1
|
Oulerich Z, Sferruzzi-Perri AN. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease. Am J Physiol Renal Physiol 2024; 327:F21-F36. [PMID: 38695077 PMCID: PMC11687964 DOI: 10.1152/ajprenal.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/21/2024] Open
Abstract
According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.
Collapse
Affiliation(s)
- Zoé Oulerich
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Agro Paris Tech, Université Paris-Saclay, Paris, France
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Andreotti S, Komino ACM, de Fatima Silva F, Ramos APA, Gil NL, Azevedo GA, Sertié RAL, Lima FB, Landgraf RG, Landgraf MA. Intrauterine food restriction impairs the lipogenesis process in the mesenteric adipocytes from low-birth-weight rats into adulthood. Front Endocrinol (Lausanne) 2023; 14:1259854. [PMID: 38027196 PMCID: PMC10651082 DOI: 10.3389/fendo.2023.1259854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intrauterine food restriction (IFR) during pregnancy is associated with low birth weight (LBW) and obesity in adulthood. It is known that white adipose tissue (WAT) plays critical metabolic and endocrine functions; however, this tissue's behavior before weight gain and obesity into adulthood is poorly studied. Thus, we evaluated the repercussions of IFR on the lipogenesis and lipolysis processes in the offspring and described the effects on WAT inflammatory cytokine production and secretion. Methods We induced IFR by providing gestating rats with 50% of the necessary chow daily amount during all gestational periods. After birth, we monitored the offspring for 12 weeks. The capacity of isolated fat cells from mesenteric white adipose tissue (meWAT) to perform lipogenesis (14C-labeled glucose incorporation into lipids) and lipolysis (with or without isoproterenol) was assessed. The expression levels of genes linked to these processes were measured by real-time PCR. In parallel, Multiplex assays were conducted to analyze pro-inflammatory markers, such as IL-1, IL-6, and TNF-α, in the meWAT. Results Twelve-week-old LBW rats presented elevated serum triacylglycerol (TAG) content and attenuated lipogenesis and lipolysis compared to control animals. Inflammatory cytokine levels were increased in the meWAT of LBW rats, evidenced by augmented secretion by adipocytes and upregulated gene and protein expression by the tissue. However, there were no significant alterations in the serum cytokines content from the LBW group. Additionally, liver weight, TAG content in the hepatocytes and serum glucocorticoid levels were increased in the LBW group. Conclusion The results demonstrate that IFR throughout pregnancy yields LBW offspring characterized by inhibited lipogenesis and lipolysis and reduced meWAT lipid storage at 12 weeks. The increased serum TAG content may contribute to the augmented synthesis and secretion of pro-inflammatory markers detected in the LBW group.
Collapse
Affiliation(s)
- Sandra Andreotti
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ayumi Cristina Medeiros Komino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Almeida Ramos
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Noemi Lourenço Gil
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gabriela Araujo Azevedo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rogerio Antonio Laurato Sertié
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Richardt Gama Landgraf
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Souza ACD, Silva DGD, Jezuíno JDS, Ferreira ARO, Ribeiro MVG, Vidigal CB, Moura KF, Erthal RP, Mathias PCDF, Fernandes GSA, Palma-Rigo K, Ceravolo GS. Protein restriction during peripubertal period impairs endothelial aortic function in adult male Wistar rats. J Dev Orig Health Dis 2023; 14:451-458. [PMID: 37198976 DOI: 10.1017/s2040174423000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein restriction during early phases of body development, such as intrauterine life can favor the development of vascular disorders. However, it is not known if peripubertal protein restriction can favor vascular dysfunction in adulthood. The present study aimed to evaluated whether a protein restriction diet during peripubertal period favors endothelial dysfunction in adulthood. Male Wistar rats from postnatal day (PND) 30 until 60 received a diet with either 23% protein (CTR group) or with 4% protein (LP group). At PND 120, the thoracic aorta reactivity to phenylephrine, acetylcholine, and sodium nitroprusside was evaluated in the presence or absence of: endothelium, indomethacin, apocynin and tempol. The maximum response (Rmax) and pD2 (-log of the concentration of the drug that causes 50% of the Rmax) were calculated. The lipid peroxidation and catalase activity were also evaluated in the aorta. The data were analyzed by ANOVA (one or two-ways and Tukey's) or independent t-test; the results were expressed as mean ± S.E.M., p < 0.05. The Rmax to phenylephrine in aortic rings with endothelium were increased in LP rats when compared with the Rmax in CTR rats. Apocynin and tempol reduced Rmax to phenylephrine in LP aortic rings but not in CTR. The aortic response to the vasodilators was similar between the groups. Aortic catalase activity was lower and lipid peroxidation was greater in LP compared to CTR rats. Therefore, protein restriction during the peripubertal period causes endothelial dysfunction in adulthood through a mechanism related to oxidative stress.
Collapse
Affiliation(s)
- Amanda Cristina de Souza
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Deborah Gomes da Silva
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliana da Silva Jezuíno
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Camila Borecki Vidigal
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kawane Fabricio Moura
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Glaura Scantamburlo Alves Fernandes
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kesia Palma-Rigo
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
| | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
4
|
Lee YQ, Beckett EL, Sculley DV, Rae KM, Collins CE, Pringle KG. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. Am J Physiol Renal Physiol 2019; 316:F1227-F1235. [DOI: 10.1152/ajprenal.00082.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maternal undernutrition during pregnancy is prevalent across the globe, and the origins of many chronic diseases can be traced back to in utero conditions. This systematic review considers the current evidence in animal models regarding the relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function. CINAHL, Cochrane, EMBASE, MEDLINE, and Scopus were searched to November 2017. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles were screened by two independent reviewers. Twenty-eight studies met the inclusion criteria: 16 studies were on rats, 9 on sheep, 2 on baboons, and 1 on goats. The majority of the rat studies had maternal global nutrient restriction during pregnancy at 50% of ad libitum while restriction for sheep and baboon studies ranged from 50% to 75%. Because of the heterogeneity of outcome measures and the large variation in the age of offspring at followup, no meta-analysis was possible. Common outcome measures included kidney weight, nephron number, glomerular size, glomerular filtration rate, and creatinine clearance. To date, there have been no studies assessing kidney function in large animal models. Most studies were rated as having a high or unknown risk of bias. The current body of evidence in animals suggests that exposure to maternal global nutrient restriction during pregnancy has detrimental effects on offspring kidney structure and function, such as lower kidney weight, lower nephron endowment, larger glomerular size, and lower glomerular filtration rate. Further long-term followup of studies in large animal models investigating kidney function through to adulthood are warranted.
Collapse
Affiliation(s)
- Yu Qi Lee
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Emma L. Beckett
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dean V. Sculley
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kym M. Rae
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
- Department of Rural Health, University of Newcastle, Tamworth, New South Wales, Australia
- Priority Research Center for Generational Health and Aging, University of Newcastle, Newcastle, New South Wales, Australia
| | - Clare E. Collins
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kirsty G. Pringle
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
| |
Collapse
|
5
|
Zhong Y, Feng X, Xu T, Yang C, Zhang W, Chen X, Fan X, Lu L, Zhang M, Li L, Xu Z. Inherited risk plus prenatal insult caused malignant dysfunction in mesenteric arteries in adolescent SHR offspring. PLoS One 2019; 14:e0215994. [PMID: 31017969 PMCID: PMC6481862 DOI: 10.1371/journal.pone.0215994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Prenatal hypoxia can induce cardiovascular diseases in the offspring. This study determined whether and how prenatal hypoxia may cause malignant hypertension and impaired vascular functions in spontaneous hypertension rat (SHR) offspring at adolescent stage. Pregnant SHR were placed in a hypoxic chamber (11% O2) or normal environment (21% O2) from gestational day 6 until birth. Body weight and blood pressure (BP) of SHR offspring were measured every week from 5 weeks old. Mesenteric arteries were tested. Gestational hypoxia resulted in growth restriction during 6-12 weeks and a significant elevation in systolic pressure in adolescent offspring at 12 weeks old. Notably, endothelial vasodilatation of mesenteric arteries was impaired in SHR adolescent offspring exposed to prenatal hypoxia, vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were reduced, as well as plasma nitric oxide levels and expression of endothelial nitric oxide synthase (eNOS) in vessels were decreased. Moreover, mesenteric arteries in SHR offspring following prenatal hypoxia showed enhanced constriction responses to phenylephrine (PE), associated with up-regulated activities of L-type calcium channel (Ca2+-dependent), RhoA/Rock pathway signaling (Ca2+-sensitization), and intracellular Ca2+ flow. Pressurized myograph demonstrated altered mechanical properties with aggravated stiffness in vessels, while histological analysis revealed vascular structural disorganization in prenatal hypoxia offspring. The results demonstrated that blood pressure and vascular function in young SHR offspring were affected by prenatal hypoxia, providing new information on development of hypertension in adolescent offspring with inherited hypertensive backgrounds.
Collapse
Affiliation(s)
- Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Obstetrics and Gynecology, Municipal Hospital, Suzhou, Jiangsu, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People’s Hospital, Zaozhuang, Shandong, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (ZX); (LL)
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail: (ZX); (LL)
| |
Collapse
|
6
|
Zelko IN, Zhu J, Roman J. Maternal undernutrition during pregnancy alters the epigenetic landscape and the expression of endothelial function genes in male progeny. Nutr Res 2018; 61:53-63. [PMID: 30683439 DOI: 10.1016/j.nutres.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022]
Abstract
Recent studies point to the important role of in utero malnutrition in gene programming and in the development of vascular diseases. We hypothesize that maternal undernutrition affects vascular function in the offspring by promoting epigenetic changes that drive the differential expression of genes involved in endothelial function. To test this, we exposed mice to nutrient deprivation in utero and analyzed its effect on global DNA methylation and expression of endothelium-specific genes in the pulmonary endothelium of the adult progeny. Mice were kept either on ad libitum (AL) or energy-restricted (ER) diet during the second and third trimesters of gestation. Mice in the ER group received 65% of energy compared to mice in the AL diet group. Pulmonary endothelial cells were isolated from 6-week-old male offspring mice (AL-F1 and ER-F1). The expression of genes in the pulmonary endothelium was analyzed using quantitative reverse-transcription polymerase chain reaction array and confirmed by qRT-PCR. Several genes including fibronectin 1 and plasminogen activator inhibitor 1 were upregulated in the endothelium of male ER-F1 mice, whereas the expression of genes involved in regulation of histone acetylation was significantly attenuated. At the same time, the global DNA methylation did not change in pulmonary endothelial cells of ER-F1 mice compared to AL-F1 mice. Overall, we found that maternal undernutrition during pregnancy affects the expression of genes involved in regulation of endothelial cell function in the pulmonary vasculature of male progeny, which could potentially promote pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Igor N Zelko
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville, KY 40202; Department of Biochemistry and Molecular Genetics, University of Louisville, KY 40202.
| | - Jianxin Zhu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville, KY 40202
| | - Jesse Roman
- Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
7
|
Venci RDO, Ramos GB, Martins IP, Matiusso CCI, Saavedra LPJ, Ribeiro TA, Pavanello A, Prates KV, Tófolo LP, Moraes AMPD, Fabricio GS, de Oliveira JC, Franco CCDS, Palma-Rigo K, Mathias PCDF, Malta A. Malnutrition during late pregnancy exacerbates high-fat-diet-induced metabolic dysfunction associated with lower sympathetic nerve tonus in adult rat offspring. Nutr Neurosci 2018; 23:432-443. [DOI: 10.1080/1028415x.2018.1516845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Renan de Oliveira Venci
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Gabriel Bortoli Ramos
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Gabriel Sergio Fabricio
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | | | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| |
Collapse
|
8
|
Abstract
Developmental programming resulting from maternal malnutrition can lead to an increased risk of metabolic disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disorders in the offspring in later life. Furthermore, many conditions linked with developmental programming are also known to be associated with the aging process. This review summarizes the available evidence about the molecular mechanisms underlying these effects, with the potential to identify novel areas of therapeutic intervention. This could also lead to the discovery of new treatment options for improved patient outcomes.
Collapse
|
9
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
10
|
Hokke S, Puelles VG, Armitage JA, Fong K, Bertram JF, Cullen-McEwen LA. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice. PLoS One 2016; 11:e0161578. [PMID: 27547968 PMCID: PMC4993378 DOI: 10.1371/journal.pone.0161578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20-25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Victor G. Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - James A. Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - John F. Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Luise A. Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Effects of Oxidative Stress on Vascular Reactivity in the Offspring of Protein-Restricted Stroke-Prone Spontaneously Hypertensive Rats. Biosci Biotechnol Biochem 2014; 77:1689-93. [DOI: 10.1271/bbb.130244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Eleftheriades M, Pervanidou P, Vafaei H, Vaggos G, Dontas I, Skenderi K, Sebire NJ, Nicolaides K. Metabolic profiles of adult Wistar rats in relation to prenatal and postnatal nutritional manipulation: the role of birthweight. Hormones (Athens) 2014; 13:268-79. [PMID: 24776627 DOI: 10.1007/bf03401341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This experimental study aimed to prospectively investigate the impact of combinations of prenatal and postnatal food manipulations on the metabolic profile of adult offspring. DESIGN On day 12 of gestation, 67 timed pregnant rats were randomized into three nutritional groups, control: standard laboratory food; starved: 50% food restricted, FR; fat-fed: fat-rich diet, FF. Seven hundred and seventy-four (774) pups were born on day 21 and culled to 8 (4 males, 4 females) per litter to normalize rearing. Rats born to starved mothers were later subdivided, based on birthweight (BiW), into fetal growth restricted (FGR) and non-FGR. The pups were then weaned to the diet of their fostered mother until one year old. Thus, 12 groups were studied: 1. CONTROL/CONTROL 14 rats, 2. CONTROL/FR 12 rats, 3. CONTROL/FF 15 rats, 4. FGR/CONTROL 16 rats, 5. FGR/FR 10 rats, 6. FGR/FF 15 rats, 7. non- FGR/CONTROL 10 rats, 8. non- FGR/FR 17 rats, 9. non- FGR/FF 10 rats, 10. FF/CONTROL 15 rats, 11. FF/FR 14 rats, and 12. FF/FF 13 rats. During sacrifice, body weight (BW) and liver weight (LW) were measured (expressed in grams) and concentrations of serum glucose, triglycerides, HDL and NEFA were determined. RESULTS Postnatal food restriction, compared to control diet significantly reduced BW (p=0.004, p=0.036, p<0.001, p=0.008) and LW (p<0.001) in all study groups. Postnatal control diet significantly increased BW in non-FGR compared to FGR rats (p=0.027). No significant differences were detected in biochemical parameters (excluding NEFA) between FGR and non-FGR, regardless of the postnatal diet. CONCLUSIONS Interaction between prenatal and postnatal nutrition produces distinct metabolic profiles. Apart from BiW, prenatal diet had an important impact on the metabolic profile of the adult offspring, implying that intrauterine events should be considered in the estimation of the metabolic risk of an individual, independently of BiW.
Collapse
Affiliation(s)
- Makarios Eleftheriades
- Embryocare, Fetal Medicine Unit, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital; Athens, Greece
| | - Panagiota Pervanidou
- Childhood Obesity Clinic, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital; Athens, Greece
| | - Homeira Vafaei
- Department of Obstetrics and Gynecology, Faghihi Hospital, Shiraz University of Medical Sciences; Shiraz, Iran
| | - George Vaggos
- Second Department of Obstetrics and Gynecology, Athens University Medical School, Aretaieio Hospital; Athens, Greece
| | - Ismene Dontas
- 5Laboratory for Research of the Musculoskeletal System "Th. Garofalides", School of Medicine, University of Athens; Athens, Greece
| | - Katerina Skenderi
- Laboratory of Nutrition and Clinical Dietetics, Harokopio University; Athens, Greece
| | - Neil J Sebire
- Department of Paediatric Pathology, Great Ormond Street Hospital for Children, and UCL Institute of Child Health, London, UK
| | - Kypros Nicolaides
- 8Harris Birthright Research Centre for Fetal Medicine, King's College Hospital; London, UK
| |
Collapse
|
13
|
Abstract
Epidemiological studies, including those in identical twins, and in individuals in utero during periods of famine have provided robust evidence of strong correlations between low birth-weight and subsequent risk of disease in later life, including type 2 diabetes (T2D), CVD, and metabolic syndrome. These and studies in animal models have suggested that the early environment, especially early nutrition, plays an important role in mediating these associations. The concept of early life programming is therefore widely accepted; however the molecular mechanisms by which early environmental insults can have long-term effects on a cell and consequently the metabolism of an organism in later life, are relatively unclear. So far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification and microRNA) and permanent changes in cellular ageing. Many of the conditions associated with early-life nutrition are also those which have an age-associated aetiology. Recently, a common molecular mechanism in animal models of developmental programming and epidemiological studies has been development of oxidative stress and macromolecule damage, specifically DNA damage and telomere shortening. These are phenotypes common to accelerated cellular ageing. Thus, this review will encompass epidemiological and animal models of developmental programming with specific emphasis on cellular ageing and how these could lead to potential therapeutic interventions and strategies which could combat the burden of common age-associated disease, such as T2D and CVD.
Collapse
|
14
|
The fetal origins of hypertension: a systematic review and meta-analysis of the evidence from animal experiments of maternal undernutrition. J Hypertens 2013; 30:2255-67. [PMID: 22990358 DOI: 10.1097/hjh.0b013e3283588e0f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Numerous experiments in animals have been performed to investigate the effect of prenatal undernutrition on the development of hypertension in later life, with inconclusive results. We systematically reviewed animal studies examining the effects of maternal undernutrition on SBP, DBP, and mean arterial blood pressure (BP) in offspring. METHODS A search was performed in Medline and Embase to identify articles that reported on maternal undernutrition and hypertension in experimental animal studies. Summary estimates of the effect of undernutrition on SBP, DBP, and mean arterial BP were obtained through meta-analysis. RESULTS Of the 6151 articles identified, 194 were considered eligible after screening titles and abstracts. After detailed evaluation, 101 met the inclusion criteria and were included in the review. Both maternal general and protein undernutrition increased SBP [general undernutrition: 14.5 mmHg, 95% confidence interval (CI) 10.8-18.3; protein undernutrition: 18.9 mmHg, 95% CI 16.1-21.8] and mean arterial BP (general undernutrition: 5.0 mmHg, 95% CI 1.4-8.6; protein undernutrition: 10.5 mmHg, 95% CI 6.7-14.2). There was substantial heterogeneity in the results. DBP was increased by protein undernutrition (9.5 mmHg, 95% CI 2.6-16.3), whereas general undernutrition had no significant effect. CONCLUSION The results of this meta-analysis generally support the view that in animals, maternal undernutrition--both general and protein--results in increased SBP and mean arterial BP. DBP was only increased after protein undernutrition. The results depended strongly on the applied measurement technique and animal model.
Collapse
|
15
|
Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat. PLoS One 2012; 7:e48133. [PMID: 23110188 PMCID: PMC3482177 DOI: 10.1371/journal.pone.0048133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/27/2012] [Indexed: 01/15/2023] Open
Abstract
Poor iron status is a global health issue, affecting two thirds of the world population to some degree. It is a particular problem among pregnant women, in both developed and developing countries. Feeding pregnant rats a diet deficient in iron is associated with both hypertension and reduced nephron endowment in adult male offspring. However, the mechanistic pathway leading from iron deficiency to fetal kidney development remains elusive. This study aimed to establish the underlying processes associated with iron deficiency by assessing gene and protein expression changes in the rat embryo, focussing on the responses occurring at the time of the nutritional insult. Analysis of microarray data showed that iron deficiency in utero resulted in the significant up-regulation of 979 genes and down-regulation of 1545 genes in male rat embryos (d13). Affected processes associated with these genes included the initiation of mitosis, BAD-mediated apoptosis, the assembly of RNA polymerase II preinitiation complexes and WNT signalling. Proteomic analyses highlighted 7 proteins demonstrating significant up-regulation with iron deficiency and the down-regulation of 11 proteins. The main functions of these key proteins included cell proliferation, protein transport and folding, cytoskeletal remodelling and the proteasome complex. In line with our recent work, which identified the perturbation of the proteasome complex as a generalised response to in utero malnutrition, we propose that iron deficiency alone leads to a more specific failure in correct protein folding and transport. Such an imbalance in this delicate quality-control system can lead to cellular dysfunction and apoptosis. Therefore these findings offer an insight into the underlying mechanisms associated with the development of the embryo during conditions of poor iron status, and its health in adult life.
Collapse
|
16
|
Abstract
Epidemiologic studies now strongly support the hypothesis, proposed over two decades ago, that developmental programming of the kidney impacts an individual's risk for hypertension and renal disease in later life. Low birth weight is the strongest current clinical surrogate marker for an adverse intrauterine environment and, based on animal and human studies, is associated with a low nephron number. Other clinical correlates of low nephron number include female gender, short adult stature, small kidney size, and prematurity. Low nephron number in Caucasian and Australian Aboriginal subjects has been shown to be associated with higher blood pressures, and, conversely, hypertension is less prevalent in individuals with higher nephron numbers. In addition to nephron number, other programmed factors associated with the increased risk of hypertension include salt sensitivity, altered expression of renal sodium transporters, altered vascular reactivity, and sympathetic nervous system overactivity. Glomerular volume is universally found to vary inversely with nephron number, suggesting a degree of compensatory hypertrophy and hyperfunction in the setting of a low nephron number. This adaptation may become overwhelmed in the setting of superimposed renal insults, e.g. diabetes mellitus or rapid catch-up growth, leading to the vicious cycle of on-going hyperfiltration, proteinuria, nephron loss and progressive renal functional decline. Many millions of babies are born with low birth weight every year, and hypertension and renal disease prevalences are increasing around the globe. At present, little can be done clinically to augment nephron number; therefore adequate prenatal care and careful postnatal nutrition are crucial to optimize an individual's nephron number during development and potentially to stem the tide of the growing cardiovascular and renal disease epidemics worldwide.
Collapse
Affiliation(s)
- Valerie A. Luyckx
- Associate Professor, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
- To whom correspondence should be addressed. E-mail:
| | - Khuloud Shukha
- Internal Medicine Resident, Mount Auburn Hospital, Cambridge, MA, USA; and
| | - Barry M. Brenner
- Samuel A. Levine Distinguished Professor of Medicine Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Martins VJB, Toledo Florêncio TMM, Grillo LP, Franco MDCP, Martins PA, Clemente APG, Santos CDL, Vieira MDFA, Sawaya AL. Long-lasting effects of undernutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1817-46. [PMID: 21776204 PMCID: PMC3137999 DOI: 10.3390/ijerph8061817] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/12/2011] [Accepted: 05/19/2011] [Indexed: 12/15/2022]
Abstract
Undernutrition is one of the most important public health problems, affecting more than 900 million individuals around the World. It is responsible for the highest mortality rate in children and has long-lasting physiologic effects, including an increased susceptibility to fat accumulation mostly in the central region of the body, lower fat oxidation, lower resting and postprandial energy expenditure, insulin resistance in adulthood, hypertension, dyslipidaemia and a reduced capacity for manual work, among other impairments. Marked changes in the function of the autonomic nervous system have been described in undernourished experimental animals. Some of these effects seem to be epigenetic, passing on to the next generation. Undernutrition in children has been linked to poor mental development and school achievement as well as behavioural abnormalities. However, there is still a debate in the literature regarding whether some of these effects are permanent or reversible. Stunted children who had experienced catch-up growth had verbal vocabulary and quantitative test scores that did not differ from children who were not stunted. Children treated before 6 years of age in day-hospitals and who recovered in weight and height have normal body compositions, bone mineral densities and insulin production and sensitivity.
Collapse
Affiliation(s)
- Vinicius J. B. Martins
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2°andar CEP 04023-060 São Paulo, SP, Brazil; E-Mails: (M.C.P.F.); (A.P.G.C.); (C.D.L.S); (A.L.S.)
| | - Telma M. M. Toledo Florêncio
- Department of Nutrition, Federal University of Alagoas, Rua Hélio Pradines, 225/301 Ponta Verde, CEP 57035-220 Maceió, Alagoas, Brazil; E-Mail:
| | - Luciane P. Grillo
- Professional Masters Program in Health and Work Management, Vale of Itajaí University, Rua Uruguai 458, Bloco 25 B, Sala 402, Centro, CEP 88302-202 Itajaí, SC, Brazil; E-Mail:
| | - Maria do Carmo P. Franco
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2°andar CEP 04023-060 São Paulo, SP, Brazil; E-Mails: (M.C.P.F.); (A.P.G.C.); (C.D.L.S); (A.L.S.)
| | - Paula A. Martins
- Department of Health Sciences, Federal University of São Paulo, Av. Ana Costa, 95 Vila Matias CEP 11060-001, Santos, São Paulo, Brazil; E-Mail:
| | - Ana Paula G. Clemente
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2°andar CEP 04023-060 São Paulo, SP, Brazil; E-Mails: (M.C.P.F.); (A.P.G.C.); (C.D.L.S); (A.L.S.)
| | - Carla D. L. Santos
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2°andar CEP 04023-060 São Paulo, SP, Brazil; E-Mails: (M.C.P.F.); (A.P.G.C.); (C.D.L.S); (A.L.S.)
| | - Maria de Fatima A. Vieira
- Nutrition College, Federal University of Pelotas, Campus Universitário, CP 354, Pelotas, RS, Brazil; E-Mail:
| | - Ana Lydia Sawaya
- Department of Physiology, Federal University of São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2°andar CEP 04023-060 São Paulo, SP, Brazil; E-Mails: (M.C.P.F.); (A.P.G.C.); (C.D.L.S); (A.L.S.)
| |
Collapse
|
18
|
Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C, Tolsa JF, Nicod P, Scherrer U, Sartori C. Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol 2011; 301:H247-52. [PMID: 21536851 DOI: 10.1152/ajpheart.01309.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Collapse
Affiliation(s)
- Emrush Rexhaj
- Dept. of Internal Medicine, BH 10.640, 1011 Lausanne-CHUV, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Varga O, Harangi M, Olsson IAS, Hansen AK. Contribution of animal models to the understanding of the metabolic syndrome: a systematic overview. Obes Rev 2010; 11:792-807. [PMID: 19845867 DOI: 10.1111/j.1467-789x.2009.00667.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolic syndrome (MetS) is one of the most important challenges to public health and biomedical research. Animal models of MetS, such as leptin-deficient obese mice, obese spontaneously hypertensive rats, JCR: LA-cp rats and the Ossabaw and Göttingen minipigs, have contributed to our understanding of the pathophysiological basis and the development of novel therapies. For a complex disease syndrome, no animal model can be expected to serve all needs of research. Although each animal model has limitations and strengths, used together in a complementary fashion, they are essential for research on the MetS and for rapid progress in understanding the aetiology and pathogenesis towards a cure. The purpose of this review is to assess how current animal models contributed to our knowledge of the human MetS, and to systematically evaluate the strengths and weaknesses of the currently available 78 animal models from 11 species.
Collapse
Affiliation(s)
- O Varga
- Laboratory Animal Science group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | | | | | | |
Collapse
|
20
|
Fanos V, Puddu M, Reali A, Atzei A, Zaffanello M. Perinatal nutrient restriction reduces nephron endowment increasing renal morbidity in adulthood: a review. Early Hum Dev 2010; 86 Suppl 1:37-42. [PMID: 20153126 DOI: 10.1016/j.earlhumdev.2010.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Perinatal malnutrition has been included among the causes of renal disease in adulthood. Here, we consider the relationships between early supply of specific nutrients (such as protein, fat, vitamins and electrolytes) and renal endowment. Prenatal and postnatal nutrition mismatch is also discussed. In addition, this article presents the role of nutrition of both mothers and pre-term infants on nephron endowment, with final practical considerations.
Collapse
Affiliation(s)
- V Fanos
- Neonatal Intensive Care Unit, Puericultura Institute and Neonatal Section, University and Azienda Mista of Cagliari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Abundant evidence supports the association between low birth weight (LBW) and renal dysfunction in humans. Anatomic measurements of infants, children, and adults show significant inverse correlation between LBW and nephron number. Nephron numbers are also lower in individuals with hypertension compared with normotension among white and Australian Aboriginal populations. The relationship between nephron number and hypertension among black individuals is still unclear, although the high incidence of LBW predicts low nephron number in this population as well. LBW, a surrogate for low nephron number, also associates with increasing BP from childhood to adulthood and increasing risk for chronic kidney disease in later life. Because nephron numbers can be counted only postmortem, surrogate markers such as birth weight, prematurity, adult height, reduced renal size, and glomerulomegaly are potentially useful for risk stratification, for example, during living-donor assessment. Because early postnatal growth also affects subsequent risk for higher BP or reduced renal function, postnatal nutrition, a potentially modifiable factor, in addition to intrauterine effects, has significant influence on long-term cardiovascular and renal health.
Collapse
Affiliation(s)
- Valerie A Luyckx
- Department of Medicine, HMRC 260, University of Alberta, Edmonton, Canada, T6G 2S2.
| | | |
Collapse
|
22
|
Guan J, Mao C, Xu F, Geng C, Zhu L, Wang A, Xu Z. Prenatal dehydration alters renin-angiotensin system associated with angiotensin-increased blood pressure in young offspring. Hypertens Res 2009; 32:1104-11. [PMID: 19779489 DOI: 10.1038/hr.2009.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The renin-angiotensin system (RAS) has an important role in cardiovascular homeostasis. This study determined the influence of water deprivation during pregnancy on the development of the RAS in rats, and examined blood pressure (BP) in the adolescent offspring. Pregnant rats were water deprived for 3 days at late gestation, and we examined fetal cardiac ultrastructure, as well as heart angiotensin (Ang) II receptor protein and mRNA, liver angiotensinogen and plasma Ang II concentrations. We also tested cardiovascular responses to i.v. Ang II in the young offspring. In utero exposure to maternal water deprivation significantly decreased fetal body and heart weight, and increased fetal plasma sodium and osmolality. Fetal liver angiotensinogen mRNA, plasma Ang I and Ang II concentrations were also increased. Although fetal AT(1a) and AT(1b) receptor mRNA and AT(1) protein were not changed, AT(2) receptor mRNA and protein levels in the heart were significantly increased following maternal dehydration. Prenatal exposure to maternal water deprivation had no effect on baseline BP; however, it significantly increased BP in response to i.v. Ang II infusion, and decreased baroreflex sensitivity in the offspring. In addition, the heart AT(2) receptor mRNA and protein were higher in the offspring exposed to prenatal dehydration. The results of this study demonstrate that prenatal dehydration affected the RAS development associated with an Ang II-increased BP in fetal origin.
Collapse
Affiliation(s)
- Junchang Guan
- Perinatal Biology Center, Soochow University First Affiliated Hospital, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Landgraf MA. Intrauterine undernutrition and inflammation: The story of our work. Nutrition 2009; 25:255-7. [DOI: 10.1016/j.nut.2008.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
|
24
|
Brennan KA, Kaufman S, Reynolds SW, McCook BT, Kan G, Christiaens I, Symonds ME, Olson DM. Differential effects of maternal nutrient restriction through pregnancy on kidney development and later blood pressure control in the resulting offspring. Am J Physiol Regul Integr Comp Physiol 2008; 295:R197-205. [PMID: 18480243 DOI: 10.1152/ajpregu.00741.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms whereby maternal nutritional manipulation through pregnancy result in altered blood pressure in the offspring may include changes in fetal and newborn and adult renal prostaglandin (PG) synthesis, metabolism, and receptor expression. Since the postnatal effects of nutrient restriction on the renal PG synthesis and receptor system during nephrogenesis in conjunction with nephron numbers and blood pressure have not been evaluated in the rat, the present study examined the effect of reducing maternal food intake by 50% of ad libitum through pregnancy on young male rats. Six control-fed mothers and eight nutrient-restricted pregnant rats with single litter mates were used at each sampling time point, most of which occurred during nephrogenesis. Offspring of nutrient-restricted dams were lighter from birth to 3 days. This was accompanied by reduced PGE2, with smaller kidneys up to 14 days. Nutrient restriction also decreased mRNA expression of the PG synthesis enzyme, had little effect on the PG receptors, and increased mRNA expression of the degradation enzyme during nephrogenesis and the glucocorticoid receptor in the adult kidney. These mRNA changes were normally accompanied by similar changes in protein. Nephron number was also reduced from 7 days up to adulthood when blood pressure (measured by telemetry) did not increase as much as in control offspring during the dark, active period. In conclusion, maternal nutrient restriction suppressed renal PG concentrations in the offspring, and this was associated with suppressed kidney growth and development and decreased blood pressure.
Collapse
Affiliation(s)
- K A Brennan
- Centre for Reproduction and Early Life, Institute of Clinical Research, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Evidence from noninvasive ultrasound studies of the neonatal aorta and fetal and early childhood postmortem studies indicates that impaired fetal growth, in utero exposure to maternal hypercholesterolemia, and diabetic macrosomia may all be important risk factors for vascular changes consistent with the earliest physical signs of atherosclerosis. Although the exact mechanisms that underlie these associations remain unclear, animal models have suggested that the use of antioxidant, lipid-lowering, and other innovative therapies may counteract the impact of these intrauterine risk factors for cardiovascular disease. This review summarizes the current evidence for intrauterine factors that have a direct impact on atherosclerosis and provides potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Michael R Skilton
- Human Nutrition Research Centre, Université Claude Bernard, Lyon, France.
| |
Collapse
|
26
|
Thompson JN. Fetal nutrition and adult hypertension, diabetes, obesity, and coronary artery disease. Neonatal Netw 2007; 26:235-40. [PMID: 17710957 DOI: 10.1891/0730-0832.26.4.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fetal-origins-of-adult-disease hypothesis describes an adaptive phenomenon of in utero reprogramming of the undernourished fetus that predisposes the infant to increased morbidity as an adult. Studies have identified a positive association between indicators of fetal undernutrition such as low birth weight and chronic adult diseases like hypertension, diabetes, obesity, and coronary artery disease. Current research is focusing on determining other factors that may contribute to these chronic adult diseases.
Collapse
|
27
|
Johansson S, Norman M, Legnevall L, Dalmaz Y, Lagercrantz H, Vanpée M. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med 2007; 261:480-7. [PMID: 17444887 DOI: 10.1111/j.1365-2796.2007.01776.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low birth weight is associated with cardiovascular disease. The underlying mechanisms are unknown. We hypothesized that perinatal stress alters autonomic regulation of the cardiovascular system. In this study, catecholamines, heart rate (HR) and blood pressure (BP) were measured in healthy children with low birth weight. METHODS This clinical study included 105 children (mean age 9.6 years) in three groups; born at term with normal birth weight (controls, n=37), born at term but small for gestational age (SGA, n=29) and born preterm (Preterm, n=39). Dopamine, adrenaline and noradrenaline were determined in urine. HR and BP were measured at rest, during an orthostatic test and after a mathematical mental stress test. RESULTS Children in the Preterm and SGA groups excreted higher levels of catecholamines when compared with controls. HR (mean [SD] values) were higher at rest and after mental stress in Preterm (at rest 76 [9] and after mental stress 82 [12] min(-1)) and in SGA (79 [8] and 82 [10]) when compared with controls (70 [9] and 75 [9]). HR correlated with urinary catecholamines (r=0.24-0.27, P<0.05). Blood pressures measured at rest, during orthostatic testing and after mental stress did not differ between the groups. CONCLUSIONS Preterm birth and fetal growth restriction are associated with increased sympathoadrenal activity in childhood, as indicated by stress-induced increases in HR and urinary catecholamines. These findings suggest that the cardiovascular control is differently programmed in these children with possibly higher risk of developing hypertension in adulthood.
Collapse
Affiliation(s)
- S Johansson
- Department of Woman & Child Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Brennan KA, Olson DM, Symonds ME. Maternal nutrient restriction alters renal development and blood pressure regulation of the offspring. Proc Nutr Soc 2007; 65:116-24. [PMID: 16441951 DOI: 10.1079/pns2005484] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies have shown that the risk of hypertension in adulthood can be affected by the in utero environment. It is established that hypertension is linked to compromised kidney function and that factors affecting organogenesis can increase the risk of later disease. Prostaglandins (PG) and growth factors are known to play an important role in regulating kidney function and renal organogenesis. The extent, however, to which global energy restriction (where all nutrients are reduced) of the mother can programme later blood pressure control or renal PG and growth factor status is unknown. A study is described that aimed to examine the long-term effects of maternal nutrient restriction (NR) and elucidate their relationship with compromised kidney development. First, it was necessary to establish animal models. A sheep model of 50% NR during specific stages of gestation was used to investigate fetal renal development, whilst a rat model of 50% NR throughout pregnancy was used to investigate postnatal kidney development and adult functioning. Molecular analysis has shown that expression of the growth hormone–insulin-like growth factor (GH–IGF) axis is affected by NR in the fetal sheep kidneys, and that changes are dependent on the timing of NR and whether the fetus is a singleton or a twin. Analysis of the kidneys from the rat model has shown nutritional differences in the expression of PG receptors and the enzymes responsible for PG synthesis and degradation that persist into adulthood. In conclusion, NR does affect the GH–IGF and PG axes, and these changes may be important in the nutritional programming of renal functioning and adult blood pressure control.
Collapse
Affiliation(s)
- Kathryn A Brennan
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
29
|
Landgraf MA, Tostes RDCA, Borelli P, Zorn TMT, Nigro D, Carvalho MHC, Fortes ZB. Mechanisms involved in the reduced leukocyte migration in intrauterine undernourishment. Nutrition 2007; 23:145-56. [PMID: 17150330 DOI: 10.1016/j.nut.2006.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 08/05/2006] [Accepted: 08/10/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We investigated factors that may be involved in the reduced leukocyte migration observed in intrauterine undernourished rats. METHODS Male Wistar rat offspring (8-9 wk of age) of dams fed during pregnancy with 50% less food than control dams were used to measure L-selectin expression (by flow cytometry), bone marrow cell count, blood cell count, laminin and type IV collagen in the basal membrane of venules of the spermatic fascia (by immunohistochemistry), total protein level and serum albumin, and the production of leukotriene B4 after stimulation with tumor necrosis factor-alpha and corticosterone plasma levels (by enzyme-linked immunosorbent assay). RESULTS Hypocellularity in bone marrow and peripheral blood and reduced L-selectin expression were found in the undernourished rat offspring (UR) compared with nourished offspring (NR; P < 0.05). Type IV collagen in the basal membrane of the venules of the spermatic fascia was less in UR than in NR (P < 0.05). The total protein levels and serum albumin did not differ between the two groups. Leukotriene B4 production after stimulation with tumor necrosis factor-alpha was lower in UR (P < 0.05). These differences could not be attributed to circulating glucocorticoids levels, which were not different in the NR and UR groups. CONCLUSION Our data suggest that all observed differences contribute to reduced leukocyte migration in undernourishment.
Collapse
Affiliation(s)
- Maristella A Landgraf
- Laboratory of Hypertension and Inflammation, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J 2006; 47:73-82. [PMID: 16391433 DOI: 10.1093/ilar.47.1.73] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human epidemiological and animal laboratory studies show that suboptimal environments in the womb and during early neonatal life alter development and predispose the individual to lifelong health problems. The concept of the developmental origins of adult diseases has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures such as nutrient restriction, overfeeding during pregnancy, maternal stress, and exogenously administered glucocorticoids. This review focuses on the use of animal models to evaluate exposures, mechanisms, and outcomes involved in developmental programming of hypertension, diabetes, obesity, and altered pituitary-adrenal function in offspring in later life. Ten principles of developmental programming are described as fundamental, regardless of the exposure during development and the physiological system involved in the altered outcome. The 10 principles are discussed in the context of the physiological systems involved and the animal model studies that have been conducted to evaluate exposures, mechanisms, and outcomes. For example, the fetus responds to challenges such as hypoxia and nutrient restriction in ways that help to ensure its survival, but this "developmental plasticity" may have long-term consequences that may not be beneficial in adult life. To understand developmental programming, which represents the interaction of nature and nurture, it is necessary to integrate whole animal systems physiology, in vitro cellular biology, and genomic and proteomic approaches, and to use animal models that are carefully characterized and appropriate for the questions under study. Animal models play an important role in this evaluation because they permit combined in vivo and in vitro study at different critical time windows during the exposure and the ensuing developmental responses.
Collapse
Affiliation(s)
- Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, Medical School, San Antonio, TX, USA
| |
Collapse
|
31
|
Skilton MR, Gosby AK, Wu BJ, Ho LML, Stocker R, Caterson ID, Celermajer DS. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin Sci (Lond) 2006; 111:281-7. [PMID: 16734588 DOI: 10.1042/cs20060036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological studies suggest a link between fetal/early infant nutrition and adult coronary artery disease. In the present study, we examined the effects of altering nutrition during gestation, lactation and juvenile life on aortic structure and function in rats. Wistar rat dams were fed either a control or low-protein diet throughout pregnancy, or a low-protein diet for the final 7 days of gestation only. At 21 days post-partum, male pups were weaned on to a control, low-protein or high-fat diet. At 12 weeks, the offspring rats were killed. In 46 rats, aortic sections were mounted and stained to assess media thickness and elastin content. In a further 38 rats, aortic rings were suspended in an organ bath and vascular reactivity was tested with dose–response curves to the endothelium-dependent dilator acetylcholine and the endothelium-independent dilator sodium nitroprusside. Rats exposed to maternal protein restriction while in utero had a significantly decreased aortic wall thickness compared with control rats (P=0.005). Total elastin content of the aorta was also decreased by both maternal low-protein (P=0.02) and early postnatal low-protein (P=0.01) diets. Neither maternal nor postnatal low-protein or high-fat diets, however, resulted in any significant changes in arterial dilator function. In conclusion, fetal undernutrition in rats, induced via a maternal low-protein diet, causes a decrease in aortic wall thickness and elastin content without altering aortic dilator function. These changes in vascular structure may amplify aging-related changes to the vasculature and contribute to the pathophysiology of the putative link between impaired fetal growth and adult cardiovascular disease.
Collapse
Affiliation(s)
- Michael R Skilton
- Department of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 2004; 561:355-77. [PMID: 15459241 PMCID: PMC1665360 DOI: 10.1113/jphysiol.2004.072009] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/28/2004] [Indexed: 12/24/2022] Open
Abstract
The incidence of the metabolic syndrome, a cluster of abnormalities focusing on insulin resistance and associated with high risk for cardiovascular disease and diabetes, is reaching epidemic proportions. Prevalent in both developed and developing countries, the metabolic syndrome has largely been attributed to altered dietary and lifestyle factors that favour the development of central obesity. However, population-based studies have suggested that predisposition to the metabolic syndrome may be acquired very early in development through inappropriate fetal or neonatal nutrition. Further evidence for developmental programming of the metabolic syndrome has now been suggested by animal studies in which the fetal environment has been manipulated through altered maternal dietary intake or modification of uterine artery blood flow. This review examines these studies and assesses whether the metabolic syndrome can be reliably induced by the interventions made. The validity of the different species, diets, feeding regimes and end-point measures used is also discussed.
Collapse
Affiliation(s)
- James A Armitage
- Maternal and Fetal Research Unit, Department of Women's Health, Guy's, King's and St Thomas' School of Medicine, King's College London, UK.
| | | | | | | | | |
Collapse
|
33
|
Veerareddy S, Campbell ME, Williams SJ, Baker PN, Davidge ST. Myogenic reactivity is enhanced in rat radial uterine arteries in a model of maternal undernutrition. Am J Obstet Gynecol 2004; 191:334-9. [PMID: 15295388 DOI: 10.1016/j.ajog.2003.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The purpose of this study was to determine if maternal undernutrition during pregnancy altered myogenic tone in small radial uterine arteries. STUDY DESIGN Myogenic tone of radial uterine arteries was studied from late pregnant rats (day 20) that were fed either ad libitum or globally restricted diet (moderately severe dietary restriction) throughout pregnancy. RESULTS Myogenic tone was enhanced in the radial uterine arteries from the diet-restricted compared with the ad libitum group. Nitric oxide synthase inhibition enhanced myogenic tone in the arteries from the ad libitum group only. Prostaglandin H synthase inhibition had no effect on myogenic tone in either group. CONCLUSION Diet restriction during pregnancy enhances myogenic tone in the radial uterine arteries partly as a result of impairment of the nitric oxide synthase pathway. Enhanced myogenic tone in turn may reduce uteroplacental blood flow and, thus, contribute to reduced birth weight, and lead to effects of fetal programming in utero that can have long-term consequences into adulthood.
Collapse
Affiliation(s)
- Sukrutha Veerareddy
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|