1
|
Zhou J. Construction of enhanced MRI-based radiomics models using machine learning algorithms for non-invasive prediction of IL7R expression in high-grade gliomas and its prognostic value in clinical practice. J Transl Med 2025; 23:383. [PMID: 40165301 PMCID: PMC11959755 DOI: 10.1186/s12967-025-06402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND High-grade gliomas are among the most aggressive and deadly brain tumors, highlighting the critical need for improved prognostic markers and predictive models. Recent studies have identified the expression of IL7R as a significant risk factor that affects the prognosis of patients diagnosed with high-grade gliomas (HGG). This research focuses on investigating the prognostic significance of Interleukin 7 Receptor (IL7R) expression and aims to develop a noninvasive predictive model based on radiomics for HGG. METHODS We conducted an analysis using data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), focusing on a group of 310 patients diagnosed with high-grade gliomas. To evaluate prognosis, we applied both univariate and multivariate Cox regression analyses alongside Kaplan-Meier survival analysis. Radiomics features were extracted from specific regions of interest, which were outlined by two physicians using 3D Slicer software. For selecting the most relevant features, we utilized the Minimum Redundancy Maximum Relevance (mRMR) and Recursive Feature Elimination (RFE) algorithms. Following this, we developed and assessed Support Vector Machine (SVM) and Logistic Regression (LR) models, measuring their performance through various metrics such as accuracy, specificity, sensitivity, positive predictive value, calibration curves, the Hosmer-Lemeshow goodness-of-fit test, decision curve analysis (DCA), and Kaplan-Meier survival analysis. RESULTS The survival analysis encompassed a total of 310 patients diagnosed with high-grade glioma, sourced from the TCGA database. Patients were stratified into high and low expression groups based on the levels of IL7R expression. Kaplan-Meier survival curves and Cox regression analysis revealed that an increase in IL7R expression correlated with a decline in overall survival (OS). The median Intraclass Correlation Coefficient (ICC) for the assessed radiomic features was determined to be 0.869, with 93 features exhibiting an ICC of 0.75 or greater. Utilizing the mRMR and RFE methodologies led to the identification of a final set comprising eight features. The Support Vector Machine (SVM) model recorded an Area Under the Curve (AUC) value of 0.805, whereas the AUC derived from fivefold cross-validation was noted to be 0.768. Conversely, the Logistic Regression (LR) model produced an AUC of 0.85, with an internal fivefold cross-validation AUC of 0.779, indicating a more robust predictive capability. We developed Support Vector Machine (SVM) and Logistic Regression (LR) models, with the LR model demonstrating a more robust predictive capability. Further Kaplan-Meier analysis underscored a significant association between elevated risk scores from the LR model and OS malignancy, with a P value of less than 0.001. GSVA analysis showed the enrichment pathway of KEGG and Hallmark genes in the high RS group. Moreover, expression levels of the LOX gene and the infiltration of M0 macrophages were significantly heightened in the high-risk score group, alongside an increase in tumor mutation burden (TMB). Interestingly, the mutation frequencies of TP53 and PIK3CA were found to be lower in the high-risk score group when compared to their low-risk counterparts. CONCLUSION IL7R expression is a vital prognostic marker in high-grade gliomas. The radiomics-based LR models demonstrate strong predictive capabilities for patient outcomes. Future investigations should aim to incorporate these insights into clinical practice to enhance personalized treatment approaches for patients with high-grade glioma.
Collapse
Affiliation(s)
- Jie Zhou
- Shenzhen Hospital (Longgang), Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
4
|
Han P, Zhang W, Wang D, Wu Y, Li X, Zhao S, Zhu M. Comparative transcriptome analysis of T lymphocyte subpopulations and identification of critical regulators defining porcine thymocyte identity. Front Immunol 2024; 15:1339787. [PMID: 38384475 PMCID: PMC10879363 DOI: 10.3389/fimmu.2024.1339787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.
Collapse
Affiliation(s)
- Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kohal R, Bisht P, Gupta GD, Verma SK. Targeting JAK2/STAT3 for the treatment of cancer: A review on recent advancements in molecular development using structural analysis and SAR investigations. Bioorg Chem 2024; 143:107095. [PMID: 38211548 DOI: 10.1016/j.bioorg.2023.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Cancer is indeed considered a hazardous and potentially life-threatening disorder. The JAK/STAT pathway is an important intracellular signaling cascade essential for many physiological functions, such as immune response, cell proliferation, and differentiation. Dysregulation of this pathway aids in the progression and development of cancer. The downstream JAK2/STAT3 signaling cascades are legitimate targets against which newer anticancer drugs can be developed to prevent and treat cancer. Understanding the mechanisms behind JAK2/STAT3 participation in cancer has paved the way for developing innovative targeted medicines with the potential to improve cancer treatment outcomes. This article provides information on the current scenario and recent advancements in the design and development of anticancer drugs targeting JAK2/STAT3, including structural analysis and SAR investigations of synthesized molecules. Numerous preclinical and clinical trials are ongoing on these inhibitors, which are highlighted to gain more insight into the broader development prospects of inhibitors of JAK2/STAT3.
Collapse
Affiliation(s)
- Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Priya Bisht
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India.
| |
Collapse
|
6
|
Wood-Trageser MA, Lesniak D, Gambella A, Golnoski K, Feng S, Bucuvalas J, Sanchez-Fueyo A, Demetris AJ. Next-generation pathology detection of T cell-antigen-presenting cell immune synapses in human liver allografts. Hepatology 2023; 77:355-366. [PMID: 35819312 PMCID: PMC9834436 DOI: 10.1002/hep.32666] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS In otherwise near-normal appearing biopsies by routine light microscopy, next-generation pathology (NGP) detected close pairings (immune pairs; iPAIRs) between lymphocytes and antigen-presenting cells (APCs) that predicted immunosuppression weaning failure in pediatric liver transplant (LTx) recipients (Immunosuppression Withdrawal for Stable Pediatric Liver Transplant Recipients [iWITH], NCT01638559). We hypothesized that NGP-detected iPAIRs enrich for true immune synapses, as determined by nuclear shape metrics, intercellular distances, and supramolecular activation complex (SMAC) formation. APPROACH AND RESULTS Intralobular iPAIRs (CD45 high lymphocyte-major histocompatibility complex II + APC pairs; n = 1167, training set) were identified at low resolution from multiplex immunohistochemistry-stained liver biopsy slides from several multicenter LTx immunosuppression titration clinical trials (iWITH; NCT02474199 (Donor Alloantigen Reactive Tregs (darTregs) for Calcineurin Inhibitor (CNI) Reduction (ARTEMIS); Prospective Longitudinal Study of iWITH Screen Failures Secondary to Histopathology). After excluding complex multicellular aggregates, high-resolution imaging was used to examine immune synapse formation ( n = 998). By enriching for close intranuclear lymphocyte-APC distance (mean: 0.713 μm) and lymphocyte nuclear flattening (mean ferret diameter: 2.1), SMAC formation was detected in 29% of iPAIR-engaged versus 9.5% of unpaired lymphocytes. Integration of these morphometrics enhanced NGP detection of immune synapses (ai-iSYN). Using iWITH preweaning biopsies from eligible patients ( n = 53; 18 tolerant, 35 nontolerant; testing set), ai-iSYN accurately predicted (87.3% accuracy vs. 81.4% for iPAIRs; 100% sensitivity, 75% specificity) immunosuppression weaning failure. This confirmed the presence and importance of intralobular immune synapse formation in liver allografts. Stratification of biopsy mRNA expression data by immune synapse quantity yielded the top 20 genes involved in T cell activation and immune synapse formation and stability. CONCLUSIONS NGP-detected immune synapses (subpathological rejection) in LTx patients prior to immunosuppression reduction suggests that NGP-detected (allo)immune activity usefulness for titration of immunosuppressive therapy in various settings.
Collapse
Affiliation(s)
- Michelle A Wood-Trageser
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Drew Lesniak
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Alessandro Gambella
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
- Pathology Unit, Department of Medical Sciences , University of Turin , Torino , Italy
| | - Kayla Golnoski
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Sandy Feng
- Division of Transplantation, Department of Surgery , University of California San Francisco , San Francisco , California , USA
| | - John Bucuvalas
- Mount Sinai Kravis Children's Hospital and Recanati/Miller Transplantation Institute , Mount Sinai Health System , New York , New York , USA
| | | | - A Jake Demetris
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
7
|
Wang X, He A, Yip KC, Liu X, Li R. Diagnostic signature and immune characteristic of aging-related genes from placentas in Preeclampsia. Clin Exp Hypertens 2022; 44:1-8. [PMID: 36218052 DOI: 10.1080/10641963.2022.2130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a serious pregnancy syndrome. Advanced maternal age (≥ 35 years old) is one of the major risk factors of PE and placental aging is considered to be related to this disease. However, the mechanisms underlying these phenomena remain obscured. METHODS Gene expression profiles of PE and non-PE placental samples were curated from the GSE75010 dataset. A diagnostic model was constructed and immune characteristics of PE subtypes were estimated. RESULTS A total of 58 aging-related genes, which may be associated with PE, were identified. Among them, LEP and FLT1 may be key aging-related genes. Based on 5 top genes (PIK3CB, FLT1, LEP, PIK3R1, CSNK1E), a diagnostic nomogram for PE was built (AUC = 0.872 in the GSE75010 dataset). Three molecular subtypes were clustered, which had different immune and angiogenesis characteristics. CONCLUSION The present study suggests the potential implications of aging-related genes in diagnosing PE. Diverse immune characteristics may be involved in the placental aging of PE.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoting Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Cheng Y, Cao X, Zhang J, Chen D, Zhu J, Xu L, Qin L. Dysregulated lncRNAs are Involved in the Progress of Sepsis by Constructing Regulatory Networks in Whole Blood Cells. Front Pharmacol 2021; 12:678256. [PMID: 34483898 PMCID: PMC8416166 DOI: 10.3389/fphar.2021.678256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a highly heterogeneous syndrome that is caused by an unbalanced host response to an infection. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in a variety of biological processes, and became potential biomarkers and therapeutic targets for diverse diseases. However, current understanding on the roles of lncRNAs in sepsis is extremely limited. Herein, to decipher the underlying functions of lncRNAs, we reexplored the 83 transcriptome datasets from specimens with sepsis, no_sepsis by final diagnosis, and control. The results of differentially expressed genes (DEGs), differentially expressed lncRNA (DElncRNA) analysis, and co-expression analysis of lncRNA–mRNA pairs were obtained. We found that the expression pattern of lncRNAs was significantly activated in sepsis specimens, which was clearly distinguished in sepsis from no_sepsis and control specimens. By performing co-expression analysis, we found DElncRNAs were closely related to T-cell activation and immune response–related terms in sepsis by regulating mRNA expression in the trans manner. The lncRNA–mRNA network and the qRT-PCR test revealed that lncRNAs LINC00861, RP11-284N8.3, and CTB-61M7.2 were significantly correlated with the pathogenesis of sepsis. In addition, weighted gene co-expression analysis (WGCNA) and cis-regulation analysis also revealed sepsis-specific lncRNAs were highly associated with important biological processes correlated with sepsis. In summary, the systematic dysregulation of lncRNAs is tightly involved in the remodeling of gene expression regulatory network in sepsis, and the lncRNA–mRNA expression network may be used to refine biomarker predictions for developing novel therapeutic approaches in sepsis.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jiange Zhang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, China
| | - Juan Zhu
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijun Xu
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
9
|
Hsieh EW, Hernandez JD. Clean up by aisle 2: roles for IL-2 receptors in host defense and tolerance. Curr Opin Immunol 2021; 72:298-308. [PMID: 34479098 DOI: 10.1016/j.coi.2021.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
Although IL-2 was first recognized as growth factor for T cells, it is now also appreciated to be a key regulator of T cells through its effects on regulatory T cells (Treg). The IL-2 receptor (IL-2R) subunits' different (i) ligand affinities, (ii) dimerization or trimerization relationships with other cytokine subunits, (iii) expression across multiple cell types, and (iv) downstream signaling effects, largely dictate cellular tolerance and antimicrobial processes. Defects in IL-2Rγ result in profound and almost universally fatal immune deficiency, unless treated with hematopoietic stem cell transplantation (HSCT). Defects in IL-2Rα and IL-2Rβ result in more limited infection susceptibility, particularly to herpesviruses. However, the most prominent clinical symptomatology for IL-2Rα and IL-2Rβ defects include multi-organ autoimmunity and inflammation, consistent with the critical role of IL-2 in establishing and maintaining immune tolerance. Here, we review how we have arrived at our current understanding of the complex roles of IL-2/2R in host defense and tolerance focusing on the insights gained from human clinical immunology.
Collapse
Affiliation(s)
- Elena Wy Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children's Hospital Colorado, United States; Department of Immunology and Microbiology, School of Medicine, University of Colorado, United States.
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Stanford University, Lucile Packard Children's Hospital, United States
| |
Collapse
|
10
|
Tian W, Jiang SY, Jiang X, Tamosiuniene R, Kim D, Guan T, Arsalane S, Pasupneti S, Voelkel NF, Tang Q, Nicolls MR. The Role of Regulatory T Cells in Pulmonary Arterial Hypertension. Front Immunol 2021; 12:684657. [PMID: 34489935 PMCID: PMC8418274 DOI: 10.3389/fimmu.2021.684657] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, incurable condition characterized by pulmonary vascular remodeling, perivascular inflammation, and right heart failure. Regulatory T cells (Tregs) stave off autoimmunity, and there is increasing evidence for their compromised activity in the inflammatory milieu of PAH. Abnormal Treg function is strongly correlated with a predisposition to PAH in animals and patients. Athymic Treg-depleted rats treated with SU5416, an agent causing pulmonary vascular injury, develop PAH, which is prevented by infusing missing CD4+CD25highFOXP3+ Tregs. Abnormal Treg activity may also explain why PAH disproportionately affects women more than men. This mini review focuses on the role of Tregs in PAH with a special view to sexual dimorphism and the future promise of Treg therapy.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shirley Y. Jiang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rasa Tamosiuniene
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Dongeon Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Siham Arsalane
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shravani Pasupneti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Norbert F. Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark R. Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Malvagia S, Funghini S, Della Bona M, Ombrone D, Mura M, Damiano R, Ricci S, Cortimiglia M, Azzari C, la Marca G. The successful inclusion of ADA SCID in Tuscany expanded newborn screening program. Clin Chem Lab Med 2021; 59:e401-e404. [PMID: 33951760 DOI: 10.1515/cclm-2021-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Sabrina Malvagia
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Silvia Funghini
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Maria Della Bona
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Daniela Ombrone
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Massimo Mura
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Roberta Damiano
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Silvia Ricci
- Immunology Unit, Meyer Children's University Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Chiara Azzari
- Immunology Unit, Meyer Children's University Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Cummings L, Tucker M, Gibson M, Myers A, Pastinen T, Johnston J, Farrow E, Sampath V. Rare Genetic Variants in Immune Genes and Neonatal Herpes Simplex Viral Infections. Pediatrics 2021; 147:peds.2020-0687. [PMID: 33386334 DOI: 10.1542/peds.2020-0687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 11/24/2022] Open
Abstract
Neonatal herpes simplex virus (HSV) infection is a devastating disease with high mortality, particularly when disseminated. Studies in adults and children suggest that susceptibility to herpes simplex encephalitis (HSE) may represent phenotypes for inborn errors in toll-like receptor 3 (TLR3) signaling. However, the genetic basis of susceptibility to neonatal HSV including disseminated disease remains unknown. To test the hypothesis that variants in known HSE-susceptible genes as well as genes mediating HSV immunity will be identified in neonatal HSV, we performed an unbiased exome sequencing study in 10 newborns with disseminated, HSE, and skin, eyes, and mouth disease. Determination of potential impact on function was determined by following American College of Medical Genetics and Genomics guidelines. We identified deleterious and potentially deleterious, rare variants in known HSE-related genes including a stop IRF3 variant (disseminated), nonsynonymous variants in TLR3 and TRAF3 (HSE), STAT1 (skin, eyes, and mouth), and DBR1 (disseminated) in our cohort. Novel and rare variants in other immunodeficiency genes or HSV-related immune genes GRB2, RAG2, PRF1, C6, C7, and MSR1 were found in 4 infants. The variant in GRB2, essential for T-lymphocyte cell responses to HSV, is a novel stop variant not found in public databases. In this pilot study, we identified deleterious or potentially deleterious variants in TLR3 pathway and genes that regulate anti-HSV immunity in neonates with HSV including disseminated disease. Larger, definitive studies incorporating functional analysis of genetic variants are required to validate these data and determine the role of immune genetic variants in neonatal HSV susceptibility.
Collapse
Affiliation(s)
| | | | - Margaret Gibson
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | | | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | - Jeffrey Johnston
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | | |
Collapse
|
13
|
Patrakeeva VP, Dobrodeeva LK. Lymphopenia and lymphocytosis in practical healthy people born and living in the North. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:320-324. [PMID: 32415758 PMCID: PMC7416049 DOI: 10.1002/iid3.308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Introduction The purpose of this study was to elucidate the mechanisms of the formation of lymphopenia and lymphocytosis in healthy people, who are living and working in the Arctic region. Materials and Methods A total of 88 practically healthy people living and working in the Arctic region were examined. An analysis of the results was carried out, depending on the concentration of lymphocytes in the peripheral venous blood: group 1—with lymphopenia, the content of lymphocytes below 1.5 × 109cl/L (21 people); group 2—with a normal lymphocyte content from 1.5 to 3.5 × 109cl/L (47 people); and group 3—with lymphocytosis, lymphocytes in the peripheral blood of more than 3.5 × 109cl/L (20 people). Results It has been established that the main mechanism for the formation of lymphopenia in a person living in the Arctic is the activation of the migration of functionally active lymphocytes in the tissue. The decrease in the number of circulating lymphocytes is a consequence of their redistribution from the circulating pool to the marginal one and an increase in the activity of adhesive molecules, in particular, the selectin ligand. It was revealed that an increase in the content of lymphocytes in the blood occurs upon the activation of the intracellular energy‐intensive mechanisms of lymphoproliferation with an increase in the consumption of intracellular ATP and the participation of the nuclear factor of activated T cells 1. It was shown that the restoration of the circulating pool of mature neutrophils is ensured by the principle of reverse regulation in response to neutropenia by stimulating granulocyte‐colony stimulating factor granulopoiesis. Conclusions The main mechanism for the formation of lymphopenia and lymphocytosis in healthy people was established.
Collapse
Affiliation(s)
- Veronika P Patrakeeva
- N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Institute of Environmental Physiology, Department of Environmental Immunology, Arkhangelsk, Russian Federation
| | - Liliya K Dobrodeeva
- N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Institute of Environmental Physiology, Department of Environmental Immunology, Arkhangelsk, Russian Federation
| |
Collapse
|
14
|
Liao CY, Yu HW, Cheng CN, Chen JS, Lin CW, Chen PC, Shieh CC. A novel pathogenic mutation on Interleukin-7 receptor leading to severe combined immunodeficiency identified with newborn screening and whole exome sequencing. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:99-105. [DOI: 10.1016/j.jmii.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/25/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|
15
|
Li J, Li J, Li J, Yao H, Liu F, Gusella JF, Shi X, Chen X. A rare case of acquired immunodeficiency associated with myelodysplastic syndrome. Mol Genet Genomic Med 2019; 7:e923. [PMID: 31503426 PMCID: PMC6825869 DOI: 10.1002/mgg3.923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pediatric myelodysplastic syndromes (MDS) display clonal genomic instability that can lead to acquisition of other hematological disorders, usually by loss of heterozygosity. Immunodeficiency caused by uniparental disomy (UPD) has not previously been reported. METHODS We investigated a 13-year-old boy who suffered from recurrent infections and pancytopenia for 1 year. Both the comet assay and chromosome breakage analysis were normal, but the bone marrow showed evidence of dysplasia characteristic of MDS. With his normal sister as donor, he underwent failed hematopoietic stem cell transplantation (HSCT) with reduced intensity conditioning (RIC) followed by successful HSCT with myeloablative conditioning (MAC). We used single nucleotide polymorphism (SNP) array, targeted gene panel, and whole exome sequencing to investigate the etiology of his disease. RESULTS The molecular analyses revealed multiple regions of homozygosity, one region encompassing a homozygous missense variant of recombination activating gene 1 (RAG1) which was previously associated with severe immunodeficiency in infancy. This RAG1 mutation was heterozygous in the proband's fingernail DNA, but was changed to homozygous in the proband's marrow by somatic acquisition of UPD event. No other pathogenic driver mutation for MDS-related genes was identified. CONCLUSION The hematological phenotype, somatic genomic instability, and response to HSCT MAC but not HSCT RIC deduced to a diagnosis of MDS type refractory cytopenia of children in this patient. His immunodeficiency was secondary to MDS due to somatic acquisition of homozygosity for known pathogenic RAG1 mutation.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of HematologyAffiliated Children’s Hospital of Capital Institute of PediatricsBeijingChina
| | - Junhui Li
- Department of HematologyAffiliated Children’s Hospital of Capital Institute of PediatricsBeijingChina
| | - Jianguo Li
- Department of RheumatologyAffiliated Children’s Hospital of Capital Institute of PediatricsBeijingChina
| | - Hailan Yao
- Department of Molecular ImmunologyCapital Institute of PediatricsBeijingChina
| | - Fang Liu
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijingChina
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Xiaodong Shi
- Department of HematologyAffiliated Children’s Hospital of Capital Institute of PediatricsBeijingChina
| | - Xiaoli Chen
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijingChina
| |
Collapse
|
16
|
HUANG S, ZHAO Z. [Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:351-357. [PMID: 31901036 PMCID: PMC8800792 DOI: 10.3785/j.issn.1008-9292.2019.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Severe combined immunodeficiency disease (SCID) is a group of rare congenital diseases characterized by severe deficiencies in T lymphocyte counts and/or function. The recurrent, persistent and severe infections are its clinical manifestations. Neonatal screening and immune system reconstruction would improve the prognosis of SCID children. Newborn screening programs based on T-cell receptor excision circles (TRECs) quantitative detection have been carried out in clinical practice, however, the methods still have some limitations. Other new methods such as mass spectrometry and T lymphocyte-specific biomarker assays are still under investigation. Hematopoietic stem cell transplantation and gene therapy are the two main methods for reconstructing immune function in SCID children. Through improving the success rate of transplantation and the long-term safety and stability of viral vectors, some achievements have been made by many centers already. However, large-scale prospective studies are needed for evaluation of the long-term efficacy. In this article, the recent progress in newborn screening and immune reconstitution of SCID is reviewed.
Collapse
Affiliation(s)
| | - Zhengyan ZHAO
- 赵正言(1953—), 男, 硕士, 教授, 博士生导师, 主要从事遗传代谢病和儿童保健学研究; E-mail:
;
https://orcid.org/0000-0001-8626-2578
| |
Collapse
|
17
|
Bandari AK, Bhat S, Archana MV, Yadavalli S, Patel K, Rajagopalan P, Madugundu AK, Madkaikar M, Reddy K, Muthusamy B, Pandey A. Family-Based Next-Generation Sequencing Study Identifies an IL2RG Variant in an Infant with Primary Immunodeficiency. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:285-290. [PMID: 31100039 PMCID: PMC6534087 DOI: 10.1089/omi.2018.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Primary immunodeficiencies (PIDs) are a rare and heterogeneous group of inherited genetic disorders that are characterized by an absent or impaired immune system. In this report, we describe the use of next-generation sequencing to investigate a male infant with clinical and immunological manifestations suggestive of a PID. Whole-exome sequencing of the infant along with his parents revealed a novel nucleotide variant (cytosine to adenine substitution at nucleotide position 252) in the coding region of the interleukin 2 receptor subunit gamma (IL2RG) gene. The mother was found to be a carrier. These findings are consistent with a diagnosis of X-linked severe combined immunodeficiency and represent the first such reported mutation in an Indian family. This mutation leads to an asparagine to lysine substitution (p.Asn84Lys) located in the extracellular domain of IL2RG, which is predicted to be pathogenic. Our study demonstrates the power of next-generation sequencing in identifying potential causative mutations to enable accurate clinical diagnosis, prenatal screening, and carrier female detection in PID patients. We believe that this approach, which is not a current routine in clinical practice, will become a mainstream component of individualized medicine in the near future.
Collapse
Affiliation(s)
- Aravind K Bandari
- 1 Institute of Bioinformatics, Bangalore, India.,2 Manipal Academy of Higher Education, Manipal, Karnataka, India.,3 Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sunil Bhat
- 4 Pediatric Hematology, Oncology and Bone Marrow Transplant, Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, India
| | - M V Archana
- 4 Pediatric Hematology, Oncology and Bone Marrow Transplant, Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, India
| | | | - Krishna Patel
- 1 Institute of Bioinformatics, Bangalore, India.,5 Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Anil K Madugundu
- 1 Institute of Bioinformatics, Bangalore, India.,2 Manipal Academy of Higher Education, Manipal, Karnataka, India.,3 Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,6 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,7 Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Manisha Madkaikar
- 8 National Institute of Immunohaematology, KEM Hospital Campus, Mumbai, India
| | | | - Babylakshmi Muthusamy
- 1 Institute of Bioinformatics, Bangalore, India.,2 Manipal Academy of Higher Education, Manipal, Karnataka, India.,3 Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Akhilesh Pandey
- 3 Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,6 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,7 Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY.,New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| |
Collapse
|
19
|
Gernez Y, Baker MG, Maglione PJ. Humoral immunodeficiencies: conferred risk of infections and benefits of immunoglobulin replacement therapy. Transfusion 2019; 58 Suppl 3:3056-3064. [PMID: 30536429 PMCID: PMC6939302 DOI: 10.1111/trf.15020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Primary immunodeficiency (PID) diseases result from genetic defects of the immune system that increase a patient's susceptibility to infections. The types of infections that occur in patients with PID diseases are dictated largely by the nature of the immunodeficiency, which can be defined by dysfunction of cellular or humoral defenses. An increasing number of PID diseases, including those with both cellular and humoral defects, have antibody deficiency as a major feature, and as a result can benefit from immunoglobulin replacement therapy. In fact, the most common PID diseases worldwide are antibody deficiencies and include common variable immunodeficiency, congenital agammaglobulinemia, hyper‐IgM syndrome, specific antibody deficiency, and Good syndrome. Although immunoglobulin replacement therapy is the cornerstone of treatment for the majority of these conditions, a thorough understanding of the specific infections for which these patients are at increased risk can hasten diagnosis and guide additional therapies. Moreover, the infection trends in some patients with PID disease who have profound defects of cellular immunity, such as autosomal‐dominant hyper‐IgE syndrome (Job/Buckley syndrome) or dedicator of cytokinesis 8 (DOCK8) deficiency, suggest that select patients might benefit from immunoglobulin replacement therapy even if their immunodeficiency is not limited to antibody defects. In this review, we provide an overview of the predisposition to infections seen in PID disease that may benefit from immunoglobulin replacement therapy.
Collapse
Affiliation(s)
- Yael Gernez
- Division of Allergy and Immunology, Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Mary Grace Baker
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Illig D, Navratil M, Kelečić J, Conca R, Hojsak I, Jadrešin O, Ćorić M, Vuković J, Rohlfs M, Hollizeck S, Bohne J, Klein C, Kotlarz D. Alternative Splicing Rescues Loss of Common Gamma Chain Function and Results in IL-21R-like Deficiency. J Clin Immunol 2019; 39:207-215. [PMID: 30903457 DOI: 10.1007/s10875-019-00606-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/25/2019] [Indexed: 11/27/2022]
Abstract
Inborn errors in interleukin 2 receptor, gamma (IL2RG) perturb signaling of the common gamma chain family cytokines and cause severe combined immunodeficiency (SCID). Here, we report two brothers suffering from chronic cryptosporidiosis, severe diarrhea, and cholangitis. Pan T, B, and NK cell numbers were normal, but immunophenotyping revealed defective B cell differentiation. Using whole exome sequencing, we identified a base pair deletion in the first exon of IL2RG predicted to cause a frameshift and premature stop. However, flow cytometry revealed normal surface expression of the IL-2Rγ chain. While IL-2, IL-7, and IL-15 signaling showed only mild defects of STAT5 phosphorylation in response to the respective cytokines, IL-4- and IL-21-induced phosphorylation of STAT3 and STAT6 was markedly reduced. Examination of RNA isoforms detected alternative splicing downstream of IL2RG exon 1 in both patients resulting in resolution of the predicted frameshift and 16 mutated amino acids. In silico modeling suggested that the IL-2Rγ mutation reduces the stabilization of IL-4 and IL-21 cytokine binding by affecting the N-terminal domain of the IL-2Rγ. Thus, our study shows that IL2RG deficiency can be associated with differential signaling defects. Confounding effects of alternative splicing may partially rescue genetic defects and should be considered in patients with inborn errors of immunity.
Collapse
Affiliation(s)
- David Illig
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Marta Navratil
- Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Children's Hospital Zagreb, Zagreb, Croatia
- School of Medicine, University J.J. Strossmayer, Osijek, Croatia
| | - Jadranka Kelečić
- Department of Pediatrics, Division of Clinical Immunology, Allergology, Respiratory Diseases and Rheumatology, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, 10000, Croatia
| | - Raffaele Conca
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Iva Hojsak
- School of Medicine, University J.J. Strossmayer, Osijek, Croatia
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Oleg Jadrešin
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, Zagreb, Croatia
| | - Marijana Ćorić
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vuković
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Sebastian Hollizeck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Jens Bohne
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337, Munich, Germany.
| |
Collapse
|
21
|
Nourizadeh M, Shakerian L, Borte S, Fazlollahi M, Badalzadeh M, Houshmand M, Alizadeh Z, Dalili H, Rashidi-Nezhad A, Kazemnejad A, Moin M, Hammarström L, Pourpak Z. Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran. Scand J Immunol 2018; 88:e12699. [PMID: 29943473 DOI: 10.1111/sji.12699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
T-cell receptor excision circles (TRECs) and κ-deleting recombination excision circles (KRECs) are recently used for detection of T or B cell lymphopenia in neonates based on region-specific cutoff levels. Here, we report cutoffs for TREC and KREC copies useful for newborn screening and/or diagnosis of primary immunodeficiency diseases (PID) in Iran. DNA was extracted from a single 3.2 mm punch of dried blood spots collected from 2160 anonymized newborns referred to two major referral health centres between 2014 and 2016. For refinement of the cutoffs, 51 patients with a definite diagnosis of severe combined immunodeficiency, X-linked agammaglobulinaemia and combined immunodeficiency, including ataxia telangiectasia, human phosphoglucomutase 3 and Janus kinase-3 deficiency, as well as 47 healthy controls were included. Samples from patients with an X-linked hyper-IgM-syndrome, Wiskott-Aldrich syndrome and DNA ligase 4 deficiency were considered as disease controls. Triplex-quantitative real-time PCR was used. Cutoffs were calculated as TRECs < 11 and KRECs < 6 copies with an ACTB > 700 copies with sensitivity of 100% for TREC and 97% for KREC. Among thirty anonymized newborn samples (1.5%) with abnormal results for TREC and/or KREC, only twenty-one available cases were retested and shown to be in the normal range except for three samples (0.15%). All of the patients with a definitive diagnosis were correctly identified based on our established TREC/KREC copy numbers. Determining cutoffs for TREC/KREC is essential for correctly identifying children with PID in newborn screening. Early diagnosis of PID patients enables appropriate measures and therapies like stem cell transplantation.
Collapse
Affiliation(s)
- Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shakerian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Municipal Hospital, Leipzig, Germany
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohammadreza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Dalili
- Breastfeeding Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Han L, Maciejewski M, Brockel C, Afzelius L, Altman RB. Mendelian Disease Associations Reveal Novel Insights into Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:471-481. [PMID: 29462399 PMCID: PMC6037048 DOI: 10.1093/ibd/izx087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 12/14/2022]
Abstract
Background Monogenic diseases have been shown to contribute to complex disease risk and may hold new insights into the underlying biological mechanism of Inflammatory Bowel Disease (IBD). Methods We analyzed Mendelian disease associations with IBD using over 55 million patients from the Optum's deidentified electronic health records dataset database. Using the significant Mendelian diseases, we performed pathway enrichment analysis and constructed a model using gene expression datasets to differentiate Crohn's disease (CD), ulcerative colitis (UC), and healthy patient samples. Results We found 50 Mendelian diseases were significantly associated with IBD, with 40 being significantly associated with both CD and UC. Our results for CD replicated those from previous studies. Pathways that were enriched consisted of mainly immune and metabolic processes with a focus on tolerance and oxidative stress. Our 3-way classifier for UC, CD, and healthy samples yielded an accuracy of 72%. Conclusions Mendelian diseases that are significantly associated with IBD may reveal novel insights into the genetic architecture of IBD.
Collapse
Affiliation(s)
- Lichy Han
- Biomedical Informatics Training Program, Stanford University, Stanford, CA
| | | | | | | | - Russ B Altman
- Biomedical Informatics Training Program, Stanford University, Stanford, CA
- Department of Genetics, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
| |
Collapse
|
23
|
Can C, Hamilçıkan Ş, Can E. Early diagnosis of severe combined immunodeficiency (SCID) in Turkey: a pilot study. J Matern Fetal Neonatal Med 2017; 31:3238-3242. [DOI: 10.1080/14767058.2017.1368075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ceren Can
- Department of Pediatric Allergy and Immunology, University of Medical Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Şahin Hamilçıkan
- Department of Pediatrics, Division of Neonatal Intensive Care Unit, University of Medical Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Emrah Can
- Department of Pediatrics, Division of Neonatal Intensive Care Unit, University of Medical Sciences Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
24
|
Bradford KL, Moretti FA, Carbonaro-Sarracino DA, Gaspar HB, Kohn DB. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J Clin Immunol 2017; 37:626-637. [PMID: 28842866 DOI: 10.1007/s10875-017-0433-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T- B- NK-), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.
Collapse
Affiliation(s)
- Kathryn L Bradford
- Department of Pediatrics, University of California, Los Angeles (UCLA), 3163 Terasaki Life Science Bldg., 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Federico A Moretti
- Centre for Immunodeficiency, Molecular Immunology Unit, University College London Institute of Child Health, London, UK
| | | | - Hubert B Gaspar
- Centre for Immunodeficiency, Molecular Immunology Unit, University College London Institute of Child Health, London, UK
| | - Donald B Kohn
- Department of Pediatrics, University of California, Los Angeles (UCLA), 3163 Terasaki Life Science Bldg., 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA University of California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
|
26
|
Moore JC, Tang Q, Yordán NT, Moore FE, Garcia EG, Lobbardi R, Ramakrishnan A, Marvin DL, Anselmo A, Sadreyev RI, Langenau DM. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J Exp Med 2016; 213:2575-2589. [PMID: 27810924 PMCID: PMC5110017 DOI: 10.1084/jem.20160378] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022] Open
Abstract
Cell transplantation into immunodeficient mice has revolutionized our understanding of regeneration, stem cell self-renewal, and cancer; yet models for direct imaging of engrafted cells has been limited. Here, we characterize zebrafish with mutations in recombination activating gene 2 (rag2), DNA-dependent protein kinase (prkdc), and janus kinase 3 (jak3). Histology, RNA sequencing, and single-cell transcriptional profiling of blood showed that rag2 hypomorphic mutant zebrafish lack T cells, whereas prkdc deficiency results in loss of mature T and B cells and jak3 in T and putative Natural Killer cells. Although all mutant lines engraft fluorescently labeled normal and malignant cells, only the prkdc mutant fish reproduced as homozygotes and also survived injury after cell transplantation. Engraftment into optically clear casper, prkdc-mutant zebrafish facilitated dynamic live cell imaging of muscle regeneration, repopulation of muscle stem cells within their endogenous niche, and muscle fiber fusion at single-cell resolution. Serial imaging approaches also uncovered stochasticity in fluorescently labeled leukemia regrowth after competitive cell transplantation into prkdc mutant fish, providing refined models to assess clonal dominance and progression in the zebrafish. Our experiments provide an optimized and facile transplantation model, the casper, prkdc mutant zebrafish, for efficient engraftment and direct visualization of fluorescently labeled normal and malignant cells at single-cell resolution.
Collapse
Affiliation(s)
- John C Moore
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Qin Tang
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Nora Torres Yordán
- Harvard Stem Cell Institute, Cambridge, MA 02139
- Harvard University, Cambridge, MA 02138
| | - Finola E Moore
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Elaine G Garcia
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Riadh Lobbardi
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Ashwin Ramakrishnan
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Dieuwke L Marvin
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - David M Langenau
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| |
Collapse
|
27
|
Application of Flow Cytometry in the Evaluation of Primary Immunodeficiencies. Indian J Pediatr 2016; 83:444-9. [PMID: 26865168 PMCID: PMC5007620 DOI: 10.1007/s12098-015-2011-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency disorders (PIDDs) are a heterogeneous group of inherited disorders of the immune system. Currently more than 250 different PIDDs with a known genetic defect have been recognized. The diagnosis of many of these disorders is supported strongly by a wide variety of flow cytometry applications. Flow cytometry offers a rapid and sensitive tool for diagnosis and classification of PIDDs. It is applicable in the initial workup and subsequent management of several primary immunodeficiency diseases. As our understanding of the pathogenesis and management of these diseases increases, the majority of these tests can be easily established in the diagnostic laboratory. Thus, the focus of this article is on the application of flow cytometry in the diagnosis and/or evaluation of PIDDs.
Collapse
|
28
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
29
|
Beer PA, Eaves CJ. Modeling Normal and Disordered Human Hematopoiesis. Trends Cancer 2015; 1:199-210. [DOI: 10.1016/j.trecan.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023]
|
30
|
Diamond CE, Sanchez MJ, LaBelle JL. Diagnostic Criteria and Evaluation of Severe Combined Immunodeficiency in the Neonate. Pediatr Ann 2015; 44:e181-7. [PMID: 26171708 DOI: 10.3928/00904481-20150710-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Severe combined immunodeficiency disorders (SCID) are a group of primary immunodeficiencies resulting from any one of a diverse group of mutations impacting T-cell development. SCID is diagnosed and classified through assessment of the lymphocyte subset(s) affected and by the mechanisms responsible for the primary immune defect. Regardless of the genetics involved, patients invariably succumb to an early death without medical intervention. In the past, patients were primarily identified either by previous family history, physical manifestations, or after the onset of symptoms. However, the introduction of newborn screening for SCID has allowed the pediatrician to identify these patients at a much earlier age, greatly improving their survival. Currently, 23 states include SCID testing for T-cell deficiencies in their newborn screening platform. Protocols for confirmatory testing and medical intervention after a positive screen vary slightly from state-to-state. However, the standard curative treatment remains stem cell transplantation, although depending on the genetic cause of the disease, enzyme replacement and gene therapy may also be considered.
Collapse
|
31
|
Abstract
The development of a T-cell receptor excision circle (TREC) assay utilizing dried blood spots in universal newborn screening has allowed the early detection of T-cell lymphopenia in newborns. Diagnosis of severe combined immunodeficiency (SCID) in affected infants in the neonatal period, while asymptomatic, permits early treatment and restoration of a functional immune system. SCID was the first immunodeficiency disease to be added to the Recommended Uniform Screening Panel of Core Conditions in the United States in 2010, and it is now implemented in 26 states in the U.S. This review covers the development of newborn screening for SCID, the biology of the TREC test, its current implementation in the U.S., new findings for SCID in the newborn screening era, and future directions.
Collapse
|
32
|
Alhajjat AM, Lee AE, Strong BS, Shaaban AF. NK cell tolerance as the final endorsement of prenatal tolerance after in utero hematopoietic cellular transplantation. Front Pharmacol 2015; 6:51. [PMID: 25852555 PMCID: PMC4364176 DOI: 10.3389/fphar.2015.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
The primary benefits of in utero hematopoietic cellular transplantation (IUHCT) arise from transplanting curative cells prior to the immunologic maturation of the fetus. However, this approach has been routinely successful only in the treatment of congenital immunodeficiency diseases that include an inherent NK cell deficiency despite the existence of normal maternal immunity in either setting. These observations raise the possibility that fetal NK cells function as an early barrier to allogeneic IUHCT. Herein, we summarize the findings of previous studies of prenatal NK cell allospecific tolerance in mice and in humans. Cumulatively, this new information reveals the complexity of the fetal immune response in the setting of rejection or tolerance and illustrates the role for fetal NK cells in the final endorsement of allospecific prenatal tolerance.
Collapse
Affiliation(s)
- Amir M Alhajjat
- Department of Surgery, University of Iowa, Iowa City, IA USA
| | - Amanda E Lee
- Center for Fetal Cellular and Molecular Therapy and The Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Beverly S Strong
- Center for Fetal Cellular and Molecular Therapy and The Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Aimen F Shaaban
- Center for Fetal Cellular and Molecular Therapy and The Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| |
Collapse
|
33
|
|
34
|
Mansour MR, Reed C, Eisenberg AR, Tseng JC, Twizere JC, Daakour S, Yoda A, Rodig SJ, Tal N, Shochat C, Berezovskaya A, DeAngelo DJ, Sallan SE, Weinstock DM, Izraeli S, Kung AL, Kentsis A, Look AT. Targeting oncogenic interleukin-7 receptor signalling with N-acetylcysteine in T cell acute lymphoblastic leukaemia. Br J Haematol 2015; 168:230-8. [PMID: 25256574 PMCID: PMC4303513 DOI: 10.1111/bjh.13115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023]
Abstract
Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL.
Collapse
Affiliation(s)
- Marc R. Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Haematology, UCL Cancer Institute, University College London, UK
| | - Casie Reed
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Amy R. Eisenberg
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jean-Claude Twizere
- Laboratory of Protein Signalling and Interactions, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Sart-Tilman, Belgium
| | - Sarah Daakour
- Laboratory of Protein Signalling and Interactions, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Sart-Tilman, Belgium
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Noa Tal
- Cancer Research Centre, Sheba Medical Centre, Tel Hashomer and Tel Aviv University Medical School, Tel Aviv, Israel
| | - Chen Shochat
- Cancer Research Centre, Sheba Medical Centre, Tel Hashomer and Tel Aviv University Medical School, Tel Aviv, Israel
- Migal-Galilee Bio-Technology Centre and Tel Hai Academic College, Tel Hai, Israel
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel J. DeAngelo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen E. Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shai Izraeli
- Cancer Research Centre, Sheba Medical Centre, Tel Hashomer and Tel Aviv University Medical School, Tel Aviv, Israel
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University, New York, USA
| | - Alex Kentsis
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Abstract
The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.
Collapse
|
36
|
Stray-Pedersen A, Jouanguy E, Crequer A, Bertuch AA, Brown BS, Jhangiani SN, Muzny DM, Gambin T, Sorte H, Sasa G, Metry D, Campbell J, Sockrider MM, Dishop MK, Scollard DM, Gibbs RA, Mace EM, Orange JS, Lupski JR, Casanova JL, Noroski LM. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J Clin Immunol 2014; 34:871-90. [PMID: 25073507 PMCID: PMC4386834 DOI: 10.1007/s10875-014-0074-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 06/30/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE Coronin-1A deficiency is a recently recognized autosomal recessive primary immunodeficiency caused by mutations in CORO1A (OMIM 605000) that results in T-cell lymphopenia and is classified as T(-)B(+)NK(+)severe combined immunodeficiency (SCID). Only two other CORO1A-kindred are known to date, thus the defining characteristics are not well delineated. We identified a unique CORO1A-kindred. METHODS We captured a 10-year analysis of the immune-clinical phenotypes in two affected siblings from disease debut of age 7 years. Target-specific genetic studies were pursued but unrevealing. Telomere lengths were also assessed. Whole exome sequencing (WES) uncovered the molecular diagnosis and Western blot validated findings. RESULTS We found the compound heterozygous CORO1A variants: c.248_249delCT (p.P83RfsX10) and a novel mutation c.1077delC (p.Q360RfsX44) (NM_007074.3) in two affected non-consanguineous siblings that manifested as absent CD4CD45RA(+) (naïve) T and memory B cells, low NK cells and abnormally increased double-negative (DN) ϒδ T-cells. Distinguishing characteristics were late clinical debut with an unusual mucocutaneous syndrome of epidermodysplasia verruciformis-human papilloma virus (EV-HPV), molluscum contagiosum and oral-cutaneous herpetic ulcers; the older female sibling also had a disfiguring granulomatous tuberculoid leprosy. Both had bilateral bronchiectasis and the female died of EBV+ lymphomas at age 16 years. The younger surviving male, without malignancy, had reproducibly very short telomere lengths, not before appreciated in CORO1A mutations. CONCLUSION We reveal the third CORO1A-mutated kindred, with the immune phenotype of abnormal naïve CD4 and DN T-cells and newfound characteristics of a late/hypomorphic-like SCID of an EV-HPV mucocutaneous syndrome with also B and NK defects and shortened telomeres. Our findings contribute to the elucidation of the CORO1A-SCID-CID spectrum.
Collapse
Affiliation(s)
- Asbjorg Stray-Pedersen
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Amandine Crequer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Alison A. Bertuch
- Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Betty S. Brown
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N. Jhangiani
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Donna M. Muzny
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Hanne Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Ghadir Sasa
- Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Denise Metry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Department of Dermatology, Texas Children's Hospital, Houston, TX, USA
| | - Judith Campbell
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Infectious Diseases, Texas Children's Hospital, Houston, TX, USA
| | - Marianna M. Sockrider
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Pulmonary Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Megan K. Dishop
- Department of Pathology, University of Colorado, Denver, CO, USA, Department of Pathology, Texas Children's Hospital, Houston, TX
| | | | - Richard A. Gibbs
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Emily M. Mace
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Center for Human Immunobiology, Texas Children's Hospital-Baylor College of Medicine, Houston, TX, USA
| | - Jordan S. Orange
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Center for Human Immunobiology, Texas Children's Hospital-Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Lenora M. Noroski
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Ye Z, Vasco DA, Carter TC, Brilliant MH, Schrodi SJ, Shukla SK. Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to Staphylococcus aureus infections. Front Genet 2014; 5:125. [PMID: 24847357 PMCID: PMC4023021 DOI: 10.3389/fgene.2014.00125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/21/2014] [Indexed: 01/15/2023] Open
Abstract
Background: We conducted a genome-wide association study (GWAS) to identify specific genetic variants that underlie susceptibility to diseases caused by Staphylococcus aureus in humans. Methods: Cases (n = 309) and controls (n = 2925) were genotyped at 508,921 single nucleotide polymorphisms (SNPs). Cases had at least one laboratory and clinician confirmed disease caused by S. aureus whereas controls did not. R-package (for SNP association), EIGENSOFT (to estimate and adjust for population stratification) and gene- (VEGAS) and pathway-based (DAVID, PANTHER, and Ingenuity Pathway Analysis) analyses were performed. Results: No SNP reached genome-wide significance. Four SNPs exceeded the p < 10−5 threshold including two (rs2455012 and rs7152530) reaching a p-value < 10−7. The nearby genes were PDE4B (rs2455012), TXNRD2 (rs3804047), VRK1 and BCL11B (rs7152530), and PNPLA5 (rs470093). The top two findings from the gene-based analysis were NMRK2 (pgene = 1.20E-05), which codes an integrin binding molecule (focal adhesion), and DAPK3 (pgene = 5.10E-05), a serine/threonine kinase (apoptosis and cytokinesis). The pathway analyses identified epithelial cell responses to mechanical and non-mechanical stress. Conclusion: We identified potential susceptibility genes for S. aureus diseases in this preliminary study but confirmation by other studies is needed. The observed associations could be relevant given the complexity of S. aureus as a pathogen and its ability to exploit multiple biological pathways to cause infections in humans.
Collapse
Affiliation(s)
- Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Daniel A Vasco
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Steven J Schrodi
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Sanjay K Shukla
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| |
Collapse
|
38
|
Abstract
UNLABELLED Quantification of the T cell receptor excision circles (TRECs) has recently emerged as a useful non-invasive clinical and research tool to investigate thymic activity. It allows the identification of T cell production by the thymus. Quantification of TREC copies has recently been implemented as the preferred test to screen neonates with severe combined immunodeficiency (SCID) or significant lymphopenia. Neonatal genetic screening for SCID is highly important in countries with high rates of consanguinous marriages, such as Israel, and can be used for early diagnosis, enabling prompt therapeutic intervention that will save lives and improve the outcome of these patients. TREC measurement is also applicable in clinical settings where T cell immunity is involved, including any T cell immunodeficiencies, HIV infection, the aging process, autoimmune diseases, and immune reconstitution after bone marrow transplantation. TAKE-HOME MESSAGES Severe combined immunodeficiency, a life-threatening condition, can be detected by neonatal screening.The earlier the detection and the quicker the implementation of appropriate treatment, the greater the likelihood for improved outcome, even cure, for the affected children.TRECs and KRECs quantification are useful screening tests for severe T and B cell immunodeficiency and can be used also to evaluate every medical condition involving T and B cell immunity.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Department B North, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- To whom correspondence should be addressed. E-mail:
| | - Amos Etzioni
- Meyer Children’s Hospital, Rappaport Faculty of Medicine, The Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
Kelly BT, Tam JS, Verbsky JW, Routes JM. Screening for severe combined immunodeficiency in neonates. Clin Epidemiol 2013; 5:363-9. [PMID: 24068875 PMCID: PMC3782515 DOI: 10.2147/clep.s48890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is a rare disease that severely affects the cellular and humoral immune systems. Patients with SCID present with recurrent or severe infections and often with chronic diarrhea and failure to thrive. The disease is uniformly fatal, making early diagnosis essential. Definitive treatment is hematopoietic stem cell transplantation, with best outcomes prior to 3.5 months of age. Newborn screening for SCID using the T-cell receptor excision circle assay has revolutionized early identification of infants with SCID or severe T-cell lymphopenia.
Collapse
Affiliation(s)
- Brian T Kelly
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
40
|
Kerfoot SA, Jung S, Golob K, Torgerson TR, Hahn SH. Tryptic peptide screening for primary immunodeficiency disease by LC/MS-MS. Proteomics Clin Appl 2013; 6:394-402. [PMID: 22927353 DOI: 10.1002/prca.201100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE Early diagnosis of primary immunodeficiency disorders (PIDDs) is critical for maximizing patient survival and clinical outcomes. Consequently, there is significant interest in developing broad-based, high-throughput, screening approaches capable of utilizing small blood volumes to identify patients with PIDD. EXPERIMENTAL DESIGN We developed a novel proteomic screening approach using tandem mass spectrometry to simultaneously identify specific signature peptides derived from the transmembrane protein cluster of differentiation 3 (CD3)ɛ and the intracellular proteins Wiskott-Aldrich syndrome protein (WASP) and Bruton's tyrosine kinase (BTK) as markers of three life-threatening PIDDs; severe combined immunodeficiency, Wiskott-Aldrich syndrome, and X-linked Agammaglobulinemia. Signature peptides were analyzed by LC/MS-MS in proteolytically digested lysates from cell lines and white blood cells (WBCs). The amount of each peptide was determined by the ratio of the signature peptide peak area to that of a known amount of labeled standard peptide. Peptide concentrations were normalized to actin. RESULTS We show that signature peptides from CD3ɛ, WASP, and BTK were readily detected in proteolytically digested cell lysate and their absence could correctly identify PIDD patients. CONCLUSIONS AND CLINICAL RELEVANCE This proof of concept study demonstrates the applicability of this approach to screen for PIDD and raises the possibility that it could be further multiplexed to identify additional PIDDs and potentially other disorders.
Collapse
Affiliation(s)
- Sandra A Kerfoot
- Seattle Children's Hospital Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
41
|
Evsyukova I, Bradrick SS, Gregory SG, Garcia-Blanco MA. Cleavage and polyadenylation specificity factor 1 (CPSF1) regulates alternative splicing of interleukin 7 receptor (IL7R) exon 6. RNA (NEW YORK, N.Y.) 2013; 19:103-115. [PMID: 23151878 PMCID: PMC3527722 DOI: 10.1261/rna.035410.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/13/2012] [Indexed: 06/01/2023]
Abstract
Interleukin 7 receptor, IL7R, is expressed exclusively on cells of the lymphoid lineage, and its expression is crucial for the development and maintenance of T cells. Alternative splicing of IL7R exon 6 results in membrane-bound (exon 6 included) and soluble (exon 6 skipped) IL7R isoforms. Interestingly, the inclusion of exon 6 is affected by a single-nucleotide polymorphism associated with the risk of developing multiple sclerosis. Given the potential association of exon 6 inclusion with multiple sclerosis, we investigated the cis-acting elements and trans-acting factors that regulate exon 6 splicing. We identified multiple exonic and intronic cis-acting elements that impact inclusion of exon 6. Moreover, we utilized RNA affinity chromatography followed by mass spectrometry to identify trans-acting protein factors that bind exon 6 and regulate its splicing. These experiments identified cleavage and polyadenylation specificity factor 1 (CPSF1) among protein-binding candidates. A consensus polyadenylation signal AAUAAA is present in intron 6 of IL7R directly downstream from the 5' splice site. Mutations to this site and CPSF1 knockdown both resulted in an increase in exon 6 inclusion. We found no evidence that this site is used to produce cleaved and polyadenylated mRNAs, suggesting that CPSF1 interaction with intronic IL7R pre-mRNA interferes with spliceosome binding to the exon 6 5' splice site. Our results suggest that competing mRNA splicing and polyadenylation regulate exon 6 inclusion and consequently determine the ratios of soluble to membrane-bound IL7R. This may be relevant for both T cell ontogeny and function and development of multiple sclerosis.
Collapse
Affiliation(s)
| | | | - Simon G. Gregory
- Department of Molecular Genetics and Microbiology
- Center for Human Genetics, and
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Mariano A. Garcia-Blanco
- Center for RNA Biology
- Department of Molecular Genetics and Microbiology
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Yao CM, Han XH, Zhang YD, Zhang H, Jin YY, Cao RM, Wang X, Liu QH, Zhao W, Chen TX. Clinical characteristics and genetic profiles of 44 patients with severe combined immunodeficiency (SCID): report from Shanghai, China (2004-2011). J Clin Immunol 2012; 33:526-39. [PMID: 23250629 DOI: 10.1007/s10875-012-9854-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/09/2012] [Indexed: 01/18/2023]
Abstract
Severe combined immunodeficiency (SCID), a rare type of genetic associated immune disorder, is poorly characterized in mainland China. We retrospectively reviewed 44 patients with SCID who received treatment from 2004 to 2011 in Shanghai, China, and herein summarize their clinical manifestations and immunological and preliminary genetic features. The male-to-female ratio was 10:1. Twenty five patients presented with X-SCID symptoms. Only one patient was diagnosed before the onset of symptoms due to positive family history. The mean time of delay in the diagnosis of X-SCID was 2.69 months (range, 0.5-8.67). Thirty-seven of the 44 patients died by the end of 2011 with the mean age of death being 7.87 months (range, 1.33-31). Six patients received hematopoietic stem cell transplantation (HSCT); only one of them survived, who was transplanted twice. The time between onset and death was shorter in the HSCT-treated group compared with the untreated group (2.87 ± 1.28 and 3.34 ± 0.59 months, respectively), probably due to active infections during transplantation. Bacillus Calmette-Guérin (BCG) complications occurred in 14 of the 34 patients who received BCG vaccination. Transfusion-induced graft-versus-host disease occurred in 5 patients. Total 20 mutations in interleukin-2 receptor subunit gamma (IL2RG) were identified in 22 patients, including 11 novel mutations. Most patients were misdiagnosed before referred to our SCID Center. Therefore, establishing more diagnostic centers dedicated to the care of PID and accessible by primary immunodeficiency patients will facilitate early, correct diagnosis and better care of SCID in China.
Collapse
Affiliation(s)
- Chun-Mei Yao
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20092, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mazzucchelli RI, Riva A, Durum SK. The human IL-7 receptor gene: deletions, polymorphisms and mutations. Semin Immunol 2012; 24:225-30. [PMID: 22425228 DOI: 10.1016/j.smim.2012.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/01/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023]
Abstract
Most T cell subsets depend on IL-7 for survival. IL-7 binds to IL-7Rα and γc, initiating the signaling cascade. Deletion of IL-7Ra in humans has, for some time, been known to cause severe combined immunodeficiency. More recently, polymorphisms in IL-7R have been shown be a risk factor for a number of diseases that are autoimmune or involve excess immune and inflammatory responses including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, primary biliary cirrhosis, inflammatory bowel disease, atopic dermatitis, inhalation allergy, sarcoidosis and graft-versus host disease. The polymorphism that affects risk to most of these immunopathologies is T244I at the border of the extracellular domain and the transmembrane region. The same region has recently been shown to harbor gain-of-function mutations in acute lymphoblastic leukemia. These studies have suggested new therapies that target the IL-7 pathway.
Collapse
Affiliation(s)
- Renata I Mazzucchelli
- Laboratory of Gene Therapy and Primary Immunodeficiency, San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|
44
|
Accetta Pedersen DJ, Verbsky J, Routes JM. Screening newborns for primary T-cell immunodeficiencies: consensus and controversy. Expert Rev Clin Immunol 2012; 7:761-8. [PMID: 22014017 DOI: 10.1586/eci.11.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Newborn screening for early identification of T-cell lymphopenia and severe combined immunodeficiency has recently been recommended as an addition to the newborn screening programs in all states. This article will review the evidence supporting the use of this newborn screening test, and will outline the barriers to nationwide implementation, which include issues specific to this test and controversies regarding newborn screening in general.
Collapse
Affiliation(s)
- Deborah J Accetta Pedersen
- Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
45
|
Disseminated cryptococcal infection in patient with novel JAK3 mutation severe combined immunodeficiency, with resolution after stem cell transplantation. Pediatr Infect Dis J 2012; 31:204-6. [PMID: 22138680 DOI: 10.1097/inf.0b013e318239c3b3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disseminated cryptococcal infection is the second most common cause of death after tuberculosis in acquired immune deficiency syndrome patients. Surprisingly, it has been reported only in few patients with primary immunodeficiency diseases. Herein, we report the clinical presentation and outcome of a 23-month-old boy with novel JAK3 mutation severe combined immunodeficiency disease complicated by severe disseminated cryptococcal infection.
Collapse
|
46
|
Buckley RH. The long quest for neonatal screening for severe combined immunodeficiency. J Allergy Clin Immunol 2012; 129:597-604; quiz 605-6. [PMID: 22277203 DOI: 10.1016/j.jaci.2011.12.964] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/25/2022]
Abstract
Early recognition of severe combined immunodeficiency (SCID) is a pediatric emergency because a diagnosis before live vaccines or nonirradiated blood products are given and before development of infections permits lifesaving unfractionated HLA-identical or T cell-depleted haploidentical hematopoietic stem cell transplantation, enzyme replacement therapy, or gene therapy. The need for newborn screening for this condition has been recognized for the past 15 years. However, implementation of screening required development of an assay for T-cell lymphopenia that could be performed on dried bloodspots routinely collected from newborn infants for the past 48 years. This was accomplished 6 years ago, and there have already been 7 successful pilot studies. A recommendation to add SCID to the routine newborn-screening panel was approved by the Secretary's Advisory Committee on Heritable Disorders of Newborns and Children in 2010 and was soon after approved by the Secretary of Health and Human Services. It is important for allergists, immunologists, and other health care providers to take an active role in promoting newborn screening for SCID and other T-lymphocyte abnormalities in their states. Even more important will be their roles in establishing accurate diagnoses for infants with positive screen results and in ensuring that they are given the best possible treatment.
Collapse
Affiliation(s)
- Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
47
|
T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Allergy Clin Immunol 2011; 11:517-24. [DOI: 10.1097/aci.0b013e32834c233a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Wynn JL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Banschbach S, Beckman E, Wong HR. The influence of developmental age on the early transcriptomic response of children with septic shock. Mol Med 2011; 17:1146-56. [PMID: 21738952 DOI: 10.2119/molmed.2011.00169] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 01/24/2023] Open
Abstract
Septic shock is a frequent and costly problem among patients in the pediatric intensive care unit (PICU) and is associated with high mortality and devastating survivor morbidity. Genome-wide expression patterns can provide molecular granularity of the host response and offer insight into why large variations in outcomes exist. We derived whole-blood genome-wide expression patterns within 24 h of PICU admission from children with septic shock. We compared the transcriptome between septic shock developmental-age groups defined as neonates (≤ 28 d, n = 17), infants (1 month to 1 year, n = 62), toddlers (2-5 years, n = 54) and school-age (≥ 6 years, n = 47) and age-matched controls. Direct intergroup comparisons demonstrated profound changes in neonates, relative to older children. Neonates with septic shock demonstrated reduced expression of genes representing key pathways of innate and adaptive immunity. In contrast to the largely upregulated transcriptome in all other groups, neonates exhibited a predominantly downregulated transcriptome when compared with controls. Neonates and school-age subjects had the most uniquely regulated genes relative to controls. Age-specific studies of the host response are necessary to identify developmentally relevant translational opportunities that may lead to improved sepsis outcomes.
Collapse
Affiliation(s)
- James L Wynn
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abraham RS. Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies. Clin Mol Allergy 2011; 9:6. [PMID: 21477322 PMCID: PMC3080807 DOI: 10.1186/1476-7961-9-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/09/2011] [Indexed: 12/18/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Azarsiz E, Gulez N, Edeer Karaca N, Aksu G, Kutukculer N. Consanguinity Rate and Delay in Diagnosis in Turkish Patients with Combined Immunodeficiencies: a Single-Center Study. J Clin Immunol 2010; 31:106-11. [DOI: 10.1007/s10875-010-9472-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/24/2010] [Indexed: 01/31/2023]
|