expression in developing thymocytes of a catalytically inactive mutant of ZAP-70, but not wild-type ZAP-70, inhibits T cell development at the earlier CD4−CD8− stage. The ZAP-70 mutant blocked the generation of CD4+CD8+ thymocytes even in the absence of endogenous ZAP-70. Thus, the present results demonstrate a novel technique for gene transfer into developing T cells and suggest that ZAP-70/Syk family tyrosine kinases are involved in the signals inducing the generation of CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
| | - Vincenzo Di Bartolo
- §Laboratory of Molecular Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Tadaaki Miyazaki
- ‡Department of Immunology, Faculty of Medicine, University of Tokyo, Tokyo, Japan; and
| | | | - Oreste Acuto
- §Laboratory of Molecular Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Yousuke Takahama
- *Department of Immunology and
- †PRESTO Research Project, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Judge TA, Desai NM, Yang Z, Rostami S, Alonso L, Zhang H, Chen Y, Markman JF, DeMateo RP, Barker CF, Naji A, Turka LA. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 1998; 66:426-34. [PMID: 9734483 DOI: 10.1097/00007890-199808270-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND One of the best-defined mechanisms for the induction of apoptosis involves signaling via the cell surface molecule Fas, after binding of Fas ligand. Expression of Fas ligand is tightly regulated, being expressed primarily by T cells after activation, where it serves as a self-regulatory mechanism for immune responses. Fas ligand has also been found to be expressed constitutively at sites of immune privilege such as the testes and the anterior chamber of the eye. Recently, co-transplantation of Fas ligand-transfected myoblasts in association with islet cell allografts was shown to prolong islet allograft survival but only rarely led to indefinite graft survival. Graft rejection was associated with loss of Fas ligand on the myoblasts, suggesting that direct expression of the transgene on the islets might be more effective. METHODS A replication-defective adenoviral construct containing murine Fas ligand (Ad/MFL) was prepared by homologous recombination. NIH 3T3 cells, rodent splenocytes, and murine islets were infected with Ad/MFL and examined in vitro for functional murine Fas ligand expression. Survival of Ad/MFL-infected islets was subsequently evaluated in vivo in both syngeneic and allogeneic islet transplantation models. RESULTS Cell lines and islet allografts transfected with Ad/MFL expressed a functional Fas ligand, capable of inducing apoptosis (confirmed by three distinct assays for DNA fragmentation) in Fas+ targets, but not in Fas- controls. Furthermore, Ad/MFL was able to modify allogeneic immune responses in vitro, as addition of this virus, but not a control adenovirus, significantly reduced proliferation in a mixed lymphocyte reaction. Surprisingly, however, transplantation of islet allografts transfected with Ad/MFL resulted in long-term allograft survival in only 1 of 30 recipients. Moreover, adenoviral-mediated Fas ligand gene transfer was complicated by transient, dose-dependent islet dysfunction, perhaps contributing to the lack of long-term engraftment. CONCLUSION These data suggest that adenoviral-mediated Fas ligand expression may impair normal islet function in vivo, and indicate that alternative strategies for Fas ligand transgene delivery may be required in this setting.
Collapse
Affiliation(s)
- T A Judge
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998; 72:1844-52. [PMID: 9499035 PMCID: PMC109474 DOI: 10.1128/jvi.72.3.1844-1852.1998] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies.
Collapse
Affiliation(s)
- V Krasnykh
- Gene Therapy Program, Comprehensive Cancer Center, University of Alabama at Birmingham, 35294-3300, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kagami H, Atkinson JC, Michalek SM, Handelman B, Yu S, Baum BJ, O'Connell B. Repetitive adenovirus administration to the parotid gland: role of immunological barriers and induction of oral tolerance. Hum Gene Ther 1998; 9:305-13. [PMID: 9508048 DOI: 10.1089/hum.1998.9.3-305] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study assessed the mucosal and systemic immune responses following repetitive adenoviral vector instillation to the parotid glands. Also, we investigated the feasibility of oral tolerance induction as a rational strategy to overcome the immunological reactions. The replication-deficient recombinant adenovirus vector AdCMVCAT was instilled into rat parotid glands. Chloramphenicol acetyltransferase (CAT) activity in the parotid was observed after a first or second AdCMVCAT infection, but not after a third vector administration. ELISA assays showed increased anti-adenovirus immunoglobulin G (IgG) and IgM in serum, and also anti-adenovirus IgA in gland extracts and saliva after virus administration. The results of in vivo neutralization experiments demonstrated that salivary IgA and IgM prevented reinfection of the parotids with adenoviral vectors. Subsequently, studies were conducted to induce tolerance to adenovirus by peroral feedings of ultraviolet (UV)-inactivated virus before gene administration to the parotid glands. Between 3 and 13 doses of virus were fed to rats. Final parotid gene expression was dependent on the number of viral feedings and the amount fed. Tolerized animals showed prolonged and heightened gene expression in the salivary glands compared to control animals and displayed gene expression even after three administrations of vector. Mononuclear cells from the spleens of these animals showed reduced proliferation following adenovirus stimulation. This same cell population was depleted of CD8+ T cells and found to produce less interferon-gamma (IFN-gamma) after virus challenge. This profile indicates the down regulation of Th1 cell-mediated responses. These results indicate that oral tolerance induction is a potentially useful adjunct to virus-based gene therapy.
Collapse
Affiliation(s)
- H Kagami
- Gene Therapy and Therapeutics Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Weber M, Deng S, Olthoff K, Naji A, Barker CF, Shaked A, Brayman KL. Organ transplantation in the twenty-first century. Urol Clin North Am 1998; 25:51-61. [PMID: 9529536 DOI: 10.1016/s0094-0143(05)70432-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major advances in the understanding of the immunologic process responsible for organ or cellular transplant rejection, a dramatic improvement in available immunosuppressive drugs, development of more sophisticated surgical techniques, and important progress in posttransplant intensive care over the last 30 years have led to a remarkable improvement in success following organ transplantation. Whereas excellent short-term survival of most transplanted organs is readily achieved, graft loss because of chronic rejection and the worsening problem of organ donor shortage remain major concerns in the field of transplantation. Recent advances in immunosuppressive drugs, induction of immunologic tolerance, and gene therapy strategies may help to prolong organ allograft survival in the future. Revised criteria for organ donation and xenotransplantation may one day solve the problem of organ supply. Today, as we approach the next millennium, we are optimistic that the elusive goal of immunologic tolerance will be achieved and perhaps applied to animal tissue. Such will certainly be the challenge for the next century.
Collapse
Affiliation(s)
- M Weber
- Department of Surgery, University of Pennsylvania School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Interactions between the Immune System and Gene Therapy Vectors: Bidirectional Regulation of Response and Expression**Received for publication September 19, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60611-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8:2019-29. [PMID: 9414251 DOI: 10.1089/hum.1997.8.17-2019] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the major limitations to current gene therapy is the low-level and transient vector gene expression due to poorly defined mechanisms, possibly including promoter attenuation or extinction. Because the application of gene therapy vectors in vivo induces cytokine production through specific or nonspecific immune responses, we hypothesized that cytokine-mediated signals may alter vector gene expression. Our data indicate that the cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) inhibit transgene expression from certain widely used viral promoters/enhancers (cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro. A constitutive cellular promoter (beta-actin) is less sensitive to these cytokine effects. Inhibition is at the mRNA level and cytokines do not cause vector DNA degradation, inhibit total cellular protein synthesis, or kill infected/transfected cells. Administration of neutralizing anti-IFN-gamma monoclonal antibody results in enhanced transgene expression in vivo. Thus, standard gene therapy vectors in current use may be improved by altering cytokine-responsive regulatory elements. Determination of the mechanisms involved in cytokine-regulated vector gene expression may improve the understanding of the cellular disposition of vectors for gene transfer and gene therapy.
Collapse
Affiliation(s)
- L Qin
- Department of Surgery, University of Michigan, Ann Arbor 48109-0331, USA
| | | | | | | | | | | |
Collapse
|
34
|
Smith DK, Korbutt GS, Suarez-Pinzon WL, Kao D, Rajotte RV, Elliott JF. Interleukin-4 or interleukin-10 expressed from adenovirus-transduced syngeneic islet grafts fails to prevent beta cell destruction in diabetic NOD mice. Transplantation 1997; 64:1040-9. [PMID: 9381527 DOI: 10.1097/00007890-199710150-00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND We performed ex vivo adenoviral gene transfer in a mouse pancreatic islet transplant model to test the efficacy of this expression system. We then determined whether adenoviral-mediated expression of mouse interleukin (IL) 4 or IL-10 from transduced syngeneic islet grafts could prevent disease recurrence in diabetic nonobese diabetic (NOD) mice. METHODS An adenoviral vector expressing beta-galactosidase (AdCMV betaGal) was used to transduce BALB/c islets (2.5 x 10(3) plaque-forming units/islet), which were analyzed for glucose responsiveness, islet cell recovery, and efficiency of gene transfer. In vivo function and reporter gene expression were examined with AdCMV betaGal-transduced islet grafts in alloxan-induced diabetic syngeneic recipients. Adenoviruses expressing either IL-4 or IL-10 were used in a similar fashion to infect NOD islets, which were characterized in vitro, as well as transplanted into diabetic syngeneic recipients. RESULTS In vitro functional studies showed no significant difference between control or transduced islets, with 50+/-4% of AdCMV betaGal-infected islet cells staining positive for beta-galactosidase. Transplant recipients became nomoglycemic within 48 hr after transplant, and, although beta-galactosidase expression decreased over time, it was detectable in the graft for up to 8 weeks. Despite the nanogram quantities of IL-4 or IL-10 produced/day from each graft equivalent in vitro, transduced and transplanted NOD islets failed to prevent disease recurrence. CONCLUSIONS These results suggest that adenoviruses are efficient for at least medium term gene expression from islets in vivo, but neither IL-4 nor IL-10 alone can prevent autoimmune disease recurrence in NOD mice.
Collapse
Affiliation(s)
- D K Smith
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Dematteo RP, McClane SJ, Fisher K, Yeh H, Chu G, Burke C, Raper SE. Engineering tissue-specific expression of a recombinant adenovirus: selective transgene transcription in the pancreas using the amylase promoter. J Surg Res 1997; 72:155-61. [PMID: 9356237 DOI: 10.1006/jsre.1997.5096] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recombinant adenovirus accomplishes highly efficient gene transfer in vivo. Adenoviral vectors would be more attractive vehicles for gene therapy if transgene expression was inducible and restricted to the target tissue. In these studies, we hypothesized that selective transgene expression of a recombinant adenovirus could be accomplished by using a tissue-specific promoter of transcription. A replication-defective adenoviral vector was engineered to express the lacZ marker gene under control of the murine pancreatic amylase promoter. Expression of this vector occurred exclusively in the pancreas in neonatal and adult mice, while a similar vector with a constitutive promoter accomplished transgene expression in several organs. Within the adenoviral construct, the amylase promoter retained its ability to be induced by dexamethasone and insulin. This model will serve as a paradigm for selective and inducible adenoviral transgene expression.
Collapse
Affiliation(s)
- R P Dematteo
- Harrison Department of Surgical Research, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The potential of gene therapy to deliver therapeutic protein agents, such as cytokines, antibodies and recombinant ligands, in vivo has stimulated interest in many biological fields, including transplantation. Regarding the latter, gene transfer strategies could be used to deliver molecules with immunomodulating activity to the graft itself or to defined sites in the recipient to prevent graft rejection or ischaemic injury or to induce tolerance to donor alloantigens. Any of these options offers many advantages over the systemic delivery of immunosuppressive agents currently employed in transplantation.
Collapse
Affiliation(s)
- K J Wood
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|
37
|
Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther 1997; 8:1365-74. [PMID: 9295131 DOI: 10.1089/hum.1997.8.11-1365] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although adenoviral vectors are attractive for gene transfer, their effectiveness is limited by host antiviral immune responses. In this study, we determined if host antiallograft and antiviral immunity could be diminished with an adenoviral vector encoding the immunosuppressive cytokine viral interleukin-10 (vIL-10). AdSV40vIL-10, a vIL-10-expressing adenoviral vector with an SV40 promoter, induced significant prolongation of murine cardiac allograft survival to 32.2 +/- 1.7 days compared to 14.2 +/- 1.0 days for controls (p < 0.01). This effect was specific for vIL-10 encoding vector and could be inhibited by anti-vIL-10 monoclonal antibody (mAb). In vivo administration of adenovirus facilitated the generation of adenovirus-specific cytotoxic T lymphocytes (CTL), whereas treatment with AdSV40vIL-10 prevented CTL priming and generation of virus-specific immunity. AdSV40vIL-10 also induced extended expression of a beta-galactosidase reporter from a co-injected LacZ-encoding adenoviral vector. These results demonstrate that adenovirus-mediated gene transfer and expression of vIL-10 prolong allograft survival and inhibit the immune response to adenoviral antigens, thereby improving the persistence of the vector and extending transgene expression. The efficacy of adenoviral vectors can be improved by incorporating immunosuppressive genes into the vector.
Collapse
Affiliation(s)
- L Qin
- Department of Surgery, University of Michigan, Ann Arbor 48109-0331, USA
| | | | | | | | | | | |
Collapse
|
38
|
DeMatteo RP, Chu G, Ahn M, Chang E, Barker CF, Markmann JF. Long-lasting adenovirus transgene expression in mice through neonatal intrathymic tolerance induction without the use of immunosuppression. J Virol 1997; 71:5330-5. [PMID: 9188602 PMCID: PMC191770 DOI: 10.1128/jvi.71.7.5330-5335.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The major barrier to the clinical application of adenovirus gene therapy for diseases that require stable transgene expression is the immunogenicity of recombinant adenovirus, which ordinarily limits the duration of its effects to a period of about 2 weeks. We postulated that tolerance to adenovirus could be induced and transgene expression could be prolonged if T lymphocytes underwent thymic selection in the presence of adenovirus antigens. Mice were inoculated in the thymus with a recombinant adenovirus containing the lacZ marker gene during the neonatal period at a time before T-cell maturation had occurred. When the virus was administered intravenously to these mice in adulthood, they were found to have an impaired adenovirus-specific cytotoxic T-lymphocyte response which allowed prolonged hepatic lacZ expression, for up to 260 days. The ability to achieve unresponsiveness to a recombinant adenovirus after inoculation of the thymus in neonates extends the paradigm of intrathymic tolerance induction. Furthermore, this model will enable the study of stable adenovirus transgene expression in vivo without the use of immunosuppression and ultimately may have clinical utility.
Collapse
Affiliation(s)
- R P DeMatteo
- Harrison Department of Surgical Research, University of Pennsylvania Medical Center, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
39
|
Xu ZZ, Hyatt A, Boyle DB, Both GW. Construction of ovine adenovirus recombinants by gene insertion or deletion of related terminal region sequences. Virology 1997; 230:62-71. [PMID: 9126262 DOI: 10.1006/viro.1997.8452] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An ovine adenovirus which may be the prototype for a new group of adenoviruses has been engineered as a gene transfer vector. One recombinant containing a 0.95-kb insertion expressed a sheep parasite antigen from the ovine adenovirus major late promoter and tripartite leader sequences. It was shown that insertions of at least 4.3 kb were tolerated at either one of two sites in the genome without the introduction of a compensating deletion. The unique structure of this viral genome was further emphasized by the discovery that four open reading frames at the right hand end show significant identity to each other but not to other sequences in the databases. Two other unrelated open reading frames were also present. RT-PCR analysis identified two transcripts in this region which were derived from a promoter which was located very close to, or within the ITR sequence. Splicing removed all but the first and last of the ORFs from these RNAs, suggesting that some sequences might be nonessential for replication in vitro. A approximately 2-kb deletion, which removed or truncated the internal reading frames was introduced into the region without affecting virus viability. The carrying capacity of OAV recombinants should therefore be at least 6.3 kb. The relative packaging capacity of OAV (114%) therefore exceeds that of Ad5 (105%), although a comparison of virus particle sizes by electron microscopy showed that OAV was smaller than Ad5. These studies improve the potential utility of OAV as a gene transfer vector.
Collapse
Affiliation(s)
- Z Z Xu
- Division of Biomolecular Engineering, CSIRO, North Ryde, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Kajiwara K, Byrnes AP, Charlton HM, Wood MJ, Wood KJ. Immune responses to adenoviral vectors during gene transfer in the brain. Hum Gene Ther 1997; 8:253-65. [PMID: 9048192 DOI: 10.1089/hum.1997.8.3-253] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated the immune response to E1-deleted adenovirus vectors encoding the lacZ gene introduced into the brains of adult mice. Injection of these nonreplicating vectors caused a marked inflammatory response in the brain as assessed by immunocytochemistry and flow cytometry of leukocytes. Infiltrating leukocytes were detectable within 2 days of injection and reached a maximum by 9 days. Thereafter, the number of infiltrating cells decreased, but a small number persisted in the brain until day 60. Between 2 and 4 days after injection, the percentage of CD8+ cells detectable increased whereas the percentage of CD4+ cells present in the infiltrating population did not significantly increase until day 6, peaking on day 15. Activated CD25+ T cells were detectable between days 6 and 15. beta-Galactosidase (beta-Gal), the product of the lacZ gene encoded by the vector, was also detected, both at the injection site in the striatum and also in the substantia nigra. Expression peaked between 4 and 6 days but a small number of beta-Gal+ cells was still seen at 60 days after injection. This study demonstrates that a quantitative analysis of the immune responses caused by a nonreplicating adenovirus vector is possible in the brain. E1-deleted adenoviral vectors trigger a strong inflammatory response in the brain, but this immune response is not sufficient to eliminate completely expression of genes encoded by the adenoviral construct.
Collapse
Affiliation(s)
- K Kajiwara
- Nuffield Department of Surgery, University of Oxford, Johm Radcliffe Hospital, UK
| | | | | | | | | |
Collapse
|
41
|
Hamilton T, DeMatteo R, McClane S, Burke C, Rombeau J, Raper S. Adenoviral-mediated gene transfer to murine small intestine is more efficient in neonates than adults. J Pediatr Surg 1997; 32:373-7. [PMID: 9044157 DOI: 10.1016/s0022-3468(97)90214-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The authors sought to assess the feasibility of in vivo gene transfer to the small intestine using recombinant adenovirus in neonatal and adult mice. METHODS H5.010CMVlacZ is a replication-defective, E1-deleted human type 5 adenovirus, which contains the lacZ gene under the control of a cytomegalovirus promoter and enhancer. The lacZ gene was used as a marker because its gene product, beta-galactosidase, is readily detected by X-gal histochemistry. Sixty neonatal (3 to 5 days old) and 45 adult (6 to 8 weeks old) C57BL/6 mice were investigated. Intestinal gene transfer was attempted with H5.010CMVlacZ by intraperitoneal (i.p.), intraluminal (IL), and intramural (i.m.) injection. Based on prior studies, the optimal dose of H5.010CMVlacZ was 1 x 10(8) plaque forming units (pfu/mL). Control animals received saline injections. Gene transfer on repeat administration of adenovirus has been shown to be prevented by neutralizing antibody. To determine if neonatal inoculation induced a humoral immune response, neonates (n = 5) that received i.p. injections were rechallenged with intravenous H5.010CMV alkphos, a similar adenoviral construct containing the alkaline phosphatase marker gene. Serum samples were analyzed by Western blot to detect the presence of adenoviral-specific antibody. RESULTS Gene transfer to neonatal small intestine was successful by IL gastric (n = 8/10), IL jejunal (n = 9/10) and i.p. (n = 10/10) routes 2 days after injection. Macroscopic staining was present in 90% of standardized 2-cm small bowel segments. Transgene expression was identified in intestinal smooth muscle, serosa, and epithelium. Gene transfer to the adult small intestine was successful by IL jejunal (n = 4/5), i.m. (n = 5/5), and i.p. (n = 1/5) injection of adenoviruslacZ with focal staining (< 5% of 2-cm segments) in epithelium including crypts, muscle, and serosa. Three weeks after i.p. H5.010CMVlacZ in neonates, intravenous injection with H5.010CMValkphos resulted in hepatic transgene expression (n = 4/5) that was indistinguishable from a primary intravenous inoculation; persistent, lacZ expression was not detectable in the liver or intestine (n = 0/5). Western blot analysis detected adenoviral-specific antibodies after adult IM but not after neonatal i.p. injection. Furthermore, 3 weeks after neonatal i.p. injection repeat administration by the i.m. route was successful (n = 4/ 4). CONCLUSION Gene transfer to neonatal and adult small intestine is feasible using recombinant adenovirus and is more efficient in neonates as indicated by increased surface area of marker gene expression, effectiveness of intraperitoneal delivery, and the ability to readminister recombinant adenovirus.
Collapse
Affiliation(s)
- T Hamilton
- Harrison Department of Surgical Research, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
42
|
DeMatteo RP, Chu G, Ahn M, Chang E, Burke C, Raper SE, Barker CF, Markmann JF. Immunologic barriers to hepatic adenoviral gene therapy for transplantation. Transplantation 1997; 63:315-9. [PMID: 9020337 DOI: 10.1097/00007890-199701270-00024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenoviral gene transfer has potential use to attenuate the immunogenicity of hepatic allografts. However, the clinical application of adenoviral gene therapy is currently impeded by the potent host immune response to the virus that limits the duration of its effects. In these studies, we identify the cellular and humoral immune responses to recombinant adenovirus in the liver of mice and define the immunologic barriers to the successful application of this technology to transplantation. The immunobiology of recombinant adenovirus was studied in mouse liver using vectors containing the lacZ and alkaline phosphatase marker genes. The duration of transgene expression was studied in various immunodeficient mice to determine the mechanism of viral clearance. Adoptive transfer of serum to B lymphocyte deficient mice and neutralizing antibody assays were used to define the antiviral humoral response. Hepatic adenoviral transgene expression was prolonged in animals deficient in CD4+ or CD8+ T cells indicating their importance in viral clearance. Unexpectedly, mice lacking B lymphocytes also had delayed elimination of virus suggesting that B cells play a role in the primary immune response. Effective repeat gene transfer was blocked by adenoviral-specific neutralizing antibody. Therefore, a T lymphocyte response results in viral elimination after a primary intravenous inoculation of recombinant adenovirus and a potent humoral response inhibits effective repeat adenoviral gene transfer. The immunogenicity of the vector must be overcome for adenoviral gene therapy to have therapeutic application for hepatic transplantation.
Collapse
Affiliation(s)
- R P DeMatteo
- Harrison Department of Surgical Research and Institute for Human Gene Therapy, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mack CA, Song WR, Carpenter H, Wickham TJ, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart T, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 1997; 8:99-109. [PMID: 8989999 DOI: 10.1089/hum.1997.8.1-99] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Effective gene transfer and expression following repetitive administration of adenoviral (Ad) vectors in experimental animals is limited by anti-Ad neutralizing antibodies. Knowing that anti-Ad humoral immunity is serotype-specific, we hypothesized that anti-Ad neutralizing immunity could be circumvented using Ad vectors of different serotypes (Ad2, Ad5) within the same subgroup (C) to transfer and express beta-glucuronidase (beta glu) in the lung. Sprague-Dawley rats received an intratracheal administration of either Ad2 beta glu or Ad5 beta glu, and, 14 days later, repeat administration of either the same vector or a vector of a different serotype. Analysis of serum and bronchoalveolar lavage fluid following initial vector administration demonstrated systemic and local serotype-specific neutralizing antibodies. For both the Ad2 and Ad5 vectors, beta glu expression 24 hr following the second administration of the same serotype was < 30% of that of naive animals. In contrast, beta glu expression 24 hr following second administration of a different serotype Ad vector was similar to expression at 24 hr of naive animals receiving a single administration (Ad5 beta glu followed by Ad2 beta glu, as well as Ad2 beta glu followed by Ad5 beta glu; p > 0.2 both comparisons). Although the alternative serotype bypassed anti-Ad neutralizing immunity, persistence of expression was reduced compared to that following administration to naive animals. Compatible with this observation, systemic administration of the same vectors to C57B1/6 mice demonstrated induction of cytotoxic T lymphocytes directed against the beta glu transgene, as well as products of the Ad genome. Interestingly, intratracheal administration of vectors with different serotypes and different transgenes to rats resulted in longer expression (but still not normalized) compared to that achieved with vectors of different serotypes but the same transgene. These observations demonstrate that alternate use of Ad vectors from different serotypes within the same subgroup can circumvent anti-Ad humoral immunity to permit effective gene transfer after repeat administration, although the chronicity of expression is limited, likely by cellular immune process directed against both the transgene and viral gene products expressed by the vector.
Collapse
Affiliation(s)
- C A Mack
- Division of Pulmonary and Critical Care Medicine, New York Hospital-Cornell Medical Center, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ilan Y, Attavar P, Takahashi M, Davidson A, Horwitz MS, Guida J, Chowdhury NR, Chowdhury JR. Induction of central tolerance by intrathymic inoculation of adenoviral antigens into the host thymus permits long-term gene therapy in Gunn rats. J Clin Invest 1996; 98:2640-7. [PMID: 8958229 PMCID: PMC507724 DOI: 10.1172/jci119085] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recombinant adenoviruses are highly efficient at transferring foreign genes in vivo. However, duration of gene expression is limited by the host antiviral immune response which precludes expression upon viral readministration. We tested the feasibility of prolonging gene expression by induction of central tolerance to adenoviral antigens in bilirubin-UDP-glucuronosyltransferase-1 (BUGT1)-deficient Gunn rats. Tolerance was induced by intraperitoneal injection of antilymphocyte serum, followed by intrathymic inoculation of one of the following: a recombinant adenovirus (Ad), adenovirus human UDP-glucuronosyltransferase (Ad-hBUGT1) carrying the hBUGT1 gene; a protein extract of the same virus; or viral infected hepatocytes. Controls received intrathymic injections of normal saline. After 12 d all groups were injected intravenously with 5 x 10(9) pfu of either Ad-hBUGT1 or adenovirus beta-galactosidase (Ad-LacZ) (expressing the Escherichia coli beta-galactosidase [LacZ] gene). In all three groups of tolerized rats, hBUGT1 was expressed in the liver after administration of Ad-hBUGT1, with glucuronidation of biliary bilirubin of above 95%. Serum bilirubin levels decreased from 7.2 to 1.8 mg/dl within 1 wk and remained low for 7 wk. Similar findings were observed following repeat injections given on days 45 and 112. In control rats serum bilirubin levels were reduced for only 4 wk, and viral readministration was ineffective. In all tolerized groups, but not in controls, there was a marked inhibition of appearance of neutralizing antibodies and cytotoxic lymphocytes against the recombinant adenovirus. Injection of wild type adenovirus-5 (Ad5) into the tolerized rats elicited a wild type-specific cytotoxic lymphocyte response. This is the first demonstration of Ad-directed long-term correction of an inherited metabolic disease following central tolerization with thymic antigen.
Collapse
Affiliation(s)
- Y Ilan
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- S J Knechtle
- Department of Surgery, University of Wisconsin Hospital, Madison 53792, USA
| | | | | |
Collapse
|
46
|
Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70:6839-46. [PMID: 8794325 PMCID: PMC190731 DOI: 10.1128/jvi.70.10.6839-6846.1996] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To expand the utility of recombinant adenovirus vectors for gene therapy applications, methods to alter native viral tropism to achieve cell-specific transduction would be beneficial. To this end, we are pursuing genetic methods to alter the cell recognition domain of the adenovirus fiber. To incorporate these modified fibers into mature virions, we have developed a method based on homologous DNA recombination between two plasmids. A fiber-deleted, propagation-defective rescue plasmid has been designed for recombination with a shuttle plasmid encoding a variant fiber gene. Recombination between the two plasmids results in the derivation of recombinant viruses containing the variant fiber gene. To establish the utility of this method, we constructed a recombinant adenovirus containing a fiber gene with a silent mutation. In addition, we generated an adenovirus vector containing chimeric fibers composed of the tail and shaft domains of adenovirus serotype 5 and the knob domain of serotype 3. This modification was shown to alter the receptor recognition profile of the virus containing the fiber chimera. Thus, this two-plasmid system allows for the generation of adenovirus vectors containing variant fibers. This method provides a rapid and facile means of generating fiber-modified recombinant adenoviruses. In addition, it should be possible to use this system in the development of adenovirus vectors with modified tropism to allow cell-specific targeting.
Collapse
Affiliation(s)
- V N Krasnykh
- Gene Therapy Program, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
47
|
Gussoni E, Wang Y, Fraefel C, Miller RG, Blau HM, Geller AI, Kunkel LM. A method to codetect introduced genes and their products in gene therapy protocols. Nat Biotechnol 1996; 14:1012-6. [PMID: 9631042 DOI: 10.1038/nbt0896-1012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To monitor the presence of introduced genes and the distribution of the encoded proteins in host tissues after gene transfer, we combined fluorescence in situ hybridization (FISH) and immunohistochemistry in two separate gene therapy paradigms. In brain tissue sections from animals injected with pHSVlac vector, we localized nuclei containing vector DNA both in cells expressing and not expressing beta-galactosidase (beta-gal). This suggests that the efficiency of gene transfer is affected not only by gene delivery, but also by cellular controls on gene expression. In a second paradigm, following myoblast transplantation, we detected donor nuclei in the muscle of a patient with Duchenne's muscular dystrophy. The donor nuclei were either surrounded by host nuclei or apparently fused in the patient's muscle fiber producing dystrophin. The combined FISH and immunohistochemistry assay offers greater sensitivity and more information than currently used polymerase chain reaction and protein detection methods.
Collapse
Affiliation(s)
- E Gussoni
- Division of Genetics, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|