1
|
Valand A, Rajasekar P, Wain LV, Clifford RL. Interplay between genetics and epigenetics in lung fibrosis. Int J Biochem Cell Biol 2025; 180:106739. [PMID: 39848439 DOI: 10.1016/j.biocel.2025.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms. This review provides an overview of the current understanding of the interplay between genetics and epigenetics in lung fibrosis. We discuss the genetic variants associated with susceptibility to lung fibrosis and explore how epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNA expression contribute to disease. Insights from genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) are integrated to explore the molecular mechanisms underlying lung fibrosis pathogenesis. We also discuss the potential clinical implications of genetics and epigenetics in lung fibrosis, including the development of novel therapeutic targets. Overall, this review highlights the importance of considering both genetic and epigenetic factors in the understanding and management of lung fibrosis.
Collapse
Affiliation(s)
- Anita Valand
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Rachel L Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK.
| |
Collapse
|
2
|
Kim H, Yoon HG, Yoo JY. Plumbagin ameliorates renal fibrosis by suppressing epithelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 750:151325. [PMID: 39884006 DOI: 10.1016/j.bbrc.2025.151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKDs), driven by excessive extracellular matrix (ECM) accumulation. Despite its prevalence, therapeutic candidates specifically targeting fibrosis are limited, and the role of renal tubular epithelial cells in fibrosis pathogenesis remains unclear. In this study, we evaluated the anti-fibrotic effects of Plumbagin, a plant-derived natural compound, using a folic acid-induced renal fibrosis model that simulates proximal tubular injury-driven fibrosis. Plumbagin treatment significantly attenuated renal fibrosis in a folic acid-induced model. Furthermore, using the human proximal tubular epithelial cell line HK-2, we assessed EMT, a key fibrosis-promoting biological process, and the expression of fibrosis-related factors. Plumbagin treatment reduced TGF-β-induced EMT and fibrosis-related factor expression in HK-2 cells. In summary, Plumbagin suppresses EMT in renal tubular epithelial cells under fibrotic conditions and alleviates renal fibrosis. These findings highlight the potential of Plumbagin as a therapeutic drug for renal fibrosis and propose a shared therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju, 26493, South Korea.
| |
Collapse
|
3
|
Martín-Vicente P, López-Martínez C, López-Alonso I, Exojo-Ramírez SM, Duarte-Herrera ID, Amado-Rodríguez L, Ordoñez I, Cuesta-Llavona E, Gómez J, Campo N, O'Kane CM, McAuley DF, Huidobro C, Albaiceta GM. Mechanical Stretch Induces Senescence of Lung Epithelial Cells and Drives Fibroblast Activation by Paracrine Mechanisms. Am J Respir Cell Mol Biol 2025; 72:195-205. [PMID: 39133930 DOI: 10.1165/rcmb.2023-0449oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 02/01/2025] Open
Abstract
Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence was assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells, and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared with senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed Notch signaling as potentially responsible for the epithelial-mesenchymal cross-talk, because blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.
Collapse
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Sara M Exojo-Ramírez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Israel David Duarte-Herrera
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Medicina
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| | - Irene Ordoñez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
| | - Elias Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Natalia Campo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| |
Collapse
|
4
|
Yuan X, Qin X, Takemoto K, Zhao J, Sanderson M, Xu X, Zhang Y, Helke KL, Jacobs Wolf B, Guthridge JM, James JA, Zhou X, Assassi S, Feghali-Bostwick C, Wang D, Sun L, Tsao BP. Human hypofunctional NCF1 variants promote pulmonary fibrosis in the bleomycin-induced mouse model and patients with systemic sclerosis via expansion of SPP1 + monocytes-derived macrophages. Ann Rheum Dis 2025; 84:294-306. [PMID: 39919902 PMCID: PMC11907366 DOI: 10.1136/ard-2024-226034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE We assessed the role of a systemic lupus erythematosus causal hypofunctional variant, neutrophil cytosolic factor 1 (NCF1)-p.Arg90His (p.R90H) substitution, in systemic sclerosis (SSc). METHODS Association of NCF1-H90 with SSc was performed in case-control cohorts, bleomycin (BLM)-treated Ncf1-R90 C57BL/6 wildtype and Ncf1-H90 knock-in (KI) littermates. Peripheral blood mononuclear cell (PBMC) subsets were analysed by cytometry by time-of-flight. RESULTS The NCF1-H90 allele is associated with risk for diffuse cutaneous SSc (dcSSc) in Chinese and European Americans, and lung fibrosis in Chinese patients with SSc (OR=2.09, p=7.96E-10). Low copy number of NCF1 associated with lung fibrosis in European Americans (OR=4.33, p=2.60E-2). BLM-treated KI mice demonstrated increased pulmonary fibrosis, exhibiting activated type I interferon signature, elevated Spp1, Ccl2, Arg1, Timp1 and Il6 expression, enriched macrophage scores in lung tissues. In a longitudinal observation cohort, homozygous H90 patients with SSc at baseline had increased anti-nuclear antibody titres, anti-topoisomerase antibody seropositivity and anti-centromere antibody seronegativity, increased incidence of lung fibrosis and Gender-Age-lung Physiology index, elevated modified Rodnan Skin Score (mRSS) and elevated plasma osteopontin (OPN, SPP1), CCL2, ARG1, TIMP-1 and IL-6. These H90 patients with SSc sustained elevated mRSS during follow-up years with decreased survival. The 0, 1 and 2 copies of H90 carriage in SSc PBMCs exhibited dose-dependent increases in profibrotic CD14+CD68+CD11b+Tim3+monocytes. Elevated OPN, CCL2 and ARG1 in CD68+CD11b+monocyte-derived macrophages from H90 patients were decreased after co-culturing with anti-CCL2 antibody. CONCLUSION Low NCF1 activity increases the risk for the development of dcSSc and lung fibrosis via expanding profibrotic SPP1+MoMs in a CCL2-dependent manner, contributing to the severity of lung fibrosis in both BLM-treated mice and patients with SSc.
Collapse
Affiliation(s)
- Xinran Yuan
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Qin
- Department of Orthopedic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Kenji Takemoto
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jian Zhao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Sanderson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue Xu
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yu Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiaodong Zhou
- Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA. https://twitter.com/ShervinAssassi
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China.
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
5
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
6
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
7
|
Zhou S, Cheng W, Liu Y, Gao H, Yu L, Zeng Y. MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1. Respir Res 2024; 25:382. [PMID: 39427175 PMCID: PMC11491022 DOI: 10.1186/s12931-024-03011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Wenzhao Cheng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yifei Liu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Kim J, Chae G, Kim WY, Chung CR, Cho Y, Lee J, Jegal Y, Joh JS, Park TY, Hwang JH, Nam BD, Yoon HY, Song JW. Pulmonary fibrosis followed by severe pneumonia in patients with COVID-19 infection requiring mechanical ventilation: a prospective multicentre study. BMJ Open Respir Res 2024; 11:e002538. [PMID: 39366721 PMCID: PMC11481150 DOI: 10.1136/bmjresp-2024-002538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUNDS The management of lung complications, especially fibrosis, after COVID-19 pneumonia, is an important issue in the COVID-19 post-pandemic era. We aimed to investigate risk factors for pulmonary fibrosis development in patients with severe COVID-19 pneumonia. METHODS Clinical and radiological data were prospectively collected from 64 patients who required mechanical ventilation due to COVID-19 pneumonia and were enrolled from eight hospitals in South Korea. Fibrotic changes on chest CT were evaluated by visual assessment, and extent of fibrosis (mixed disease score) was measured using automatic quantification system. RESULTS 64 patients were enrolled, and their mean age was 58.2 years (64.1% were males). On chest CT (median interval: 60 days [IQR; 41-78 days] from enrolment), 35 (54.7%) patients showed ≥3 fibrotic lesions. The most frequent fibrotic change was traction bronchiectasis (47 patients, 73.4 %). Median extent of fibrosis measured by automatic quantification was 10.6% (IQR, 3.8-40.7%). In a multivariable Cox proportional hazard model, which included nine variables with a p value of <0.10 in an unadjusted analysis as well as age, sex and Body Mass Index, male sex (HR, 3.01; 95% CI, 1.27 to 7.11) and higher initial Sequential Organ Failure Assessment (SOFA) score (HR, 1.18; 95% CI, 1.02 to 1.37) were independently associated with pulmonary fibrosis (≥3 fibrotic lesions). CONCLUSION Our data suggests that male gender and higher SOFA score at intensive care unit admission were associated with pulmonary fibrosis in patients with severe COVID-19 pneumonia requiring mechanical ventilation.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, Hwaseong, Korea (the Republic of)
| | - Ganghee Chae
- Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (the Republic of)
| | - Won-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| | - Chi-Ryang Chung
- Department of Critical Care Medicine, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Suwon, Korea (the Republic of)
| | - Young‑Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Jinwoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Yangjin Jegal
- Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (the Republic of)
| | - Joon-Sung Joh
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Centre, Seoul, Korea (the Republic of)
| | - Tae Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Jung Hwa Hwang
- Department of Radiology, Soonchunhyang University Hospital, Yongsan-gu, Korea (the Republic of)
| | - Bo Da Nam
- Department of Radiology, Soonchunhyang University Hospital, Yongsan-gu, Korea (the Republic of)
| | - Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Korea (the Republic of)
| |
Collapse
|
9
|
Xie Y, Shi S, Lv W, Wang X, Yue L, Deng C, Wang D, Han J, Ye T, Lin Y. Tetrahedral Framework Nucleic Acids Delivery of Pirfenidone for Anti-Inflammatory and Antioxidative Effects to Treat Idiopathic Pulmonary Fibrosis. ACS NANO 2024; 18:26704-26721. [PMID: 39276332 DOI: 10.1021/acsnano.4c06598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease, and developing an effective treatment remains a challenge. The limited therapeutic options are primarily delivered by the oral route, among which pirfenidone (PFD) improves pulmonary dysfunction and patient quality of life. However, its high dose and severe side effects (dyspepsia and systemic photosensitivity) limit its clinical value. Intratracheal aerosolization is an excellent alternative method for treating lung diseases because it increases the concentration of the drug needed to reach the focal site. Tetrahedral framework nucleic acid (tFNA) is a drug delivery system with exceptional delivery capabilities. Therefore, we synthesized a PFD-tFNA (Pt) complex using tFNA as the delivery vehicle and achieved quantitative nebulized drug delivery to the lungs via micronebulizer for lung fibrosis treatment. In vivo, Pt exhibited excellent immunomodulatory capacity and antioxidant effects. Furthermore, Pt reduced mortality, gradually restored body weight and improved lung tissue structure. Similarly, Pt also exhibited superior fibrosis inhibition in an in vitro fibrosis model, as shown by the suppression of excessive fibroblast activation and epithelial-mesenchymal transition (EMT) in epithelial cells exposed to TGF-β1. Conclusively, Pt, a complex with tFNA as a transport system, could enrich the therapeutic regimen for IPF via intratracheal aerosolization inhalation.
Collapse
Affiliation(s)
- Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| | - Weitong Lv
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyu Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Doudou Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Han
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
- National Health Commission Key Laboratory for Diagnosis and Treatment of Pulmonary Immune Diseases, Guiyang 550000, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| |
Collapse
|
10
|
Ziqiang S, Jiale L, Renhua S, Aiping W, Yin N, Jingquan L, Feng G, Lijun Y, Guoping G, Aijun D, Yunchao S, Changwen L, Lei X, Ronglin J, Jun L, Ronghai L, Yannan Z, Weidong W, Bo X, Bangchuan H. Ventilatory pressure parameters impact the association between acute gastrointestinal injury and all-cause mortality in mechanically ventilated patients. Sci Rep 2024; 14:20763. [PMID: 39237608 PMCID: PMC11377789 DOI: 10.1038/s41598-024-71556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Acute gastrointestinal injury (AGI) is common in mechanically ventilated (MV) patients, but the potential association between ventilatory pressure parameters and AGI grade and their impact on mortality remains unclear. This study aimed to explore the association between ventilatory pressure parameters and AGI grade, and their interaction on all-cause mortality in MV patients. This study was a secondary analysis of a multicenter, prospective, observational study that enrolled adult patients with an expected duration of mechanical ventilation ≥ 48 h from 14 general intensive care units in Zhejiang Province between March and August 2014. The AGI grade was assessed daily on the basis of gastrointestinal symptoms, intra-abdominal pressures, and feeding intolerance in the first week of admission to the ICU. This study included 331 patients (69.2% men; mean age, 64.6 ± 18.9 years). Multivariate regression analysis showed that plateau pressure (Pplat) (OR 1.044, 95% CI 1.009-1.081, P = 0.013), serum creatinine (OR 1.003, 95% CI 1.001-1.006, P = 0.042) and APACHE II score (OR 1.035, 95% CI 1.021-1.072, P = 0.045) were independently associated with global AGI grade III/IV within 7 days of ICU admission. Moreover, global AGI grade (HR 2.228, 95% CI 1.561-3.182, P < 0.001), serum creatinine (HR 1.002, 95% CI 1.001-1.003, P = 0.012) and APACHE II score (HR 1.039, 95% CI 1.015-1.063, P = 0.001) were independently associated with 60-day mortality. In addition, there were significant (Pint ≤ 0.028) interactions of Pplat and DP with AGI grade in relation to 60-days mortality, whereas no interaction (Pint = 0.061) between PEEP and AGI grade on 60-days mortality was observed. In the presence of Pplat ≥ 19 cmH2O, the patients with AGI grade III/IV had 60-day mortality rate of 72.2%, significantly higher than those with AGI grade I/II (48.7%, P = 0.018), whereas there were no significant differences (27.9% vs. 33.7%, P = 0.39) in 60-days mortality between AGI grade I/II and III/IV among the patients with Pplat < 19 cmH2O. In comparison with Pplat, DP had a similar interaction (Pint = 0.028) with AGI grade on 60-day mortality. Ventilatory pressure parameters (Pplat and DP) are independent risk factors of AGI grade III/IV. Pplat and DP interact with AGI grade on 60-days mortality, highlighting the importance of optimizing ventilatory pressure parameters to improve gastrointestinal function and survival outcomes of MV patients.Trial registration: ChiCTR-OCS-13003824.
Collapse
Affiliation(s)
- Shao Ziqiang
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Li Jiale
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Sun Renhua
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Wu Aiping
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Ni Yin
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Liu Jingquan
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China
| | - Guo Feng
- ICU, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, China
| | - Ying Lijun
- ICU, Shaoxing People's Hospital, Zhongxing North Road, Shaoxing, 321000, China
| | - Ge Guoping
- ICU, Jinhua People's Hospital, 228 Xinhua Street, Jinhua, 321000, China
| | - Ding Aijun
- ICU, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Hangzhou, 310014, China
| | - Shi Yunchao
- ICU, The First Hospital of Jiaxing, 529 Hexin South Road, Jiaxing, 314000, China
| | - Liu Changwen
- ICU, Hangzhou First People's Hospital, 261, Huansha Road, Hangzhou, 310006, China
| | - Xu Lei
- ICU, Ningbo Medical Treatment Center Lihuili Hospital, 57 Xingning Road, Ningbo, 315000, China
| | - Jiang Ronglin
- ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Lu Jun
- ICU, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, 310005, China
| | - Lin Ronghai
- ICU, Taizhou Hospital of Zhejiang Province, 150 Ziyang Old Street, Linhai, 317000, China
| | - Zhu Yannan
- ICU, Zhuji People's Hospital of Zhejiang Province, 9 Jianming Road, Shaoxin, China
| | - Wu Weidong
- ICU, The Central Hospital of Lishui City, 15 Dazhong Street, Lishui, 323000, China
| | - Xie Bo
- ICU, Huzhou Central Hospital, 198 Hongqi Road, Huzhou, 313003, China
| | - Hu Bangchuan
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
11
|
Li X, Liu D, Wu Z, Xu Y. Diffuse tumors: Molecular determinants shared by different cancer types. Comput Biol Med 2024; 178:108703. [PMID: 38850961 DOI: 10.1016/j.compbiomed.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Most cancer types have both diffuse and non-diffuse subtypes, which have rather distinct morphologies, namely scattered tiny tumors vs. one solid tumor, and different levels of aggressiveness. However, the causes for forming such distinct subtypes remain largely unknown. Using the diffuse and non-diffuse gastric cancers (GCs) as the illustrative example, we present a computational study based on the transcriptomic data from the TCGA and GEO databases, to address the following questions: (i) What are the key molecular determinants that give rise to the distinct morphologies between diffuse and non-diffuse cancers? (ii) What are the main reasons for diffuse cancers to be generally more aggressive than non-diffuse ones of the same cancer type? (iii) What are the reasons for their distinct immunoactivities? And (iv) why do diffuse cancers on average tend to take place in younger patients? The study is conducted using the framework we have previously developed for elucidation of general drivers cancer formation and development. Our main discoveries are: (a) the level of (poly-) sialic acids deployed on the surface of cancer cells is a significant factor contributing to questions (i) and (ii); (b) poly-sialic acids synthesized by ST8SIA4 are the key to question (iii); and (c) the circulating growth factors specifically needed by the diffuse subtype dictate the answer to question (iv). All these predictions are substantiated by published experimental studies. Our further analyses on breast, prostate, lung, liver, and thyroid cancers reveal that these discoveries generally apply to the diffuse subtypes of these cancer types, hence indicating the generality of our discoveries.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dingyun Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Zhipeng Wu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Ying Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
12
|
Liu Y, Chen P, Hu B, Xiao Y, Su T, Luo X, Tu M, Cai G. Excessive mechanical loading promotes osteoarthritis development by upregulating Rcn2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167251. [PMID: 38795835 DOI: 10.1016/j.bbadis.2024.167251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 μL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Manli Tu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, China; Jiangxi Branch of National Clinical Research Center for metabolic Disease, China.
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
13
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
14
|
Gao W, Kanagarajah KR, Graham E, Soon K, Veres T, Moraes TJ, Bear CE, Veldhuizen RA, Wong AP, Günther A. Collagen Tubular Airway-on-Chip for Extended Epithelial Culture and Investigation of Ventilation Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309270. [PMID: 38431940 DOI: 10.1002/smll.202309270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Indexed: 03/05/2024]
Abstract
The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.
Collapse
Affiliation(s)
- Wuyang Gao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Kayshani R Kanagarajah
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Emma Graham
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
| | - Kayla Soon
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- National Research Council Canada, 75 Bd de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada
| | - Theo J Moraes
- Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1×8, Canada
| | - Christine E Bear
- Program in Molecular Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1 × 8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ruud A Veldhuizen
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, London Health Sciences Centre, 750 Base Line Rd E, London, Ontario, N6C 2R5, Canada
- Department of Medicine, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | - Amy P Wong
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, PGCRL Research Tower, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
15
|
Li LF, Yu CC, Huang CY, Wu HP, Chu CM, Liu PC, Liu YY. Suppression of Ventilation-Induced Diaphragm Fibrosis through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model. Int J Mol Sci 2024; 25:6370. [PMID: 38928077 PMCID: PMC11203512 DOI: 10.3390/ijms25126370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-β1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Ping-Chi Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
16
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Shan F, Tang F, Liu Y, Han X, Wu W, Tang Y, Zhan Q, Zhang N. The effect of adoptive transferring myeloid-derived suppressor cells in ventilator-induced lung injury mice. Heliyon 2024; 10:e25595. [PMID: 38356581 PMCID: PMC10865327 DOI: 10.1016/j.heliyon.2024.e25595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The effects of adoptive transferring myeloid-derived suppressor cells (MDSCs) to mice with ventilator-induced lung injury (VILI) are unclear. Our objective was to investigate the effects of adoptively transferring MDSCs in VILI. The mouse model was created by introducing mechanical ventilation through a high tidal volume of 20 ml/kg for 4 h. Inflammation-induced MDSCs (iMDSCs) were collected from the bone marrow of mice with cecal ligation and puncture. iMDSCs were administrated through retrobulbar angular vein 1 h before the mechanical ventilation. The control group was anesthetized and maintained spontaneous respiration. After the termination of mechanical ventilation, bronchoalveolar lavage fluid (BALF) and lung samples 6 h were collected. The concentrations of BALF protein, levels of inflammatory mediators, and white blood cells were all significantly decreased in mice treated with iMDSCs. Histological examinations indicated reduced lung damage after iMDSCs treatment. Moreover, adoptive transfer of iMDSCs could reduce CD4+ T-cell counts and inhibit its inflammatory cytokine secretion. iMDSCs treatment was found to had no immunostimulatory effects or cause secondary infections in mice. In conclusion, MDSCs might be a potential targeted therapy for alleviating the inflammatory response of VILI mice in a T-cell dependent manner.
Collapse
Affiliation(s)
- Fangzhen Shan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Fenglian Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yuan Liu
- Department of Intensive care unit III, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Xiao Han
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Wei Wu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanhua Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Luo M, Gu R, Wang C, Guo J, Zhang X, Ni K, Liu L, Pan Y, Li J, Deng L. High Stretch Associated with Mechanical Ventilation Promotes Piezo1-Mediated Migration of Airway Smooth Muscle Cells. Int J Mol Sci 2024; 25:1748. [PMID: 38339025 PMCID: PMC10855813 DOI: 10.3390/ijms25031748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Rong Gu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Chunhong Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Guo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Xiangrong Zhang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
20
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
21
|
Fang XZ, Li M, Wang YX, Zhang P, Sun MM, Xu JX, Yang YY, He YJ, Yu Y, Li RT, Zhou T, Reng LH, Sun DY, Shu HQ, Yuan SY, Xu JQ, Shang Y. Mechanosensitive ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fibrosis. J Adv Res 2023; 53:175-186. [PMID: 36526145 PMCID: PMC10658225 DOI: 10.1016/j.jare.2022.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Pulmonary fibrosis is a major cause of the poor prognosis of acute respiratory distress syndrome (ARDS). While mechanical ventilation (MV) is an indispensable life-saving intervention for ARDS, it may cause the remodeling process in lung epithelial cells to become disorganized and exacerbate ARDS-associated pulmonary fibrosis. Piezo1 is a mechanosensitive ion channel that is known to play a role in regulating diverse physiological processes, but whether Piezo1 is necessary for MV-exacerbated ARDS-associated pulmonary fibrosis remains unknown. OBJECTIVES This study aimed to explore the role of Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis. METHODS Human lung epithelial cells were stimulated with hydrochloric acid (HCl) followed by mechanical stretch for 48 h. A two-hitmodel of MV afteracidaspiration-inducedlunginjuryin mice was used. Mice were sacrificed after 14 days of MV. Pharmacological inhibition and knockout of Piezo1 were used to delineate the role of Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis. In some experiments, ATP or the ATP-hydrolyzing enzyme apyrase was administered. RESULTS The stimulation of human lung epithelial cells to HCl resulted in phenotypes of epithelial-mesenchymal transition (EMT), which were enhanced by mechanical stretching. MV exacerbated pulmonary fibrosis in mice exposed to HCl. Pharmacologicalinhibitionorknockout of Piezo1 attenuated the MV-exacerbated EMT process and lung fibrosis in vivo and in vitro. Mechanistically, the observed effects were mediated by Piezo1-dependent Ca2+ influx and ATP release in lung epithelial cells. CONCLUSIONS Our findings identify a key role for Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis that is mediated by increased ATP release in lung epithelial cells. Inhibiting Piezo1 may constitute a novelstrategyfor the treatment of MV-exacerbated ARDS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Pain Management, Wuhan No. 1 Hospital, Wuhan, Hubei Province, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, China
| | - Miao-Miao Sun
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Xin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Yang
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Ting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le-Hao Reng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Yi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Xu Y, Li Y, Zhai D, Yan C, Liang J, Ichinomiya T, Hara T, Inadomi C, Li TS. Hyperoxia but not high tidal volume contributes to ventilator-induced lung injury in healthy mice. BMC Pulm Med 2023; 23:354. [PMID: 37730597 PMCID: PMC10510264 DOI: 10.1186/s12890-023-02626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a supportive therapy used to maintain respiratory function in several clinical and surgical cases but is always accompanied by lung injury risk due to improper treatment. We investigated how tidal volume and oxygen delivery would contribute independently or synergistically to ventilator-induced lung injury (VILI). METHODS Under general anesthesia and tracheal intubation, healthy female C57BL/6 N mice (9 weeks old) were randomly ventilated for 2 h by standard (7 ml/kg) or high (14 ml/kg) tidal volume at positive end-expiratory pressure (PEEP) of 2 cmH2O, with room air, 50% O2 (moderate hyperoxia), or 100% O2 (severe hyperoxia); respectively. Mice were sacrificed 4 h after mechanical ventilation, and lung tissues were collected for experimental assessments on lung injury. RESULTS Compared with the healthy control, severe hyperoxia ventilation by either standard or high tidal volume resulted in significantly higher wet-to-dry lung weight ratio and higher levels of IL-1β and 8-OHdG in the lungs. However, moderate hyperoxia ventilation, even by high tidal volume did not significantly increase the levels of IL-1β and 8-OHdG in the lungs. Western blot analysis showed that the expression of RhoA, ROCK1, MLC2, and p-MLC2 was not significantly induced in the ventilated lungs, even by high tidal volume at 2 cmH2O PEEP. CONCLUSION Severe hyperoxia ventilation causes inflammatory response and oxidative damage in mechanically ventilated lungs, while high tidal volume ventilation at a reasonable PEEP possibly does not cause VILI.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, P.R. China
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Chiaki Inadomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
23
|
Fukihara J, Kondoh Y. COVID-19 and interstitial lung diseases: A multifaceted look at the relationship between the two diseases. Respir Investig 2023; 61:601-617. [PMID: 37429073 PMCID: PMC10281233 DOI: 10.1016/j.resinv.2023.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it has been a fatal disease for many patients, the development of treatment strategies and vaccines have progressed over the past 3 years, and our society has become able to accept COVID-19 as a manageable common disease. However, as COVID-19 sometimes causes pneumonia, post-COVID pulmonary fibrosis (PCPF), and worsening of preexisting interstitial lung diseases (ILDs), it is still a concern for pulmonary physicians. In this review, we have selected several topics regarding the relationships between ILDs and COVID-19. The pathogenesis of COVID-19-induced ILD is currently assumed based mainly on the evidence of other ILDs and has not been well elucidated specifically in the context of COVID-19. We have summarized what has been clarified to date and constructed a coherent story about the establishment and progress of the disease. We have also reviewed clinical information regarding ILDs newly induced or worsened by COVID-19 or anti-SARS-CoV-2 vaccines. Inflammatory and profibrotic responses induced by COVID-19 or vaccines have been thought to be a risk for de novo induction or worsening of ILDs, and this has been supported by the evidence obtained through clinical experience over the past 3 years. Although COVID-19 has become a mild disease in most cases, it is still worth looking back on the above-reviewed information to broaden our perspectives regarding the relationship between viral infection and ILD. As a representative etiology for severe viral pneumonia, further studies in this area are expected.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan.
| |
Collapse
|
24
|
Wu X, Jia B, Luo X, Wang J, Li M. Glucocorticoid Alleviates Mechanical Stress-Induced Airway Inflammation and Remodeling in COPD via Transient Receptor Potential Canonical 1 Channel. Int J Chron Obstruct Pulmon Dis 2023; 18:1837-1851. [PMID: 37654522 PMCID: PMC10466112 DOI: 10.2147/copd.s419828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Background Increased airway resistance and hyperinflation in chronic obstructive pulmonary disease (COPD) are associated with increased mechanical stress that modulate many essential pathophysiological functions including airway remodeling and inflammation. Our present study aimed to investigate the role of transient receptor potential canonical 1 (TRPC1), a mechanosensitive cation channel in airway remodeling and inflammation in COPD and the effect of glucocorticoid on this process. Methods In patients, we investigated the effect of pathological high mechanical stress on the expression of airway remodeling-related cytokines transforming growth factor β1 (TGF-β1), matrix metalloproteinase-9 (MMP9) and the count of inflammatory cells in endotracheal aspirates (ETAs) by means of different levels of peak inspiratory pressure (PIP) under mechanical ventilation, and analyzed their correlation with TRPC1. Based on whether patients regularly used inhaled corticosteroid (ICS), COPD patients were further divided into ICS group (n = 12) and non-ICS group (n=15). The ICS effect on the expression of TRPC1 was detected by Western blot. In vitro, we imitated the mechanical stress using cyclic stretch and examined the levels of TGF-β1 and MMP-9. The role of TRPC1 was further explored by siRNA transfection and dexamethasone administration. Results Our results revealed that the TRPC1 level and the inflammatory cells counts were significantly higher in COPD group. After mechanical ventilation, the expression of TGF-β1 and MMP-9 in all COPD subgroups was significantly increased, while in the control group, only high PIP subgroup increased. Meanwhile, TRPC1 expression was positively correlated with the counts of inflammatory cells and the levels of TGF-β1 and MMP-9. In vitro, mechanical stretch significantly increased TGF-β1 and MMP-9 levels and such increase was greatly attenuated by TRPC1 siRNA transfection and dexamethasone administration. Conclusion Our results suggest that the increased TRPC1 may play a role in the airway inflammation and airway remodeling in COPD under high airway pressure. Glucocorticoid could in some degree alleviate airway remodeling via inhibition of TRPC1.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Baolin Jia
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Minchao Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
25
|
Tang R, Zhou Y, Mei S, Xu Q, Feng J, Xing S, Gao Y, Qin S, He Z. Fibrotic extracellular vesicles contribute to mechanical ventilation-induced pulmonary fibrosis development by activating lung fibroblasts via JNK signalling pathway: an experimental study. BMJ Open Respir Res 2023; 10:e001753. [PMID: 37620111 PMCID: PMC10450055 DOI: 10.1136/bmjresp-2023-001753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Recent research has revealed that mechanical ventilation (MV) could initiate ventilator-induced lung injury along with the initiation of the process of pulmonary fibrosis (PF), leading to MV-induced PF (MVPF). However, the underlying mechanism remains unclear. This study aimed to explore the role of MV-induced extracellular vesicles (MV-EVs) and the c-Jun N-terminal kinase (JNK) signalling pathway in the pathogenesis of MVPF in vivo and in vitro. The process of MV is accompanied by the secretion of MV-EVs, which could induce lung fibroblast activation. Furthermore, single-cell RNA-sequencing analysis revealed that the JNK pathway in lung fibroblasts was activated after MV initiation. Inhibiting the JNK pathway could both restrain MV-EV-induced lung fibroblast activation in vitro or reduce the severity of MVPF in vivo. In conclusion, this study demonstrated that MV-EVs contribute to MVPF progression by activating lung fibroblasts via the JNK signalling pathway and that inhibiting the secretion of EV and the activation of the JNK signalling pathway is a promising strategy for treating MVPF.
Collapse
Affiliation(s)
- Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Karetnikova ES, Jarzebska N, Rodionov RN, Rubets E, Markov AG, Spieth PM. mRNA Levels of Epithelial and Mesenchymal Markers in Lung Epithelial Cell Lines. Rep Biochem Mol Biol 2023; 12:211-219. [PMID: 38317809 PMCID: PMC10838588 DOI: 10.61186/rbmb.12.2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 02/07/2024]
Abstract
Background Epithelial-mesenchymal transition (EMT) is an important physiologic process that determines the outcome of lung tissue healing after injury. Stimuli and molecular cascades inducing EMT lead to up-regulation of the mesenchymal-specific genes in the alveolar epithelial cells and to down-regulation of the genes coding for epithelial markers. Alveolar epithelial cell lines are commonly used as in vitro models to study processes occurring in the lung tissue. The aim of this study is to quantify and compare mRNA expression levels of epithelial and mesenchymal markers in a number of lung epithelial cell lines. Methods Lung epithelial cell lines L2, R3/1 and RLE-6TN were cultured. Repeated mRNA isolation, reverse transcription, and quantitative PCR with primers to epithelial (E-cadherin, occludin, and ZO-2) and mesenchymal (α-SMA, collagen III, and vimentin) markers were performed. Results First, our study revealed a higher level of epithelial transcripts in the RLE-6TN cell line compared to L2 and R3/1 cells. Secondly, we have found simultaneous mRNA expression of both epithelial (E-cadherin, occludin and ZO-2) and mesenchymal (α-SMA, collagen III and vimentin) markers in all cell lines studied. Conclusions Our data indicate that at the transcriptional level the L2, R3/1, and RLE-6TN cell lines are at one of the intermediate stages of EMT, which opens new possibilities for the study of EMT on cell lines. Determination of the direction of changes in epithelial and mesenchymal markers will make it possible to establish the factors responsible for both EMT and reverse mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Ekaterina Sergeevna Karetnikova
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Roman Nikolaevich Rodionov
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Elena Rubets
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Alexander Georgievich Markov
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
- The first and the second authors contributed equally to this work.
| | - Peter Markus Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- The first and the second authors contributed equally to this work.
| |
Collapse
|
27
|
O’Driscoll E, Hughes E, Irnaten M, Kuehn M, Wallace D, O’Brien C. Role of Epithelial-to-Mesenchymal Transition of Retinal Pigment Epithelial Cells in Glaucoma Cupping. J Clin Med 2023; 12:2737. [PMID: 37048820 PMCID: PMC10095336 DOI: 10.3390/jcm12072737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Optic nerve head (ONH) cupping is a clinical feature of glaucoma associated with extracellular matrix (ECM) remodelling and lamina cribrosa (LC) fibrosis. Peripapillary atrophy (PPA) occurs commonly in glaucoma, and is characterised by the loss of retinal pigment epithelium (RPE) adjacent to the ONH. Under pro-fibrotic conditions, epithelial cells throughout the body can differentiate into fibroblast-like cells through epithelial-to-mesenchymal transition (EMT) and contribute to ECM fibrosis. This is investigated here in the context of glaucoma and PPA. Human-donor ONH sections were assessed for the presence of the RPE cell-specific marker RPE65 using immunofluorescence. We examined the EMT response of ARPE-19 cells to the following glaucoma-related stimuli: cyclic mechanical stretch, mechanical stiffness, transforming growth factor beta (TGFβ), and tumour necrosis factor alpha (TNFα). The gene expression was measured using the PCR of the epithelial tight junction marker zona occludens 1 (ZO-1) and the mesenchymal markers alpha smooth muscle actin (αSMA) and vimentin. A scratch assay was used to assess the ARPE-19 migration. Significant RPE-65 staining was demonstrated in the glaucomatous ONH. The cyclic stretching and substrate stiffness of the ARPE-19 cells caused a significant decrease in ZO-1 (p = 0.04), and an increase in αSMA (p = 0.04). The scratch assays demonstrated increased migration of ARPE19 in the presence of TNFα (p = 0.02). Furthermore, ARPE-19 cells undergo an EMT-like transition (gain of αSMA, loss of ZO-1 and increased migration) in response to glaucomatous stimuli. This suggests that during PPA, RPE cells have the potential to migrate into the ONH and differentiate into fibroblast-like cells, contributing to glaucomatous ONH cupping.
Collapse
Affiliation(s)
- Eabha O’Driscoll
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (M.I.)
| | - Emily Hughes
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (M.I.)
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (M.I.)
| | - Markus Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Deborah Wallace
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (M.I.)
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
28
|
Faraj R, Liang Y, Feng A, Wu J, Black SM, Wang T. Exploring m6A-RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome. Pulm Circ 2023; 13:e12230. [PMID: 37091123 PMCID: PMC10119488 DOI: 10.1002/pul2.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common methylation modification in mammalian messenger RNA (mRNA) and noncoding RNAs. m6A modification plays a role in the regulation of gene expression and deregulation of m6A methylation has been implicated in many human diseases. Recent publications suggest that exploitation of this methylation process may possess utility against acute lung injury (ALI). ALI and its more severe form, acute respiratory distress syndrome (ARDS) are acute, inflammatory clinical syndromes characterized by poor oxygenation and diffuse pulmonary infiltrates. This syndrome is associated with microvascular endothelial dysfunction, subsequent pulmonary hypertension and may ultimately lead to mortality without rigorous and acute clinical intervention. Over the years, many attempts have been made to detect novel therapeutic avenues for research without much success. The urgency for the discovery of novel therapeutic agents has become more pronounced recently given the current pandemic infection of coronavirus disease 2019 (COVID-2019), still ongoing at the time that this review is being written. We review the current landscape of literature regarding ALI and ARDS etiology, pathophysiology, and therapeutics and present a potential role of m6A methylation. Additionally, we will establish the axiomatic principles of m6A methylation to provide a framework. In conclusion, METTL3, or methyltransferase-like 3, the selective RNA methyltransferase for m6A, is a hub of proinflammatory gene expression regulation in ALI, and using a modern drug discovery strategy will identify new and effective ALI drug candidates targeting METTTL3.
Collapse
Affiliation(s)
- Reem Faraj
- Department of Internal MedicineUniversity of Arizona College of Medicine PhoenixPhoenixArizonaUSA
| | - Ying Liang
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Anlin Feng
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Jialin Wu
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Stephen M. Black
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Ting Wang
- Department of Internal MedicineUniversity of Arizona College of Medicine PhoenixPhoenixArizonaUSA
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| |
Collapse
|
29
|
Tang R, Hu Y, Mei S, Zhou Y, Feng J, Jin T, Dai B, Xing S, Gao Y, Xu Q, He Z. Non-coding RNA alterations in extracellular vesicles from bronchoalveolar lavage fluid contribute to mechanical ventilation-induced pulmonary fibrosis. Front Immunol 2023; 14:1141761. [PMID: 36993978 PMCID: PMC10040560 DOI: 10.3389/fimmu.2023.1141761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveFor respiratory failure patients, mechanical ventilation (MV) is a life-saving therapy to maintain respiratory function. However, MV could also cause damage to pulmonary structures, result in ventilator-induced lung injury (VILI) and eventually progress to mechanical ventilation-induced pulmonary fibrosis (MVPF). Mechanically ventilated patients with MVPF are closely related to increased mortality and poor quality of life in long-term survival. Thus, a thorough understanding of the involved mechanism is necessary.MethodsWe used next-generation sequencing to identify differentially expressed non-coding RNAs (ncRNAs) in BALF EVs which were isolated from Sham and MV mice. Bioinformatics analysis was conducted to identify the engaged ncRNAs and related signaling pathways in the process of MVPF.ResultsWe found 1801 messenger RNAs (mRNA), 53 micro RNAs (miRNA), 273 circular RNAs (circRNA) and 552 long non-coding RNAs (lncRNA) in mice BALF EVs of two groups, which showed significant differential expression. TargetScan predicted that 53 differentially expressed miRNAs targeted 3105 mRNAs. MiRanda revealed that 273 differentially expressed circRNAs were associated with 241 mRNAs while 552 differentially expressed lncRNAs were predicated to target 20528 mRNAs. GO, KEGG pathway analysis and KOG classification showed that these differentially expressed ncRNA-targeted mRNAs were enriched in fibrosis related signaling pathways and biological processes. By taking the intersection of miRNAs target genes, circRNAs target genes and lncRNAs target genes, we found 24 common key genes and 6 downregulated genes were confirmed by qRT-PCR.ConclusionsChanges in BALF-EV ncRNAs may contribute to MVPF. Identification of key target genes involved in the pathogenesis of MVPF could lead to interventions that slow or reverse fibrosis progression.
Collapse
Affiliation(s)
- Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jin
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bo Dai
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qiaoyi Xu, ; Zhengyu He,
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qiaoyi Xu, ; Zhengyu He,
| |
Collapse
|
30
|
Abstract
As the world emerges from the COVID-19 pandemic, clinicians and researchers across the world are trying to understand the sequelae in patients recovered from COVID-19 infection. In this article, the authors review post-acute sequelae of SARS-COV-2, interstitial lung disease, and other lung sequelae in patients recovering from COVID-19 infection.
Collapse
|
31
|
Kewalramani N, Heenan KM, McKeegan D, Chaudhuri N. Post-COVID Interstitial Lung Disease—The Tip of the Iceberg. Immunol Allergy Clin North Am 2023; 43:389-410. [PMID: 37055095 PMCID: PMC9982726 DOI: 10.1016/j.iac.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The proportion of symptomatic patients with post-coronavirus 2019 (COVID-19) condition (long COVID) represents a significant burden on the individual as well as on the health care systems. A greater understanding of the natural evolution of symptoms over a longer period and the impacts of interventions will improve our understanding of the long-term impacts of the COVID-19 disease. This review will discuss the emerging evidence for the development of post-COVID interstitial lung disease focusing on the pathophysiological mechanisms, incidence, diagnosis, and impact of this potentially new and emerging respiratory disease.
Collapse
Affiliation(s)
- Namrata Kewalramani
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Switzerland,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland,Corresponding author. Department of Biomedical Research, Lung Precision Medicine, Room 340, Murtenstrasse 24, Bern 3008. Switzerland
| | - Kerri-Marie Heenan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Denise McKeegan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Nazia Chaudhuri
- University of Ulster Magee Campus, Northland Road, Londonderry, Northern Ireland, UK
| |
Collapse
|
32
|
Sriwatananukulkit O, Desclaux S, Tawonsawatruk T, Srikuea R, Himakhun W, Likitnukul S, Hemstapat R. Effectiveness of losartan on infrapatellar fat pad/synovial fibrosis and pain behavior in the monoiodoacetate-induced rat model of osteoarthritis pain. Biomed Pharmacother 2023; 158:114121. [PMID: 36516695 DOI: 10.1016/j.biopha.2022.114121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Infrapatellar fat pad (IFP)/ synovial fibrosis is closely associated with the clinical symptoms of joint pain and stiffness, which contribute to locomotor restriction in osteoarthritis (OA) patients. Hence, this study was designed to gain insight on whether losartan, a selective angiotensin II type 1 receptor (AT1R) antagonist, has therapeutic benefit to reverse IFP/synovial fibrosis and secondarily to attenuate pain behavior. In male Wistar rats with monoiodoacetic acid (MIA)-induced IFP/synovial fibrosis, a possible role for increased AT1R expression in the pathogenesis of IFP/synovial fibrosis was assessed over an 8-week period. Pain behavior comprised static weight bearing and von Frey paw withdrawal thresholds (PWTs), which were assessed once or twice weekly, respectively. Groups of MIA-rats received oral losartan (30-mg/kg; n = 8 or 100-mg/kg; n = 9) or vehicle (n = 9) for 28-days according to a prevention protocol. Animals were euthanized on day 28 and various tissues (IFP/synovium, cartilage and lumbar dorsal root ganglia (DRGs)) were collected for histological, immunohistochemical and western blot analyses. Administration of once-daily losartan for 28-days dose-dependently attenuated the development of static weight bearing. This was accompanied by reduced IFP/synovial fibrosis and suppression of TGF-β1 expression. Chronic treatment of MIA-rats with losartan had an anti-fibrotic effect and it attenuated pain behavior in this animal model.
Collapse
Affiliation(s)
- Orada Sriwatananukulkit
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Scarlett Desclaux
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | | | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Wanwisa Himakhun
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand.
| | - Sutharinee Likitnukul
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
33
|
He X, Jarrell ZR, Smith MR, Ly VT, Liang Y, Orr M, Go YM, Jones DP. Metabolomics of V 2O 5 nanoparticles and V 2O 5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol Appl Pharmacol 2023; 459:116327. [PMID: 36460058 PMCID: PMC9986994 DOI: 10.1016/j.taap.2022.116327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
ASK1-ER stress pathway-mediated fibrotic-EV release contributes to the interaction of alveolar epithelial cells and lung fibroblasts to promote mechanical ventilation-induced pulmonary fibrosis. Exp Mol Med 2022; 54:2162-2174. [PMID: 36473935 PMCID: PMC9734805 DOI: 10.1038/s12276-022-00901-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022] Open
Abstract
Recent clinical research has revealed that mechanical ventilation (MV) can initiate pulmonary fibrosis and induce mechanical ventilation-induced pulmonary fibrosis (MVPF). However, the underlying mechanism remains largely uncharacterized. Based on a mouse model of MVPF and an alveolar epithelial cell cyclic strain model, the present study explores the possible mechanism of MVPF. Single-cell RNA-sequencing and EV RNA-sequencing analysis revealed that MV promoted apoptosis signal-regulating kinase 1 (ASK1)-mediated endoplasmic reticulum (ER) stress pathway activation and extracellular vesicle (EV) release from alveolar epithelial cells. Furthermore, the ASK1-ER stress pathway was shown to mediate mechanical stretch (MS)- or MV-induced EV release and lung fibroblast activation in vivo and in vitro. These processes were suppressed by ER stress inhibitors or by silencing ASK1 with ASK1- short hairpin RNA (shRNA). In addition, MVPF was suppressed by inhibiting ASK1 and ER stress in vivo. Therefore, the present study demonstrates that ASK1-ER stress pathway-mediated fibrotic-EV release from alveolar epithelial cells contributes to fibroblast activation and the initiation of pulmonary fibrosis during MV. The inhibited release of EVs targeting the ASK1-ER stress pathway might be a promising treatment strategy for MVPF.
Collapse
|
35
|
Fibrotic-like abnormalities notably prevalent one year after hospitalization with COVID-19. Respir Med Res 2022; 82:100973. [PMID: 36403358 PMCID: PMC9670737 DOI: 10.1016/j.resmer.2022.100973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND We investigated whether COVID-19 leads to persistent impaired pulmonary function, fibrotic-like abnormalities or psychological symptoms 12 months after discharge and whether severely ill patients (ICU admission) recover differently than moderately ill patients. METHODS This single-centre cohort study followed adult COVID-19 survivors for a period of one year after discharge. Patients underwent pulmonary function tests 6 weeks, 3 months and 12 months after discharge and were psychologically evaluated at 6 weeks and 12 months. Computed tomography (CT) was performed after 3 months and 12 months. RESULTS 66 patients were analysed, their median age was 60.5 (IQR: 54-69) years, 46 (70%) patients were male. 38 (58%) patients had moderate disease and 28 (42%) patients had severe disease. Most patients had spirometric values within normal range after 12 months of follow-up. 12 (23%) patients still had an impaired lung diffusion after 12 months. Impaired pulmonary diffusion capacity was associated with residual CT abnormalities (OR 5.1,CI-95: 1.2-22.2), shortness of breath (OR 7.0, CI-95: 1.6-29.7) and with functional limitations (OR 5.8, CI-95: 1.4-23.8). Ground-glass opacities resolved in most patients during follow-up. Resorption of reticulation, bronchiectasis and curvilinear bands was rare and independent of disease severity. 81% of severely ill patients and 37% of moderately ill patients showed residual abnormalities after 12 months (OR 8.1, CI-95: 2.5-26.4). A minority of patients had symptoms of post-traumatic stress disorder, anxiety, depression and cognitive failure during follow-up. CONCLUSION Some patients still had impaired lung diffusion 12 months after discharge and fibrotic-like residual abnormalities were notably prevalent, especially in severely ill patients.
Collapse
|
36
|
Wang J, Shang R, Yang J, Liu Z, Chen Y, Chen C, Zheng W, Tang Y, Zhang X, Hu X, Huang Y, Shen HM, Luo G, He W. P311 promotes type II transforming growth factor-β receptor mediated fibroblast activation and granulation tissue formation in wound healing. BURNS & TRAUMA 2022; 10:tkac027. [PMID: 37469904 PMCID: PMC9562783 DOI: 10.1093/burnst/tkac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Indexed: 07/21/2023]
Abstract
Background P311, a highly conserved 8 kDa intracellular protein, has recently been reported to play an important role in aggravating hypertrophic scaring by promoting the differentiation and secretion of fibroblasts. Nevertheless, how P311 regulates the differentiation and function of fibroblasts to affect granulation tissue formation remains unclear. In this work, we studied the underlying mechanisms via which P311 affects fibroblasts and promotes acute skin wound repair. Methods To explore the role of P311, both in vitro and in vivo wound-healing models were used. Full-thickness skin excisional wounds were made in wild-type and P311-/- C57 adult mice. Wound healing rate, re-epithelialization, granulation tissue formation and collagen deposition were measured at days 3, 6 and 9 after skin injury. The biological phenotypes of fibroblasts, the expression of target proteins and relevant signaling pathways were examined both in vitro and in vivo. Results P311 could promote the proliferation and differentiation of fibroblasts, enhance the ability of myofibroblasts to secrete extracellular matrix and promote cell contraction, and then facilitate the formation of granulation tissue and eventually accelerate skin wound closure. Importantly, we discovered that P311 acts via up-regulating the expression of type II transforming growth factor-β receptor (TGF-βRII) in fibroblasts and promoting the activation of the TGF-βRII-Smad signaling pathway. Mechanistically, the mammalian target of rapamycin signaling pathway is closely implicated in the regulation of the TGF-βRII-Smad pathway in fibroblasts mediated by P311. Conclusions P311 plays a critical role in activation of the TGF-βRII-Smad pathway to promote fibroblast proliferation and differentiation as well as granulation tissue formation in the process of skin wound repair.
Collapse
Affiliation(s)
| | | | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Wenxia Zheng
- Department of Technical Support, Chengdu Zhijing Technology Co.,
Ltd, Chengdu 610041, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University,
Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Han-Ming Shen
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Gaoxing Luo
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Weifeng He
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| |
Collapse
|
37
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Liu C, Xiao K, Xie L. Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Front Immunol 2022; 13:928134. [PMID: 35880175 PMCID: PMC9307903 DOI: 10.3389/fimmu.2022.928134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common condition with high mortality. ALI/ARDS is caused by multiple etiologies, and the main clinical manifestations are progressive dyspnea and intractable hypoxemia. Currently, supportive therapy is the main ALI/ARDS treatment, and there remains a lack of targeted and effective therapeutic strategies. Macrophages are important components of innate immunity. M1 macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory and promote tissue repair. Mesenchymal stem cells (MSCs) are stem cells with broad application prospects in tissue regeneration due to their multi-directional differentiation potential along with their anti-inflammatory and paracrine properties. MSCs can regulate the balance of M1/M2 macrophage polarization to improve the prognosis of ALI/ARDS. In this paper, we review the mechanisms by which MSCs regulate macrophage polarization and the signaling pathways associated with polarization. This review is expected to provide new targets for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
39
|
Ma Y, Feng C, Tang H, Deng P, Li Y, Wang J, Zhu S, Zhu L. Management of BMI Is a Potential New Approach for the Prevention of Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:821029. [PMID: 35360873 PMCID: PMC8961741 DOI: 10.3389/fgene.2022.821029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims: Current idiopathic pulmonary fibrosis (IPF) therapies usually show a poor outcome or treatment efficacy. The search for new risk factors has significant implications in preventing, delaying, and treating IPF. The association between obesity and the risk of IPF is not clear. This study aimed to investigate the role of different obesity types in IPF risk, which provides the possibility of weight loss as a new approach for IPF prevention. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to assess the causal effect of obesity on IPF risk. We collected summary data of genetically determined obesity-related traits, including body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) from large-scale consortia (the sample size ranging from 232,101 to 681,275), and genetic association with IPF from one of the largest meta-analyses including 2,668 cases. A total of 35–469 single nucleotide polymorphisms were selected as instrumental variables for obesity-related traits. We further performed multivariable MR to estimate the independent effect of BMI and WC on the risk of IPF. Results: Increased BMI and WC were associated with higher risk of IPF [odds ratio (OR) = 1.51, 95% confidence interval (CI) (1.22–1.87), p = 1.27 × 10–4, and OR = 1.71, 95% CI (1.08–2.72), p = 2.33 × 10–2, respectively]. Similar results for the BMI and WC were obtained in the replicated analysis. Subsequently, only the result for BMI survived following the multiple testing correction and showed good consistency with the weighted median estimator. Sensitivity analyses indicated that there was no heterogeneity or horizontal pleiotropy for MR estimations. Further multivariable MR suggested that the BMI showed the same direction and similar magnitude with that in the univariable MR analysis. There was little evidence to support the causal role of WHR on the risk of IPF in this study. Conclusion: Genetically determined BMI demonstrates a causal risk for IPF, which offers a novel insight into probing potential mechanisms. Meanwhile, these results also suggest that weight loss may be beneficial to IPF prevention.
Collapse
Affiliation(s)
- Yuchao Ma
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chang Feng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Tang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yalan Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaihong Zhu
- Department of Metabolic and Bariatric Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyong Zhu
- Department of Metabolic and Bariatric Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Fei L, Sun G, Sun J, Wu D. The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model. Bioengineered 2022; 13:7622-7634. [PMID: 35263199 PMCID: PMC8973778 DOI: 10.1080/21655979.2022.2049473] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) can cause loss of alveolar-capillary membrane integrity and life-threatening immune responses. The underlying molecular mechanisms of ARDS remain unclear. N6-methyladenosine (m6A)-RNA modification plays an important part in many biological processes. However, it is not clear whether ARDS alters RNA methylation in lung tissue. We tried to investigate the changes of m6A-RNA methylation in lung tissues of lipopolysaccharide (LPS)-induced ARDS mice. Lung tissue samples were collected to detect the expression of m6A factors through hematoxylin and eosin (HE) staining, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemical analysis and western blot. The overall m6A levels in lung tissue of ARDS in mouse were detected by UPLC-UV-MS. HE staining showed that the degree of the inflammatory response was more severe in the LPS-3 h group. The mRNA expression of YTHDF1, YTHDC1 and IGFBP3 was remarkably up-regulated at, respectively, 6, 6 and 12 h after LPS treatment. The mRNA expression of METTL16, FTO, METTL3, KIAA1429, RBM15, ALKBH5, YTHDF2, YTHDF3, YTHDC2 and IGFBP2 was significantly down-regulated at 24 h after LPS treatment. The protein expression of METTL16 and FTO increased, YTHDC1, IGFBP3 YTHDF1 and YTHDF3 showed a down-regulation trend after LPS induction. Overall m6A-RNA methylation levels were significantly increased at 6 h after LPS induction. In ARDS mice, LPS-induced m6A methylation may be involved in the expression regulation of inflammatory factors and may play important roles in the occurrence and development of lung tissue. It is suggested that m6A modification may be a promising therapeutic target for ARDS.
Collapse
Affiliation(s)
- Liming Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juan Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
41
|
Garfield B, Handslip R, Patel BV. Ventilator-Associated Lung Injury. ENCYCLOPEDIA OF RESPIRATORY MEDICINE 2022. [PMCID: PMC8128668 DOI: 10.1016/b978-0-08-102723-3.00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ventilatory support, while life saving, can also cause or aggravate lung injury through several mechanisms which are encompassed within ventilator-associated lung injury (VALI). The important realizationin the acute respiratory distress syndrome that the “baby” lung resided in non-dependent areas led to the conceptualization of “lung rest” to reduce stress and strain to exposed alveolar units. We discuss concepts and mechanisms within VALI that ultimately induce maladaptive lung responses, as well as, current and future management strategies to detect and mitigate VALI at the bedside.
Collapse
|
42
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Wang S, Li W, Zhang P, Wang Z, Ma X, Liu C, Vasilev K, Zhang L, Zhou X, Liu L, Hayball J, Dong S, Li Y, Gao Y, Cheng L, Zhao Y. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J Adv Res 2022; 41:63-75. [PMID: 36328754 PMCID: PMC9637484 DOI: 10.1016/j.jare.2022.01.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Our study proved that mechanical overloading induces ferroptosis of chondrocyte, which might be a potential therapeutic target for mechanical damage of chondrocyte and OA. Our study demonstrated Piezo1 facilitated calcium influx leads to reduction of GSH, decrease of Gpx4 and activation of oxidative stress in chondrocyte under high strain mechanical stimulation. Mechanical signals were converted into ferroptosis-associated signals through Piezo1 channel induced calcium influx, which might shed light on therapeutic interventions for treatment of OA and other diseases associated with ferroptosis.
Introductions Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. Objectives To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. Methods Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. Results Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. Conclusions Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment.
Collapse
|
44
|
Mandal S, Tejaswi T, Janivara R, Srikrishnan S, Thakur P, Sahoo S, Chakraborty P, Sohal SS, Levine H, George JT, Jolly MK. Transcriptomic-Based Quantification of the Epithelial-Hybrid-Mesenchymal Spectrum across Biological Contexts. Biomolecules 2021; 12:29. [PMID: 35053177 PMCID: PMC8773604 DOI: 10.3390/biom12010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics-each derived using a different gene list and algorithm-that quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer.
Collapse
Affiliation(s)
- Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Tanishq Tejaswi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Rohini Janivara
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Syamanthak Srikrishnan
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India; (S.S.); (P.T.)
| | - Pradipti Thakur
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India; (S.S.); (P.T.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| | - Herbert Levine
- Departments of Physics and Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| |
Collapse
|
45
|
Martín-Vicente P, López-Martínez C, Lopez-Alonso I, López-Aguilar J, Albaiceta GM, Amado-Rodríguez L. Molecular mechanisms of postintensive care syndrome. Intensive Care Med Exp 2021; 9:58. [PMID: 34859298 PMCID: PMC8639215 DOI: 10.1186/s40635-021-00423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Inés Lopez-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació I Innovació Parc Taulí I3PT, Sabadell, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|
46
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
47
|
Battaglini D, Robba C, Ball L, Silva PL, Cruz FF, Pelosi P, Rocco PRM. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021; 127:353-364. [PMID: 34217468 PMCID: PMC8173496 DOI: 10.1016/j.bja.2021.05.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil.
| |
Collapse
|
48
|
Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J Clin Med 2021; 10:jcm10112452. [PMID: 34205928 PMCID: PMC8199255 DOI: 10.3390/jcm10112452] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Since the initial identification of the novel coronavirus SARS-CoV-2 in December 2019, the COVID-19 pandemic has become a leading cause of morbidity and mortality worldwide. As effective vaccines and treatments begin to emerge, it will become increasingly important to identify and proactively manage the long-term respiratory complications of severe disease. The patterns of imaging abnormalities coupled with data from prior coronavirus outbreaks suggest that patients with severe COVID-19 pneumonia are likely at an increased risk of progression to interstitial lung disease (ILD) and chronic pulmonary vascular disease. In this paper, we briefly review the definition, classification, and underlying pathophysiology of interstitial lung disease (ILD). We then review the current literature on the proposed mechanisms of lung injury in severe COVID-19 infection, and outline potential viral- and immune-mediated processes implicated in the development of post-COVID-19 pulmonary fibrosis (PCPF). Finally, we address patient-specific and iatrogenic risk factors that could lead to PCPF and discuss strategies for reducing risk of pulmonary complications/sequelae.
Collapse
|
49
|
Yang F, Chen R, Li WY, Zhu HY, Chen XX, Hou ZF, Cao RS, Zang G, Li YX, Zhang W. D-Limonene Is a Potential Monoterpene to Inhibit PI3K/Akt/IKK-α/NF-κB p65 Signaling Pathway in Coronavirus Disease 2019 Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:591830. [PMID: 33768100 PMCID: PMC7985179 DOI: 10.3389/fmed.2021.591830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
At the time of the prevalence of coronavirus disease 2019 (COVID-19), pulmonary fibrosis (PF) related to COVID-19 has become the main sequela. However, the mechanism of PF related to COVID (COVID-PF) is unknown. This study aimed to explore the key targets in the development of COVID-PF and the mechanism of d-limonene in the COVID-PF treatment. The differentially expressed genes of COVID-PF were downloaded from the GeneCards database, and their pathways were analyzed. d-Limonene was molecularly docked with related proteins to screen its pharmacological targets, and a rat lung fibrosis model was established to verify d-limonene's effect on COVID-PF-related targets. The results showed that the imbalance between collagen breakdown and metabolism, inflammatory response, and angiogenesis are the core processes of COVID-PF; and PI3K/AKT signaling pathways are the key targets of the treatment of COVID-PF. The ability of d-limonene to protect against PF induced by bleomycin in rats was reported. The mechanism is related to the binding of PI3K and NF-κB p65, and the inhibition of PI3K/Akt/IKK-α/NF-κB p65 signaling pathway expression and phosphorylation. These results confirmed the relationship between the PI3K–Akt signaling pathway and COVID-PF, showing that d-limonene has a potential therapeutic value for COVID-PF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ru Chen
- Biomedical Research Institute of Fudan University, Shanghai, China
| | - Wan-Yang Li
- School of Public Health, Xiangya Medical College, Central South University, Changsha, China
| | - Hao-Yue Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Xuan Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Feng Hou
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ren-Shuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - GuoDong Zang
- Department of Pulmonary Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Xuan Li
- Second School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
50
|
Tonelli R, Marchioni A, Tabbì L, Fantini R, Busani S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Demurtas J, Andreani A, Cappiello GF, Samarelli AV, Clini E. Spontaneous Breathing and Evolving Phenotypes of Lung Damage in Patients with COVID-19: Review of Current Evidence and Forecast of a New Scenario. J Clin Med 2021; 10:975. [PMID: 33801368 PMCID: PMC7958611 DOI: 10.3390/jcm10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
The mechanisms of acute respiratory failure other than inflammation and complicating the SARS-CoV-2 infection are still far from being fully understood, thus challenging the management of COVID-19 patients in the critical care setting. In this unforeseen scenario, the role of an individual's excessive spontaneous breathing may acquire critical importance, being one potential and important driver of lung injury and disease progression. The consequences of this acute lung damage may impair lung structure, forecasting the model of a fragile respiratory system. This perspective article aims to analyze the progression of injured lung phenotypes across the SARS-CoV-2 induced respiratory failure, pointing out the role of spontaneous breathing and also tackling the specific respiratory/ventilatory strategy required by the fragile lung type.
Collapse
Affiliation(s)
- Roberto Tonelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Alessandro Marchioni
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Stefano Busani
- Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Ivana Castaniere
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Dario Andrisani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Filippo Gozzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Giulia Bruzzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Linda Manicardi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Jacopo Demurtas
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
- Primary Care Department USL Toscana Sud Est-Grosseto, 58100 Grosseto, Italy
| | - Alessandro Andreani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Gaia Francesca Cappiello
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Anna Valeria Samarelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Enrico Clini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| |
Collapse
|