1
|
Marsal A, Frau L, Chaperot L, Amine I, Lyon-Caen S, Boudier A, Jaffrezo JL, Elazzouzi R, Philippat C, Supernant K, Lepeule J, Quentin J, Chartier R, Bayat S, Slama R, Uzu G, Siroux V. Personal exposure to air pollutants and immune system biomarkers in pregnant women. Sci Rep 2025; 15:17672. [PMID: 40399383 PMCID: PMC12095663 DOI: 10.1038/s41598-025-98712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/14/2025] [Indexed: 05/23/2025] Open
Abstract
The immune function is suspected to play an important role in the health effects of air pollution but it remains poorly investigated in pregnant women. One-week personal measurements of exposure to nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter of ≤ 2.5 µm mass concentration (PM2.5) and PM2.5 oxidative potential (OP) were assessed in 270 pregnant women from the French cohort SEPAGES. PM filters were analyzed for PM2.5 OP using the dithiothreitol (DTT) and the ascorbic acid (AA) assays. From a blood sample withdrawn at the end of the exposure measurement week, levels of 29 cytokines and chemokines were measured at baseline and after T cell and dendritic cell activation with phytohemagglutinin (PHA) and resiquimod (R848), respectively. Associations between each air pollutant and each cytokine were assessed using adjusted linear regression models. An increase in NO2 exposure was associated with higher interleukin 10 (IL-10) and lower PHA-activated tumor necrosis factor (TNF). No association with PM2.5 concentration was observed, but increased exposure to PMOP AA was associated with lower baseline and R848-activated IL-8 and increased exposure to PMOP DTT was associated with higher PHA-activated IL-17A. Our study provides insights into the relationships between air pollution exposure and immune function among pregnant women.
Collapse
Affiliation(s)
- Anouk Marsal
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Agence de L'environnement Et de La Maîtrise de L'Energie, 20, Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France
| | - Laurene Frau
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Laurence Chaperot
- EFS, Recherche Et Développement, 38000, Grenoble, France
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Team of Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, 38000, Grenoble, France
| | - Ines Amine
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Rhabira Elazzouzi
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Karine Supernant
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Joane Quentin
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, Durham, N.C., USA
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Inserm UA07 STROBE Laboratory, University Grenoble Alpes, Grenoble, France
| | - Remy Slama
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Gaelle Uzu
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France.
| |
Collapse
|
2
|
Santibáñez M, Ruiz-Cubillán JJ, Agüero J, Expósito A, Abascal B, García-Rivero JL, Amado CA, Hernando MM, Ruiz-Azcona L, Barreiro E, Núñez-Robainas A, Cifrián JM, Fernandez-Olmo I. Personal exposure to particulate matter oxidative potential and airway inflammation: differences between asthmatic and non-asthmatic adults. Int J Hyg Environ Health 2025; 267:114589. [PMID: 40328045 DOI: 10.1016/j.ijheh.2025.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
We aimed to determine whether exposure to particulate matter PM, measured as the oxidative potential (OP) of filters collected from 24 h personal samplers, is associated with increased airway inflammation in asthmatic and non-asthmatic volunteers. Forty-two adult asthmatic patients (25 women and 17 men) and 37 matched controls wore a personal sampler for a day collecting fine (PM2.5) and coarse (PM10-2.5) particles, and determining 24 h afterwards their fractional exhaled nitric oxide (FeNO). The PM-OP was determined by two methods: dithiothreitol (DTT) and ascorbic acid (AA) being OP levels dichotomized based on the median, to calculate adjusted mean differences (aMDs) and odds ratios (aORs) with sex, age, study level, body mass index and interleukin-6 (IL-6) levels as confounders. Statistically significant associations between PM-OP and FeNO levels in non-asthmatic volunteers were observed: aMD for OP-DTT PM2.5 = 11.64 ppbs; 95 %CI (0.13-22.79); aMD for OP-AA PM10-2.5 = 15.67; 95 %CI (2.91-28.43) with aORs = 4.87 and 18.18 respectively. In asthmatic patients an association was also observed in the form of aORs, but of lower magnitude (1.91 and 1.94 respectively). Non-significant higher FeNO levels (aMD = 5.22) and an aOR = 3.92 were also observed in non-asthmatic volunteers for OP-AA in the fine fraction. As a conclusion, the effect of personal PM-OP on airway inflammation appears to be differential between asthmatic and non-asthmatic volunteers suggesting a potential implication of inhaled corticosteroids diminishing the reactivity of airway epithelium since adjusted associations were higher in volunteers without asthma.
Collapse
Affiliation(s)
- Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Faculty of Nursing, Universidad de Cantabria-IDIVAL, Avda. Valdecilla, s/n, 39008, Santander, Spain.
| | - Juan José Ruiz-Cubillán
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Juan Agüero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005, Santander, Cantabria, Spain
| | - Beatriz Abascal
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Juan Luis García-Rivero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Carlos Antonio Amado
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Maria Mercedes Hernando
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Faculty of Nursing, Universidad de Cantabria-IDIVAL, Avda. Valdecilla, s/n, 39008, Santander, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, PRBB, 08003, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Adriana Núñez-Robainas
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, PRBB, 08003, Barcelona, Spain
| | - José Manuel Cifrián
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008, Santander, Spain
| | - Ignacio Fernandez-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005, Santander, Cantabria, Spain
| |
Collapse
|
3
|
Aghaei Y, Badami MM, Aldekheel M, Tohidi R, Sioutas C. Seasonal Characterization of Primary and Secondary Sources of Fine PM-Bound Water-Soluble Organic Carbon in Central Los Angeles. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2025; 346:121084. [PMID: 39959759 PMCID: PMC11823697 DOI: 10.1016/j.atmosenv.2025.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Understanding the sources and formation processes of fine particulate matter (PM2.5) is crucial for improving urban air quality and public health. This study provides a real-time analysis of PM2.5-bound water-soluble organic carbon (WSOC) and related carbonaceous species during winter, spring, and summer periods in 2023-2024, aiming to identify their major sources in central Los Angeles. Using advanced online monitoring equipment, including a Sunset Laboratory EC/OC analyzer and a custom-developed setup including a total organic carbon (TOC) analyzer coupled with a particle collection system, we obtained hourly measurements of organic carbon (OC), its fractions (OC1-OC4, based on volatility), elemental carbon (EC), and WSOC. Positive matrix factorization (PMF) identified three principal PM2.5 sources: vehicular emissions, secondary organic carbon (SOC) formation influenced by nighttime aqueous-phase chemical processes, and SOC formation driven by daytime photochemical reactions. Vehicular emissions dominated EC levels, accounting for 86-95% across seasons. This factor also had high contributions from nitrogen oxides (NOₓ) (75-82%), vehicle counts (approximately 85%), and OC1 (51-83%), reflecting the persistent influence of traffic emissions. Nighttime SOC formation was significant in winter, with WSOC and OC4 contributing 58% and 40% to this factor. In contrast, daytime photochemical SOC formation was prominent in summer, with WSOC and OC4 contributing 63% and 47%, and ozone loading up to 89%, reflecting increased photochemical activity. Spring exhibited a mix of aqueous and photochemical SOC formation, with similar contributions from WSOC (38-35%) and OC4 (35-33%), reflecting the transitional season's mixed SOC formation mechanisms. Diurnal profiles revealed that primary emissions peaked during morning rush hours, while secondary formation processes elevated OC levels at night in winter and during afternoons in summer. The EC tracer method corroborated these findings by estimating primary and secondary organic carbon levels, highlighting significant seasonal and diurnal variations in carbonaceous aerosols. These results emphasize the need for targeted strategies addressing both primary emissions and the precursors of secondary aerosol formation, to improve air quality in Los Angeles.
Collapse
Affiliation(s)
- Yashar Aghaei
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
4
|
Agüero J, García-Rivero JL, Abascal B, Amado CA, Fernandez-Olmo I, Santibáñez M, on behalf of the group of researchers of the ASTHMA-FENOP study. FeNO Stability in Repeated Measurements in Asthma Patients During Three Consecutive Days. OPEN RESPIRATORY ARCHIVES 2025; 7:100417. [PMID: 40144922 PMCID: PMC11938038 DOI: 10.1016/j.opresp.2025.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Affiliation(s)
- Juan Agüero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Juan Luis García-Rivero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Beatriz Abascal
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Carlos Antonio Amado
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Ignacio Fernandez-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - on behalf of the group of researchers of the ASTHMA-FENOP study
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
- Global Health Research Group, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
5
|
Lin S, Xue Y, Thandra S, Qi Q, Thurston SW, Croft DP, Utell MJ, Hopke PK, Rich DQ. Source specific fine particles and rates of asthma and COPD healthcare encounters pre- and post-implementation of the Tier 3 vehicle emissions control regulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136737. [PMID: 39642739 DOI: 10.1016/j.jhazmat.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
We examined associations between seven source-specific PM2.5 concentrations and rates of asthma and COPD hospitalizations and emergency department (ED) visits in New York State and compared the changes in excess rates (ERs) between pre- (2014-2016) and post-implementation (2017-2019) of the Tier 3 automobile emission controls on new vehicles policy. A modified time-stratified case-crossover design and conditional logistic regression were employed to estimate the ERs of asthma and COPD hospitalizations and ED visits associated with interquartile range (IQR) increases in source-specific PM2.5 concentrations. The 7 PM2.5 sources were spark-ignition emissions (GAS), diesel (DIE), biomass burning (BB), road dust (RD), secondary nitrate (SN), secondary sulfate (SS), and pyrolyzed organic rich (OP). Residual PM2.5 (PM2.5 - specific source [e.g., GAS]), daily temperature, relative humidity, weekday, and holidays were included in the model. IQR increases in GAS, SS, RD, BB, and SN were associated with increased ERs of asthma ED visits (highest ERs: 0.5 %-3.1 %), while a negative association was observed with DIE and OP. The rate of asthma hospitalizations was associated with increased RD concentrations (ERs: 1.3 %-1.7 %). Both COPD ED visit and hospitalization rates were associated with increased OP (ERs: 2.1 %-3.4 %), and increased SS was positively associated with COPD ED visits (ER = 3.8 %). In summary, after Tier 3 implementation (2017-2019), we found lower ERs for COPD admissions associated with BB, RD, SN, and SS compared to 2014-2016. However, rates of asthma ED visits associated with source-specific PM2.5 concentrations were generally higher for all sources, except DIE, post- versus pre-implementation, requiring further research for validation.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York; Department of Epidemiology/Biostatistics, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, the State University of New York, Albany, New York
| | - Sathvik Thandra
- Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, New York
| | - Quan Qi
- Department of Economics, University at Albany, the State University of New York, Albany, New York
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Daniel P Croft
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Mark J Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York; Institute for a Sustainable Environment, Clarkson University, Potsdam, New York
| | - David Q Rich
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
6
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Santibáñez M, Ruiz-Cubillán JJ, Expósito A, Agüero J, García-Rivero JL, Abascal B, Amado CA, Ruiz-Azcona L, Lopez-Hoyos M, Irure J, Robles Y, Berja A, Barreiro E, Núñez-Robainas A, Cifrián JM, Fernandez-Olmo I. Association Between Oxidative Potential of Particulate Matter Collected by Personal Samplers and Systemic Inflammation Among Asthmatic and Non-Asthmatic Adults. Antioxidants (Basel) 2024; 13:1464. [PMID: 39765793 PMCID: PMC11673029 DOI: 10.3390/antiox13121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
With the rationale that the oxidative potential of particulate matter (PM-OP) may induce oxidative stress and inflammation, we conducted the ASTHMA-FENOP study in which 44 asthmatic patients and 37 matched controls wore a personal sampler for 24 h, allowing the collection of fine and coarse PM fractions separately, to determine PM-OP by the dithiothreitol (DTT) and ascorbic acid (AA) methods. The levels of Interleukin 6 (IL-6) and the IL-6/IL-10 ratio, as indicators of pro- and anti-inflammatory statuses, were determined by calculating the mean differences (MDs), odds ratios (ORs) and p-trends adjusted for sex, age, study level and body mass index. Positive associations for IL-6 levels in the form of adjusted MDs and ORs were obtained for all PM-OP metrics, reaching statistical significance for both OP-DTT and OP-AA in the fine fraction, with adjusted OR = 5.66; 95%CI (1.46 to 21.92) and 3.32; 95%CI (1.07 to 10.35), respectively, along with statistically significant dose-response patterns when restricting to asthma and adjusted also for clinical variables (adjusted p-trend = 0.029 and 0.01). Similar or stronger associations and dose-response patterns were found for the IL-6/IL-10 ratio. In conclusion, our findings on the effect of PM-OP on systemic inflammation support that asthma is a heterogeneous disease at the molecular level, with PM-OP potentially playing an important role.
Collapse
Affiliation(s)
- Miguel Santibáñez
- Global Health Research Group, Faculty of Nursing, Universidad de Cantabria-Valdecilla Research Institute (IDIVAL), Avenida Valdecilla, s/n, 39008 Santander, Cantabria, Spain;
| | - Juan José Ruiz-Cubillán
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Andrea Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avenida Los Castros, s/n, 39005 Santander, Cantabria, Spain; (A.E.); (I.F.-O.)
| | - Juan Agüero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Juan Luis García-Rivero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Beatriz Abascal
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Carlos Antonio Amado
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Laura Ruiz-Azcona
- Global Health Research Group, Faculty of Nursing, Universidad de Cantabria-Valdecilla Research Institute (IDIVAL), Avenida Valdecilla, s/n, 39008 Santander, Cantabria, Spain;
| | - Marcos Lopez-Hoyos
- Division of Immunology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (M.L.-H.); (J.I.)
| | - Juan Irure
- Division of Immunology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (M.L.-H.); (J.I.)
| | - Yolanda Robles
- Division of Biochemistry, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (Y.R.); (A.B.)
| | - Ana Berja
- Division of Biochemistry, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (Y.R.); (A.B.)
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (E.B.); (A.N.-R.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08034 Barcelona, Spain
| | - Adriana Núñez-Robainas
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (E.B.); (A.N.-R.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08034 Barcelona, Spain
| | - José Manuel Cifrián
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Cantabria, Spain; (J.J.R.-C.); (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.M.C.)
| | - Ignacio Fernandez-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avenida Los Castros, s/n, 39005 Santander, Cantabria, Spain; (A.E.); (I.F.-O.)
| |
Collapse
|
8
|
Lin S, Xue Y, Thandra S, Qi Q, Hopke PK, Thurston SW, Croft DP, Utell MJ, Rich DQ. PM 2.5 and its components and respiratory disease healthcare encounters - Unanticipated increased exposure-response relationships in recent years after environmental policies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124585. [PMID: 39038774 DOI: 10.1016/j.envpol.2024.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Prior studies reported excess rates (ERs) of cardiorespiratory events associated with short-term increases in PM2.5 concentrations, despite implementation of pollution-control policies. In 2017, Federal Tier 3 light-duty vehicle regulations began, and to-date there have been no assessments of population health effects of the policy. Using the NYS Statewide Planning and Research Cooperative System (SPARCS) database, we obtained hospitalizations and ED visits with a principal diagnosis of asthma or chronic obstructive pulmonary disease (COPD) for residents living within 15 miles of six urban PM2.5 monitoring sites in NYS (2014-2019). We used a time-stratified case-crossover design and conditional logistic regression (adjusting for ambient temperature, relative humidity, and weekday) to estimate associations between PM2.5, POC (primary organic carbon), SOC (secondary organic carbon), and rates of respiratory disease hospitalizations and emergency department (ED) visits from 2014 to 2019. We evaluated demographic disparities in these relative rates and compared changes in ERs before (2014-2016) and after Tier 3 implementation (2017-2019). Each interquartile range increase in PM2.5 was associated with increased ERs of asthma or COPD hospitalizations and ED visits in the previous 7 days (ERs ranged from 1.1%-3.1%). Interquartile range increases in POC were associated with increased rates of asthma ED visits (lag days 0-6: ER = 2.1%, 95% CI = 0.7%, 3.6%). Unexpectedly, the ERs of asthma admission and ED visits associated with PM2.5, POC, and SOC were higher during 2017-2019 (after Tier 3) than 2014-2016 (before Tier-3). Chronic obstructive pulmonary disease analyses showed similar patterns. Excess Rates were higher in children (<18 years; asthma) and seniors (≥65 years; COPD), and Black, Hispanic, and NYC residents. In summary, unanticipated increases in asthma and COPD ERs after Tier-3 implementation were observed, and demographic disparities in asthma/COPD and PM2.5, POC, and SOC associations were also observed. Future work should confirm findings and investigate triggering of respiratory events by source-specific PM.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences & Department of Epidemiology/Biostatistics, University at Albany, The State University of New York, Albany, NY, USA
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, The State University of New York, Albany, NY, USA
| | - Sathvik Thandra
- Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, NY, USA
| | - Quan Qi
- Department of Economics, University at Albany, The State University of New York, Albany, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel P Croft
- Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
9
|
Yu GH, Song M, Oh SH, Jeon H, Park K, Jang KS, Bae MS. Ratios of organic mass to organic carbon in fine particulate matter at urban sites in China and Korea during winter and summer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60389-60400. [PMID: 39382807 DOI: 10.1007/s11356-024-35246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
This study evaluates the composition and seasonal characteristics of fine particulate matter (PM2.5) during winter and summer through simultaneous measurements conducted at the Gwangju Institute of Science and Technology in South Korea and the Changping campus of Peking University in China. PM2.5 samples were concurrently collected at both sites, and chemical analyses were conducted to quantify various components, including carbonaceous materials, ionic species, and metals. Although the average PM2.5 concentrations were comparable between the two sites, there were distinct differences in the concentrations of major components. Organic indicator compounds were analyzed to discern the contributions of primary and secondary pollution sources. Changping displayed a mix of primary and secondary pollution, characterized by higher concentrations of primary organic carbon (POC) such as polycyclic aromatic hydrocarbons and hopanes, compared to Gwangju. In contrast, Gwangju demonstrated a higher prevalence of secondary organic carbon (SOC), particularly water-soluble organic carbon not related to biomass burning (WSOCnbb) and various polar organic compounds. The organic mass to organic carbon (OM/OC) ratios estimated using the mass balance method revealed significant differences, with Gwangju showing a higher ratio of 2.3 compared to 1.9 at Changping, indicating a greater influence of secondary pollutants at Gwangju. Additionally, both Changping and Gwangju exhibited higher OM/OC ratios in summer (Changping: 2.0, Gwangju: 2.5) compared to winter (Changping: 1.8, Gwangju: 2.2), indicating seasonal differences in organic mass contributions to PM2.5. These findings underscore the importance of accounting for spatial and seasonal variations in air pollution studies and suggest that updating commonly used OM/OC ratios could enhance the reliability of research outcomes.
Collapse
Affiliation(s)
- Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Hajeong Jeon
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kyoung-Soon Jang
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea.
| |
Collapse
|
10
|
Li Z, Wang Y, Wu W, Zhao Y, Wang S, Wang P, Lin X, Gong Y, Wu Z, Li X, Sun J, Zhao N, Huang Y, Hu S, Zhang W. The relative contribution of PM 2.5 components to the obstructive ventilatory dysfunction-insights from a large ventilatory function examination of 305,022 workers in southern China. ENVIRONMENT INTERNATIONAL 2024; 187:108721. [PMID: 38718675 DOI: 10.1016/j.envint.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The new round of WHO/ILO Joint Estimates of the Work-related Burden of Disease assessment requires futher research to provide more evidence, especially on the health impact of ambient air pollution around the workplace. However, the evidence linking obstructive ventilatory dysfunction (OVD) to fine particulate matter (PM2.5) and its chemical components in workers is very limited. Evidence is even more scarce on the interactive effects between occupational factors and particle exposures. We aimed to fill these gaps based on a large ventilatory function examination of workers in southern China. METHODS We conducted a cross-sectional study among 363,788 workers in southern China in 2020. The annual average concentration of PM2.5 and its components were evaluated around the workplace through validated spatiotemporal models. We used mixed-effect models to evaluate the risk of OVD related to PM2.5 and its components. Results were further stratified by basic characteristics and occupational factors. FINDINGS Among the 305,022 workers, 119,936 were observed with OVD. We found for each interquartile range (IQR) increase in PM2.5 concentration, the risk of OVD increased by 27.8 (95 % confidence interval (CI): 26.5-29.2 %). The estimates were 10.9 % (95 %CI: 9.7-12.1 %), 15.8 % (95 %CI: 14.5-17.2 %), 2.6 % (95 %CI: 1.4-3.8 %), 17.1 % (95 %CI: 15.9-18.4 %), and 11 % (95 %CI: 9.9-12.2 %), respectively, for each IQR increment in sulfate, nitrate, ammonium salt, organic matter and black carbon. We observed greater effect estimates among females, younger workers, workers with a length of service of 24-45 months, and professional skill workers. Furthermore, it is particularly noteworthy that the noise-exposed workers, high-temperature-exposed workers, and less-dust-exposed workers were at a 5.7-68.2 % greater risk than others. INTERPRETATION PM2.5 and its components were significantly associated with an increased risk of OVD, with stronger links among certain vulnerable subgroups.
Collapse
Affiliation(s)
- Zhiqiang Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanjie Zhao
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pengyu Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xian Lin
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yajun Gong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Zhijia Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Xinyue Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jie Sun
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China.
| | - Shijie Hu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
11
|
Aghaei Y, Badami MM, Tohidi R, Subramanian PSG, Boffi R, Borgini A, De Marco C, Contiero P, Ruprecht AA, Verma V, Chatila T, Sioutas C. The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM 2.5 in Milan, Italy. Sci Rep 2024; 14:5996. [PMID: 38472234 PMCID: PMC10933473 DOI: 10.1038/s41598-024-55292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The geopolitical conflict between Russia and Ukraine has disrupted Europe's natural gas supplies, driving up gas prices and leading to a shift towards biomass for residential heating during colder months. This study assessed the consequent air quality and toxicological impacts in Milan, Italy, focusing on fine particulate matter (PM2.5, dp < 2.5 μm) emissions. PM2.5 samples were analyzed for their chemical composition and assessed for their oxidative potential using the dithiothreitol (DTT) assay across three periods reflecting residential heating deployment (RHD): pre-RHD, intra-RHD, and post-RHD periods. During the intra-RHD period, PM2.5 levels were significantly higher than those in other periods, with concentrations reaching 57.94 ± 7.57 μg/m3, indicating a deterioration in air quality. Moreover, levoglucosan was 9.2 times higher during the intra-RHD period compared to the pre-RHD period, correlating with elevated levels of elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs). These findings were compared with previous local studies before the conflict, underscoring a significant rise in biomass-related emissions. DTT assay levels during the intra-RHD were 2.1 times higher than those observed during the same period in 2022, strongly correlating with biomass burning emissions. Our findings highlight the necessity for policies to mitigate the indirect health effects of increased biomass burning emissions due to the energy crisis triggered by the geopolitical conflict.
Collapse
Affiliation(s)
- Yashar Aghaei
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - Mohammad Mahdi Badami
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - Ramin Tohidi
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Roberto Boffi
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | | | | | - Paolo Contiero
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | - Ario Alberto Ruprecht
- Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
- International Society of Doctors for Environment (ISDE), Arezzo, Italy
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Ave. KAP210, Los Angeles, CA, 90089, USA.
| |
Collapse
|
12
|
Barkoski J, Van Fleet E, Liu A, Ramsey S, Kwok RK, Miller AK. Data Linkages for Wildfire Exposures and Human Health Studies: A Scoping Review. GEOHEALTH 2024; 8:e2023GH000991. [PMID: 38487553 PMCID: PMC10937504 DOI: 10.1029/2023gh000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/17/2024]
Abstract
Wildfires are increasing in frequency and intensity, with significant consequences that impact human health. A scoping review was conducted to: (a) understand wildfire-related health effects, (b) identify and describe environmental exposure and health outcome data sources used to research the impacts of wildfire exposures on health, and (c) identify gaps and opportunities to leverage exposure and health data to advance research. A literature search was conducted in PubMed and a sample of 83 articles met inclusion criteria. A majority of studies focused on respiratory and cardiovascular outcomes. Hospital administrative data was the most common health data source, followed by government data sources and health surveys. Wildfire smoke, specifically fine particulate matter (PM2.5), was the most common exposure measure and was predominantly estimated from monitoring networks and satellite data. Health data were not available in real-time, and they lacked spatial and temporal coverage to study health outcomes with longer latency periods. Exposure data were often available in real-time and provided better temporal and spatial coverage but did not capture the complex mixture of hazardous wildfire smoke pollutants nor exposures associated with non-air pathways such as soil, household dust, food, and water. This scoping review of the specific health and exposure data sources used to underpin these studies provides a framework for the research community to understand: (a) the use and value of various environmental and health data sources, and (b) the opportunities for improving data collection, integration, and accessibility to help inform our understanding of wildfires and other environmental exposures.
Collapse
Affiliation(s)
- J. Barkoski
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - E. Van Fleet
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - A. Liu
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
- Kelly Government SolutionsRockvilleMDUSA
| | - S. Ramsey
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - R. K. Kwok
- Department of Health and Human ServicesNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - A. K. Miller
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
| |
Collapse
|
13
|
Almeida AS, Neves BM, Duarte RMBO. Contribution of water-soluble extracts to the oxidative and inflammatory effects of atmospheric aerosols: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123121. [PMID: 38086505 DOI: 10.1016/j.envpol.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Exposure to atmospheric particulate matter (PM) has been associated with heightened risks of lung cancer, cardiovascular and respiratory diseases. PM exposure also affects the immune system, leading to an increased susceptibility to infections, exacerbating pre-existent inflammatory and allergic lung diseases. Atmospheric PM can primarily impact human health through the generation of reactive oxygen species (ROS) that subsequently induce or exacerbate inflammation. These cytotoxic effects have been related with PM concentration, and its chemical constituents, including metals, solvent extractable organics (e.g., polycyclic aromatic hydrocarbons), and water-soluble ions. Although not receiving much attention, the fine aerosol water-soluble organic matter (WSOM) can account for a substantial portion of the overall fine PM mass and has been shown to present strong oxidative and immunomodulatory effects. Thus, the objective of this review is to provide a comprehensive analysis of the role of the water-soluble fraction of PM, with a specific focus on the contribution of the WSOM component to the cytotoxic properties of atmospheric PM. The chemical properties of the water-soluble PM fraction are briefly discussed, while emphasis is put on how PM size, composition, and temporal variations (e.g., seasonality) can impact the pro-oxidative activity, the modulation of inflammatory response, and the cytotoxicity of the water-soluble PM extracts.
Collapse
Affiliation(s)
- Antoine S Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruno M Neves
- Department of Medical Sciences and Institute of Biomedicine - IBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
14
|
In 't Veld M, Khare P, Hao Y, Reche C, Pérez N, Alastuey A, Yus-Díez J, Marchand N, Prevot ASH, Querol X, Daellenbach KR. Characterizing the sources of ambient PM 10 organic aerosol in urban and rural Catalonia, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166440. [PMID: 37611714 DOI: 10.1016/j.scitotenv.2023.166440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM10 filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM10 was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer. Source apportionment analysis of the water-soluble organic content of the samples measured via HR-ToF-AMS revealed two primary and two secondary sources of OA, which included biomass-burning OA (BBOA), sulfur-containing OA (SCOA), as well as summer- and winter‑oxygenated OA (SOOA and WOOA). The presence of hydrocarbon-like water-insoluble OA was also identified based on concentration trends in black carbon and nitrogen oxides. The results from the source apportionment analysis of the inorganic composition were correlated with different OA factors to assess potential source contributors. Barcelona showed significantly higher average water-soluble OA concentrations (5.63 ± 0.56 μg m-3) than Montseny (3.27 ± 0.37 μg m-3) over the sampling period. WOOA accounted for nearly 27 % of the averaged OA in Barcelona compared to only 7 % in Montseny. In contrast, SOOA had a greater contribution to OA in Montseny (47 %) than in Barcelona (24 %). SCOA and BBOA were responsible for 15-28 % of the OA at both sites. There were also seasonal variations in the relative contributions of different OA sources. Our overall results showed that local anthropogenic sources were primarily responsible for up to 70 % of ambient soluble OA in Barcelona, and regulating local-scale emissions could significantly improve air quality in urban Spain.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - Peeyush Khare
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Yufang Hao
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Yus-Díez
- Centre for Atmospheric Research, University of Nova Gorica, Vipavska 11c, SI-5270 Ajdovščina, Slovenia
| | | | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Aargau, Switzerland.
| |
Collapse
|
15
|
Xu J, Zhang N, Zhang Y, Li P, Han J, Gao S, Wang X, Geng C, Yang W, Zhang L, Han B, Bai Z. Personal Exposure to Source-Specific Particulate Polycyclic Aromatic Hydrocarbons and Systemic Inflammation: A Cross-Sectional Study of Urban-Dwelling Older Adults in China. GEOHEALTH 2023; 7:e2023GH000933. [PMID: 38124775 PMCID: PMC10731620 DOI: 10.1029/2023gh000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Environmental exposure to ambient polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the evidence on adverse health effects caused by exposure to PAHs emitted from specific sources among different vulnerable subpopulations is limited. In this cross-sectional study, we aimed to evaluate whether exposure to source-specific PAHs could increase systemic inflammation in older adults. The present study included community-dwelling older adults and collected filter samples of personal exposure to PM2.5 during the winter of 2011. Blood samples were collected after the PM2.5 sample collection. We analyzed PM2.5 bound PAHs and serum inflammatory cytokines (interleukin (IL)1β, IL6, and tumor necrosis factor alpha levels. The Positive Matrix Factorization model was used to identify PAH sources. We used a linear regression model to assess the relative effects of source-specific PM2.5 bound PAHs on the levels of measured inflammatory cytokines. After controlling for confounders, exposure to PAHs emitted from biomass burning or diesel vehicle emission was significantly associated with increased serum inflammatory cytokines and systemic inflammation. These findings highlight the importance of considering exposure sources in epidemiological studies and controlling exposures to organic materials from specific sources.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
- Department of Family PlanningThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Penghui Li
- School of Environmental Science and Safety EngineeringTianjin University of TechnologyTianjinChina
| | - Jinbao Han
- School of Quality and Technical SupervisionHebei UniversityBaodingChina
| | - Shuang Gao
- School of Geographic and Environmental SciencesTianjin Normal UniversityTianjinChina
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Liwen Zhang
- Department of Occupational and Environmental HealthSchool of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition, and Public HealthTianjin Medical UniversityTianjinChina
- Center for International Collaborative Research on EnvironmentNutrition and Public HealthTianjinChina
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| |
Collapse
|
16
|
Fujitani Y, Furuyama A, Hayashi M, Hagino H, Kajino M. Assessing oxidative stress induction ability and oxidative potential of PM 2.5 in cities in eastern and western Japan. CHEMOSPHERE 2023; 324:138308. [PMID: 36889470 DOI: 10.1016/j.chemosphere.2023.138308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is an important cause of respiratory diseases associated with exposure to PM2.5. Accordingly, acellular methods for assessing the oxidative potential (OP) of PM2.5 have been evaluated extensively for use as indicators of oxidative stress in living organisms. However, OP-based assessments only reflect the physicochemical properties of particles and do not consider particle-cell interactions. Therefore, to determine the potency of OP under various PM2.5 scenarios, oxidative stress induction ability (OSIA) assessments were performed using a cell-based method, the heme oxygenase-1 (HO-1) assay, and the findings were compared with OP measurements obtained using an acellular method, the dithiothreitol assay. For these assays, PM2.5 filter samples were collected in two cities in Japan. To quantitatively determine the relative contribution of the quantity of metals and subtypes of organic aerosols (OA) in PM2.5 to the OSIA and the OP, online measurements and offline chemical analysis were also performed. The findings showed a positive relationship between the OSIA and OP for water-extracted samples, confirming that the OP is generally well suited for use as an indicator of the OSIA. However, the correspondence between the two assays differed for samples with a high water-soluble (WS)-Pb content, which had a higher OSIA than would be expected from the OP of other samples. The results of reagent-solution experiments showed that the WS-Pb induced the OSIA, but not the OP, in 15-min reactions, suggesting a reason for the inconsistent relationship between the two assays across samples. Multiple linear regression analyses and reagent-solution experiments showed that WS transition metals and biomass burning OA accounted for approximately 30-40% and 50% of the total OSIA or the total OP of water-extracted PM2.5 samples, respectively. This is the first study to evaluate the association between cellular oxidative stress assessed by the HO-1 assay and the different subtypes of OA.
Collapse
Affiliation(s)
- Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Akiko Furuyama
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Hayashi
- Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jyonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki, 305-0822, Japan
| | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
| |
Collapse
|
17
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
18
|
Déméautis T, Bouyssi A, Chapalain A, Guillemot J, Doublet P, Geloen A, George C, Menotti J, Glehen O, Devouassoux G, Bentaher A. Chronic Exposure to Secondary Organic Aerosols Causes Lung Tissue Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6085-6094. [PMID: 37014236 DOI: 10.1021/acs.est.2c08753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Alexandra Bouyssi
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Johann Guillemot
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Alain Geloen
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Jean Menotti
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de chirurgie digestive et endocrinienne, CHU de Lyon HCL - GH Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, UCB Lyon 1, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
19
|
Santibáñez M, García-Rivero JL, Fernández-Olmo I, on behalf of the group of researchers of the ASTHMA-FENOP study. Association Between Particulate Matter Oxidative Potential, Oxidative Stress and Inflammation, in Adult Asthmatic Patients. The ASTHMA-FENOP Study. OPEN RESPIRATORY ARCHIVES 2023; 5:100246. [PMID: 37496869 PMCID: PMC10369605 DOI: 10.1016/j.opresp.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- Miguel Santibáñez
- “Global Health” Research Group, Universidad de Cantabria, Santander, Spain
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Universitario Marqués de Valdecilla (HUMV)-IDIVAL, Santander, Spain
| | | | | |
Collapse
|
20
|
Hildre TT, Heiro H, Sandven I, Hammarström B. Ambient Environmental Ozone and Variation of Fractional Exhaled Nitric Oxide (FeNO) in Hairdressers and Healthcare Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4271. [PMID: 36901281 PMCID: PMC10001628 DOI: 10.3390/ijerph20054271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fractional exhaled nitric oxide (FeNO) is a breath-related biomarker of eosinophilic asthma. The aim of this study was to investigate FeNO variations due to environmental or occupational exposures in respiratory healthy subjects. Overall, 14 hairdressers and 15 healthcare workers in Oslo were followed for 5 workdays. We registered the levels of FeNO after commuting and arriving at the workspace and after ≥3 h of work, in addition to symptoms of cold, commuting method, and hair treatments that were performed. Both short- and intermediate-term effects after exposure were evaluated. Environmental assessment of daily average levels of air quality particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3) indicated a covariation in ozone and FeNO in which a 35-50% decrease in ozone was followed by a near 20% decrease in FeNO with a 24-h latency. Pedestrians had significantly increased FeNO readings. Symptoms of cold were associated with a significant increase in FeNO readings. We did not find any FeNO increase of statistical significance after occupational chemical exposure to hair treatments. The findings may be of clinical, environmental and occupational importance.
Collapse
|
21
|
In 't Veld M, Pandolfi M, Amato F, Pérez N, Reche C, Dominutti P, Jaffrezo J, Alastuey A, Querol X, Uzu G. Discovering oxidative potential (OP) drivers of atmospheric PM 10, PM 2.5, and PM 1 simultaneously in North-Eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159386. [PMID: 36240941 DOI: 10.1016/j.scitotenv.2022.159386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Ambient particulate matter (PM) is a major contributor to air pollution, leading to adverse health effects on the human population. It has been suggested that the oxidative potential (OP, as a tracer of oxidative stress) of PM is a possible determinant of its health impact. In this study, samples of PM10, PM2.5, and PM1 were collected roughly every four days from January 2018 until March 2019 at a Barcelona urban background site and Montseny rural background site in northeastern Spain. We determined the chemical composition of samples, allowing us to perform source apportionment using positive matrix factorization. The OP of PM was determined by measuring reactive oxygen species using dithiothreitol and ascorbic acid assays. Finally, to link the sources with the measured OP, both a Pearson's correlation and a multiple linear regression model were applied to the dataset. The results showed that in Barcelona, the OP of PM10 was much higher than those of PM2.5 and PM1, whereas in Montseny results for all PM sizes were in the same range, but significantly lower than in Barcelona. In Barcelona, several anthropogenic sources were the main drivers of OP in PM10 (Combustion + Road Dust + Heavy Oil + OC-rich) and PM2.5 (Road Dust + Combustion). In contrast, PM1 -associated OP was driven by Industry, with a much lower contribution to PM10 and PM2.5 mass. Meanwhile, Montseny exhibited no clear drivers for OP evolution, likely explaining the lack of a significant difference in OP between PM10, PM2.5, and PM1. Overall, this study indicates that size fraction matters for OP, as a function of the environment typology. In an urban context, OP is driven by the PM10 and PM1 size fractions, whereas only the PM1 fraction is involved in rural environments.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - M Pandolfi
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - N Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - P Dominutti
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | - J Jaffrezo
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | - A Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - G Uzu
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| |
Collapse
|
22
|
Lau YS, Poon HY, Organ B, Chuang HC, Chan MN, Guo H, Ho SSH, Ho KF. Toxicological effects of fresh and aged gasoline exhaust particles in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129846. [PMID: 36063712 DOI: 10.1016/j.jhazmat.2022.129846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Exhaust emissions from gasoline vehicles are one of the major contributors to aerosol particles observed in urban areas. It is well-known that these tiny particles are associated with air pollution, climate forcing, and adverse health effects. However, their toxicity and bioreactivity after atmospheric ageing are less constrained. The aim of the present study was to investigate the chemical and toxicological properties of fresh and aged particulate matter samples derived from gasoline exhaust emissions. Chemical analyses showed that both fresh and aged PM samples were rich in organic carbon, and the dominating chemical species were n-alkane and polycyclic aromatic hydrocarbons. Comparisons between fresh and aged samples revealed that the latter contained larger amounts of oxygenated compounds. In most cases, the bioreactivity induced by the aged PM samples was significantly higher than that induced by the fresh samples. Moderate to weak correlations were identified between chemical species and the levels of biomarkers in the fresh and aged PM samples. The results of the stepwise regression analysis suggested that n-alkane and alkenoic acid were major contributors to the increase in lactate dehydrogenase (LDH) levels in the fresh samples, while polycyclic aromatic hydrocarbons (PAHs) and monocarboxylic acid were the main factors responsible for such increase in the aged samples.
Collapse
Affiliation(s)
- Yik-Sze Lau
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Now at: International Laboratory of Air Quality and Health (ILAQR), Queensland University of Technology, Australia
| | - Hon-Yin Poon
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong
| | - Bruce Organ
- Jockey Club Heavy Vehicle Emissions Testing and Research Centre, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Man-Nin Chan
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong
| | - Hai Guo
- Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Leni Z, Ess MN, Keller A, Allan JD, Hellén H, Saarnio K, Williams KR, Brown AS, Salathe M, Baumlin N, Vasilatou K, Geiser M. Role of Secondary Organic Matter on Soot Particle Toxicity in Reconstituted Human Bronchial Epithelia Exposed at the Air-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17007-17017. [PMID: 36416368 PMCID: PMC9730840 DOI: 10.1021/acs.est.2c03692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Secondary organic matter (SOM) formed from gaseous precursors constitutes a major mass fraction of fine particulate matter. However, there is only limited evidence on its toxicological impact. In this study, air-liquid interface cultures of human bronchial epithelia were exposed to different series of fresh and aged soot particles generated by a miniCAST burner combined with a micro smog chamber (MSC). Soot cores with geometric mean mobility diameters of 30 and 90 nm were coated with increasing amounts of SOM, generated from the photo-oxidation of mesitylene and ozonolysis of α-pinene. At 24 h after exposure, the release of lactate dehydrogenase (LDH), indicating cell membrane damage, was measured and proteome analysis, i.e. the release of 102 cytokines and chemokines to assess the inflammatory response, was performed. The data indicate that the presence of the SOM coating and its bioavailability play an important role in cytotoxicity. In particular, LDH release increased with increasing SOM mass/total particle mass ratio, but only when SOM had condensed on the outer surface of the soot cores. Proteome analysis provided further evidence for substantial interference of coated particles with essential properties of the respiratory epithelium as a barrier as well as affecting cell remodeling and inflammatory activity.
Collapse
Affiliation(s)
- Zaira Leni
- University
of Bern, Bern 3012, Switzerland
| | - Michaela N. Ess
- Federal
Institute of Metrology METAS, Bern-Wabern 3003, Switzerland
| | - Alejandro Keller
- University
of Applied Sciences Northwestern Switzerland, Windisch 5210, Switzerland
| | - James D. Allan
- University
of Manchester, Manchester M13 9PL, United
Kingdom
| | - Heidi Hellén
- Finnish
Meteorological Institute, Helsinki 00101, Finland
| | - Karri Saarnio
- Finnish
Meteorological Institute, Helsinki 00101, Finland
| | | | - Andrew S. Brown
- National
Physical Laboratory, Teddington TW11 0LW, United
Kingdom
| | - Matthias Salathe
- Department
of Internal Medicine, University of Kansas
Medical Center, Kansas
City, Kansas 66160, United States
| | - Nathalie Baumlin
- Department
of Internal Medicine, University of Kansas
Medical Center, Kansas
City, Kansas 66160, United States
| | | | | |
Collapse
|
24
|
Du P, Du H, Lu K, He MZ, Feng D, He M, Liu T, Hu J, Li T. Traffic-related PM 2.5 and its specific constituents on circulatory mortality: A nationwide modelling study in China. ENVIRONMENT INTERNATIONAL 2022; 170:107652. [PMID: 36446182 DOI: 10.1016/j.envint.2022.107652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Short-term fine particulate matter (PM2.5) exposure and increased circulatory mortality have been well documented. However, there are inconsistent findings on mortality effects of traffic-related pollutants from the perspective of sources or constituents. Few studies have examined such associations using source and constituents simultaneously, and even less are based on large-scale, nationally representative data. We aimed to conduct a comprehensive analysis to investigate source- and constituent-specific mortality effects due to traffic-related PM2.5 pollution in China. METHODS We extracted daily mortality data in 280 counties from the China Disease Surveillance Points system (DSPs) from January 2013 to December 2018. Daily concentrations of traffic-related PM2.5 and specific constituents were simulated using the Community Multiscale Air Quality (CMAQ) model. The downscaling and adjustment methods were carried out to generate a refined exposure assessment. We estimated the circulatory mortality risk using a standard two-stage approach, combining generalized linear model (GLM) with a quasi-Poisson distribution and random-effects meta-analysis. RESULTS We observed that traffic-related PM2.5 and specific constituents were significantly associated with increased circulatory mortality. An increase of interquartile range of traffic-related PM2.5, elemental carbon (EC), organic carbon (OC), and nitrate (NO3-) were associated with elevated circulatory mortality risks of 1.80 % (95 % confidence interval, CI: 1.27, 2.33), 1.85 % (1.33, 2.37), 1.42 % (0.90, 1.94), and 1.10 % (0.55, 1.66) at 3-day moving average (lag 0-2 days), respectively. We also found relatively high associations between traffic-related PM2.5 and EC exposures and cardiovascular mortality, and OC exposure and cerebrovascular mortality. Moreover, our stratified analysis demonstrated such mortality risks tended to be stronger in males, individuals age 65 years or older, and during the cold season. CONCLUSION Our findings provided robust evidence on significant associations of traffic-related PM2.5 and specific constituents with circulatory mortality. Further emissions abatement from the transportation sector and corresponding pollutants should merit a particular focus in China.
Collapse
Affiliation(s)
- Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kailai Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Da Feng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ting Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
25
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
26
|
Han B, Xu J, Zhang Y, Li P, Li K, Zhang N, Han J, Gao S, Wang X, Geng C, Yang W, Zhang L, Bai Z. Associations of Exposure to Fine Particulate Matter Mass and Constituents with Systemic Inflammation: A Cross-Sectional Study of Urban Older Adults in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7244-7255. [PMID: 35148063 DOI: 10.1021/acs.est.1c04488] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Systemic inflammation is a key mechanism in the development of cardiovascular diseases induced by exposure to fine particles (particles with aerodynamic diameter ≤2.5 μm [PM2.5]). However, little is known about the effects of chemical constituents of PM2.5 on systemic inflammation. In this cross-sectional study, filter samples of personal exposure to PM2.5 were collected from community-dwelling older adults in Tianjin, China, and the chemical constituents of PM2.5 were analyzed. Blood samples were collected immediately after the PM2.5 sample collection. Seventeen cytokines were measured as targets. A linear regression model was applied to estimate the relative effects of PM2.5 and its chemical constituents on the measured cytokines. A positive matrix factorization model was employed to distinguish the sources of PM2.5. The calculated source contributions were used to estimate their effects on cytokines. After adjusting for other covariates, higher PM2.5-bound copper was significantly associated with increased levels of interleukin (IL)1β, IL6, IL10, and IL17 levels. Source analysis showed that an increase in PM2.5 concentration that originated from tire/brake wear and cooking emissions was significantly associated with enhanced levels of IL1β, IL6, tumor necrosis factor alpha (TNFα), and IL17. In summary, personal exposure to some PM2.5 constituents and specific sources could increase systemic inflammation in older adults. These findings may explain the cardiopulmonary effects of specific particulate chemical constituents of urban air pollution.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kangwei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinbao Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
27
|
Blayac M, Coll P, Urbach V, Fanen P, Epaud R, Lanone S. The Impact of Air Pollution on the Course of Cystic Fibrosis: A Review. Front Physiol 2022; 13:908230. [PMID: 35721541 PMCID: PMC9202997 DOI: 10.3389/fphys.2022.908230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.
Collapse
Affiliation(s)
- Marion Blayac
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Patrice Coll
- Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, Paris, France
| | | | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri-Mondor, Service Génétique, Creteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Centre Hospitalier Intercommunal, Centre des Maladies Respiratoires Rares (RespiRare®)-CRCM, Creteil, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
28
|
Broder JC, Gao CX, Abramson MJ, Wolfe R, Dimitriadis C, Ikin J, Sim MR, Del Monaco A, Johnston FH, Carroll M, Brown D, Smith K, Guo Y. Long-term impact of exposure to coalmine fire emitted PM 2.5 on emergency ambulance attendances. CHEMOSPHERE 2022; 288:132339. [PMID: 34628124 DOI: 10.1016/j.chemosphere.2021.132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Little is known about the long-term health effects of coalmine fire smoke exposure. The 2014 Hazelwood coalmine fire event in southeast Australia released smoke into surrounding areas for 6 weeks. OBJECTIVES We aimed to investigate whether individual-level exposure to coalmine fire-related PM2.5 was associated with a long-term increase in ambulance attendances following a coalmine fire event. METHODS A total of 2223 residents from the most exposed town of Morwell were assessed for ambulance attendances after the Hazelwood event from April 1, 2014 to December 31, 2017. PM2.5 exposure was estimated for each individual using participant self-reported location diary data during the event and modelled PM2.5 concentrations. Recurrent event survival analysis was used to evaluate the relationship between PM2.5 exposure and ambulance attendances. RESULTS For each 10 μg/m3 increase in mean coalmine fire-related PM2.5 exposure, there was a 10% (adjusted hazard ratio [HR]:1.10, 95%CI:1.03-1.17) increase in the overall risk of ambulance attendances within 3.5 years after the coalmine fire. Exposure to PM2.5 was also associated with increased risk of respiratory (HR: 1.21, 95%CI: 1.02-1.44) and cardiovascular (HR: 1.13, 95%CI: 1.01-1.28) related ambulance attendances. CONCLUSION These results demonstrate that exposure to coalmine fire smoke during the Hazelwood event was associated with a long-term health risk post the fire event, specifically for respiratory and cardiovascular conditions. These findings are important for effective implementation of health care services following future extended coalmine fire PM2.5 events.
Collapse
Affiliation(s)
- Jonathan C Broder
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Caroline X Gao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Youth Mental Health (Orygen), University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Abramson
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rory Wolfe
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christina Dimitriadis
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jillian Ikin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Malcolm R Sim
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anthony Del Monaco
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Matthew Carroll
- Monash Rural Health Churchill, Monash University, Northways Road, Churchill, Victoria, Australia
| | - David Brown
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Smith
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Ambulance Victoria, Melbourne, Victoria, Australia; Department of Community Emergency Health and Paramedic Practice, School of Primary and Allied Health Care, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
do Nascimento FP, de Almeida MF, Gouveia N. Individual and contextual socioeconomic status as effect modifier in the air pollution-birth outcome association. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149790. [PMID: 34481165 DOI: 10.1016/j.scitotenv.2021.149790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Several studies have examined whether air pollution is associated with adverse births outcomes, but it is not clear if socioeconomic status (SES) modifies this relationship. OBJECTIVES We investigated if maternal education and area-level socioeconomic status modified the relationship between ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <10 μm (PM10) on preterm births (PTB; gestational age <37 weeks) and term low birth weight (TLBW; weight < 2500 g on term deliveries). METHODS Analyses were based on almost 1 million singleton live births in São Paulo municipality between 2011 and 2016. The final sample included 979,306 births for PTB analysis and 888,133 for TLBW analysis. Exposure to PM10, NO2 and O3 were based on date of birth and estimated for the entire gestation and for each trimester. Multilevel logistic regression models were conducted to examine the effect of air pollutants on both adverse birth outcomes and whether it was modified by individual and area-level SES. RESULTS In fully adjusted models, over the entire pregnancy, a 10 μg/m3 increase in O3 and PM10 was associated with increased chance of PTB (odds ratio; OR = 1.14 CI 1.13, 1.16 and 1.08 CI = 1.02, 1.15 respectively) and PM10 with TLBW (OR = 1.08 CI 1.03, 1.14). Associations were modified by maternal educational and area-level SES for both outcomes. Mothers of lower education had an additional chance of PTB and TLBW due to PM10 exposure (OR = 1.04 CI 1.04, 1.05 and 1.10 CI 1.08, 1.14 respectively), while mothers living in low SES areas have an additional chance for TLBW (OR = 1.05 CI 1.03, 1.06). Similar modification effects were found for O3 exposure. Trimester specific associations were weaker but followed a similar pattern. CONCLUSION Socioeconomic status modifies the effect of air pollution on adverse birth outcomes. Results indicate that mothers with lower SES may be more susceptible to air pollution effects.
Collapse
Affiliation(s)
| | | | - Nelson Gouveia
- Department of Preventive Medicine, School of Medicine FMUSP, University of São Paulo, SP, Brazil
| |
Collapse
|
30
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Kasdagli MI, Katsouyanni K, de Hoogh K, Lagiou P, Samoli E. Investigating the association between long-term exposure to air pollution and greenness with mortality from neurological, cardio-metabolic and chronic obstructive pulmonary diseases in Greece. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118372. [PMID: 34656679 DOI: 10.1016/j.envpol.2021.118372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Long-term exposure to air pollution has been associated with increased natural-cause mortality, but the evidence on diagnoses-specific mortality outcomes is limited. Few studies have examined the potential synergistic effects of exposure to pollutants and greenness. We investigated the association between exposure to air pollution and greenness with nervous system related mortality, cardiometabolic and chronic obstructive pulmonary diseases (COPD) mortality in Greece, using an ecological study design. We collected socioeconomic and mortality data for 1035 municipal units from the 2011 Census. Annual PM2.5, NO2, BC and O3 concentrations for 2010 were predicted at 100 × 100 m grids by hybrid land use regression models. The normalized difference vegetation index (NDVI) was used for greenness. We applied single and two-exposure Poisson regression models on standardized mortality rates accounting for spatial autocorrelation. We assessed interactions between pollutants and greenness. An interquartile range increase in PM2.5, NO2 and BC was associated with increased risk in mortality from diseases of the nervous system (relative risk (RR): 1.14, 95% confidence interval (CI): 1.01, 1.28); 1.03 (95% CI: 0.99, 1.07); 1.05 (95% CI: 1.00, 1.10) respectively) and from cerebrovascular disease (RR: 1.14, 95% CI: 1.10, 1.18); 1.02 (95% CI: 1.01, 1.04); 1.02 (95% CI: 1.00, 1.04) respectively). PM2.5 was associated with ischemic heart disease mortality (RR: 1.05, 95% CI: 1.01, 1.10). We estimated inverse associations for all outcomes with O3 and for mortality from diseases of the nervous system or COPD with greenness. Estimates were mostly robust to co-exposure adjustment. Interactions were identified between NDVI and O3 or PM2.5 on mortality from the diseases of the nervous system, with higher effect estimates in greener areas. Our findings support the adverse effects of air pollution and the beneficial role of greenness on cardiovascular and nervous system related mortality. Further research is needed on diabetes mellitus.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, MRC Centre for Environment and Health, Imperial College, United Kingdom
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
32
|
Lai A, Baumgartner J, Schauer JJ, Rudich Y, Pardo M. Cytotoxicity and chemical composition of women's personal PM 2.5 exposures from rural China. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:359-371. [PMID: 34604754 PMCID: PMC8459644 DOI: 10.1039/d1ea00022e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5. Direct measurement with personal samplers captures the chemical complexity of PM2.5 exposures better than fixed monitors. To investigate biological effects, lung cells were exposed to extracts of exposure PM2.5 samples.![]()
Collapse
Affiliation(s)
- Alexandra Lai
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Jill Baumgartner
- Institute for Health and Social Policy, Department of Epidemiology, Biostatistics, and Occupational Health, McGill University Montreal Quebec Canada
| | - James J Schauer
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison Madison WI USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
33
|
Michikawa T, Morokuma S, Takeda Y, Yamazaki S, Nakahara K, Takami A, Yoshino A, Sugata S, Saito S, Hoshi J, Kato K, Nitta H, Nishiwaki Y. Maternal exposure to fine particulate matter over the first trimester and umbilical cord insertion abnormalities. Int J Epidemiol 2021; 51:191-201. [PMID: 34524459 DOI: 10.1093/ije/dyab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Our hypothesis was that exposure to fine particulate matter (PM2.5) is related to abnormal cord insertion, which is categorized as a form of placental implantation abnormality. We investigated the association between exposure to total PM2.5 and its chemical components over the first trimester and abnormal cord insertion, which contributes to the occurrence of adverse birth outcomes. METHODS From the Japan Perinatal Registry Network database, we used data on 83 708 women who delivered singleton births at 39 cooperating hospitals in 23 Tokyo wards (2013-2015). We collected PM2.5 on a filter and measured daily concentrations of carbon and ion components. Then, we calculated the average concentrations over the first trimester (0-13 weeks of gestation) for each woman. A multilevel logistic-regression model with the hospital as a random effect was used to estimate the odds ratios (ORs) of abnormal cord insertion. RESULTS Among the 83 708 women (mean age at delivery = 33.7 years), the frequency of abnormal cord insertion was 4.5%, the median concentration [interquartile range (IQR)] of total PM2.5 was 16.1 (3.61) μg/m3 and the OR per IQR for total PM2.5 was 1.14 (95% confidence interval = 1.06-1.23). In the total PM2.5-adjusted models, total carbon, organic carbon, nitrate, ammonium and chloride were positively associated with abnormal insertion. Organic carbon was consistently, and nitrate tended to be, associated with specific types of abnormal insertion (marginal or velamentous cord insertion). CONCLUSIONS Exposure to total PM2.5 and some of its components over the first trimester increased the likelihood of abnormal cord insertion.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Seiich Morokuma
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Takeda
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Shin Yamazaki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kazushige Nakahara
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Takami
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Ayako Yoshino
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Seiji Sugata
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nitta
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
34
|
Czubaj-Kowal M, Kurzawa R, Mazurek H, Sokołowski M, Friediger T, Polak M, Nowicki GJ. Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8-9-Year-Old School Children in Krakow. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136690. [PMID: 34206247 PMCID: PMC8296872 DOI: 10.3390/ijerph18136690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
The consequences of air pollution pose one of the most serious threats to human health, and especially impact children from large agglomerations. The measurement of nitric oxide concentration in exhaled air (FeNO) is a valuable biomarker in detecting and monitoring airway inflammation. However, only a few studies have assessed the relationship between FeNO and the level of air pollution. The study aims to estimate the concentration of FeNO in the population of children aged 8–9 attending the third grade of public primary schools in Krakow, as well as to determine the relationship between FeNO concentration and dust and gaseous air pollutants. The research included 4580 children aged 8–9 years who had two FeNO measurements in the winter–autumn and spring–summer periods. The degree of air pollution was obtained from the Regional Inspectorate of Environmental Protection in Krakow. The concentration of pollutants was obtained from three measurement stations located in different parts of the city. The FeNO results were related to air pollution parameters. The study showed weak but significant relationships between FeNO and air pollution parameters. The most significant positive correlations were found for CO8h (r = 0.1491, p < 0.001), C6H6 (r = 0.1420, p < 0.001), PM10 (r = 0.1054, p < 0.001) and PM2.5 (r = 0.1112, p < 0.001). We suggest that particulate and gaseous air pollutants impact FeNO concentration in children aged 8–9 years. More research is needed to assess the impact of air pollution on FeNO concentration in children. The results of such studies could help to explain the increase in the number of allergic and respiratory diseases seen in children in recent decades.
Collapse
Affiliation(s)
- Marta Czubaj-Kowal
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
- Correspondence: ; Tel.: +48-604-433-428
| | - Ryszard Kurzawa
- Department of Alergology and Pneumonology, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Michał Sokołowski
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
| | - Teresa Friediger
- Faculty of Health, Catholic University in Ruzomberok, Námestie A. Hlinku 48 Str., SK-034 01 Ruzomberok, Slovakia;
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Grzegórzecka 20 Str., PL-31-531 Krakow, Poland;
| | - Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, Staszica 6 Str., PL-20-081 Lublin, Poland;
| |
Collapse
|
35
|
Yang Z, Liu Q, Liu Y, Qi X, Wang X. Cell cycle arrest of human bronchial epithelial cells modulated by differences in chemical components of particulate matter. RSC Adv 2021; 11:10582-10591. [PMID: 35423563 PMCID: PMC8695810 DOI: 10.1039/d0ra10563e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
There is increasing interest in understanding the role of airborne chemical components in modulating the cell cycle of human bronchial epithelial (HBE) cells that is associated with burden of cardiopulmonary disease. To address this need, our study collected ambient PM10 (particles with aerodynamic diameter less than or equal to 10 μm) and PM2.5 (particles with aerodynamic diameter less than or equal to 2.5 μm) across four sampling sites in Beijing during the year of 2015. Chemical components including organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), metals and water soluble ions were determined. Spearman's rank-order correlation was performed to examine the associations between chemical components in ambient particles and cell cycle distributions with p-values adjusted by Bonferroni methodology. Our results demonstrated the significant associations between certain chemical compositions (i.e., PAHs, EC, As and Ni) and percentages of HBE cells in G0/G1 and G1/G2 phases, respectively. Our results highlighted the need to reduce the specific toxins (e.g., PAHs, EC, As and Ni) from ambient particles to protect cardiopulmonary health associated with air pollution. Future study may focus on illustrating the mechanism of certain chemical compositions in altering the cell cycle in HBE cells.
Collapse
Affiliation(s)
- Zheng Yang
- Beijing Milu Ecological Research Center Beijing 100076 China
| | - Qingyang Liu
- College of Biology and the Environment, Nanjing Forestry University Nanjing Jiangsu Province 210037 China
| | - Yanju Liu
- Beijing Milu Ecological Research Center Beijing 100076 China .,Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xuekui Qi
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xinxin Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| |
Collapse
|
36
|
Altuwayjiri A, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Kashani H, Faridi S, Yunesian M, Naddafi K, Sioutas C. Association of systemic inflammation and coagulation biomarkers with source-specific PM 2.5 mass concentrations among young and elderly subjects in central Tehran. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:191-208. [PMID: 32758070 DOI: 10.1080/10962247.2020.1806140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Sina Taghvaee
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Amirhosein Mousavi
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Advanced Monitoring Technologies, Science and Technology Advancement Division, South Coast Air Quality Management District , Diamond Bar, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
37
|
Mehta U, Dey S, Chowdhury S, Ghosh S, Hart JE, Kurpad A. The Association Between Ambient PM 2.5 Exposure and Anemia Outcomes Among Children Under Five Years of Age in India. Environ Epidemiol 2021; 5:e125. [PMID: 33778358 PMCID: PMC7939416 DOI: 10.1097/ee9.0000000000000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Anemia is highly prevalent in India, especially in children. Exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for anemia via. systemic inflammation. Using health data from the National Family and Health Survey 2015-2016, we examined the association between ambient PM2.5 exposure and anemia in children under five across India through district-level ecological and individual-level analyses. METHODS The ecological analysis assessed average hemoglobin levels and anemia prevalence (hemoglobin < 11 g/dL considered anemic) by district using multiple linear regression models. The individual-level analysis assessed average individual hemoglobin level and anemia status (yes/no) using generalized linear mixed models to account for clustering by district. Ambient PM2.5 exposure data were derived from the Multiangle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) data and averaged from birth date to date of interview. RESULTS The district-level ecological analysis found that, for every 10 μg m-3 increase in ambient PM2.5 exposure, average anemia prevalence increased by 1.90% (95% CI = 1.43, 2.36) and average hemoglobin decreased by 0.07 g/dL (95% CI = 0.09, 0.05). At the individual level, for every 10 μg m-3 increase in ambient PM2.5 exposure, average hemoglobin decreased by 0.14 g/dL (95% CI = 0.12, 0.16). The odds ratio associated with a 10-μg m-3 increase in ambient PM2.5 exposure was 1.09 (95% CI = 1.06, 1.11). There was evidence of effect modification by wealth index, maternal anemia status, and child BMI. CONCLUSION Our results suggest that ambient PM2.5 exposure could be linked to anemia in Indian children, although additional research on the underlying biologic mechanisms is needed. Future studies on this association should specifically consider interactions with dietary iron deficiency, maternal anemia status, and child BMI.Keywords: Anemia; Children; Ambient PM2.5 exposure; India; Association.
Collapse
Affiliation(s)
- Unnati Mehta
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi, India
- School of Public Policy, IIT Delhi, New Delhi, India
| | - Sourangsu Chowdhury
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Santu Ghosh
- St. John’s Medical College, Bengaluru, India
| | - Jaime E Hart
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
38
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
39
|
Iakovides M, Iakovides G, Stephanou EG. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM 2.5 source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141834. [PMID: 33207492 DOI: 10.1016/j.scitotenv.2020.141834] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of atmospheric fine particles (PM2.5)-associated polycyclic aromatic hydrocarbons (PAHs), trace metals and organic molecular markers was investigated by conducting an intensive sampling campaign at the Eastern Mediterranean urban area of Nicosia (Cyprus). Sixty-two 24-hr PM2.5 samples were collected and analyzed for fifty parent and alkylated PAHs, twenty-five long chain n-alkanes, seventeen hopanes and twelve steranes used for source apportionment. The same number and kind of samples were analyzed to determine twenty-eight trace metals. Emphasis was given to investigate the air levels of the scarcely monitored although highly carcinogenic PAHs such as dibenzopyrenes, dibenzoanthracenes, 7H-benzo[c]fluorene and 5-methyl-chrysene, not included in the USEPA's sixteen PAH priority list (USEPA-16). UNMIX receptor model was applied to apportion the sources of atmospheric emissions of the determined organic compounds and trace metals and evaluate their daily contributions to the corresponding PM2.5 associated concentrations. For comparison purposes, principal component analysis with multiple linear regression (PCA/MLR) was also applied and its results are reported. The UNMIX receptor model, compared to PCA/MLR, offered a more precise source profile and more reliable daily mass source distributions by eliminating negative contributions. The individual and cumulative multi-pathway lifetime cancer risk (posed via inhalation, ingestion and dermal contact) by exposure to PM2.5-associated USEPA-16 listed and non-listed PAHs and selected airborne trace metals (As, Cd, Co, Ni, and Pb) were assessed. To estimate the contribution of each emission source to the total cancer risk, multiple linear regression analysis was performed, using as independent variables the daily source mass contributions and as dependent variables the respective cancer risk units. The estimated total cumulative cancer risk comprising all toxic PAHs, besides those included in the priority list, and metals was higher than the USEPA's threshold by a factor of eight, denoting a potential risk for long-term exposure of a population in the urban environment.
Collapse
Affiliation(s)
- Minas Iakovides
- The Cyprus Institute, Konstantinou Kavafi 20, 2121 Aglantzia, Nicosia, Cyprus
| | - Giannis Iakovides
- Department of Mathematics and Applied Mathematics, University of Crete, Voutes Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- The Cyprus Institute, Konstantinou Kavafi 20, 2121 Aglantzia, Nicosia, Cyprus; Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece.
| |
Collapse
|
40
|
Liu S, Jørgensen JT, Ljungman P, Pershagen G, Bellander T, Leander K, Magnusson PKE, Rizzuto D, Hvidtfeldt UA, Raaschou-Nielsen O, Wolf K, Hoffmann B, Brunekreef B, Strak M, Chen J, Mehta A, Atkinson RW, Bauwelinck M, Varraso R, Boutron-Ruault MC, Brandt J, Cesaroni G, Forastiere F, Fecht D, Gulliver J, Hertel O, de Hoogh K, Janssen NAH, Katsouyanni K, Ketzel M, Klompmaker JO, Nagel G, Oftedal B, Peters A, Tjønneland A, Rodopoulou SP, Samoli E, Bekkevold T, Sigsgaard T, Stafoggia M, Vienneau D, Weinmayr G, Hoek G, Andersen ZJ. Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: The ELAPSE project. ENVIRONMENT INTERNATIONAL 2021; 146:106267. [PMID: 33276316 DOI: 10.1016/j.envint.2020.106267] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 µg/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 µg/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; The Stockholm Gerontology Research Center, Stockholm, Sweden
| | | | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Maciej Strak
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jie Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Amar Mehta
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard W Atkinson
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raphaëlle Varraso
- CESP, Faculté de Médecine, Université Paris-Saclay, UVSQ, Inserm UMR 1018, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine, Université Paris-Saclay, UVSQ, Inserm UMR 1018, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate, Aarhus University Interdisciplinary Center for Climate Change, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - John Gulliver
- UK Small Area Health Statistics Unit, Department of Epidemiology & Biostatistics, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research, University of Surrey, Guildford, United Kingdom
| | - Jochem O Klompmaker
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sophia P Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Terese Bekkevold
- Department of Infectious Diseases Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | | | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Center for Epidemiological Research, Nykøbing F Hospital, Nykøbing F, Denmark.
| |
Collapse
|
41
|
Carvalho-Oliveira R, Amato-Lourenço LF, Almeida PS, Garcia BBM, Vieira WKM, Santana A, Motta Godinho-Netto MC, Carretero ME, Nascimento Saldiva PH, Mauad T. Effects of long-standing exposure to heavy-duty diesel vehicle traffic on respiratory symptoms and airway inflammation in older adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115893. [PMID: 33126158 DOI: 10.1016/j.envpol.2020.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we evaluated the effects of chronic exposure to traffic from a heavy-duty diesel-fueled vehicle area on respiratory symptoms and airway inflammation in a nonsmoking adult and elderly population. Respiratory symptoms were evaluated by the ISAAC questionnaire (International Study of Asthma and Allergies questionnaire), and airway inflammation was assessed by fractional exhaled nitric oxide (FeNO). Forty volunteers were selected from the 112 volunteers who completed the ISAAC questionnaire for the measurement of FeNO. The FeNO population comprised seven men (six aged ≥ 64 years old, four aged ≥ 75 years old) and 32 women (27 aged ≥ 64 years old, nine aged ≥ 75 years old). FeNO levels were tracked for six months, from November 2014 to June 2015. Results: Twenty-four percent of the volunteers reported having had wheezing in the chest in the last 12 months. However, only 2.7% of the volunteers reported doctor-diagnosed asthma. There was a positive association between FeNO and pollutants in most of the study months. An increase of 1 μg m-3 in NO2 was associated with a mean increase of 1.08 ppb in FeNO, and an increase of 1 μg m-3 in O3 was associated with a mean increase of 1.06 ppb in FeNO. The relative risk for NO2 ranged from 1.009 to 1.32 and that for O3 ranged from 1.014 to 1.020. Conclusion: The frequency of respiratory symptoms was much higher than the previously described levels of 6% in the Brazilian adult population. In summary, a high frequency of respiratory symptoms and high levels of FeNO were described in an underdiagnosed adult population living very close to a heavy-duty diesel-traffic area. Older elderly adults presented greater susceptibility to airway inflammation than younger adults.
Collapse
Affiliation(s)
- Regiani Carvalho-Oliveira
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil; National Institute for Integrated Analysis of Environmental Risk (INAIRA), Brazil.
| | | | - Pâmela S Almeida
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Brazil
| | - Bianca B M Garcia
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Brazil
| | - William K M Vieira
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Brazil
| | - Ariane Santana
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Brazil
| | | | - Maria E Carretero
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil
| | - Paulo H Nascimento Saldiva
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil; National Institute for Integrated Analysis of Environmental Risk (INAIRA), Brazil
| | - Thais Mauad
- Pathology Department, School of Medicine at Sao Paulo University (FMUSP), Brazil; National Institute for Integrated Analysis of Environmental Risk (INAIRA), Brazil
| |
Collapse
|
42
|
Tang H, Cheng Z, Li N, Mao S, Ma R, He H, Niu Z, Chen X, Xiang H. The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115630. [PMID: 33254709 PMCID: PMC7687019 DOI: 10.1016/j.envpol.2020.115630] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 05/16/2023]
Abstract
Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM2.5(PM with an aerodynamic diameter ≤2.5 μm)/PM10 (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects models for calculating the pooled estimate of markers. To assess the potential effect modifiers and the source of heterogeneity, we conducted subgroup analyses and meta-regression analyses where appropriate. The assessment and correction of publication bias were based on Begg's and Egger's test and "trim-and-fill" analysis. We identified 44 eligible studies. For short-term PM exposure, the percent change of a 10 μg/m3 PM2.5 increase on TNF-α and fibrinogen was 3.51% (95% confidence interval (CI): 1.21%, 5.81%) and 0.54% (95% confidence interval (CI): 0.21%, 0.86%) respectively. We also found a significant short-term association between PM10 and fibrinogen (percent change = 0.17%, 95% CI: 0.04%, 0.29%). Overall analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were not significant. Subgroup analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were significant only found in studies conducted in Asia. Our findings support significant short-term associations of PM with TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.
Collapse
Affiliation(s)
- Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Runxue Ma
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Haijun He
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
43
|
Cassagnes LE, Zaira L, Håland A, Bell D, Zhu L, Bertrand A, Baltensperger U, El Haddad I, Wisthaler A, Geiser M, Dommen J. Online monitoring of volatile organic compounds emitted from human bronchial epithelial cells as markers for oxidative stress. J Breath Res 2020; 15. [PMID: 33045691 DOI: 10.1088/1752-7163/abc055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Particulate air pollution is associated with adverse respiratory effects and is a major factor for premature deaths. In-vitro assays are commonly used for investigating the direct cytotoxicity and inflammatory impacts due to particulate matter (PM) exposure. However, biological tests are often labor-intensive, destructive and limited to endpoints measured offline at single time points, making it impossible to observe the progression of cell response upon exposure. Here we explored the potential of a high-resolution proton transfer reaction mass spectrometer (PTR-MS) to detect the volatile organic compounds (VOCs) emitted by human bronchial epithelial cells (BEAS-2B) upon exposure to PM. Cells were exposed to single components (1,4-naphthoquinone and Cu(II)) known to induce oxidative stress. We also tested filter extracts of aerosols generated in a smog chamber, including fresh and aged wood burning emissions, as well as α-pinene secondary organic aerosol (SOA). We found that 1,4-naphthoquinone was rapidly internalized by the cells. Exposing cells to each of these samples induced the emission of VOCs, which we tentatively assigned to acetonitrile, benzaldehyde and dimethylbenzaldehyde, respectively. Emission rates upon exposure to fresh and aged organic aerosol from α-pinene oxidation and from biomass burning significantly exceeded those observed after exposure to similar doses of Cu(II), a proxy for transition metals with high oxidative potential. Emission rates of biomarkers from cell exposure to α-pinene SOA exhibited a statistically significant, but weak dose dependence. The emission rates of benzaldehyde scaled with cell death, estimated by measuring the apical release of cytosolic lactate dehydrogenase. Particle mass doses delivered to the BEAS-2B cells match those deposited in the human tracheobronchial tract after several hours of inhalation at elevated ambient air pollution. The results presented here show that our method has the potential to determine biomarkers of PM induced pulmonary damage in toxicological and epidemiological research on air pollution.
Collapse
Affiliation(s)
| | - Leni Zaira
- University of Bern, Bern, BE, SWITZERLAND
| | | | - David Bell
- Paul Scherrer Institute, Villigen, SWITZERLAND
| | | | | | | | | | | | | | - Josef Dommen
- Paul Scherrer Institute Laboratory of Atmospheric Chemistry, Villigen, 5232, SWITZERLAND
| |
Collapse
|
44
|
Chen X, Liu F, Niu Z, Mao S, Tang H, Li N, Chen G, Liu S, Lu Y, Xiang H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114833. [PMID: 32544661 DOI: 10.1016/j.envpol.2020.114833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 05/27/2023]
Abstract
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM10, PM2.5, black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m3 increase in air pollutants exposure concentrations. A 10 μg/m3 increase in short-term PM10, PM2.5, NO2, and SO2 exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m3 increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O3 and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960, East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
45
|
Al Housseiny H, Singh M, Emile S, Nicoleau M, Wal RLV, Silveyra P. Identification of Toxicity Parameters Associated with Combustion Produced Soot Surface Chemistry and Particle Structure by in Vitro Assays. Biomedicines 2020; 8:E345. [PMID: 32932874 PMCID: PMC7555766 DOI: 10.3390/biomedicines8090345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
Air pollution has become the world's single biggest environmental health risk of the past decade, causing millions of yearly deaths worldwide. One of the dominant air pollutants is fine particulate matter (PM2.5), which is a product of combustion. Exposure to PM2.5 has been associated with decreased lung function, impaired immunity, and exacerbations of lung disease. Accumulating evidence suggests that many of the adverse health effects of PM2.5 exposure are associated with lung inflammation and oxidative stress. While the physical structure and surface chemistry of PM2.5 are surrogate measures of particle oxidative potential, little is known about their contributions to negative health effects. In this study, we used functionalized carbon black particles as surrogates for atmospherically aged combustion-formed soot to assess the effects of PM2.5 surface chemistry in lung cells. We exposed the BEAS-2B lung epithelial cell line to different soot at a range of concentrations and assessed cell viability, inflammation, and oxidative stress. Our results indicate that exposure to soot with varying particle surface composition results in differential cell viability rates, the expression of pro-inflammatory and oxidative stress genes, and protein carbonylation. We conclude that particle surface chemistry, specifically oxygen content, in soot modulates lung cell inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Heba Al Housseiny
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Madhu Singh
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16801, USA; (M.S.); (R.L.V.W.)
| | - Shaneeka Emile
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Marvin Nicoleau
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Randy L. Vander Wal
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16801, USA; (M.S.); (R.L.V.W.)
- EMS Energy Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Patricia Silveyra
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
46
|
Milton LA, White AR. The potential impact of bushfire smoke on brain health. Neurochem Int 2020; 139:104796. [PMID: 32650032 DOI: 10.1016/j.neuint.2020.104796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
Smoke from bushfires (also known as wildfires or forest fires) has blanketed large regions of Australia during the southern hemisphere summer of 2019/2020, potentially endangering residents who breathe the polluted air. While such air pollution is known to cause respiratory irritation and damage, its effect on the brain is not well described. In this review, we aim to outline the potentially damaging effects of bushfire smoke on brain health. We also describe the composition of air pollution, including ambient particulate matter (PM) and bushfire PM, before covering the general health effects of each. The investigated entry routes for ambient PM and postulated entry routes for bushfire PM are discussed, along with epidemiological and experimental evidence of the effect of both PMs in the brain. It appears that bushfire PM may be more toxic than ambient PM, and that it may enter the brain through extrapulmonary or olfactory routes to cause inflammation and oxidative stress. Ultimately, this review highlights the desperate requirement of greater research into the effects of bushfire PM on brain health.
Collapse
Affiliation(s)
- Laura A Milton
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia
| | - Anthony R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia.
| |
Collapse
|
47
|
Zhang H, Wang Q, He S, Wu K, Ren M, Dong H, Di J, Yu Z, Huang C. Ambient air pollution and gestational diabetes mellitus: A review of evidence from biological mechanisms to population epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137349. [PMID: 32114225 DOI: 10.1016/j.scitotenv.2020.137349] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 05/26/2023]
Abstract
Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that could cause adverse health effects on both mothers and fetuses, and its prevalence has been increasing worldwide. Experimental and epidemiological studies suggest that air pollution may be an important risk factor of GDM, but conclusions are inconsistent. To provide a comprehensive overview of ambient air pollution on GDM, we summarized existing evidence concerning biological linkages between maternal exposure to air pollutants and GDM based on mechanism studies. We also performed a quantitative meta-analysis based on human epidemiological studies by searching English databases (Pubmed, Web of Science and Embase) and Chinese databases (Wanfang, CNKI). As a result, the limited mechanism studies indicated that β-cell dysfunction, neurohormonal disturbance, inflammation, oxidative stress, imbalance of gut microbiome and insulin resistance may be involved in air pollution-GDM relationship, but few studies were performed to explore the direct biological linkage. Additionally, a total of 13 epidemiological studies were included in the meta-analysis, and the air pollutants considered included PM2.5, PM10, SO2, NO2 and O3. Most studies were retrospective and mainly conducted in developed regions. The results of meta-analysis indicated that maternal first trimester exposure to SO2 increased the risk of GDM (standardized odds ratio (OR) = 1.392, 95% confidence intervals (CI): 1.010, 1.773), while pre-pregnancy O3 exposure was inversely associated with GDM risk (standardized OR = 0.981, 95% CI: 0.977, 0.985). No significant effects were observed for PM2.5, PM10 and NO2. In conclusion, additional mechanism studies on the molecular level are needed to provide persuasive rationale underlying the air pollution-GDM relationship. Moreover, other important risk factors of GDM, including maternal lifestyle and road traffic noise exposure that may modify the air pollution-GDM relationship should be considered in future epidemiological studies. More prospective cohort studies are also warranted in developing countries with high levels of air pollution.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Simin He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaipu Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Ren
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haotian Dong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiangli Di
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai 200030, China.
| |
Collapse
|
48
|
Pirhadi M, Mousavi A, Taghvaee S, Shafer MM, Sioutas C. Semi-volatile components of PM 2.5 in an urban environment: volatility profiles and associated oxidative potential. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 223:117197. [PMID: 32577088 PMCID: PMC7311065 DOI: 10.1016/j.atmosenv.2019.117197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Martin M. Shafer
- University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
49
|
Li A, Pei L, Zhao M, Xu J, Mei Y, Li R, Xu Q. Investigating potential associations between O3 exposure and lipid profiles: A longitudinal study of older adults in Beijing. ENVIRONMENT INTERNATIONAL 2019; 133:105135. [PMID: 31491592 DOI: 10.1016/j.envint.2019.105135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Little information exists on the lipidemic effects of ozone exposure. Few studies have focused on the different patterns of the association among older adults population, and little attention has been given to comprehensive lipid indices when evaluating the effect of O3 exposure on the metabolism. METHODS We conducted a longitudinal study involving 201 older adults in Beijing, China between 2016 and 2018. A mixed regression model was applied with random effects to investigate the relationship between O3 and lipid profiles. RESULTS O3 exposure positively correlated with TC, LDL-C, CRI-I, CRI-II and AC at short-term and medium-term exposure periods. The largest increases in TC, LDL-C, CRI-I and CRI-II were found in the 28-days moving average indicating accumulative effects over prolonged exposure period. A 10 μg/m3 increase of O3 at the 28-days moving average was associated with a significant increase of 3.9% (95% CI: 1.0, 6.9) in TC, 8.2% (95% CI: 4.2, 12.4) in LDL-C, 4.8% (95% CI: 1.1, 8.5) in CRI-I and 7.0% (95% CI: 2.7, 11.5) in CRI-II. Stratification by health status and characteristics revealed different patterns of lipid changes among older adults, lipid status, age, sex and BMI may modify the relationship between O3 exposure and lipid profiles. CONCLUSIONS Our findings suggest that short-term and medium-term O3 exposure is associated with lipid profiles abnormalities among the older adults. Evidence also suggests there are patterns within population which differ according to both health status and demographic characteristics.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Lu Pei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
50
|
Zhao T, Markevych I, Standl M, Schikowski T, Berdel D, Koletzko S, Jörres RA, Nowak D, Heinrich J. Short-term exposure to ambient ozone and inflammatory biomarkers in cross-sectional studies of children and adolescents: Results of the GINIplus and LISA birth cohorts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113264. [PMID: 31563778 DOI: 10.1016/j.envpol.2019.113264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND While exposure to ambient particulate matter (PM) and nitrogen dioxide (NO2) is thought to be associated with diseases via inflammatory response, the association between exposure to ozone, an oxidative pollutant, and inflammation has been less investigated. AIM We analyzed associations between short-term exposure to ozone and three inflammatory biomarkers among children and adolescents. METHODS These cross-sectional analyses were based on two follow-ups of the GINIplus and LISA German birth cohorts. We included 1330 10-year-old and 1591 15-year-old participants. Fractional exhaled nitric oxide (FeNO) and high-sensitivity C-reactive protein (hs-CRP) were available for both age groups while interleukin (IL)-6 was measured at 10 years only. Maximum 8-h averages of ozone and daily average concentrations of NO2 and PM with an aerodynamic diameter <10 μm (PM10) were adopted from two background monitoring stations 0 (same day), 1, 2, 3, 5, 7, 10 and 14 days prior to the FeNO measurement or blood sampling. To assess associations, we utilized linear regression models for FeNO, and logistic regressions for IL-6 and hs-CRP, adjusting for potential covariates and co-pollutants NO2 and PM10. RESULTS We found that short-term ozone exposure was robustly associated with higher FeNO in adolescents at age 15, but not at age 10. No consistent associations were observed between ozone and IL-6 in children aged 10 years. The relationship between hs-CRP levels and ozone was J-shaped. Relatively low ozone concentrations (e.g., <120 μg/m³) were associated with reduced hs-CRP levels, while high concentrations (e.g., ≥120 μg/m³) tended to be associated with elevated levels for both 10- and 15-year-old participants. CONCLUSIONS Our study demonstrates significant associations between short-term ozone exposure and FeNO at 15 years of age and a J-shaped relationship between ozone and hs-CRP. The finding indicates that high ozone exposure may favor inflammatory responses in adolescents, especially regarding airway inflammation.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital Munich, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Rudolf A Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|