1
|
Kawai H, Miura T, Kawamatsu N, Nakagawa T, Shiba-Ishii A, Yoshimoto T, Amano Y, Kihara A, Sakuma Y, Fujita K, Shibano T, Ishikawa S, Ushiku T, Fukayama M, Tsubochi H, Endo S, Hagiwara K, Matsubara D, Niki T. Expression patterns of HNF4α, TTF-1, and SMARCA4 in lung adenocarcinomas: impacts on clinicopathological and genetic features. Virchows Arch 2025; 486:343-354. [PMID: 38710944 PMCID: PMC11876232 DOI: 10.1007/s00428-024-03816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION HNF4α expression and SMARCA4 loss were thought to be features of non-terminal respiratory unit (TRU)-type lung adenocarcinomas, but their relationships remained unclear. MATERIALS AND METHODS HNF4α-positive cases among 241 lung adenocarcinomas were stratified based on TTF-1 and SMARCA4 expressions, histological subtypes, and driver mutations. Immunohistochemical analysis was performed using xenograft tumors of lung adenocarcinoma cell lines with high HNF4A expression. RESULT HNF4α-positive adenocarcinomas(n = 33) were divided into two groups: the variant group(15 mucinous, 2 enteric, and 1 colloid), where SMARCA4 was retained in all cases, and the conventional non-mucinous group(6 papillary, 5 solid, and 4 acinar), where SMARCA4 was lost in 3/15 cases(20%). All variant cases were negative for TTF-1 and showed wild-type EGFR and frequent KRAS mutations(10/18, 56%). The non-mucinous group was further divided into two groups: TRU-type(n = 7), which was positive for TTF-1 and showed predominantly papillary histology(6/7, 86%) and EGFR mutations(3/7, 43%), and non-TRU-type(n = 8), which was negative for TTF-1, showed frequent loss of SMARCA4(2/8, 25%) and predominantly solid histology(4/8, 50%), and never harbored EGFR mutations. Survival analysis of 230 cases based on histological grading and HNF4α expression revealed that HNF4α-positive poorly differentiated (grade 3) adenocarcinoma showed the worst prognosis. Among 39 cell lines, A549 showed the highest level of HNF4A, immunohistochemically HNF4α expression positive and SMARCA4 lost, and exhibited non-mucinous, high-grade morphology in xenograft tumors. CONCLUSION HNF4α-positive non-mucinous adenocarcinomas included TRU-type and non-TRU-type cases; the latter tended to exhibit the high-grade phenotype with frequent loss of SMARCA4, and A549 was a representative cell line.
Collapse
Affiliation(s)
- Hitomi Kawai
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Natsumi Kawamatsu
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomoki Nakagawa
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Taichiro Yoshimoto
- Department of Pathology, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-Shi, Tokyo, 187-851, Japan
| | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Sapporo Medical University, 1-17, Minami Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Kazutaka Fujita
- Department of Respiratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Koichi Hagiwara
- Omiya Medical Association Medical Examination Center, 2-107, Higashioonari-Chou, Kita-Ku, Saitama-Shi, Saitama, 331-8689, Japan
| | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Lee J, Jeon JH, Chung JH, Son JW, Chia-Hui Shih B, Jung W, Cho S, Kim K, Jheon S. Prognostic Impact of Non-Predominant Lepidic Components in Pathologic Stage I Invasive Nonmucinous Adenocarcinoma. J Thorac Oncol 2025; 20:194-202. [PMID: 39389221 DOI: 10.1016/j.jtho.2024.09.1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION This study investigated the prognostic impact of non-predominant lepidic components in invasive nonmucinous adenocarcinoma. METHODS Patients who underwent lobectomy and were diagnosed with stage I nonmucinous, non-lepidic-predominant invasive adenocarcinoma based on pathologic findings were included. Tumors were staged according to the eighth edition of TNM classification and categorized on the basis of the presence of lepidic components in the final pathologic findings. Overall survival (OS) and recurrence-free survival (RFS) were analyzed before and after applying inverse probability of treatment weighting. Competing risk analyses for recurrence were also compared in the two groups. RESULTS Of the 1270 patients, 858 (67.6%) had lepidic components (+). The pathologic stage and histologic grade were higher in the lepidic (-) group (p < 0.001, respectively). The 5-year OS and RFS were significantly worse in the lepidic (-) group than in the lepidic (+) group (OS: 88.2% versus 94.9%, p < 0.001; RFS: 79.4% versus 91.9%, p < 0.001). These trends were consistent after weighted analysis (OS: 92.4% versus 96.4%, p = 0.029; RFS: 85.6% versus 92.3%, p = 0.007). The 5-year cumulative incidence of any recurrence was 14.0% in the lepidic (-) group and 4.1% in the lepidic (+) group (p < 0.001). Multivariable Fine-Gray regression analysis found that the lepidic (+) group exhibited a lower risk of recurrence than did the lepidic (-) group (hazard ratio = 0.52, 95% confidence interval: 0.29-0.93, p = 0.031). CONCLUSIONS In pathologic stage I invasive nonmucinous adenocarcinoma, the presence of histologically diagnosed non-predominant lepidic components might be associated with a better prognosis after curative surgery.
Collapse
Affiliation(s)
- Joonseok Lee
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Jae Hyun Jeon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea.
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Jung Woo Son
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Beatrice Chia-Hui Shih
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Woohyun Jung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| |
Collapse
|
3
|
Zhang W, Wang W, Xu Y, Wu K, Shi J, Li M, Feng Z, Liu Y, Zheng Y, Wu H. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning. J Transl Med 2024; 104:102094. [PMID: 38871058 DOI: 10.1016/j.labinv.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In this study, an artificial intelligence-powered deep learning framework was developed for the weakly supervised prediction of EGFR mutations in non-small cell lung cancer from hematoxylin and eosin-stained histopathology whole-slide images. The study cohort was partitioned into training and validation subsets. Foreground regions containing tumor tissue were extracted from whole-slide images. A convolutional neural network employing a contrastive learning paradigm was implemented to extract patch-level morphologic features. These features were aggregated using a vision transformer-based model to predict EGFR mutation status and classify patient cases. The established prediction model was validated on unseen data sets. In internal validation with a cohort from the University of Science and Technology of China (n = 172), the model achieved patient-level areas under the receiver-operating characteristic curve (AUCs) of 0.927 and 0.907, sensitivities of 81.6% and 83.3%, and specificities of 93.0% and 92.3%, for surgical resection and biopsy specimens, respectively, in EGFR mutation subtype prediction. External validation with cohorts from the Second Affiliated Hospital of Anhui Medical University and the First Affiliated Hospital of Wannan Medical College (n = 193) yielded patient-level AUCs of 0.849 and 0.867, sensitivities of 79.2% and 80.7%, and specificities of 91.7% and 90.7% for surgical and biopsy specimens, respectively. Further validation with The Cancer Genome Atlas data set (n = 81) showed an AUC of 0.861, a sensitivity of 84.6%, and a specificity of 90.5%. Deep learning solutions demonstrate potential advantages for automated, noninvasive, fast, cost-effective, and accurate inference of EGFR alterations from histomorphology. Integration of such artificial intelligence frameworks into routine digital pathology workflows could augment existing molecular testing pipelines.
Collapse
Affiliation(s)
- Wanqiu Zhang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Xu
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Wuhu, China
| | - Kun Wu
- The Image Processing Center, School of Astronautics, Beihang University, Beijing, China
| | - Jun Shi
- School of Software, Hefei University of Technology, Hefei, China
| | - Ming Li
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengzhong Feng
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Yinhua Liu
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Wuhu, China.
| | - Yushan Zheng
- School of Engineering Medicine, Beijing Advanced Innovation Center on Biomedical Engineering, Beihang University, Beijing, China.
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Takahara T, Satou A, Tsuyuki T, Ito T, Taniguchi N, Yamamoto Y, Ohashi A, Takahashi E, Kadota K, Tsuzuki T. Endobronchial spread of adenocarcinoma is a distinct pattern of invasion and associated with inferior clinical outcomes in lung adenocarcinoma. Histopathology 2024; 84:646-660. [PMID: 38148681 DOI: 10.1111/his.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
AIM The spread of lung adenocarcinoma cells into the bronchi and bronchioles is not well documented. We termed this histological finding "endobronchial spreading of adenocarcinoma" (EBSA) and investigated its prevalence and clinical significance. METHODS AND RESULTS We reviewed 320 resected specimens from patients diagnosed with invasive adenocarcinoma, and EBSA was observed in 144 patients (45%). EBSA was significantly associated with advanced pathological stage, higher histological grade, larger tumour invasion, lymphovascular infiltration, and spread through air spaces. Patients with EBSA had significantly shorter relapse-free survival (RFS) and cancer-specific survival (CSS) in univariate analysis (P < 0.001). In a subgroup analysis of patient with small-sized (invasion size ≤30 mm) adenocarcinoma in the localized stage, EBSA was an independent inferior prognostic indicator in multivariate analysis. In a subgroup analysis of patients with small-sized Grade 1 nonmucinous adenocarcinoma (n = 61), EBSA was observed in 11 patients, and the presence of EBSA was associated with significantly shorter RFS and CSS (P = 0.026 and P = 0.001, respectively). CONCLUSION Our results demonstrated that EBSA is a significant risk factor for disease recurrence and cancer-related deaths. EBSA can be regarded as a distinctive pattern of invasion and its recognition can be beneficial in the diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Takuji Tsuyuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Takanori Ito
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Natsuki Taniguchi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuki Yamamoto
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Kyuichi Kadota
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
5
|
Yatabe Y. Molecular pathology of non-small cell carcinoma. Histopathology 2024; 84:50-66. [PMID: 37936491 DOI: 10.1111/his.15080] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Currently, lung cancer is treated by the highest number of therapeutic options and the benefits are based on multiple large-scale sequencing studies, translational research and new drug development, which has promoted our understanding of the molecular pathology of lung cancer. According to the driver alterations, different characteristics have been revealed, such as differences in ethnic prevalence, median age and alteration patterns. Consequently, beyond traditional chemoradiotherapy, molecular-targeted therapy and treatment with immune check-point inhibitors (ICI) also became available major therapeutic options. Interestingly, clinical results suggest that the recently established therapies target distinct lung cancer proportions, particularly between the EGFR/ALK and PD-1/PD-L1-positive subsets, e.g. the kinase inhibitors target driver mutation-positive tumours, whereas driver mutation-negative tumours respond to ICI treatment. These therapeutic efficacy-related differences might be explained by the molecular pathogenesis of lung cancer. Addictive driver mutations promote tumour formation with powerful transformation performance, resulting in a low tumour mutation burden, reduced immune surveillance, and subsequent poor response to ICIs. In contrast, regular tobacco smoke exposure repeatedly injures the proximal airway epithelium, leading to accumulated genetic alterations. In the latter pathway, overgrowth due to alteration and immunological exclusion against neoantigens is initially balanced. However, tumours could be generated from certain clones that outcompete immunological exclusion and outgrow the others. Consequently, this cancer type responds to immune check-point treatment. These pathogenic differences are explained well by the two-compartment model, focusing upon the anatomical and functional composition of distinct cellular components between the terminal respiratory unit and the air-conducting system.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Liang WW, Lu RJH, Jayasinghe RG, Foltz SM, Porta-Pardo E, Geffen Y, Wendl MC, Lazcano R, Kolodziejczak I, Song Y, Govindan A, Demicco EG, Li X, Li Y, Sethuraman S, Payne SH, Fenyö D, Rodriguez H, Wiznerowicz M, Shen H, Mani DR, Rodland KD, Lazar AJ, Robles AI, Ding L. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell 2023; 41:1567-1585.e7. [PMID: 37582362 PMCID: PMC11613269 DOI: 10.1016/j.ccell.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Steven M Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rossana Lazcano
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iga Kolodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, Ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Ghaderi A, Okhovat MA, Lehto J, De Petris L, Manouchehri Doulabi E, Kokhaei P, Zhong W, Rassidakis GZ, Drakos E, Moshfegh A, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat-Farsangi M. A Small Molecule Targeting the Intracellular Tyrosine Kinase Domain of ROR1 (KAN0441571C) Induced Significant Apoptosis of Non-Small Cell Lung Cancer (NSCLC) Cells. Pharmaceutics 2023; 15:pharmaceutics15041148. [PMID: 37111634 PMCID: PMC10145660 DOI: 10.3390/pharmaceutics15041148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
The ROR1 receptor tyrosine kinase is expressed in embryonic tissues but is absent in normal adult tissues. ROR1 is of importance in oncogenesis and is overexpressed in several cancers, such as NSCLC. In this study, we evaluated ROR1 expression in NSCLC patients (N = 287) and the cytotoxic effects of a small molecule ROR1 inhibitor (KAN0441571C) in NSCLC cell lines. ROR1 expression in tumor cells was more frequent in non-squamous (87%) than in squamous (57%) carcinomas patients, while 21% of neuroendocrine tumors expressed ROR1 (p = 0.0001). A significantly higher proportion of p53 negative patients in the ROR1+ group than in the p53 positive non-squamous NSCLC patients (p = 0.03) was noted. KAN0441571C dephosphorylated ROR1 and induced apoptosis (Annexin V/PI) in a time- and dose-dependent manner in five ROR1+ NSCLC cell lines and was superior compared to erlotinib (EGFR inhibitor). Apoptosis was confirmed by the downregulation of MCL-1 and BCL-2, as well as PARP and caspase 3 cleavage. The non-canonical Wnt pathway was involved. The combination of KAN0441571C and erlotinib showed a synergistic apoptotic effect. KAN0441571C also inhibited proliferative (cell cycle analyses, colony formation assay) and migratory (scratch wound healing assay) functions. Targeting NSCLC cells by a combination of ROR1 and EGFR inhibitors may represent a novel promising approach for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad-Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jemina Lehto
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, 171 76 Solna, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Immunology, Arak University of Medical Sciences, Arak 3848170001, Iran
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Pathology, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 64 Solna, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
8
|
Hayashi T, Kishi M, Takamochi K, Hosoya M, Kohsaka S, Kishikawa S, Ura A, Sano K, Sasahara N, Suehara Y, Takahashi F, Saito T, Suzuki K, Yao T. Expression of paired box 9 defines an aggressive subset of lung adenocarcinoma preferentially occurring in smokers. Histopathology 2023; 82:672-683. [PMID: 36527228 DOI: 10.1111/his.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS A distinct subset of lung adenocarcinomas (LADs), arising from a series of peripheral lung cells defined as the terminal respiratory unit (TRU), is characterised by thyroid transcription factor 1 (TTF-1) expression. The clinical relevance of transcription factors (TFs) other than TTF-1 remains unknown in LAD and was explored in the present study. METHODS AND RESULTS Seventy-one LAD samples were subjected to high-throughput transcriptome screening of LAD using cap analysis gene expression (CAGE) sequencing data; CAGE provides genome-wide expression levels of the transcription start sites (TSSs). In total, 1083 invasive LAD samples were subjected to immunohistochemical examination for paired box 9 (PAX9) and TTF-1 expression levels. PAX9 is an endoderm development-associated TF that most strongly and inversely correlates with the expression of TTF-1 TSS subsets. Immunohistochemically, PAX9 expression was restricted to the nuclei of ciliated epithelial and basal cells in the bronchi and bronchioles and the nuclei of epithelial cells of the bronchial glands; moreover, PAX9 expression was observed in 304 LADs (28%). PAX9-positive LADs were significantly associated with heavy smoking, non-lepidic subtype, EGFR wild-type tumours and PD-L1 expression (all P < 0.0001). All these characteristics were opposite to those of TRU-type LADs with TTF-1 expression. PAX9 expression was an independent prognostic factor for decreased overall survival (P = 0.022). CONCLUSIONS Our results revealed that PAX9 expression defines an aggressive subset of LADs preferentially occurring in smokers that may arise from bronchial or bronchiolar cells.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Monami Kishi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Masaki Hosoya
- Department of Medical Oncology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Satsuki Kishikawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Ayako Ura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kei Sano
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Noriko Sasahara
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | | |
Collapse
|
9
|
Wang S, Rong R, Yang DM, Fujimoto J, Bishop JA, Yan S, Cai L, Behrens C, Berry LD, Wilhelm C, Aisner D, Sholl L, Johnson BE, Kwiatkowski DJ, Wistuba II, Bunn PA, Minna J, Xiao G, Kris MG, Xie Y. Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer. J Clin Invest 2023; 133:e160330. [PMID: 36647832 PMCID: PMC9843059 DOI: 10.1172/jci160330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections. These TME features were used to develop a prediction model for survival benefit from EGFR TKI therapy in patients with lung adenocarcinoma and EGFR-sensitizing mutations in the Lung Cancer Mutation Consortium 1 (LCMC1) and validated in an independent LCMC2 cohort. In the validation data set, EGFR TKI treatment prolonged survival in the predicted-to-benefit group but not in the predicted-not-to-benefit group. Among patients treated with EGFR TKIs, the predicted-to-benefit group had prolonged survival outcomes compared with the predicted not-to-benefit group. The EGFR TKI survival benefit positively correlated with tumor-tumor interaction image features and negatively correlated with tumor-stroma interaction. Moreover, the tumor-stroma interaction was associated with higher activation of the hepatocyte growth factor/MET-mediated PI3K/AKT signaling pathway and epithelial-mesenchymal transition process, supporting the hypothesis of fibroblast-involved resistance to EGFR TKI treatment.
Collapse
Affiliation(s)
- Shidan Wang
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin A. Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ling Cai
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynne D. Berry
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clare Wilhelm
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara Aisner
- Department of Pathology, University of Colorado, Denver, Colorado, USA
| | - Lynette Sholl
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, USA
| | - Bruce E. Johnson
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David J. Kwiatkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul A. Bunn
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research
- Departments of Internal Medicine and Pharmacology
- Simmons Comprehensive Cancer Center, and
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, and
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mark G. Kris
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, and
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Matsubara D, Yoshimoto T, Akolekar N, Totsuka T, Amano Y, Kihara A, Miura T, Isagawa Y, Sakuma Y, Ishikawa S, Ushiku T, Fukayama M, Niki T. Genetic and phenotypic determinants of morphologies in 3D cultures and xenografts of lung tumor cell lines. Cancer Sci 2022; 114:1757-1770. [PMID: 36533957 PMCID: PMC10067422 DOI: 10.1111/cas.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
We previously proposed the classification of lung adenocarcinoma into two groups: the bronchial epithelial phenotype (BE phenotype) with high-level expressions of bronchial epithelial markers and actionable genetic abnormalities of tyrosine kinase receptors and the non-BE phenotype with low-level expressions of bronchial Bronchial epithelial (BE) epithelial markers and no actionable genetic abnormalities of tyrosine kinase receptors. Here, we performed a comprehensive analysis of tumor morphologies in 3D cultures and xenografts across a panel of lung cancer cell lines. First, we demonstrated that 40 lung cancer cell lines (23 BE and 17 non-BE) can be classified into three groups based on morphologies in 3D cultures on Matrigel: round (n = 31), stellate (n = 5), and grape-like (n = 4). The latter two morphologies were significantly frequent in the non-BE phenotype (1/23 BE, 8/17 non-BE, p = 0.0014), and the stellate morphology was only found in the non-BE phenotype. SMARCA4 mutations were significantly frequent in stellate-shaped cells (4/4 stellate, 4/34 non-stellate, p = 0.0001). Next, from the 40 cell lines, we successfully established 28 xenograft tumors (18 BE and 10 non-BE) in NOD/SCID mice and classified histological patterns of the xenograft tumors into three groups: solid (n = 20), small nests in desmoplasia (n = 4), and acinar/papillary (n = 4). The latter two patterns were characteristically found in the BE phenotype. The non-BE phenotype exhibited a solid pattern with significantly less content of alpha-SMA-positive fibroblasts (p = 0.0004) and collagen (p = 0.0006) than the BE phenotype. Thus, the morphology of the tumors in 3D cultures and xenografts, including stroma genesis, reflects the intrinsic properties of the cancer cell lines. Furthermore, this study serves as an excellent resource for lung adenocarcinoma cell lines, with clinically relevant information on molecular and morphological characteristics and drug sensitivity.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.,Department of Pathology, University of Tsukuba, Ibaraki, Japan
| | - Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | | | | | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuriko Isagawa
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuji Sakuma
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep Med 2022; 3:100819. [PMID: 36384096 PMCID: PMC9729884 DOI: 10.1016/j.xcrm.2022.100819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
We present a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteomics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic genome signature analysis, including a transition-high subtype enriched with never smokers, a transversion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and independently validate expression signatures of RNA and protein that predict patient survival. Additionally, among co-measured genes, we found that protein expression is more often associated with patient survival than RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, proteomic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a foundation for molecularly informed medicine in LUAD.
Collapse
|
12
|
Jung HA, Lim J, Choi YL, Lee SH, Joung JG, Jeon YJ, Choi JW, Shin S, Cho JH, Kim HK, Choi YS, Zo JI, Shim YM, Park S, Sun JM, Ahn JS, Ahn MJ, Han J, Park WY, Kim J, Park K. Clinical, Pathologic, and Molecular Prognostic Factors in Patients with Early-Stage EGFR-Mutant NSCLC. Clin Cancer Res 2022; 28:4312-4321. [PMID: 35838647 DOI: 10.1158/1078-0432.ccr-22-0879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE In early-stage, EGFR mutation-positive (EGFR-M+) non-small cell lung cancer (NSCLC), surgery remains the primary treatment, without personalized adjuvant treatments. We aimed to identify risk factors for recurrence-free survival (RFS) to suggest personalized adjuvant strategies in resected early-stage EGFR-M+ NSCLC. EXPERIMENTAL DESIGN From January 2008 to August 2020, a total of 2,340 patients with pathologic stage (pStage) IB-IIIA, non-squamous NSCLC underwent curative surgery. To identify clinicopathologic risk factors, 1,181 patients with pStage IB-IIIA, common EGFR-M+ NSCLC who underwent surgical resection were analyzed. To identify molecular risk factors, comprehensive genomic analysis was conducted in 56 patients with matched case-controls (pStage II and IIIA and type of EGFR mutation). RESULTS Median follow-up duration was 38.8 months (0.5-156.2). Among 1,181 patients, pStage IB, II, and IIIA comprised 577 (48.9%), 331 (28.0%), and 273 (23.1%) subjects, respectively. Median RFS was 73.5 months [95% confidence interval (CI), 62.1-84.9], 48.7 months (95% CI, 41.2-56.3), and 22.7 months (95% CI, 19.4-26.0) for pStage IB, II, and IIIA, respectively (P < 0.001). In multivariate analysis of clinicopathologic risk factors, pStage, micropapillary subtype, vascular invasion, and pleural invasion, and pathologic classification by cell of origin (type II pneumocyte-like tumor cell vs. bronchial surface epithelial cell-like tumor cell) were associated with RFS. As molecular risk factors, the non-terminal respiratory unit (non-TRU) of the RNA subtype (HR, 3.49; 95% CI, 1.72-7.09; P < 0.01) and TP53 mutation (HR, 2.50; 95% CI, 1.24-5.04; P = 0.01) were associated with poor RFS independent of pStage II or IIIA. Among the patients with recurrence, progression-free survival of EGFR-tyrosine kinase inhibitor (TKI) in those with the Apolipoprotein B mRNA Editing Catalytic Polypeptide-like (APOBEC) mutation signature was inferior compared with that of patients without this signature (8.6 vs. 28.8 months; HR, 4.16; 95% CI, 1.28-13.46; P = 0.02). CONCLUSIONS The low-risk group with TRU subtype and TP53 wild-type without clinicopathologic risk factors might not need adjuvant EGFR-TKIs. In the high-risk group, with non-TRU subtype and/or TP 53 mutation, or clinicopathologic risk factors, a novel adjuvant strategy of EGFR-TKI with others, e.g., chemotherapy or antiangiogenic agents needs to be investigated. Given the poor outcome to EGFR-TKIs after recurrence in patients with the APOBEC mutation signature, an alternative adjuvant strategy might be needed.
Collapse
Affiliation(s)
- Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yeong Jeong Jeon
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Won Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sumin Shin
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Ill Zo
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joungho Han
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
14
|
Keith RL, Miller YE, Ghosh M, Franklin WA, Nakachi I, Merrick DT. Lung cancer: Premalignant biology and medical prevention. Semin Oncol 2022; 49:254-260. [PMID: 35305831 DOI: 10.1053/j.seminoncol.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer (both adenocarcinoma and squamous cell) progress through a series of pre-malignant histologic changes before the development of invasive disease. Each of these carcinogenic cascades is defined by genetic and epigenetic alterations in pulmonary epithelial cells. Additionally, alterations in the immune response, progenitor cell function, mutational burden, and microenvironmental mediated survival of mutated clones contribute to the risk of pre-malignant lesions progressing to cancer. Medical preventions studies have been completed and current and future trials are informed by the improved understanding of pre-malignancy. This will lead to precision chemoprevention trials based on lesional biology and histologic characteristics.
Collapse
Affiliation(s)
- R L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO.
| | - Y E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - M Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - I Nakachi
- Department of Pulmonary Medicine, Keio University, Tokyo, Japan
| | - D T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
Qiang M, Xuesong D, Shu X, Guoli L, Jie C, Zhenni Y, Jiao L, Jiawei M. Network Pharmacology Based Retrieval of Bioactive Ingredients of Platycodon grandiflorus and its Molecular Mechanism against Breast Cancer. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.428.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Khader A, Bokhari R, Hakimelahi R, Scheirey C, Afnan J, Braschi-Amirfarzan M, Thomas R. A radiologist’s guide to novel anticancer therapies in the era of precision medicine. Eur J Radiol Open 2022; 9:100406. [PMID: 35265736 PMCID: PMC8899228 DOI: 10.1016/j.ejro.2022.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
Novel anticancer agents have replaced conventional chemotherapy as first line agents for many cancers, with continued new and expanding indications. Small molecule inhibitors act on cell surface or intracellular targets and prevent the downstream signaling that would otherwise permit tumor growth and spread. Anticancer antibodies can be directed against growth factors or may be immunotherapeutic agents. The latter act by inhibiting mechanisms that cancer cells use to evade the immune system. Hormonal agents act by decreasing levels of hormones that are necessary for the growth of certain cancer cells. Cancer therapy protocols often include novel anticancer agents and conventional chemotherapy used successively or in combination, in order to maximize survival and minimize morbidity. A working knowledge of anti-cancer drug classification will aid the radiologist in assessing response on imaging. Novel anticancer agents include small molecule inhibitors, antibodies and hormones. These agents are predominantly cytostatic and inhibit factors that provide a survival advantage to tumor cells. Modern cancer therapy employs a combination of novel anticancer agents and conventional chemotherapy. It is essential for radiologists to have a broad understanding of these agents and their mechanisms of action.
Collapse
|
17
|
Ingram K, Samson SC, Zewdu R, Zitnay RG, Snyder EL, Mendoza MC. NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity. Oncogene 2021; 41:293-300. [PMID: 34689179 PMCID: PMC8738158 DOI: 10.1038/s41388-021-02076-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
The RAS→RAF→MEK→ERK pathway is hyperactivated in the majority of human lung adenocarcinoma (LUAD). However, the initial activating mutations induce homeostatic feedback mechanisms that limit ERK activity. How ERK activation reaches the tumor-promoting levels that overcome the feedback and drive malignant progression is unclear. We show here that the lung lineage transcription factor NKX2-1 suppresses ERK activity. In human tissue samples and cell lines, xenografts, and genetic mouse models, NKX2-1 induces the ERK phosphatase DUSP6, which inactivates ERK. In tumor cells from late-stage LUAD with silenced NKX2-1, re-introduction of NKX2-1 induces DUSP6 and inhibits tumor growth and metastasis. We show that DUSP6 is necessary for NKX2-1-mediated inhibition of tumor progression in vivo and that DUSP6 expression is sufficient to inhibit RAS-driven LUAD. Our results indicate that NKX2-1 silencing, and thereby DUSP6 downregulation, is a mechanism by which early LUAD can unleash ERK hyperactivation for tumor progression.
Collapse
Affiliation(s)
- Kelley Ingram
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Rediet Zewdu
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric L Snyder
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA. .,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
18
|
Tanaka I, Dayde D, Tai MC, Mori H, Solis LM, Tripathi SC, Fahrmann JF, Unver N, Parhy G, Jain R, Parra ER, Murakami Y, Aguilar-Bonavides C, Mino B, Celiktas M, Dhillon D, Casabar JP, Nakatochi M, Stingo F, Baladandayuthapani V, Wang H, Katayama H, Dennison JB, Lorenzi PL, Do KA, Fujimoto J, Behrens C, Ostrin EJ, Rodriguez-Canales J, Hase T, Fukui T, Kajino T, Kato S, Yatabe Y, Hosoda W, Kawaguchi K, Yokoi K, Chen-Yoshikawa TF, Hasegawa Y, Gazdar AF, Wistuba II, Hanash S, Taguchi A. SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1-Negative Lung Adenocarcinomas. J Natl Cancer Inst 2021; 114:290-301. [PMID: 34524427 DOI: 10.1093/jnci/djab183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND About 20% of lung adenocarcinoma (LUAD) is negative for the lineage-specific oncogene Thyroid transcription factor 1 (TTF-1) and exhibits worse clinical outcome with a low frequency of actionable genomic alterations. To identify molecular features associated with TTF-1-negative LUAD, we compared the transcriptomic and proteomic profiles of LUAD cell lines. SRGN, a chondroitin sulfate proteoglycan Serglycin, was identified as a markedly overexpressed gene in TTF-1-negative LUAD. We therefore investigated the roles and regulation of SRGN in TTF-1-negative LUAD. METHODS Proteomic and metabolomic analyses of 41 LUAD cell lines were done using mass spectrometry. The function of SRGN was investigated in 3 TTF-1-negative and 4 TTF-1-positive LUAD cell lines and in a syngeneic mouse model (n = 5 to 8 mice per group). Expression of SRGN in was evaluated in 94 and 105 surgically resected LUAD tumor specimens using immunohistochemistry. All statistical tests were two-sided. RESULTS SRGN was markedly overexpressed at mRNA and protein levels in TTF-1-negative LUAD cell lines (P < .001 for both mRNA and protein levels). Expression of SRGN in LUAD tumor tissue was associated with poor outcome (hazard ratio = 4.22, 95% confidential interval = 1.12 to 15.86; likelihood ratio test, P = .03), and with higher expression of Programmed cell death 1 ligand 1 (PD-L1) in tumor cells and higher infiltration of Programmed cell death protein 1 (PD-1)-positive lymphocytes. SRGN regulated expression of PD-L1, as well as proinflammatory cytokines including Interleukin-6 (IL-6), Interleukin-8 (IL-8), and C-X-C motif chemokine 1 (CXCL1) in LUAD cell lines, and increased migratory and invasive properties of LUAD cells and fibroblasts, and enhanced angiogenesis. SRGN was induced by DNA de-methylation resulting from Nicotinamide N-methyltransferase (NNMT)-mediated impairment of methionine metabolism. CONCLUSION Our findings suggest that SRGN plays a pivotal role in tumor-stromal interaction and reprogramming into an aggressive and immunosuppressive tumor microenvironment in TTF-1-negative LUAD.
Collapse
Affiliation(s)
- Ichidai Tanaka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Delphine Dayde
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haruki Mori
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gargy Parhy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rekha Jain
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoshiko Murakami
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dilsher Dhillon
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julian Phillip Casabar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Francesco Stingo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veera Baladandayuthapani
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Okudela K, Matsumura M, Arai H, Woo T. The nonsmokers' and smokers' pathways in lung adenocarcinoma: Histological progression and molecular bases. Cancer Sci 2021; 112:3411-3418. [PMID: 34143937 PMCID: PMC8409399 DOI: 10.1111/cas.15031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
There could be two carcinogenetic pathways for lung adenocarcinoma (LADC): the nonsmokers' pathway and the smokers' pathway. This review article describes the two pathways with special reference to potential relationships between histological subtypes, malignant grades, and driver mutations. The lung is composed of two different tissue units, the terminal respiratory unit (TRU) and the central airway compartment (CAC). In the nonsmokers' pathway, LADCs develop from the TRU, and their histological appearances change from lepidic to micropapillary during the progression process. In the smokers' pathway, LADCs develop from either the TRU or the CAC, and their histological appearances vary among cases in the middle of the progression process, but they are likely converged to acinar/solid at the end. On a molecular genetic level, the nonsmokers' pathway is mostly driven by EGFR mutations, whereas in the smokers' pathway, approximately one-quarter of LADCs have KRAS mutations, but the other three-quarters have no known driver mutations. p53 mutations are an important factor triggering the progression of both pathways, with unique molecular alterations associated with each, such as MUC21 expression and chromosome 12p13-21 amplification in the nonsmokers' pathway, and HNF4α expression and TTF1 mutations in the smokers' pathway. However, investigation into the relationship between histological progression and genetic alterations is in its infancy. Tight cooperation between traditional histopathological examinations and recent molecular genetics can provide valuable insight to better understand the nature of LADCs.
Collapse
Affiliation(s)
- Koji Okudela
- Department of PathologyGraduate School of MedicineYokohama City UniversityYokohamaChina
| | - Mai Matsumura
- Department of PathologyGraduate School of MedicineYokohama City UniversityYokohamaChina
| | - Hiromasa Arai
- Devision of General Thoracic SurgeryKanagawa Cardiovascular and Respiratory Center HospitalYokohamaChina
| | - Tetsukan Woo
- Devision of Thoracic SurgeryYokohama City University Medical Center HospitalYokohamaChina
| |
Collapse
|
20
|
Saito R, Ninomiya H, Okumura S, Mun M, Sasano H, Ishikawa Y. Novel Histologic Classification of Small Tumor Cell Nests for Lung Adenocarcinoma With Prognostic and Etiological Significance: Small Solid Nests and Pure Micropapillary Nests. Am J Surg Pathol 2021; 45:604-615. [PMID: 33835080 DOI: 10.1097/pas.0000000000001696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small tumor cell nests such as micropapillary nests are histologic poor prognostic markers for adenocarcinomas of various organs, including the lung. However, for the lung, the association of micropapillary patterns with smoking is controversial, which may be because of a vague definition of micropapillary patterns. This study clarifies the implications of small tumor cell nests by introducing a new dichotomic classification based on the glandular polarity of tumor cells: pure micropapillary nests (pMPs), preserving glandular polarity, and small solid nests (SSNs), lacking polarity. We examined the clinicopathologic factors in 436 resected adenocarcinomas, and analyzed the overall survival between groups classified by either the presence or absence of pMPs and SSNs. pMP was positively associated with nonsmoking-related features such as epidermal growth factor receptor mutations and thyroid transcription factor 1 expression. By contrast, SSN was positively associated with smoking-related features such as KRAS mutations and hepatocyte nuclear factor-4a expressions. Besides, pMP and SSN were significant and independent indicators of poor prognosis in all stages. SSN was an indicator in stage I too, whereas pMP was not. Furthermore, prognoses of the group with SSN were significantly worse than those of pMP-only group. In conclusion, the present study has revealed 2 completely different patterns of small tumor cell nests in lung adenocarcinoma, the nonsmoking-related pMPs, and the smoking-related SSNs, by considering glandular polarity. MPP should include only pMPs, and SSNs should be in a solid pattern. This novel classification might boast clinical significance as a potent poor prognostic marker as well as a factor reflecting etiological and genetic characters.
Collapse
Affiliation(s)
- Ryoko Saito
- Division of Pathology, The Cancer Institute, The Cancer Institute Hospital, Japanese Foundation for Cancer Research
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute, The Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Sakae Okumura
- Department of Thoracic Surgical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Mingyon Mun
- Department of Thoracic Surgical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute, The Cancer Institute Hospital, Japanese Foundation for Cancer Research
- Department of Pathology, Mita Hospital, International University of Health and Welfare, Tokyo
| |
Collapse
|
21
|
Koh MJ, Shin DH, Lee SJ, Hwang CS, Lee HJ, Kim A, Park WY, Lee JH, Choi KU, Kim JY, Lee CH, Sol MY. Gastric-type gene expression and phenotype in non-terminal respiratory unit type adenocarcinoma of the lung with invasive mucinous adenocarcinoma morphology. Histopathology 2021; 76:898-905. [PMID: 31985086 DOI: 10.1111/his.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/02/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023]
Abstract
AIMS We sought to determine if non-terminal respiratory unit (TRU) type adenocarcinoma of lung with invasive mucinous adenocarcinoma (IMA) morphology shows gastric differentiation. METHODS AND RESULTS We reviewed whole-section images of 489 cases of lung adenocarcinoma from The Cancer Genome Atlas (TCGA). TCGA data were classified into 426 TRU type adenocarcinoma, 49 IMA and 14 unclassifiable. Their RNA sequencing data was analysed by DESeq2 and WGCNA R packages. Gene expression in patients' samples was measured by NanoString assay. Overexpression of genes including REG4, TFF2, MUCL3, FER1L6, B3GALT5, ANXA10 was observed by TCGA analysis in IMA compared to TRU type adenocarcinoma. Many of these genes are those expressed in normal gastric glands and selected for NanoString experiment on 14 IMA and 10 TRU type adenocarcinoma cases. The expression of genes, including ANXA10, FER1L6, HNF4a, MUC5AC, REG4, TFF1, TFF2 and VSIGI, was increased> 15-fold in IMA. Immunohistochemistry of ANXA10, TFF2 and FER1L6 performed on 31 IMA and 135 TRU type adenocarcinomas showed a predominant expression in IMA, but are not in TRU type adenocarcinoma. CONCLUSION Our results showed the level of genes expressed in stomach mucosa was increased in IMA compared to TRU type adenocarcinoma, supporting gastric differentiation of IMA. This finding may help the understanding of the pathogenesis of IMA and discovery of therapeutic targets.
Collapse
Affiliation(s)
- Myoung Ju Koh
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - So-Jeong Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chung-Su Hwang
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyun Jung Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Ahrong Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Won Young Park
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jung Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jee Yeon Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chang Hun Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Mee Young Sol
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
22
|
Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, Suzuki K, Yanagisawa K, Suzuki M, Fujishita T, Yamaguchi T, Takahashi M, Takahashi T. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci 2021; 112:1614-1623. [PMID: 33506575 PMCID: PMC8019194 DOI: 10.1111/cas.14825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported that ROR1 is a crucial downstream gene for the TTF‐1/NKX2‐1 lineage‐survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP‐C promoter–driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia‐induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF‐1α expression under normoxia and clearly hampered HIF‐1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif‐1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.
Collapse
Affiliation(s)
- Hisanori Isomura
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Keiko Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
23
|
Hung YP, Chirieac LR. How should molecular findings be integrated in the classification for lung cancer? Transl Lung Cancer Res 2020; 9:2245-2254. [PMID: 33209647 PMCID: PMC7653151 DOI: 10.21037/tlcr-20-153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of molecular diagnostics in the diagnosis and management of patients with advanced lung cancer has become widespread. Although molecular classification has increasingly been incorporated in the pathologic classification of certain types of human tumors (particularly within the hematologic, glial, and bone/soft tissue malignancies), genetic findings have not been formally incorporated into the pathologic classification of lung cancer, which presently relies solely on the assessment of histologic and immunophenotypic characteristics. Whether molecular classification should be adopted in lung cancer would depend on the diagnostic, prognostic, and predictive impacts of such classification-and whether these impacts confer significant values additive to those derived from the routine histologic and immunophenotypic assessment. We provide a brief overview on the genetics of lung cancer, including adenocarcinoma, squamous cell carcinoma, and neuroendocrine tumors (small cell carcinoma, large cell neuroendocrine carcinoma, and carcinoid tumors). We consider the values of molecular information with some examples, in terms of the current diagnostic, prognostic, and predictive impacts. Finally, we discuss the conceptual and technical challenges of adopting a molecular classification for lung cancer in clinical management for patients. While there are conceptual and technical hurdles to tackle in implementing molecular classification in the pathologic classification of lung cancer, such integrated histologic-molecular diagnosis may allow one to personalize and optimize therapy for patients with advanced lung cancer.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lucian R Chirieac
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Hayashi T, Kohsaka S, Takamochi K, Hara K, Kishikawa S, Sano K, Takahashi F, Suehara Y, Saito T, Takahashi K, Suzuki K, Yao T. Clinicopathological characteristics of lung adenocarcinoma with compound EGFR mutations. Hum Pathol 2020; 103:42-51. [PMID: 32673682 DOI: 10.1016/j.humpath.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
The extensive clinical applications of next-generation sequence analyzers have made uncommon and compound EGFR mutations more prevalent than previously described. However, clinicopathological impacts of compound EGFR mutations in lung adenocarcinoma remain unclear. We earlier examined the presence of compound EGFR mutations primarily in the cis allele by EGFR exon sequencing and droplet digital polymerase chain reaction in 462 completely resected EGFR-mutated adenocarcinomas of the lung and identified 64 tumors with compound mutations. We evaluated clinicopathological characteristics of lung adenocarcinomas with compound EGFR mutations in comparison with cases with common or uncommon single mutations. Among 64 compound EGFR mutations, L858R/E709G (9%) was the most frequent mutation type, followed by L858R/S768I (8%), L858R/T790M (8%), and L858R/L833V (6%). We observed both single and compound mutations frequently in women, never or light smokers; their adenocarcinomas showed thyroid transcription factor-1 immunoreactivity. In contrast, compound mutations were significantly associated with lymph node metastases (p = 0.0242; single vs. compound cases) and the presence of tumor cells with clear cytoplasm (p = 0.0014; single vs. compound cases). Furthermore, patients with compound mutations had significantly poorer prognoses than cases with single EGFR mutations (p = 0.043). Overall, clinicopathological features of common, uncommon, and compound EGFR mutations are similar; however, tumors with compound mutations may be characterized by aggressive behavior and histological findings of clear cell features.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kieko Hara
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Satsuki Kishikawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kei Sano
- Department of Orthopedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
25
|
Takeuchi A, Oguri T, Yamashita Y, Sone K, Fukuda S, Takakuwa O, Uemura T, Maeno K, Inoue Y, Yamamoto S, Nishiyama H, Fukumitsu K, Kanemitsu Y, Tajiri T, Ohkubo H, Takemura M, Ito Y, Niimi A. Value of TTF-1 expression in non-squamous non-small-cell lung cancer for assessing docetaxel monotherapy after chemotherapy failure. Mol Clin Oncol 2020; 13:9. [PMID: 32754323 DOI: 10.3892/mco.2020.2080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Docetaxel is one of the standard second/third-line treatments for non-small-cell lung cancer (NSCLC) following a failed response to prior cytotoxic chemotherapy. The predictive biomarker for the effectiveness of docetaxel therapy remains undetermined. However, thyroid transcription factor-1 (TTF-1) is known to be a good prognostic factor for a variety of chemotherapies. To investigate the association between TTF-1 expression and docetaxel monotherapy outcome, 82 patients with non-squamous NSCLC who received second/third-line docetaxel monotherapy were retrospectively screened. All backgrounds were well-balanced whether or not tumor TTF-1 was expressed, and the present clinical outcomes were similar to those reported by previous clinical studies. A better clinical outcome was indicated in TTF-1 positive compared with TTF-1 negative patients, with disease control rates of 69% vs. 42%, respectively (P=0.03) and median overall survival of 393 days vs. 221.5 days, respectively (P<0.01). Furthermore, progression free survival tended to be longer in TTF-1 positive compared with TTF-1 negative patients (median, 100 days vs. 67 days; P=0.09). Multivariate analysis revealed that TTF-1 positivity was a unique significant predictor for assessing overall survival after docetaxel monotherapy. TTF-1 positivity may be useful for predicting survival outcome in patients who received docetaxel monotherapy after failure of prior chemotherapy.
Collapse
Affiliation(s)
- Akira Takeuchi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.,Department of Education and Research Center for Community Medicine, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoriko Yamashita
- Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuki Sone
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Osamu Takakuwa
- Education and Research Center for Advanced Medicine, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshitsugu Inoue
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Sayaka Yamamoto
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hirono Nishiyama
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Masaya Takemura
- Department of Education and Research Center for Community Medicine, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
26
|
Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, Ito T, Sakuma Y, Shibano T, Endo S, Hagiwara K, Ishikawa S, Fukayama M, Murakami Y, Mano H, Niki T. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci 2020; 111:2183-2195. [PMID: 32237253 PMCID: PMC7293082 DOI: 10.1111/cas.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor‐1 (TTF‐1)/NK2 homeobox 1 (NKX2‐1)‐positive terminal respiratory unit (TRU) types and rarely in non‐TRU types. To elucidate the molecular characteristics of the major subtypes of non‐TRU‐type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non‐TRU types). A characteristic of non‐TRU‐type cell lines was the strong expression of TFF‐1 (trefoil factor‐1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF‐1 was positive in 31 cases (13%). Expression of TFF‐1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF‐1 correlated with the expression of HNF4‐α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF‐1/NKX2‐1 (P < .0001). These results indicate that TFF‐1 is characteristically expressed in non‐TRU‐type adenocarcinomas with gastrointestinal features. The TFF‐1‐positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF‐1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF‐1 inhibited cell proliferation and soft‐agar colony formation and induced apoptosis in a TFF‐1‐high and KRAS‐mutated lung adenocarcinoma cell line. These results indicate that TFF‐1 is not only a biomarker, but also a potential molecular target for non‐TRU‐type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Yoshimoto
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Amano
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakuma
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
27
|
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019; 11:cancers11121826. [PMID: 31756933 PMCID: PMC6966464 DOI: 10.3390/cancers11121826] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) family contains four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3 and Her4/ErbB4) and 13 secreted polypeptide ligands. EGFRs are overexpressed in many solid tumors, including breast, pancreas, head-and-neck, prostate, ovarian, renal, colon, and non-small-cell lung cancer. Such overexpression produces strong stimulation of downstream signaling pathways, which induce cell growth, cell differentiation, cell cycle progression, angiogenesis, cell motility and blocking of apoptosis.The high expression and/or functional activation of EGFRs correlates with the pathogenesis and progression of several cancers, which make them attractive targets for both diagnosis and therapy. Several approaches have been developed to target these receptors and/or the EGFR modulated effects in cancer cells. Most approaches include the development of anti-EGFRs antibodies and/or small-molecule EGFR inhibitors. This review presents the state-of-the-art and future prospects of targeting EGFRs to treat breast cancer.
Collapse
Affiliation(s)
- Amaia Eleonora Maennling
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, 6229 MD Maastricht, The Netherlands
| | - Marcus Niebert
- Department of Molecular Cytology and Functional Genomics, Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Torsten Klockenbring
- Department of Biological Sensing and Detection, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-64199930570
| |
Collapse
|
28
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|
29
|
Zablockis R, Žurauskas E, Danila E, Gruslys V. Prognostic Value of Thyroid Transcription Factor-1 Expression in Patients with Advanced Lung Adenocarcinoma. In Vivo 2019; 32:1571-1579. [PMID: 30348718 DOI: 10.21873/invivo.11416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM The prognostic role of thyroid transcription factor-1 (TTF1) in advanced lung cancer is not clearly established. The present study aimed to evaluate the associations between clinicopathological characteristics, TTF1 expression, and overall survival (OS) of patients with advanced lung adenocarcinoma. MATERIALS AND METHODS One hundred and seventy-two patients were enrolled in this retrospective study. OS was assessed according to immunohistochemical TTF1 expression in lung adenocarcinoma tissue, age, gender, performance status (PS), smoking history and status, disease stage, tumor differentiation, epidermal growth factor receptor (EGFR) mutation and EGFR tyrosine kinase inhibitor (TKI) treatment status. RESULTS The OS time was longer (p<0.001) for patients with TTF1 expression than for patients without TTF1 expression (13.0 vs. 5.0 months, respectively). A multivariate analysis confirmed that worse PS [hazard ratio (HR)=2.13, p<0.001], poor histological differentiation (HR=2.02, p=0.001), wild-type EGFR status (HR=3.08, p<0.001) and negative TTF1 expression (HR=1.97, p=0.001) were independent predictors of worse prognosis. CONCLUSION TTF1 expression is an independent predictor of survival of patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania .,Centre of Pulmonology and Allergology, Santaros Klinikos, Vilnius University Hospital, Vilnius, Lithuania
| | - Edvardas Žurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Santaros Klinikos, Vilnius University Hospital, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Centre of Pulmonology and Allergology, Santaros Klinikos, Vilnius University Hospital, Vilnius, Lithuania
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Centre of Pulmonology and Allergology, Santaros Klinikos, Vilnius University Hospital, Vilnius, Lithuania
| |
Collapse
|
30
|
Abstract
Non-small cell lung carcinoma (NSCLC) accounts for significant morbidity and mortality worldwide, with most patients diagnosed at advanced stages and managed increasingly with targeted therapies and immunotherapy. In this review, we discuss diagnostic and predictive immunohistochemical markers in NSCLC, one of the most common tumors encountered in surgical pathology. We highlight 2 emerging diagnostic markers: nuclear protein in testis (NUT) for NUT carcinoma; SMARCA4 for SMARCA4-deficient thoracic tumors. Given their highly aggressive behavior, proper recognition facilitates optimal management. For patients with advanced NSCLCs, we discuss the utility and limitations of immunohistochemistry (IHC) for the "must-test" predictive biomarkers: anaplastic lymphoma kinase, ROS1, programmed cell death protein 1, and epidermal growth factor receptor. IHC using mutant-specific BRAF V600E, RET, pan-TRK, and LKB1 antibodies can be orthogonal tools for screening or confirmation of molecular events. ERBB2 and MET alterations include both activating mutations and gene amplifications, detection of which relies on molecular methods with a minimal role for IHC in NSCLC. IHC sits at the intersection of an integrated surgical pathology and molecular diagnostic practice, serves as a powerful functional surrogate for molecular testing, and is an indispensable tool of precision medicine in the care of lung cancer patients.
Collapse
|
31
|
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24:1559-1567. [PMID: 30224757 PMCID: PMC9847512 DOI: 10.1038/s41591-018-0177-5] [Citation(s) in RCA: 1486] [Impact Index Per Article: 212.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Abstract
Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD. We found that six of them-STK11, EGFR, FAT1, SETBP1, KRAS and TP53-can be predicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH .
Collapse
Affiliation(s)
- Nicolas Coudray
- Applied Bioinformatics Laboratories, New York University School of Medicine, NY 10016, USA,Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, NY 10016, USA
| | | | - Theodore Sakellaropoulos
- School of Mechanical Engineering, National Technical University of Athens, Zografou 15780, Greece
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, New York University School of Medicine, NY 10016, USA,Department of Biochemistry and molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Andre L. Moreira
- Department of Pathology, New York University School of Medicine, NY 10016, USA,Center for Biospecimen Research and Development, New York University, NY 10016, USA
| | - Narges Razavian
- Department of Population Health and the Center for Healthcare Innovation and Delivery Science, New York University School of Medicine, NY 10016, USA,To whom correspondence should be addressed. Tel: +1 646 501 2693; ; Correspondence may also be addressed to Narges Razavian. Tel: +1 212 263 2234,
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University School of Medicine, NY 10016, USA,Department of Pathology, New York University School of Medicine, NY 10016, USA,To whom correspondence should be addressed. Tel: +1 646 501 2693; ; Correspondence may also be addressed to Narges Razavian. Tel: +1 212 263 2234,
| |
Collapse
|
32
|
Tabbò F, Nottegar A, Guerrera F, Migliore E, Luchini C, Maletta F, Veronese N, Montagna L, Gaudiano M, Di Giacomo F, Filosso PL, Delsedime L, Ciccone G, Scarpa A, Sapino A, Oliaro A, Ruffini E, Inghirami G, Chilosi M. Cell of origin markers identify different prognostic subgroups of lung adenocarcinoma. Hum Pathol 2018; 75:167-178. [PMID: 29409837 DOI: 10.1016/j.humpath.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Strong prognostic markers able to stratify lung adenocarcinoma (ADC) patients are lacking. We evaluated whether a six-immunohistochemical markers panel (TTF1, SP-A, Napsin A, MUC5AC, CDX2 and CK5), defining the putative neoplastic "cell of origin," allows to identify prognostic subgroups among lung ADC. We screened a large cohort of ADC specimens (2003-2013) from Torino Institutional Repository identifying: (i) marker positivity by immunohistochemistry, (ii) main morphological appearance by light microscopy, (iii) presence of "hotspot" mutations of candidate genes by Sequenom technology. To evaluate possible predictors of survival and time to recurrence, uni- and multivariable-adjusted comparisons were performed. We identified 4 different subgroups: "alveolar," "bronchiolar," "mixed" and "null type." Alveolar-differentiated ADC were more common in young (P=.065), female (P=.083) patients, frequently harboring EGFR-mutated (P=.003) tumors with acinar pattern (P<.001). Bronchiolar-differentiated ADC were more associated with mucinous and solid pattern (P<.001), higher degree of vascular invasion (P=.01) and KRAS gene mutations (P=.07). Bronchiolar, mixed, and null types were independent negative predictors for overall survival, and the latter two had a shorter time to recurrence. This "Cell of Origin" classifier is more predictable than morphology and genetics and is an independent predictor of survival on a multivariate analysis.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Alessia Nottegar
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Francesco Guerrera
- Department of Thoracic Surgery, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Enrica Migliore
- Unit of Cancer Epidemiology, AOU Città della Salute e della Scienza di Torino and CPO Piemonte, 10126 Torino, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; Department of Pathology, Santa Chiara Hospital, 38100 Trento, Italy
| | - Francesca Maletta
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Nicola Veronese
- National Research Council, CNR, Padua, 38121, Italy; Institute of Clinical Research and Education in Medicine, 38121 Padua, Italy
| | - Licia Montagna
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Marcello Gaudiano
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Pier Luigi Filosso
- Department of Thoracic Surgery, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Luisa Delsedime
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Giovannino Ciccone
- Unit of Cancer Epidemiology, AOU Città della Salute e della Scienza di Torino and CPO Piemonte, 10126 Torino, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; Candiolo Cancer Institute - FPO, IRCCS, I-10060, Candiolo (To), Italy
| | - Alberto Oliaro
- Department of Thoracic Surgery, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Enrico Ruffini
- Department of Thoracic Surgery, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Marco Chilosi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy; Department of Pathology, Pederzoli Hospital, 37134 Verona, Italy
| |
Collapse
|
33
|
Inamura K. Clinicopathological Characteristics and Mutations Driving Development of Early Lung Adenocarcinoma: Tumor Initiation and Progression. Int J Mol Sci 2018; 19:ijms19041259. [PMID: 29690599 PMCID: PMC5979290 DOI: 10.3390/ijms19041259] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with lung adenocarcinoma representing the most common lung cancer subtype. Among all lung adenocarcinomas, the most prevalent subset develops via tumorigenesis and progression from atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to minimally invasive adenocarcinoma (MIA), to overt invasive adenocarcinoma with a lepidic pattern. This stepwise development is supported by the clinicopathological and molecular characteristics of these tumors. In the 2015 World Health Organization classification, AAH and AIS are both defined as preinvasive lesions, whereas MIA is identified as an early invasive adenocarcinoma that is not expected to recur if removed completely. Recent studies have examined the molecular features of lung adenocarcinoma tumorigenesis and progression. EGFR-mutated adenocarcinoma frequently develops via the multistep progression. Oncogene-induced senescence appears to decrease the frequency of the multistep progression in KRAS- or BRAF-mutated adenocarcinoma, whose tumor evolution may be associated with epigenetic alterations and kinase-inactive mutations. This review summarizes the current knowledge of tumorigenesis and tumor progression in early lung adenocarcinoma, with special focus on its clinicopathological characteristics and their associations with driver mutations (EGFR, KRAS, and BRAF) as well as on its molecular pathogenesis and progression.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
34
|
Sumi T, Hirai S, Yamaguchi M, Tanaka Y, Tada M, Yamada G, Hasegawa T, Miyagi Y, Niki T, Watanabe A, Takahashi H, Sakuma Y. Survivin knockdown induces senescence in TTF‑1-expressing, KRAS-mutant lung adenocarcinomas. Int J Oncol 2018; 53:33-46. [PMID: 29658609 PMCID: PMC5958877 DOI: 10.3892/ijo.2018.4365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Survivin plays a key role in regulating the cell cycle and apoptosis, and is highly expressed in the majority of malignant tumors. However, little is known about the roles of survivin in KRAS-mutant lung adenocarcinomas. In the present study, we examined 28 KRAS-mutant lung adenocarcinoma tissues and two KRAS-mutant lung adenocarcinoma cell lines, H358 and H441, in order to elucidate the potential of survivin as a therapeutic target. We found that 19 (68%) of the 28 KRAS-mutant lung adenocarcinomas were differentiated tumors expressing thyroid transcription factor-1 (TTF-1) and E-cadherin. Patients with tumors immunohistochemically positive for survivin (n=18) had poorer outcomes than those with survivin-negative tumors (n=10). In the H358 and H441 cells, which expressed TTF-1 and E-cadherin, survivin knockdown alone induced senescence, not apoptosis. However, in monolayer culture, the H358 cells and H441 cells in which survivin was silenced, underwent significant apoptosis following combined treatment with ABT-263, a Bcl-2 inhibitor, and trametinib, a MEK inhibitor. Importantly, the triple combination of survivin knockdown with ABT-263 and trametinib treatment, clearly induced cell death in a three-dimensional cell culture model and in an in vivo tumor xenograft model. We also observed that the growth of the H358 and H441 cells was slightly, yet significantly suppressed in vitro when TTF-1 was silenced. These findings collectively suggest that the triple combination of survivin knockdown with ABT-263 and trametinib treatment, may be a potential strategy for the treatment of KRAS-mutant lung adenocarcinoma. Furthermore, our findings indicate that the well-differentiated type of KRAS-mutant lung tumors depends, at least in part, on TTF-1 for growth.
Collapse
Affiliation(s)
- Toshiyuki Sumi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yusuke Tanaka
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Makoto Tada
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Gen Yamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-0815, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
35
|
The more the micropapillary pattern in stage I lung adenocarcinoma, the worse the prognosis-a retrospective study on digitalized slides. Virchows Arch 2018; 472:949-958. [PMID: 29611055 DOI: 10.1007/s00428-018-2337-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Although the majority of lung adenocarcinomas show mixed pattern, only the predominant component is taken into account according to the novel classification. We evaluated the proportion of different patterns and their impact on overall survival (OS) and disease-free survival (DFS). Patterns were recorded according to predominance and their proportions were rated and calculated by objective area measuring on digitalized, annotated slides of resected stage I lung adenocarcinomas. Spearman's rank correlation, Kaplan-Meier models and the log rank test were used for statistical evaluation. Two hundred forty-three stage I adenocarcinoma were included. Lepidic pattern is more frequent in tumours without recurrence (20 vs. 8%), and lepidic predominant tumours have favourable prognosis (OS 90.5%, DFS 89.4%), but proportions above 25% are not associated with improving outcome. Solid and micropapillary patterns are more frequent in patients with recurrence (48 vs. 5% and 13 vs. 4%) and predominance of each one is associated with unfavourable prognosis (OS 64.1%, DFS 56.3% and OS 28.1%, DFS 28.1%, respectively). Above 25%, a growing proportion of solid or micropapillary pattern is not associated with worsening prognosis. In contrast, tumours having micropapillary pattern as secondly predominant form a different intermediate group (OS 51.1%, DFS 57.8%). Our study was based on measured area of each growth pattern on all available slides digitalized. This is the most precise way of determining the size of each component from the material available. We propose using predominant and secondly predominant patterns for prognostic purposes, particularly in tumours having solid or micropapillary patterns.
Collapse
|
36
|
Kumagai T, Tomita Y, Nakatsuka SI, Kimura M, Kunimasa K, Inoue T, Tamiya M, Nishino K, Susaki Y, Kusu T, Tokunaga T, Okami J, Higashiyama M, Imamura F. HER3 expression is enhanced during progression of lung adenocarcinoma without EGFR mutation from stage 0 to IA1. Thorac Cancer 2018; 9:466-471. [PMID: 29473311 PMCID: PMC5879050 DOI: 10.1111/1759-7714.12609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/21/2018] [Accepted: 01/21/2018] [Indexed: 12/25/2022] Open
Abstract
Background Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. Methods HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re‐classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid‐locked nucleic acid PCR clamp method, respectively. Results HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. Conclusion HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma.
Collapse
Affiliation(s)
- Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiko Tomita
- Department of Pathology, Osaka International Cancer Institue, Osaka, Japan
| | | | - Madoka Kimura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshiyuki Susaki
- Department of General Thoracic Surgery, Osaka International Cancer Institue, Osaka, Japan
| | - Takashi Kusu
- Department of General Thoracic Surgery, Osaka International Cancer Institue, Osaka, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, Osaka International Cancer Institue, Osaka, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institue, Osaka, Japan
| | - Masahiko Higashiyama
- Department of General Thoracic Surgery, Osaka International Cancer Institue, Osaka, Japan
| | - Fumio Imamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
37
|
Gu J, Xu S, Huang L, Li S, Wu J, Xu J, Feng J, Liu B, Zhou Y. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer. J Thorac Dis 2018; 10:723-731. [PMID: 29607142 DOI: 10.21037/jtd.2017.12.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18F-Fluoro-2-deoxyglucose (18F-FDG) uptake value of primary tumor and epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC). Methods We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. Results EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs. 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Conclusions Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.
Collapse
Affiliation(s)
- Jincui Gu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siqi Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixia Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shaoli Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junwen Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinlun Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baomo Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbin Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
38
|
Zhou C, Zhao J, Shao J, Li W. Prognostic relevance of TTF-1 expression in stage I adenocarcinoma. Oncotarget 2017; 8:107462-107468. [PMID: 29296178 PMCID: PMC5746080 DOI: 10.18632/oncotarget.22489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/28/2017] [Indexed: 01/15/2023] Open
Abstract
Tyroid transcription factor-1 (TTF-1) motivates the differentiation and development of bronchioloalveolar cells. The association of TTF-1 expression with prognosis in stage I adenocarcinoma is unclear. This study enrolled patients with resected stage I pulmonary adenocarcinoma who had TTF-1 immunostaining. All the corresponding clinicopathologic data including sex, age, smoking history, pathologic T stage, pathologic disease stage, surgical procedure, subtypes, follow-up records and adjuvant chemotherapy were investigated. Totally, 126 adenocarcinomas with TTF-1− and 2687 adenocarcinomas with TTF-1+ were subjected to the study. Among adenocarcinomas with TTF-1−, the major subtype was acinar-predominant adenocarcinomas, followed by invasive mucinous and papillary subtypes while acinar, papillary and minimally invasive adenocarcinoma were in the majority among adenocarcinomas with TTF-1+. The status of TTF-1 expression was not a significant factor for relapse-free survival (RFS) and overall survival (OS). Furthermore, there was no survival difference between the two groups (RFS: p = 0.2474; OS: p = 0.1480). When confined to stage IB adenocarcinomas with TTF-1−, whether received adjuvant chemotherapy made no difference to RFS and OS (RFS: p = 0.2707; OS: p = 1.000), as was the case in stage IB adenocarcinomas with TTF-1+ (RFS: p = 0.9161; OS: p = 0.1100). Within follow-up period, there was significant difference in post-recurrence survival (PRS) for TTF-1− patients compared with those TTF-1+ patients (Log-rank p = 0.0113). However, regarding to the recurrence site, there was no difference between TTF-1− patients and TTF-1+ patients in patients with stage I adenocarcinoma (p = 0.771) In conclusion, there is no significant difference in RFS and OS between TTF-1− group and TTF-1+ group, but TTF-1 negative adenocarcinoma has significantly worse PFS in patients with stage I adenocarcinoma. Moreover, chemotherapeutic efficacy between TTF-1+ and TTF-1− stage IB adenocarcinomas did not differ.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jikai Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinchen Shao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wentao Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
39
|
Suzuki S, Sakurai H, Masai K, Asakura K, Nakagawa K, Motoi N, Watanabe SI. A Proposal for Definition of Minimally Invasive Adenocarcinoma of the Lung Regardless of Tumor Size. Ann Thorac Surg 2017; 104:1027-1032. [DOI: 10.1016/j.athoracsur.2017.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
|
40
|
Matsubara D, Soda M, Yoshimoto T, Amano Y, Sakuma Y, Yamato A, Ueno T, Kojima S, Shibano T, Hosono Y, Kawazu M, Yamashita Y, Endo S, Hagiwara K, Fukayama M, Takahashi T, Mano H, Niki T. Inactivating mutations and hypermethylation of the NKX2-1/TTF-1 gene in non-terminal respiratory unit-type lung adenocarcinomas. Cancer Sci 2017; 108:1888-1896. [PMID: 28677170 PMCID: PMC5581515 DOI: 10.1111/cas.13313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
The major driver mutations of lung cancer, EGFR mutations and EML4-ALK fusion, are mainly detected in terminal respiratory unit (TRU)-type lung adenocarcinomas, which typically show lepidic and/or papillary patterns, but are rarely associated with a solid or invasive mucinous morphology. In order to elucidate the key genetic events in non-TRU-type lung cancer, we carried out whole-exome sequencing on 43 non-TRU-type lung adenocarcinomas based on morphology (17 acinar, nine solid, and two enteric adenocarcinomas, and 15 adenocarcinomas with a mucinous morphology). Our analysis identified mutations in TP53 (16/43, 37.2%), KRAS (13/43, 30.2%), and NKX2-1/TTF-1 (7/43; 16.3%) as the top three significantly mutated genes, while the EGFR mutation was rare (1/43, 2.3%) in this cohort. Eight NKX2-1/TTF-1 mutations (five frameshift, two nonsense, and one missense) were identified, with one case harboring two distinct NKX2-1/TTF-1 mutations (one missense and one frameshift). Functional assays with the NK2 homeobox 1 (NKX2-1)/thyroid transcription factor 1 (TTF-1) mutants revealed that none of them retain the activity as a transcriptional factor. Histologically, invasive mucinous adenocarcinomas accounted for most of the NKX2-1/TTF-1 mutations (five cases), as well as one enteric and one acinar adenocarcinoma. Immunohistochemistry showed that the cohort was largely divided into TTF-1-postive/hepatocyte nuclear factor 4-α (HNF4-α)-negative and TTF-1-negative/HNF4-α-positive groups. NKX2-1/TTF-1 mutations were exclusively found in the latter, in which the gastrointestinal markers, mucin 5AC and cytokeratin 20, were frequently expressed. Bisulfite sequencing revealed that the NKX2-1/TTF-1 gene body was highly methylated in NKX2-1/TTF-1-negative cases, including those without the NKX2-1/TTF-1 mutations. The genetic or epigenetic inactivation of NKX2-1/TTF-1 may play an essential role in the development and aberrant differentiation of non-TRU-type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative PathologyJichi Medical UniversityShimotsukeshiJapan
| | - Manabu Soda
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Taichiro Yoshimoto
- Division of Integrative PathologyJichi Medical UniversityShimotsukeshiJapan
| | - Yusuke Amano
- Division of Integrative PathologyJichi Medical UniversityShimotsukeshiJapan
| | - Yuji Sakuma
- Division of Integrative PathologyJichi Medical UniversityShimotsukeshiJapan
| | - Azusa Yamato
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshihide Ueno
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinya Kojima
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoki Shibano
- Division of Thoracic SurgeryJichi Medical UniversityShimotsukeshiJapan
| | - Yasuyuki Hosono
- Division of Molecular CarcinogenesisCenter for Neurological Diseases and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Masahito Kawazu
- Department of Medical GenomicsGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yoshihiro Yamashita
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Shunsuke Endo
- Division of Thoracic SurgeryJichi Medical UniversityShimotsukeshiJapan
| | - Koichi Hagiwara
- Division of Respiratory MedicineJichi Medical UniversityShimotsukeshiJapan
| | - Masashi Fukayama
- Department of PathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Takashi Takahashi
- Division of Molecular CarcinogenesisCenter for Neurological Diseases and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroyuki Mano
- Department of Cellular SignalingGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshiro Niki
- Division of Integrative PathologyJichi Medical UniversityShimotsukeshiJapan
| |
Collapse
|
41
|
Wu SG, Chang YL, Yu CJ, Yang PC, Shih JY. Lung adenocarcinoma patients of young age have lower EGFR mutation rate and poorer efficacy of EGFR tyrosine kinase inhibitors. ERJ Open Res 2017; 3:00092-2016. [PMID: 28717642 PMCID: PMC5507146 DOI: 10.1183/23120541.00092-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Patients aged ≤50 years are rarely diagnosed with nonsmall cell lung cancer. We conducted a retrospective cohort study to understand the mutation status of EGFR and the efficacy of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment in young Asian patients with lung adenocarcinoma. We collected tumour specimens and malignant pleural effusions from lung adenocarcinoma patients from June 2005 to April 2014, recorded their clinical demographic data, and analysed EGFR mutations by reverse transcriptase PCR. EGFR mutation data were collected from 1039 lung adenocarcinoma patients, including 161 patients aged ≤50 years and 878 patients aged >50 years. Fewer patients aged ≤50 years had EGFR mutations than older patients (p=0.043), but they showed a higher rate of uncommon EGFR mutations (p=0.035). A total of 524 patients with EGFR mutations received EGFR-TKI treatment, including 81 patients aged ≤50 years. Younger patients had a lower response rate than older patients (p=0.038) and had the shortest progression-free survival compared with other predefined age categories (p=0.033). Multivariate analysis of overall survival revealed age ≤50 years as a poor prognostic factor. In conclusion, fewer Asian patients aged ≤50 years had EGFR mutations, but the EGFR mutation types were more uncommon. Age ≤50 years is associated with poorer efficacy of EGFR-TKI treatment. Association between age and EGFR mutationshttp://ow.ly/jV4n30bRBUX
Collapse
Affiliation(s)
- Shang-Gin Wu
- Dept of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yih-Leong Chang
- Dept of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Dept of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pan-Chyr Yang
- Dept of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Dept of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Sakuma Y. Epithelial-to-mesenchymal transition and its role inEGFR-mutant lung adenocarcinoma and idiopathic pulmonary fibrosis. Pathol Int 2017; 67:379-388. [DOI: 10.1111/pin.12553] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Yuji Sakuma
- Department of Molecular Medicine; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo Japan
| |
Collapse
|
43
|
Yoshimura K, Inoue Y, Mori K, Iwashita Y, Kahyo T, Kawase A, Tanahashi M, Ogawa H, Inui N, Funai K, Shinmura K, Niwa H, Suda T, Sugimura H. Distinct prognostic roles and heterogeneity of TTF1 copy number and TTF1 protein expression in non-small cell lung cancer. Genes Chromosomes Cancer 2017; 56:570-581. [PMID: 28378892 DOI: 10.1002/gcc.22461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 01/10/2023] Open
Abstract
Thyroid transcription factor 1 (TTF1) located on chromosome band 14q13.3 is an oncogene and a suppressor gene in non-small cell lung cancer (NSCLC). The prognostic relevance of TTF1 copy number alterations (CNAs) and their association with TTF1 protein expression are poorly understood. Here, we assessed TTF1 CNAs and protein expression using microarrays in a cohort of 636 NSCLC, including 423 adenocarcinoma (ADC) and 171 squamous cell carcinoma (SCC). In addition, fluorescent in situ hybridization and immunohistochemistry were performed. TTF1 CNAs were detected in 23% of NSCLC (23% of ADC and 20% of SCC). Specifically, TTF1 amplification and polysomy were observed in 5% and 18% of NSCLC, and in 7% and 16% of ADC, respectively. TTF1 expression was detected in 85% of ADC. TTF1 CNAs were significantly associated with advanced tumor stage, EGFR mutations, and TTF1 expression. A multivariate Cox hazards model analysis of overall survival and recurrence-free survival demonstrated that both TTF1 amplification and polysomy were independent indicators of an unfavorable prognosis in patients with NSCLC. Survival was inversely correlated with TTF1 copy number. In contrast, TTF1 protein expression was an independent favorable prognostic factor. Intratumoral and intertumoral heterogeneities of TTF1 CNAs and TTF1 protein expression were assessed using primary cores from 138 pairs of primary tumors and corresponding nodal metastases. The concordance rate for TTF1 CNAs and TTF1 protein expression was high within tumors and between primary and metastatic tumors. Altogether, these results suggest that TTF1 CNAs are correlated with TTF1 protein expression, but have opposing effects on survival.
Collapse
Affiliation(s)
- Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazutaka Mori
- Department of Respiratory Medicine, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroshi Niwa
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
44
|
Synchronous mucinous and non-mucinous lung adenocarcinomas with different epidermal growth mutational status. Respir Med Case Rep 2017. [PMID: 28626632 PMCID: PMC5466592 DOI: 10.1016/j.rmcr.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In recent years, the spread of more-sensitive diagnostic methods has resulted in an increase of synchronous multiple primary lung cancer diagnosis. Nevertheless, its occurrence is still rare. Distinction between synchronous lesions from second independent primary tumors is a problem when dealing with multiple lung tumors, particularly if the histological type is the same. We present a case report of a 78-year-old female patient referred to our institution due to pneumonia. A subsequent thoracic computed tomography (CT) was performed showing two suspicious lesions, one in the right upper lobe and the other in the right inferior lobe. The CT-guided transthoracic needle biopsy of both pulmonary lesions revealed two adenocarcinomas, but with a rare combination of distinct morphologic variants, as well as different immunophenotypes and epidermal growth factor receptor (EGFR) gene status. The patient refused surgery and was submitted to stereotactic body radiation therapy (SBRT). She maintained tight follow-up and until now, she has not shown any signs of relapse or metastasis. A multidisciplinary approach with clinical, morphologic and molecular evaluation in multiple lung cancer is important to diagnosis and treatment guidance.
Collapse
|
45
|
Yousuf Z, Iman K, Iftikhar N, Mirza MU. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:447-459. [PMID: 28652811 PMCID: PMC5476443 DOI: 10.2147/bctt.s132074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast cancer is characterized by an uncontrolled growth of cells in breast tissue. Genes that foster cell growth in breast cells are overexpressed, giving rise to breast tumors. The identification of effective inhibitors represents a rational chemopreventive strategy. The current in silico study provides a pharmacoinformatic approach for the identification of active compounds against a co-chaperone HSP90 and the human epidermal growth factor receptors EGFR and HER2/neu receptor. The elevated levels of expression of these target proteins have been documented in breast cancer. The utilization of drug-likeness filters helped to evaluate the pharmacological activity of potential lead compounds. Those fulfilling this criterion were subjected to energy minimization for 1000 steepest descent steps at a root means square gradient of 0.02 with an Amber ff12SB force field. Based on molecular docking results and binding interaction analysis, this study represents five chemical compounds (S-258282355, S-258012947, S-259417539, S-258002927, and S-259411474) that indicate high binding energies that range between -8.7 to -10.3 kcal/mol. With high cytochrome P inhibitory promiscuity activity, these multi-targeted potential hits portray not only good physiochemical interactions but also an excellent profile of absorption, distribution, metabolism, excretion, and toxicity, which hypothesizes that these compounds can be developed as anticancer drugs in the near future.
Collapse
Affiliation(s)
- Zeeshan Yousuf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore
| | - Kanzal Iman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore
| | - Nauman Iftikhar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad
| | - Muhammad Usman Mirza
- Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan.,Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lin D, Zeng D, Chen C, Wu X, Wang M, Chen J, Lin H, Qiu X. Clinicopathological Features and Therapeutic Responses of Chinese Patients with Advanced Lung Adenocarcinoma Harboring an Anaplastic Lymphoma Kinase Rearrangement. Oncol Res Treat 2017; 40:27-33. [PMID: 28118634 DOI: 10.1159/000454715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Presence of anaplastic lymphoma kinase (ALK) rearrangement is an indication for crizotinib in the treatment of patients with advanced or metastatic lung adenocarcinoma. Here, we sought to elucidate the association between clinicopathological features and ALK rearrangement status in Chinese patients with advanced lung adenocarcinoma harboring an ALK rearrangement. PATIENTS AND METHODS ALK rearrangement status was determined using immunohistochemistry (IHC) in tumor tissues from 120 patients with advanced lung adenocarcinoma, and further assessed by fluorescence in situ hybridization (FISH) assay. The associations between ALK rearrangement status and clinicopathological features were analyzed. RESULTS According to IHC testing, the ALK-positive rate among the advanced lung adenocarcinoma patients was 6.67% (8/120). FISH validation found 5 patients with ALK rearrangement among the 8 IHC-positive cases. No significant difference was observed regarding age, sex, or smoking status between FISH-positive and -negative patients (p > 0.05). None of the 5 FISH-positive patients benefited from first-line chemotherapy. CONCLUSION IHC can be used as a reliable method for ALK rearrangement screening in patients with lung adenocarcinoma, but further FISH validation is imperative. Presence of ALK rearrangement predicts a more aggressive biological behavior of the tumor and might be indicative of poor response to chemotherapy.
Collapse
|
47
|
Sun W, Yang X, Liu Y, Yuan Y, Lin D. Primary Tumor Location Is a Useful Predictor for Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma. Clin Lung Cancer 2017; 18:e49-e55. [DOI: 10.1016/j.cllc.2016.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/14/2023]
|
48
|
Kojima Y, Okudela K, Matsumura M, Omori T, Baba T, Sekine A, Woo T, Umeda S, Takemura T, Mitsui H, Suzuki T, Tateishi Y, Iwasawa T, Arai H, Tajiri M, Ogura T, Kameda Y, Masuda M, Ohashi K. The pathological features of idiopathic interstitial pneumonia-associated pulmonary adenocarcinomas. Histopathology 2016; 70:568-578. [PMID: 27757985 DOI: 10.1111/his.13103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the pathological features of idiopathic interstitial pneumonia (IIP)-associated pulmonary adenocarcinoma. METHODS AND RESULTS Surgically resected adenocarcinomas associated with IIP (the IIP group) and adenocarcinomas without IIP (the non-IIP group) were subjected to analysis. Adenocarcinomas in the IIP group were subdivided into two groups: one group included tumours connected to bronchiolar metaplasia in honeycomb lesions (the H-IIP group), and the other included tumours unrelated to honeycomb lesions (the NH-IIP group). Histomorphological appearance and immunohistochemical expression were compared among the H-IIP group, the NH-IIP group, and the non-IIP group. Most of the tumour cells in the H-IIP group had a tall, columnar shape that showed similar features to proximal bronchial epithelium, whereas tumour cells in the NH-IIP group and the non-IIP group had a club-like shape that showed similar features to respiratory bronchiolar/alveolar epithelium. Adenocarcinomas in the H-IIP group tended to be negative for thyroid transcription factor-1 (TTF-1) and positive for hepatocyte nuclear factor-4α (HNF-4α). The frequency of EGFR mutations was significantly lower in adenocarcinomas in the H-IIP group, although the frequencies of KRAS and ALK mutations did not differ among the three groups. CONCLUSIONS Idiopathic interstitial pneumonia-associated pulmonary adenocarcinomas, especially those arising from honeycomb lesions, have distinct pathological features.
Collapse
Affiliation(s)
- Yoko Kojima
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Division of Pathology, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Mai Matsumura
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Omori
- Division of General Thoracic Surgery, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Tomohisa Baba
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Akimasa Sekine
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Tetsukan Woo
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeaki Umeda
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Division of Pathology, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Tamiko Takemura
- Division of Pathology, Japanese Red Cross Medical Centre Hospital, Tokyo, Japan
| | - Hideaki Mitsui
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takehisa Suzuki
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoko Tateishi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tae Iwasawa
- Division of Radiology, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Hiromasa Arai
- Division of General Thoracic Surgery, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Michihiko Tajiri
- Division of General Thoracic Surgery, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Takashi Ogura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Yoichi Kameda
- Division of Pathology, Kanagawa Cardiovascular and Respiratory Centre, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenich Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
49
|
Cavity Wall Thickness in Solitary Cavitary Lung Adenocarcinomas Is a Prognostic Indicator. Ann Thorac Surg 2016; 102:1863-1871. [PMID: 27663793 DOI: 10.1016/j.athoracsur.2016.03.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although cavitary lung cancers typically show thick-walled cavities on radiology, thin-walled cancers have recently been reported. However, the prognostic and pathologic differences between thin-walled and thick-walled variants are unclear. We reviewed detailed histologic features and survival outcomes of cavitary pulmonary adenocarcinomas to assess pathologic attributes, focusing particularly on cavity wall thickness. METHODS We studied 132 patients diagnosed with lung adenocarcinoma involving cavitary formation, as determined with high-resolution computed tomography or histology, between 1998 and 2007. Using receiver-operating characteristics curve analysis, we established a cutoff value for cavity wall thickness based on disease-specific survival. Cavitary adenocarcinomas were grouped into thick-walled or thin-walled types according to this cutoff, as measured by computed tomography. RESULTS The thick-walled group comprised lung adenocarcinoma patients with a cavity wall thickness of greater than 4 mm (n = 65); the thin-walled group comprised patients with a cavity wall thickness of 4 mm or less (n = 67). The thick-walled group had a higher frequency of solid predominant tumors (p < 0.01), vascular invasion (p < 0.001), lymphatic invasion (p < 0.01), necrosis (p < 0.001), obstructive pneumonia (p < 0.01), intracavity abscess (p < 0.01), and bronchiolar obstruction (p = 0.02). Lepidic predominant (p = 0.09) and papillary predominant patterns (p = 0.08) were more common in the thin-walled group. Multivariate analysis revealed cavity wall thickness to be an independent prognostic factor (p = 0.022). CONCLUSIONS The pathologic and prognostic implications of thick-walled cavities versus thin-walled cavities in lung carcinoma patients, defined according to our cutoff, were found to be distinct.
Collapse
|
50
|
Kim MH, Cho JS, Kim Y, Lee CH, Lee MK, Shin DH. Discriminating between Terminal- and Non-Terminal Respiratory Unit-Type Lung Adenocarcinoma Based on MicroRNA Profiles. PLoS One 2016; 11:e0160996. [PMID: 27575252 PMCID: PMC5004921 DOI: 10.1371/journal.pone.0160996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Lung adenocarcinomas can be classified into terminal respiratory unit (TRU) and non-TRU types. We previously reported that non-TRU-type adenocarcinoma has unique clinical and morphological features as compared to the TRU type. Here we investigated whether micro (mi)RNA expression profiles can be used to distinguish between these two subtypes of lung adenocarcinoma. The expression of 1205 human and 144 human viral miRNAs was analyzed in TRU- and non-TRU-type lung adenocarcinoma samples (n = 4 each) by microarray. Results were validated by quantitative real-time (qRT-)PCR and in situ hybridization. A comparison of miRNA profiles revealed 29 miRNAs that were differentially expressed between TRU- and non-TRU adenocarcinoma types. Specifically, hsa-miR-494 and ebv-miR-BART19 were up regulated by > 5-fold, whereas hsa-miR-551b was down regulated by > 5-fold in the non-TRU relative to the TRU type. The miRNA signature was confirmed by qRT-PCR analysis using an independent set of paired adenocarcinoma (non-TRU-type, n = 21 and TRU-type, n = 12) and normal tissue samples. Non-TRU samples showed increased expression of miR-494 (p = 0.033) and ebv-miR-BART19 (p = 0.001) as compared to TRU-type samples. Both miRNAs were weakly expressed in the TRU type but strongly expressed in the non-TRU type. Neither subtype showed miR-551b expression. TRU- and non-TRU-type adenocarcinomas have distinct miRNA expression profiles, suggesting that tumorigenesis in lung adenocarcinoma occur via different pathways.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- Medical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jeong Su Cho
- Department of thoracic surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Yeongdae Kim
- Department of thoracic surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Chang Hun Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Ki Lee
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- * E-mail: (DHS); (MKL)
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Medical Research Institute, Pusan National University, Busan, Republic of Korea
- * E-mail: (DHS); (MKL)
| |
Collapse
|