1
|
Wu LY, He WT, Zeeshan M, Zhou Y, Zhang YT, Liang LX, Huang JW, Zhou JX, Zhao K, Bao WW, Lin LZ, Gui ZH, Liu RQ, Hu LW, Wang Z, Dong GH. Incidence of respiratory diseases associated with per- and polyfluoroalkyl substances (PFAS) in PM 2.5: New evidence from a population-based survey of Pearl River Delta (PRD), China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138485. [PMID: 40319854 DOI: 10.1016/j.jhazmat.2025.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Epidemiological studies have evinced that particulate matter (PM) is linked to respiratory diseases, but the relationship between the specific constituents of PM and respiratory diseases remains scarce. Here, we evaluated the relationship between PFAS in PM2.5 with respiratory diseases. In this study, from May 2016 to May 2018, we recruited 131,346 school-aged children and adolescents living in Pearl River Delta, Guangdong Province, China. Participants self-reported the respiratory diseases, including asthma, wheezing, phlegm, cough and rhinitis. Logistic regression and qg-comp models were used to analyze the relationship between PFAS exposure and respiratory diseases. We found several PFAS were significantly associated with higher prevalence of respiratory diseases. For instance, higher quintiles of PFSA exposure (Q2-Q4), as compared to Q1, were associated with greater odds of respiratory diseases: 1.35 (95 %CI: 1.23, 1.48) in Q2, 1.95 (95 %CI: 1.78, 2.14) in Q3 and 2.83 (95 %CI: 2.76, 3.11) in Q4. Furthermore, qg-comp model analysis revealed PFCA as the most important weight in respiratory diseases. Moreover, the effect estimates were higher in boys, older children (>12 years old) and overweight/obesity, indicating the vulnerability of these subpopulations. In summary, exposure to PFAS, a specific PM2.5 constituent, potentially increases the risk of respiratory diseases among school-aged children and adolescents.
Collapse
Affiliation(s)
- Lu-Yin Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kun Zhao
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Cativiela-Campos B, Ruiz-Sobremazas D, Rodulfo-Cárdenas R, Barrasa A, Sánchez-Santed F, Colomina MT, Aschner M, López-Granero C. What are the consequences of PM air pollution exposure on elderly behavior? A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126279. [PMID: 40288634 DOI: 10.1016/j.envpol.2025.126279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Environmental pollution poses a significant risk to human health. Particulate matter (PM) found in polluted air is particularly of concern due to its ability to penetrate the blood-brain barrier (BBB) and impact the central nervous system (CNS), affecting sensory, cognitive, and emotional well-being. The aim of this review is to provide a comprehensive overview on the latest evidence regarding the association between PM exposure and behavioral outcomes in adult and older populations. Searches were conducted across PubMed, Web of Science, and Scopus up to August 2023, with articles selected and screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 27 articles meeting the criteria were included, and their risk of bias was evaluated using the Newcastle Ottawa Scale. The studies primarily focused on PM2.5 and PM10 in regions such as Europe, the USA, and Asia. While data on the impact of PM exposure on sensory variables were limited, suggesting an adverse effect, overall findings indicated a link between PM exposure and worsened cognitive function, increased risk of dementia, depressive symptoms, and anxiety. Some studies highlighted sex-dependent effects of PM exposure, with women experiencing a higher prevalence of adverse effects. This review underscores the importance of further research to understand the specific cognitive aspects affected by PM exposure, particularly in relation to dementia risk.
Collapse
Affiliation(s)
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Research Center for Social Wellness and Inclusion (CIBIS), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain.
| |
Collapse
|
3
|
Bansah KJ, Adonteng-Kissi O. Child labor in artisanal and small-scale mining: Implications for health, development and poverty. THE EXTRACTIVE INDUSTRIES AND SOCIETY 2025; 21:101577. [DOI: 10.1016/j.exis.2024.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Marcoccia D, Tzanetou EN, Pietropaoli M, Roessink I, van der Steen J, Cuva C, Formato G, Kasiotis KM. Biomonitoring of particulate matter and volatile organic compounds using honey bees and their products. A contemporary overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177391. [PMID: 39505038 DOI: 10.1016/j.scitotenv.2024.177391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Airborne pollutants like particulate matter and volatile organic compounds can negatively impact microbial, plant, and animal life as well as human health. Traditional environmental monitoring, while crucial, often relies on expensive equipment at limited locations, leading to gaps in geographical coverage. To obtain a low-cost, easily deployed environmental monitoring grid, the use of European honey bees (Apis mellifera) as biomonitor can offer a promising alternative. Their extensive foraging in the landscape exposes them to environmental contaminants like particulate matter and organic compounds. Once collected, these pollutants are carried back into the hives, where they can subsequently be sampled and quantified using various techniques. This potentially makes honey bee colonies a cost-effective and valuable long-term monitoring tool for particulate matter and organic compounds. This review, through the critical insight of the most recent pertinent literature, explores the suitability of honey bees and their products as biomarkers for environmental monitoring of these pollutants, addressing sample preparation approaches and chemical analytical methods. Overall, the presented information will aid researchers in initiating further investigations in this pivotal field, incorporating additional chemicals and innovative, non-invasive sampling matrices compatible with the beehive environment.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Evangelia N Tzanetou
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen, the Netherlands
| | | | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Konstantinos M Kasiotis
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| |
Collapse
|
5
|
Taylor-Blair HC, Siu ACW, Haysom-McDowell A, Kokkinis S, Bani Saeid A, Chellappan DK, Oliver BGG, Paudel KR, De Rubis G, Dua K. The impact of airborne particulate matter-based pollution on the cellular and molecular mechanisms in chronic obstructive pulmonary disease (COPD). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176413. [PMID: 39322084 DOI: 10.1016/j.scitotenv.2024.176413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Inhalation of particulate matter (PM), one of the many components of air pollution, is associated with the development and exacerbation of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD). COPD is one of the leading causes of global mortality and morbidity, with a paucity of therapeutic options and a significant contributor to global health expenditure. This review aims to provide a mechanistic understanding of the cellular and molecular pathways that lead to the development of COPD following chronic PM exposure. Our review describes how the inhalation of PM can lead to lung parenchymal destruction and cellular senescence due to chronic pulmonary inflammation and oxidative stress. Following inhalation of PM, significant increases in a range of pro-inflammatory cytokines, mediated by the nuclear factor kappa B pathway are reported. This review also highlights how the inhalation of PM can lead to deleterious chronic oxidative stress persisting in the lung post-exposure. Furthermore, our work summarises how PM inhalation can lead to airway remodelling, with increases in pro-fibrotic cytokines and collagen deposition, typical of COPD. This paper also accentuates the interconnection and possible synergism between the pathophysiological mechanisms leading to COPD. Our work emphasises the serious health consequences of PM exposure on respiratory health. Elucidation of the cellular and molecular mechanisms can provide insight into possible therapeutic options. Finally, this review should serve as a stark reminder of the need for genuine action on air pollution to decrease the associated health burden on our growing global population.
Collapse
Affiliation(s)
- Hudson C Taylor-Blair
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alexander Chi Wang Siu
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Haysom-McDowell
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, University of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
6
|
Georgakopoulou VE, Taskou C, Diamanti A, Beka D, Papalexis P, Trakas N, Spandidos DA. Saharan dust and respiratory health: Understanding the link between airborne particulate matter and chronic lung diseases (Review). Exp Ther Med 2024; 28:460. [PMID: 39478735 PMCID: PMC11523266 DOI: 10.3892/etm.2024.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Saharan dust storms, which originate from the Sahara desert, have a significant impact on global health, especially on respiratory conditions of populations exposed to fine particulate matter that travels across continents. Dust events, characterized by the transport of mineral dust such as quartz and feldspar, lead to the suspension of particulate matter in the atmosphere, capable of traversing long distances and affecting air quality adversely. Emerging research links these dust episodes with increased incidence and exacerbation of lung diseases, including asthma and chronic obstructive pulmonary disease, especially during peak dust emission seasons from November to March. The present review aims to synthesize existing scientific evidence concerning the respiratory health impacts of Saharan dust, examining the environmental dynamics of dust transmission, the physical and chemical properties of dust particles, and their biological effects on human health. Further, it assesses epidemiological studies and discusses public health strategies for mitigating adverse health outcomes. Given the complexity of interactions between atmospheric dust particles and respiratory health, this review also highlights critical research gaps that need attention to better understand and manage the health risks associated with Saharan dust.
Collapse
Affiliation(s)
| | - Chrysoula Taskou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, 12243 Athens, Greece
| | - Athina Diamanti
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, 12243 Athens, Greece
| | - Despoina Beka
- Department of Ear, Nose and Throat, Laiko General Hospital, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Propedeutic and Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
7
|
Johnson KN, Li Y, Ezell MJ, Lakey PSJ, Shiraiwa M, Finlayson-Pitts BJ. Elucidating gas-surface interactions relevant to atmospheric particle growth using combined temperature programmed desorption and temperature-dependent uptake. Phys Chem Chem Phys 2024; 26:23264-23276. [PMID: 39205494 DOI: 10.1039/d4cp02528h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding growth mechanisms for particles in air is fundamental to developing a predictive capability for their impacts on human health, visibility, and climate. In the case of highly viscous semi-solid or solid particles, the likelihood of impinging gases being taken up to grow the particle will be influenced by the initial uptake coefficient and by the residence time of the adsorbed gas on the surface. Here, a new approach that combines Knudsen cell capabilities for gas uptake measurements with temperature programmed desorption (TPD) for binding energy measurements of gases is described. The application of this unique capability to the uptake of organic gases on silica demonstrates its utility and the combination of thermodynamic and kinetic data that can be obtained. Lower limits to the initial net uptake coefficients at 170 K are (3.0 ± 0.6) × 10-3, (4.9 ± 0.6) × 10-3 and (4.3 ± 0.8) × 10-3 for benzene, 1-chloropentane, and methanol, respectively, and are reported here for the first time. The uptake data demonstrated that the ideal gas lattice model was appropriate, which informed the analysis of the TPD data. From the thermal desorption measurements, desorption energies of 34.6 ± 2.5, 45.8 ± 5.5, and 40.0 ± 5.6 kJ mol-1 (errors are 1σ) are obtained for benzene, 1-chloropentane, and methanol, respectively, and show good agreement with previously reported measurements. A multiphase kinetics model was applied to quantify uptake, desorption, and diffusion through the particle multilayers and hence extract desorption kinetics. Implications for uptake of organics on silica surfaces in the atmosphere and the utility of this system for determining relationships between residence times of organic gases and particle surfaces of varying composition are discussed in the context of developing quantitative predictions for growth of aerosol particles in air.
Collapse
Affiliation(s)
- Kristen N Johnson
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Yixin Li
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Michael J Ezell
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | | |
Collapse
|
8
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
9
|
Ganhör C, Mayr L, Zolles J, Almeder M, Kazemi M, Mandl M, Wechselberger C, Bandke D, Theiner S, Doppler C, Schweikert A, Müller M, Puh Š, Kotnik M, Langer R, Koellensperger G, Bernhard D. Airborne Aluminum as an Underestimated Source of Human Exposure: Quantification of Aluminum in 24 Human Tissue Types Reveals High Aluminum Concentrations in Lung and Hilar Lymph Node Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11292-11300. [PMID: 38888518 PMCID: PMC11223461 DOI: 10.1021/acs.est.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, and humans are exposed to Al through sources like food, cosmetics, and medication. So far, no comprehensive data on the Al distribution between and within human tissues were reported. We measured Al concentrations in 24 different tissue types of 8 autopsied patients using ICP-MS/MS (inductively coupled plasma-tandem mass spectrometry) under cleanroom conditions and found surprisingly high concentrations in both the upper and inferior lobes of the lung and hilar lymph nodes. Al/Si ratios in lung and hilar lymph node samples of 12 additional patients were similar to the ratios reported in urban fine dust. Histological analyses using lumogallion staining showed Al in lung erythrocytes and macrophages, indicating the uptake of airborne Al in the bloodstream. Furthermore, Al was continuously found in PM2.5 and PM10 fine dust particles over 7 years in Upper Austria, Austria. According to our findings, air pollution needs to be reconsidered as a major Al source for humans and the environment.
Collapse
Affiliation(s)
- Clara Ganhör
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Lukas Mayr
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Julia Zolles
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marion Almeder
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Matin Kazemi
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Markus Mandl
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Christian Wechselberger
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Dave Bandke
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Doppler
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Andreas Schweikert
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marina Müller
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Špela Puh
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Michaela Kotnik
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Rupert Langer
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - David Bernhard
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
- Clinical
Research Institute for Cardiovascular and Metabolic Diseases, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| |
Collapse
|
10
|
Tullis B, Mace JC, Hagedorn R, Nguyen C, Stockard R, Massey C, Ramakrishnan VR, Beswick DM, Soler ZM, Smith TL, Alt JA, Gill AS. The Impact of Acute Peri-operative Particulate Matter Exposure on Endoscopic Sinus Surgery Outcomes: A Preliminary Multi-site Investigation. Am J Rhinol Allergy 2024; 38:237-244. [PMID: 38623645 DOI: 10.1177/19458924241246371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Environmental exposures have been postulated to play an important role in the pathophysiology of chronic rhinosinusitis (CRS). Particulate matter (PM) is one of the most widely studied ambient air pollutants, but its peri-operative impact on CRS is unknown. OBJECTIVE To determine the effect of acute, peri-operative PM exposure on outcomes after endoscopic sinus surgery (ESS). METHODS Participants with CRS who self-selected ESS were prospectively enrolled. The 22-item SinoNasal Outcome Test (SNOT-22) and Medical Outcomes Study Questionnaire Short-Form 6-D (SF-6D) health utility values scores were recorded. Using residence zip codes, a secondary analysis of patient exposure to PM <2.5 μm and <10 μm (PM2.5 and PM10, respectively) was performed for the month of surgery utilizing data from Environmental Protection Agency air quality monitors. Spearman's correlation coefficients (ρ), 95% confidence intervals (CIs), and effect estimates (β) were used to determine the magnitudes of association. Simple, multivariate regression analysis was also completed. RESULTS One hundred and seven patients from four geographically unique institutions across the US were enrolled with a follow-up of 6 months. Patients with higher peri-operative PM2.5 exposure had less improvement in their SNOT-22 scores after ESS compared to those with less exposure using both univariate analysis (ρ = 0.26, 95% CI: 0.08, 0.43; P = .01) and after covariate adjustment with multivariate analysis (B = 1.06, 95% CI: 0.001, 2.14, P = .05). Similar associations were not found with SF-6D outcomes or with PM10 as an exposure of interest. No significant correlations were found between peri-operative PM levels and Lund-Kennedy endoscopy scores post-operatively. CONCLUSION Preliminary data from this pilot study reveal that PM exposure at the time of ESS may negatively associate with post-operative improvement in sinonasal quality-of-life. Larger, population-based studies with more standardized PM exposure windows are needed to confirm the clinical significance of the present findings.
Collapse
Affiliation(s)
- Benton Tullis
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Jess C Mace
- Division of Rhinology and Sinus Surgery/Oregon Sinus Center, Department of Otolaryngology - Head and Neck Surgery, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Robert Hagedorn
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Cassidy Nguyen
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Ryan Stockard
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Conner Massey
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology - Head and Neck Surgery, University of Indiana, Indianapolis, IN, USA
| | - Daniel M Beswick
- Department of Otolaryngology - Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Zachary M Soler
- Department of Otolaryngology -Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Timothy L Smith
- Division of Rhinology and Sinus Surgery/Oregon Sinus Center, Department of Otolaryngology - Head and Neck Surgery, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jeremiah A Alt
- Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Amarbir S Gill
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Chen S, Zhang Y, Chen H, Zheng W, Hu X, Mao L, Guo X, Lian H. Surface property and in vitro toxicity effect of insoluble particles given by protein corona: Implication for PM cytotoxicity assessment. ECO-ENVIRONMENT & HEALTH 2024; 3:137-144. [PMID: 38638169 PMCID: PMC11021833 DOI: 10.1016/j.eehl.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
In vitro toxicological assessment helps explore key fractions of particulate matter (PM) in association with the toxic mechanism. Previous studies mainly discussed the toxicity effects of the water-soluble and organic-soluble fractions of PM. However, the toxicity of insoluble fractions is relatively poorly understood, and the adsorption of proteins is rarely considered. In this work, the formation of protein corona on the surface of insoluble particles during incubation in a culture medium was investigated. It was found that highly abundant proteins in fetal bovine serum were the main components of the protein corona. The adsorbed proteins increased the dispersion stability of insoluble particles. Meanwhile, the leaching concentrations of some metal elements (e.g., Cu, Zn, and Pb) from PM increased in the presence of proteins. The toxicity effects and potential mechanisms of the PM insoluble particle-protein corona complex on macrophage cells RAW264.7 were discussed. The results revealed that the PM insoluble particle-protein corona complex could influence the phagosome pathway in RAW264.7 cells. Thus, it promoted the intracellular reactive oxygen species generation and induced a greater degree of cell differentiation, significantly altering cell morphology. Consequently, this work sheds new light on the combination of insoluble particles and protein corona in terms of PM cytotoxicity assessment.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Yexuan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hongjuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Weijuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuewen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Gowdy KM, Shannahan J. Particulate threats: aryl hydrocarbon receptor, alveolar epithelium, environmentally persistent free radicals, and endothelial dysfunction. Toxicol Sci 2024; 199:161-162. [PMID: 38804167 DOI: 10.1093/toxsci/kfae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Affiliation(s)
- Kymberly M Gowdy
- Department of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Qian Y, Su X, Yu H, Li Q, Jin S, Cai R, Shi W, Shi S, Meng X, Zhou L, Guo Y, Wang C, Wang X, Zhang Y. Differentiating the impact of fine and coarse particulate matter on cause-specific cerebrovascular mortality: An individual-level, case-crossover study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116447. [PMID: 38759537 DOI: 10.1016/j.ecoenv.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Many studies suggested that short-term exposure to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) was linked to elevated risk of cerebrovascular disease. However, little is known about the potentially differential effects of PM2.5 and PM2.5-10 on various types of cerebrovascular disease. METHODS We collected individual cerebrovascular death records for all residents in Shanghai, China from 2005 to 2021. Residential daily air pollution data were predicted from a satellite model. The associations between particulate matters (PM) and cerebrovascular mortality were investigated by an individual-level, time-stratified, case-crossover design. The data was analyzed by the conditional logistic regression combined with the distributed lag model with a maximum lag of 7 days. Furthermore, we explored the effect modifications by sex, age and season. RESULTS A total of 388,823 cerebrovascular deaths were included. Monotonous increases were observed for mortality of all cerebrovascular diseases except for hemorrhagic stroke. A 10 μg/m3 rise in PM2.5 was related to rises of 1.35% [95% confidence interval (CI): 1.04%, 1.66%] in mortality of all cerebrovascular diseases, 1.84% (95% CI: 1.25%, 2.44%) in ischemic stroke, 1.53% (95% CI: 1.07%, 1.99%) in cerebrovascular sequelae and 1.56% (95% CI: 1.08%, 2.05%) in ischemic stroke sequelae. The excess risk estimates per each 10 μg/m3 rise in PM2.5-10 were 1.47% (95% CI: 1.10%, 1.84%), 1.53% (95% CI: 0.83%, 2.24%), 1.93% (95% CI: 1.38%, 2.49%) and 2.22% (95% CI: 1.64%, 2.81%), respectively. The associations of both pollutants with all cerebrovascular outcomes were robust after controlling for co-pollutants. The associations were greater in females, individuals > 80 years, and during the warm season. CONCLUSIONS Short-term exposures to both PM2.5 and PM2.5-10 may independently increase the mortality risk of cerebrovascular diseases, particularly of ischemic stroke and stroke sequelae.
Collapse
Affiliation(s)
- Yifeng Qian
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China
| | - Xiaozhen Su
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Huiting Yu
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Qi Li
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shan Jin
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Renzhi Cai
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wentao Shi
- Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Clinical research Unit, Shanghai, China
| | - Su Shi
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Yichen Guo
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Chunfang Wang
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China.
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
14
|
Zachariah JP, Jone PN, Agbaje AO, Ryan HH, Trasande L, Perng W, Farzan SF. Environmental Exposures and Pediatric Cardiology: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1165-e1175. [PMID: 38618723 DOI: 10.1161/cir.0000000000001234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Environmental toxicants and pollutants are causes of adverse health consequences, including well-established associations between environmental exposures and cardiovascular diseases. Environmental degradation is widely prevalent and has a long latency period between exposure and health outcome, potentially placing a large number of individuals at risk of these health consequences. Emerging evidence suggests that environmental exposures in early life may be key risk factors for cardiovascular conditions across the life span. Children are a particularly sensitive population for the detrimental effects of environmental toxicants and pollutants given the long-term cumulative effects of early-life exposures on health outcomes, including congenital heart disease, acquired cardiac diseases, and accumulation of cardiovascular disease risk factors. This scientific statement highlights representative examples for each of these cardiovascular disease subtypes and their determinants, focusing specifically on the associations between climate change and congenital heart disease, airborne particulate matter and Kawasaki disease, blood lead levels and blood pressure, and endocrine-disrupting chemicals with cardiometabolic risk factors. Because children are particularly dependent on their caregivers to address their health concerns, this scientific statement highlights the need for clinicians, research scientists, and policymakers to focus more on the linkages of environmental exposures with cardiovascular conditions in children and adolescents.
Collapse
|
15
|
Hermosillo-Abundis C, Méndez-Rojas MA, Arias-Carrión O. Implications of environmental nanoparticles on neurodegeneration. J Neurosci Res 2024; 102:e25340. [PMID: 38745527 DOI: 10.1002/jnr.25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.
Collapse
Affiliation(s)
| | - Miguel A Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla City, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| |
Collapse
|
16
|
Gibb M, Liu JY, Sayes CM. The transcriptomic signature of respiratory sensitizers using an alveolar model. Cell Biol Toxicol 2024; 40:21. [PMID: 38584208 PMCID: PMC10999393 DOI: 10.1007/s10565-024-09860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Environmental contaminants are ubiquitous in the air we breathe and can potentially cause adverse immunological outcomes such as respiratory sensitization, a type of immune-driven allergic response in the lungs. Wood dust, latex, pet dander, oils, fragrances, paints, and glues have all been implicated as possible respiratory sensitizers. With the increased incidence of exposure to chemical mixtures and the rapid production of novel materials, it is paramount that testing regimes accounting for sensitization are incorporated into development cycles. However, no validated assay exists that is universally accepted to measure a substance's respiratory sensitizing potential. The lungs comprise various cell types and regions where sensitization can occur, with the gas-exchange interface being especially important due to implications for overall lung function. As such, an assay that can mimic the alveolar compartment and assess sensitization would be an important advance for inhalation toxicology. Some such models are under development, but in-depth transcriptomic analyses have yet to be reported. Understanding the transcriptome after sensitizer exposure would greatly advance hazard assessment and sustainability. We tested two known sensitizers (i.e., isophorone diisocyanate and ethylenediamine) and two known non-sensitizers (i.e., chlorobenzene and dimethylformamide). RNA sequencing was performed in our in vitro alveolar model, consisting of a 3D co-culture of epithelial, macrophage, and dendritic cells. Sensitizers were readily distinguishable from non-sensitizers by principal component analysis. However, few differentially regulated genes were common across all pair-wise comparisons (i.e., upregulation of genes SOX9, UACA, CCDC88A, FOSL1, KIF20B). While the model utilized in this study can differentiate the sensitizers from the non-sensitizers tested, further studies will be required to robustly identify critical pathways inducing respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA
| | - James Y Liu
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Christie M Sayes
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA.
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA.
| |
Collapse
|
17
|
De Ryck E, Ghosh M, Nawrot TS, Reimann B, Koppen G, Verachtert E, Devlieger R, Godderis L, Pauwels S. Effects of exposure to environmental factors on obesity-related growth parameters and leptin (LEP) methylation in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123465. [PMID: 38309423 DOI: 10.1016/j.envpol.2024.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The prevalence of childhood obesity is rapidly increasing. Therefore, gaining more information on the role of environmental parameters is key. With overexpression of leptin (encoded by LEP) in obesity, LEP methylation might be altered by environmental exposures. This study aims to assess effects of ambient air pollution and nearby greenness on obesity-related growth and LEP methylation in early childhood. We monitored 120 mother-child pairs from conception until the age of five. Buccal swabs and anthropometric measurements of the children were taken at six months, one year, and five years old. Buccal DNA was extracted to determine LEP methylation levels. Estimates of air pollution and nearby greenness were calculated using high-resolution models. Effects of air pollution and nearby greenness on growth or LEP methylation were investigated using linear mixed effects models. Positive associations were shown for air pollution between conception and age one on impedance in six-month-olds and one-year-olds in the crude model. PM with aerodynamic diameter ≤10 (PM10) and ≤2.5 μm (PM2.5) positively associated with waist-hip-ratio and waist circumference at age five in the fully adjusted model. In early childhood, closest distance to forest negatively, and urban green and forest positively associated with weight-for-length, body mass index, and fat percentage in five-year-olds in the fully adjusted model. No significant associations for noise, and walkability on growth were seen. Negative associations were shown for smaller green clusters and positive associations for greater green clusters on LEP methylation in one-year-olds. For forest distance, walkability, noise, or all green on LEP methylation, no significant associations were found. Evidence is provided that ambient air pollution might have a significant effect on impedance and waist-hip-ratio, suggesting an increased risk of childhood obesity. Based on LEP methylation, greater green clusters might associate with a decreased risk of childhood obesity, while smaller green clusters showed the opposite.
Collapse
Affiliation(s)
- Evi De Ryck
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Tim S Nawrot
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, 3590, Hasselt, Belgium.
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, 3590, Hasselt, Belgium.
| | - Gudrun Koppen
- Unit Environmental Risk and Health, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Els Verachtert
- Environmental Modelling Unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Roland Devlieger
- Department of Development and Regeneration, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Obstetrics and Gynaecology, UZ Leuven - University Hospitals of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Lode Godderis
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Interleuvenlaan 58, 3001, Heverlee, Belgium.
| | - Sara Pauwels
- Centre for Environment and Health, Department of Primary Care and Public Health, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium; Unit Environmental Risk and Health, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
18
|
Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F, Ding W. Urban airborne PM 2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116162. [PMID: 38458067 DOI: 10.1016/j.ecoenv.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-β (TGF-β)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengyao Shao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunjiang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Mukhopadhyay S, Dutta R, Das P. Greenery planning for urban air pollution control based on biomonitoring potential: Explicit emphasis on foliar accumulation of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120524. [PMID: 38461639 DOI: 10.1016/j.jenvman.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.27 μg cm-2) of plants (T. divaricata, N. oleander and B. acuminata being the most efficient species in retaining PM) along with the estimation of foliar contents of PM adhered to leaf surfaces (total sPM (large + coarse): 526.59-2731.76 μg cm-2) and embedded within waxes (total wPM (large + coarse): 8.73-34.51 μg cm-2). SEM imaging used to analyse leaf surfaces affirmed the presence of innate corrugated microstructures as main drivers for particle capture. Accumulation capacities of PAHs of vehicular origin (total index, TI > 4) were compared among the species based on measured concentrations (159.92-393.01 μg g-1) which indicated T. divaricata, P. alba and N. cadamba as highest PAHs accumulators. Specific leaf area (SLA) of plants (71.01-376.79 cm2 g-1), a measure of canopy-atmosphere interface, had great relevance in PAHs diffusion. Relative contribution (>90%) of 4-6 ring PAHs to total carcinogenic equivalent and potential as well as 5-6 ring PAHs to total mutagenic equivalent and potential had also been viewed with respect to benzo[a]pyrene. In-depth analysis of foliar traits and adoption of plant-based ranking strategies (air pollution tolerance index (APTI) and anticipated performance index (API)) provided a rationale for green belting. Each of the naturally selected plant species showed evidences of adaptations during abiotic stress to maximize survival and filtering effects for reductive elimination of ambient PM and PAHs, allowing holistic management of green spaces.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
20
|
Ehelepola N, Thilakarathna HA. Respiratory infection transmission risk and indoor air quality at outpatient departments and emergency treatment units of Sri Lankan teaching hospitals. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002862. [PMID: 38408038 PMCID: PMC10896534 DOI: 10.1371/journal.pgph.0002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Indoor carbon dioxide (CO2) concentration has been used as a proxy of the degree of ventilation and, by extension, as an indicator of the risk of contracting respiratory infections. No publications exist regarding indoor air quality (IAQ) parameters of Sri Lankan hospitals.We measured the levels of CO2 and seven other IAQ parameters during morning rush hours for three days, in outpatient departments (OPDs) and emergency treatment units (ETUs) of all 21 teaching hospitals of Sri Lanka. We measured the same parameters of outdoor air also. We calculated the mean values of those parameters. We looked for correlations between outdoors and OPD and ETU levels of selected air quality parameters.The average CO2 levels of outdoors, OPDs and ETUs respectively were 514ppm (ppm = parts per million), 749ppm and 795ppm. The average levels of PM2.5 (particulate matter with diameters <2.5μm) outdoors, OPDs and ETUs respectively, were 28.7μg/m3,32μg/m3 and 25.6 μg/m3. The average levels of PM10 (particulate matter with diameters <10μm) outdoors, OPDs and ETUs respectively, were 49.4μg/m3, 55.5μg/m3 and 47.9 μg/m3. The median levels of formaldehyde outdoors, OPDs and ETUs respectively, were 0.03mg/m3, 0.04mg/m3 and 0.08mg/m3. The median levels of total volatile organic compounds (VOC) outdoors, OPDs and ETUs respectively were 0.12mg/m3, 0.19mg/m3 and 0.38mg/m3.CO2 levels of air in OPDs and ETUs generally were below the national ceilings but above the ceilings used by some developed countries. Outdoors, OPDs and ETUs air contain PM10, PM2.5 levels higher than WHO ceilings, although below the national ceilings. VOC and formaldehyde levels are generally below the national ceilings. Air in OPDs and ETUs is hotter and humid than national ceilings. Outdoor PM10, PM2.5 levels influence OPDs and ETUs levels. We propose methods to reduce the risk of nosocomial respiratory infections and to improve IAQ of Sri Lankan OPDs and ETUs.
Collapse
|
21
|
Shin HJ, Yang WK, Lee YC, Kim S, Moon SO, Kwon YJ, Noh HJ, Kim KH, Kim BK, Shin CH, Chae MY, Yun SH, Kim SH. Protective effect of the mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt extract on respiratory disorders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115856. [PMID: 38134637 DOI: 10.1016/j.ecoenv.2023.115856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Air pollutants, such as particulate matter (PM) and diesel exhaust particles (DEP), are associated with respiratory diseases. Therefore, preventive and therapeutic strategies against PM-and DEP (PM10D)-induced respiratory diseases are needed. Herein, we evaluate the protective effects of a mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt (LJH) extract against airway inflammation associated with exposure to PM10D. To determine the anti-inflammatory effects of the LJH extract, reactive oxygen species (ROS) production and the expression of inflammatory pathways were determined in PM10-induced MH-S cells. For the respiratory protective effects, BALB/c mice were exposed to PM10D via intranasal injection, and a mixture of L. plantarum KC3 and LJH extract was administered orally for 12 days. LJH extract inhibited ROS production and the phosphorylation of downstream factors of NF-κB in PM10-stimulated MH-S cells. The mixture of L. plantarum KC3 and LJH repressed the infiltration of neutrophils, reduced the immune cells number, and suppressed the proinflammatory mediators and cyclooxygenase (COX)-2 expressions in PM10D-induced airway inflammation with reduced phosphorylation of downstream factors of NF-κB. In addition, these effects were not observed in an alveolar macrophage depleted PM10D-induced mouse model using clodronate liposomes. The extract mixture also regulated gut microbiota in feces and upregulated the mRNA expression of Foxp3, transforming growth factor (TGF)-β1, and interleukin (IL)-10 in the colon. The L. plantarum KC3 and LJH extract mixture may inhibit alveolar macrophage- and neutrophil-mediated inflammatory responses and regulate gut microbiota and immune response in PM10D-induced airway inflammation, suggesting it is a potential remedy to prevent and cure airway inflammation and respiratory disorders.
Collapse
Affiliation(s)
- Han Jae Shin
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Young Chul Lee
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Soeun Kim
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Sung Ok Moon
- KT&G Research Institute, Daejeon 34128, the Republic of Korea
| | - Yoo Jin Kwon
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Hye-Ji Noh
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Chang Hun Shin
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, the Republic of Korea
| | - Min-Young Chae
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Su-Hyeon Yun
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, the Republic of Korea.
| |
Collapse
|
22
|
Carneiro S, Müller JT, Merkel OM. Targeted Molecular Therapeutics for Pulmonary Diseases: Addressing the Need for Precise Drug Delivery. Handb Exp Pharmacol 2024; 284:313-328. [PMID: 38177399 DOI: 10.1007/164_2023_703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Respiratory diseases are a major concern in public health, impacting a large population worldwide. Despite the availability of therapies that alleviate symptoms, selectively addressing the critical points of pathopathways remains a major challenge. Innovative formulations designed for reaching these targets within the airways, enhanced selectivity, and prolonged therapeutic effects offer promising solutions. To provide insights into the specific medical requirements of chronic respiratory diseases, the initial focus of this chapter is directed on lung physiology, emphasizing the significance of lung barriers. Current treatments involving small molecules and the potential of gene therapy are also discussed. Additionally, we will explore targeting approaches, with a particular emphasis on nanoparticles, comparing targeted and non-targeted formulations for pulmonary administration. Finally, the potential of inhaled sphingolipids in the context of respiratory diseases is briefly discussed, highlighting their promising prospects in the field.
Collapse
Affiliation(s)
- Simone Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich, Germany.
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
23
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
24
|
Jagtap GA, Badge A, Kohale MG, Wankhade RS. The Role of the Biosafety Cabinet in Preventing Infection in the Clinical Laboratory. Cureus 2023; 15:e51309. [PMID: 38288229 PMCID: PMC10823295 DOI: 10.7759/cureus.51309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Clinical laboratories are essential in healthcare to better diagnose, treat, and track medical diseases. However, handling infectious organisms and possibly infectious materials in these laboratories puts the safety of laboratory workers and the general public at risk. By controlling the distribution of infectious substances and stopping the spread of diseases, biosafety cabinets (BSCs) have become crucial tools in guaranteeing laboratory safety. The prevention of infections is most important in medical and laboratory settings. In clinical laboratories, biological and infectious agents are handled, posing threats to healthcare workers and the general public. To avoid infections, proper training of the BSC is essential. Laboratory employees are instructed in aseptic procedures, proper hand posture, and efficient personal protection when working in the cabinet. These instructions decrease the chance of contaminating the surrounding area. Additionally, user ergonomics are taken into account while designing BSC, reducing operator fatigue, and guaranteeing that staff can execute tasks precisely for extended periods. This review highlights the importance of biosafety cabinets in maintaining a secure laboratory environment and explains their crucial function in infection control.
Collapse
Affiliation(s)
- Gaurav A Jagtap
- Pathology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| | - Ankit Badge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| | - Mangesh G Kohale
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| | - Rashmi S Wankhade
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| |
Collapse
|
25
|
Gu HJ, Ahn JS, Ahn GJ, Shin SH, Ryu BY. Restoration of PM2.5-induced spermatogonia GC-1 cellular damage by parthenolide via suppression of autophagy and inflammation: An in vitro study. Toxicology 2023; 499:153651. [PMID: 37858773 DOI: 10.1016/j.tox.2023.153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Particulate matter (PM) generated by environmental and air pollution is known to have detrimental effects on human health. Among these, PM2.5 particles (diameter < 2.5 µm) can breach the alveolar-capillary barrier and disseminate to other organs, posing significant health risks. Numerous studies have shown that PMs can harm various organs, including the reproductive system. Therefore, this study aimed to investigate the harmful effects of PM2.5 on mouse GC-1 spermatogonia cells (GC-1 spg cells) and to verify the ameliorative effects of parthenolide (PTL) treatment on damaged GC-1 spg cells. We observed a significant dose-dependent reduction in cell proliferation after PM2.5 concentration of 2.5 μg/cm2. Additionally, treatment with 20 μg/cm2 PM2.5 concentration significantly increased the expression of autophagy-related proteins ATG7, the ratio of LC3-II/LC3-I, and decreased phosphorylation of PI3K and AKT. Furthermore, PM2.5 exposure augmented inflammation mediator gene expressions, the phosphorylation of the inflammation-related transcription factor NF-κB p65 at Ser536, and ubiquitination. Treatment of PM2.5-exposed GC-1 spg cells with PTL significantly reduced NF-κB p65 phosphorylation and the expression of autophagy-related proteins ATG7 and LC3-II, leading to a statistically significant recovery in cell proliferation. Together, our findings elucidated the detrimental effects of PM2.5 exposure on male germ cells, and the restorative properties of PTL against air pollutants.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Jin Seop Ahn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Gi Jeong Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
26
|
Rodulfo-Cárdenas R, Ruiz-Sobremazas D, Biosca-Brull J, Cabré M, Blanco J, López-Granero C, Sánchez-Santed F, Colomina MT. The influence of environmental particulate matter exposure during late gestation and early life on the risk of neurodevelopmental disorders: A systematic review of experimental evidences. ENVIRONMENTAL RESEARCH 2023; 236:116792. [PMID: 37527744 DOI: 10.1016/j.envres.2023.116792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Particulate matter (PM) is a major component of ambient air pollution (AAP), being widely associated with adverse health effects. Epidemiological and experimental studies point towards a clear implication of AAP on the development of central nervous system (CNS) diseases. In this sense, the period of most CNS susceptibility is early life, when the CNS is maturing. In humans the last trimester of gestation is crucial for brain maturation while in rodents, due to the shorter gestational period, the brain is still immature at birth, and early postnatal development plays a significant role. The present systematic review provides an updated overview and discusses the existing literature on the relationship between early exposure to PM and neurodevelopmental outcomes in experimental studies. We included 11 studies with postnatal exposure and 9 studies with both prenatal and postnatal exposure. Consistent results between studies suggest that PM exposure could alter normal development, triggering impairments in short-term memory, sociability, and impulsive-like behavior. This is also associated with alterations in synaptic plasticity and in the immune system. Interestingly, differences have been observed between sexes, although not all studies included females. Furthermore, the developmental window of exposure seems to be crucial for effects to be observed in the future. In summary, air pollution exposure during development affects subjects in a time- and sex-dependent manner, the postnatal period being more important and being males apparently more sensitive to exposure than females. Nevertheless, additional experimental investigations should prioritize the examination of learning, impulsivity, and biochemical parameters, with particular attention provided to disparities between sexes.
Collapse
Affiliation(s)
- Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | | | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
27
|
Lu C, Li Q, Qiao Z, Liu Q, Wang F. Effects of pre-natal and post-natal exposures to air pollution on onset and recurrence of childhood otitis media. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132254. [PMID: 37572606 DOI: 10.1016/j.jhazmat.2023.132254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Despite mounting evidence linking outdoor air pollution with otitis media (OM), the role of air pollutant(s) exposure during which critical window(s) on childhood OM remains unknown. OBJECTIVES We sought to identify the key air pollutant(s) and critical window(s) associated with the onset and recurrent attacks of OM in kindergarten children. METHODS A combined cross-sectional and retrospective cohort study involving 8689 preschoolers aged 3-6 years was performed in Changsha, China. From 2013-2020, data on air pollutants were collected from ambient air quality monitoring stations in Changsha, and the exposure concentration to each child at their home address was calculated using the inverse distance weighted (IDW) method. The relationship between air pollution and OM in kindergarten children was studied using multiple logistic regression models. RESULTS Childhood lifetime OM was associated with PM2.5, SO2 and NO2, with ORs (95% CI) of 1.43 (1.19-1.71), 1.18 (1.01-1.37) and 1.18 (1.00-1.39) by per IQR increase in utero exposure and with PM2.5, PM2.5-10 and PM10, with ORs = 1.15 (1.00-1.32), 1.25 (1.13-1.40) and 1.49 (1.28-1.74) for entire post-natal exposure, respectively. The 2nd trimester in utero and the post-natal period, especially the 1st year, were key exposure time windows to PM2.5 and PM10 associated with lifetime OM and the onset of OM. Similarly, the 4th gestational month was a critical window for all pollutants except CO exposure in relation to lifetime OM and OM onset, but not recurrent OM attacks. PM2.5 exposure during the nine gestational months and PM10 exposure during the first three years had cumulative effects on OM development. Our subgroup analysis revealed that certain children were more susceptible to the OM risk posed by air pollution. CONCLUSIONS Early-life exposure to air pollution, particularly PM2.5 during the middle of gestation and PM10 during the early post-natal period, was associated with childhood OM.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410028, China.
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha 410028, China
| | - Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha 410028, China
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410028, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
28
|
Madonsela BS. A meta-analysis of particulate matter and nitrogen dioxide air quality monitoring associated with the burden of disease in sub-Saharan Africa. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:737-749. [PMID: 37602776 DOI: 10.1080/10962247.2023.2248928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Exposure to air pollution is a fundamental obstacle that makes it complex to realize the Sustainable Development Goals (SDGs 3) for good health and wellbeing. It is for this reason that air pollution has been characterized as the global environmental health risk facing the current generation. The risks of air pollution on morbidity, and life expectancy are well documented. This feeds directly to the substantial body of the literature that exists regarding the burden of diseases associated with ambient air pollution. However, the bulk of this literature originates from developed countries. Whilst most of the sub-Saharan African studies extrapolate literature from developed countries to contextualize the risks of elevated air pollution exposure levels associated with the burden of disease. However, extrapolation of epidemiological evidence from developed countries is problematic given that it disregards the social vulnerability. Therefore, given this observation, it is ideal to evaluate if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into consideration the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. Therefore, based on this background, the current meta-analysis evaluated air quality monitoring associated with the burden of disease across sub-Saharan Africa. To this extent, the current meta-analysis strictly included peer-reviewed published journal articles from the sub-Saharan African regions to gain insight on air quality monitoring associated with the burden of disease. The collected meta-analysis data was captured and subsequently analyzed using Microsoft Excel 2019. This program facilitated the presentation of the meta-analysis data in the form of graphs and numerical techniques. Generally, the results indicate that the sub-Saharan Africa is characterized by a substantial gap in the number of regional studies that evaluate the burden of disease in relation with exposure to air quality.Implications: The work presented here is an original contribution and provides a comprehensive yet succinct overview of the monitoring associated with the burden of disease in sub-Saharan Africa. The author explores if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into considerations the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. The manuscript includes the most relevant and current literature in a field of study that has not received a deserving degree of research attention in recent years. This is especially true in sub-Saharan Africa, characterized by insufficient monitoring of air quality exposure concentrations.
Collapse
Affiliation(s)
- Benett Siyabonga Madonsela
- Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
29
|
Qin Y, Perraud V, Finlayson-Pitts BJ, Wingen LM. Peroxides on the Surface of Organic Aerosol Particles Using Matrix-Assisted Ionization in Vacuum (MAIV) Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14260-14268. [PMID: 37695633 PMCID: PMC10537442 DOI: 10.1021/acs.est.3c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Organic peroxides are key intermediates in the atmosphere but are challenging to detect, especially in the particle phase, due to their instability, which has led to substantial gaps in the understanding of their environmental effects. We demonstrate that matrix-assisted ionization in vacuum (MAIV) mass spectrometry (MS), which does not require an ionization source, enables in situ characterization of peroxides and other products in the surface layers of organic particles. Hydroxyl radical oxidation of glutaric acid particles yields hydroperoxides and organic peroxides, which were detected with signals of the same order of magnitude as the major, more stable products. Product identification is supported by MS/MS analysis, peroxide standards, and offline high-resolution MS. The peroxide signals relative to the stable carbonyl and alcohol products are significantly larger using MAIV compared to those in the offline bulk analysis. This is also the case for analysis using fast, online easy ambient sonic-spray ionization mass spectrometry. These studies demonstrate the advantage of MAIV for the real-time characterization of labile peroxides in the surface layers of solid particles. The presence of peroxides on the surface may be important for surface oxidation processes as well as for the toxicity of inhaled particles.
Collapse
Affiliation(s)
- Yiming Qin
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| | - Véronique Perraud
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| | | | - Lisa M. Wingen
- Department of Chemistry, University
of California, Irvine, California 92697-2025 United States
| |
Collapse
|
30
|
Dash PK, Sahu C, Basti S, Sahu SK. Altitude governs the air pollution tolerance and heavy metal accumulation in plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1122. [PMID: 37650935 DOI: 10.1007/s10661-023-11781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Plant response to changing air pollution is a function of various factors including meteorology, type of pollutants, plant species, soil chemistry, and geography. However, the impact of altitude on plant behavior has received little attention to date. A study was therefore conducted to evaluate the impact of altitude on the air pollution tolerance index (APTI), heavy metal accumulation, and deposition in plant species. The results favor the hypothesis of a definite impact of altitude on biochemical and heavy metal accumulation in plants. While a significant decline (p < 0.05) in the relative water content (RWC), APTI, and heavy metal accumulation with increasing altitude was evident in the studied plant species, the behavior of ascorbic acid, leaf extract pH, chlorophyll content, and the particle heavy metal deposition was erratic and did not display any statistically significant differences. The metal accumulation index was in the following order: Ni > Zn > Cu > Pb > Cd > Co. Similarly, the particle heavy metal deposition on the leaf surface (µg/cm2) displayed significant species variability (p < 0.05) and was in the order: Cu (0.303) > Pb (0.301) > Ni (0.269) > Zn (0.241) > Cd (0.044) > Co (0.025). The accumulated heavy metal and RWC showcased a significant positive correlation with the APTI, suggesting the dominant role of RWC in the plant's tolerance against air pollution in an altitudinal gradient. Future studies on the role of micrometeorological conditions in altering APTI may be fruitful in ascertaining these postulations.
Collapse
Affiliation(s)
- Pratik Kumar Dash
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, India, 768019
| | - Chandan Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, India, 768019.
- Gangadhar Meher University, Amruta Vihar, Sambalpur, India, 768004.
| | - Sradhanjali Basti
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, India, 768019
| | - Sanjat Kumar Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, India, 768019
| |
Collapse
|
31
|
Kruger EM, Shehata SA, Toraih EA, Abdelghany AA, Fawzy MS. Type 2 diabetes and thyroid cancer: Synergized risk with rising air pollution. World J Diabetes 2023; 14:1037-1048. [PMID: 37547591 PMCID: PMC10401455 DOI: 10.4239/wjd.v14.i7.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes is a complex condition, and the causes are still not fully understood. However, a growing body of evidence suggests that exposure to air pollution could be linked to an increased risk of diabetes. Specifically, exposure to certain pollutants, such as particulate Matter and Ozone, has been associated with higher rates of diabetes. At the same time, air pollution has also been linked to an increased risk of thyroid cancer. While there is less evidence linking air pollution to thyroid cancer than to diabetes, it is clear that air pollution could have severe implications for thyroid health. Air pollution could increase the risk of diabetes and thyroid cancer through several mechanisms. For example, air pollution could increase inflammation in the body, which is linked to an increased risk of diabetes and thyroid cancer. Air pollution could also increase oxidative stress, which is linked to an increased risk of diabetes and thyroid cancer. Additionally, air pollution could increase the risk of diabetes and thyroid cancer by affecting the endocrine system. This review explores the link between diabetes and air pollution on thyroid cancer. We will discuss the evidence for an association between air pollution exposure and diabetes and thyroid cancer, as well as the potential implications of air pollution for thyroid health. Given the connections between diabetes, air pollution, and thyroid cancer, it is essential to take preventive measures to reduce the risk of developing the condition.
Collapse
Affiliation(s)
- Eva M Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Shaimaa A Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed A Abdelghany
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
32
|
Pitten L, Brüggmann D, Dröge J, Braun M, Groneberg DA. Impact of different ventilation conditions on tobacco smoke-associated particulate matter emissions in a car cabin using the TAPaC platform. Sci Rep 2023; 13:8216. [PMID: 37217504 PMCID: PMC10203320 DOI: 10.1038/s41598-023-35208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Despite antagonizing attempts from the tobacco industry, passive inhalation of tobacco smoke is known to be cancerogenic and toxic to human health for decades. Nonetheless, millions of non-smoking adults and children are still victims of second-hand smoke. Accumulation of particulate matter (PM) in confined spaces such as the car are particularly harmful due to high concentrations. We here aimed to analyze the specific effects of ventilation conditions in the setting of a car. By the use of the measuring platform TAPaC (tobacco-associated particulate matter emissions inside a car cabin), 3R4F reference cigarettes, Marlboro red, and Marlboro gold were smoked in a car interior with a volume of 3.709 m3. Seven different ventilation conditions (C1-C7) were analyzed. Under C1, all windows were closed. Under C2-C7, the car ventilation was turned on power level 2/4 with the air directed towards the windshield. Only the passenger side window was opened, where an outer placed fan could create an airstream speed of 15.9-17.4 km/h at one meter distance to simulate a driving car. C2: Window 10 cm opened. C3: Window 10 cm opened with the fan turned on. C4: Window half-opened. C5: Window half-opened with the fan turned on. C6: Window fully opened. C7: Window fully opened with the fan turned on. Cigarettes were remotely smoked by an automatic environmental tobacco smoke emitter and a cigarette smoking device. Depending on the ventilation condition the cigarettes emitted different mean PM concentrations after 10 min under condition C1 (PM10: 1272-1697 µg/m3, PM2.5: 1253-1659 µg/m3, PM1: 964-1263 µg/m3) under C2, C4, and C6 (PM10: 68.7-196.2 µg/m3, PM2.5: 68.2-194.7 µg/m3, PM1: 66.1-183.8 µg/m3) C3, C5, and C7 (PM10: 73.7-139 µg/m3, PM2.5: 72-137.9 µg/m3, PM1:68.9-131.9 µg/m3). Vehicle ventilation is insufficient to protect passengers from toxic second-hand smoke completely. Brand-specific variations of tobacco ingredients and mixtures markedly influence PM emissions under ventilation conditions. The most efficient ventilation mode to reduce PM exposure was achieved by opening the passenger´s window 10 cm and turning the onboard ventilation on power level 2/4. In-vehicle smoking should be banned to preserve innocent risk groups (e.g., children) from harm.
Collapse
Affiliation(s)
- Lukas Pitten
- Institute of Occupational Medicine, Social Medicine, and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dörthe Brüggmann
- Institute of Occupational Medicine, Social Medicine, and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Janis Dröge
- Institute of Occupational Medicine, Social Medicine, and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Occupational Medicine, Social Medicine, and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - David A Groneberg
- Institute of Occupational Medicine, Social Medicine, and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Jiang N, Ao C, Xu L, Wei Y, Long Y. Will information interventions affect public preferences and willingness to pay for air quality improvement? An empirical study based on deliberative choice experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161436. [PMID: 36623658 DOI: 10.1016/j.scitotenv.2023.161436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Environmental information is a prerequisite for public participation in air quality improvement, and the choice of such participation behavior is influenced by the intervention of environmental information. Nonetheless, there has been insufficient analysis of how information interventions affect public preferences and willingness to pay for air quality improvement. The combination of deliberative and choice experiment is used to explore the importance of information interventions for public participation in air quality improvement, and the changes in public preferences and willingness to pay for air quality improvement before and after information interventions are compared to analyze the impact of information interventions on evaluation results of air quality value. The results suggest that information interventions do alter the preferences and willingness of the public to pay for air quality improvement, significantly increasing the choice certainty of respondents and decreasing the protest response. In addition, women and high-income groups showed a stronger willingness to improve air quality after the information interventions, with 35.15 CNY, 44.07 CNY and 46.75 CNY increases in willingness to pay for improved urban green coverage rate, fewer haze days and reduced morbidity. The combination of deliberative information interventions and choice experiment will help improve the effectiveness of air quality value evaluation, stimulate public environmental awareness and willingness to participate, and the results will aid government environmental management.
Collapse
Affiliation(s)
- Nan Jiang
- College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Changlin Ao
- College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Lishan Xu
- Faculty of Economic and Management, Mudanjiang Normal University, Mudanjiang 157011, China.
| | - Yuehua Wei
- College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yulin Long
- College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
34
|
Ou C, Hang J, Hua J, Li Y, Deng Q, Zhao B, Ling H. Particle Deposition in Large-Scale Human Tracheobronchial Airways Predicted by Single-Path Modelling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4583. [PMID: 36901592 PMCID: PMC10002109 DOI: 10.3390/ijerph20054583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The health effects of particles are directly related to their deposition patterns (deposition site and amount) in human airways. However, estimating the particle trajectory in a large-scale human lung airway model is still a challenge. In this work, a truncated single-path, large-scale human airway model (G3-G10) with a stochastically coupled boundary method were employed to investigate the particle trajectory and the roles of their deposition mechanisms. The deposition patterns of particles with diameters (dp) of 1-10 μm are investigated under various inlet Reynolds numbers (Re = 100-2000). Inertial impaction, gravitational sedimentation, and combined mechanism were considered. With the increasing airway generations, the deposition of smaller particles (dp < 4 μm) increased due to gravitational sedimentation, while that of larger particles decreased due to inertial impaction. The obtained formulas of Stokes number and Re can predict the deposition efficiency due to the combined mechanism in the present model, and the prediction can be used to assess the dose-effect of atmospheric aerosols on the human body. Diseases in deeper generations are mainly attributed to the deposition of smaller particles under lower inhalation rates, while diseases at the proximal generations mainly result from the deposition of larger particles under higher inhalation rates.
Collapse
Affiliation(s)
- Cuiyun Ou
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiajia Hua
- China Meteorological Administration Xiong’an Atmospheric Boundary Layer Key Laboratory, Baoding 071800, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Qihong Deng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Zhao
- China Meteorological Administration Xiong’an Atmospheric Boundary Layer Key Laboratory, Baoding 071800, China
| | - Hong Ling
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
35
|
Macrì M, Gea M, Piccini I, Dessì L, Santovito A, Bonelli S, Schilirò T, Bonetta S. Cabbage butterfly as bioindicator species to investigate the genotoxic effects of PM 10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45285-45294. [PMID: 36705823 DOI: 10.1007/s11356-023-25510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas.
Collapse
Affiliation(s)
- Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy
| | - Irene Piccini
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Luca Dessì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy.
| |
Collapse
|
36
|
Berkel C, Cacan E. Pollutant-induced pyroptosis in humans and other animals. Life Sci 2023; 316:121386. [PMID: 36657639 DOI: 10.1016/j.lfs.2023.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023]
Abstract
Pyroptosis is a form of lytic cell death with pro-inflammatory characteristics, induced upon the activation of certain inflammatory caspases by inflammasome complexes such as NLRP3 inflammasome. Gasdermin proteins as the mediators of pyroptosis form cell membrane pores upon activation, which release certain cellular contents into the extracellular space including inflammatory cytokines such as IL-1β and IL-18, and also damage the integrity of the cell membrane. Gasdermins have been implicated in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer. Mostly in the last 2 years, diverse pollutant types including particulate matter, cadmium and polystyrene microplastics were reported to induce pyroptotic cell death in diverse tissues from mammals to birds. In the present study, we review our current understanding of pollutant-induced pyroptosis as well as current knowledge of upstream events leading to pyroptotic cell death upon exposure to pollutants.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| |
Collapse
|
37
|
Feng YT, Lang CF, Chen C, Harry Asena M, Fang Y, Zhang RD, Jiang LQ, Fang X, Chen Y, He YS, Wang P, Pan HF. Association between air pollution exposure and coronary heart disease hospitalization in a humid sub-tropical region of China: A time-series study. Front Public Health 2023; 10:1090443. [PMID: 36711381 PMCID: PMC9874291 DOI: 10.3389/fpubh.2022.1090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objective Emerging evidence has highlighted the possible links of environmental pollution with several cardiovascular diseases (CVDs). The current study aimed to explore the impact of short-term air pollution exposure on CHD hospitalization in Hefei. Methods Data about the daily number of CHD admissions (from 2014 to 2021) were retrieved from the First Affiliated Hospital of Anhui Medical University. Air pollutants and meteorological data were obtained from the China Environmental Monitoring Station and the China Meteorological Data Service Center, respectively. The correlation between air pollution and CHD hospitalization was assessed using distributed lag non-linear model (DLNM) and Poisson generalized linear regression. Results In the single-pollutant model, NO2, O3, and CO strongly correlated with CHD hospitalization rate. Specifically, exposure to NO2 (lag0, relative risk [RR]: 1.013, 95%CI: 1.002-1.024, per 10 μg/m3 increase) and CO (lag13, RR: 1.035, 95%CI: 1.001-1.071, per 1 μg/m3 increase) revealed a positive correlation with an increased rate of CHD hospitalization. Interestingly, O3 had a protective association with hospitalization of CHD (lag0, RR: 0.993, 95%CI: 0.988-0.999, per 10 μg/m3 increase). Similar results, to those of the single-pollutant model, were revealed following verification using two-pollutant models. Subgroup analyses indicated that young people, women, and people in hot seasons were more susceptible to NO2 exposure, while the elderly, women, and people in cold seasons were more susceptible to O3. Furthermore, the elderly were more susceptible to CO exposure. Conclusion Overall, exposure to NO2 and CO increases the rate of CHD hospitalization, but exposure to O3 shows a protective association with the rate of CHD hospitalization. Therefore, early preventive measures against air pollutants should be applied to protect vulnerable patients with CHD.
Collapse
Affiliation(s)
- Ya-Ting Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Cui-Feng Lang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Musonye Harry Asena
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Anhui, China,*Correspondence: Peng Wang ✉
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Hai-Feng Pan ✉
| |
Collapse
|
38
|
Yang WK, Kim SW, Youn SH, Hyun SH, Han CK, Park YC, Lee YC, Kim SH. Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation. J Ginseng Res 2023; 47:81-88. [PMID: 36644393 PMCID: PMC9834024 DOI: 10.1016/j.jgr.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 μm) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.
Collapse
Affiliation(s)
- Won-Kyung Yang
- Division of Respiratory Medicine, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Sung-Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Soo Hyun Youn
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Medicine, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
- Corresponding author. Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
39
|
Heintz EC, Scott DP, Simms KR, Foreman JJ. Air Quality Is Predictive of Mistakes in Professional Baseball and American Football. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:542. [PMID: 36612864 PMCID: PMC9819793 DOI: 10.3390/ijerph20010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Air quality is a growing environmental concern that has implications for human physical and mental health. While air pollution has been linked to cognitive disease progression and declines in overall health, the impacts of air quality on athletic performance have not been extensively investigated. Much of the previous research focused on endurance sports indicates that air quality negatively impacts athletic performance; however, the effects of air quality on non-endurance elite team performance remains largely unknown. The purpose of this study was to examine the impact of air quality on errors committed by Major League Baseball (MLB) teams, interceptions thrown by quarterbacks in the National Football League (NFL), and overall quarterback performance in the NFL. Linear regression analysis was used to determine the impact of the median air quality index (AQI) of counties with MLB and NFL teams on errors, interceptions, and overall quarterback performance of players on those MLB and NFL teams. AQI was a significant positive predictor of errors and interceptions, indicating increased errors and interceptions with decreased air quality. Similarly, quarterback performance was significantly reduced for quarterbacks from teams in counties with worse air quality. These findings suggest that air quality has a significant impact on performance in the MLB and NFL, indicating impairments in physical and cognitive performance in professional athletes when competing in areas with poorer air quality. Hence, it is likely that air quality impacts athletic performance in numerous sports that have not yet been investigated.
Collapse
Affiliation(s)
- Elizabeth C. Heintz
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Derek P. Scott
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Kolby R. Simms
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jeremy J. Foreman
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
40
|
Differential effect of meteorological factors and particulate matter with ≤ 10-µm diameter on epistaxis in younger and older children. Sci Rep 2022; 12:21029. [PMID: 36470979 PMCID: PMC9723103 DOI: 10.1038/s41598-022-25630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The differential effect of meteorological factors and air pollutants on pediatric epistaxis in younger and older children has not been evaluated. We evaluated the distribution of pediatric epistaxis cases between younger (0-5 years) and older children (6-18 years). Subsequently, we assessed and compared the effects of meteorological variables and the concentration of particulate matter measuring ≤ 10 μm in diameter (PM10) on hospital epistaxis presentation in younger and older children. This retrospective study included pediatric patients (n = 326) who presented with spontaneous epistaxis between January 2015 and August 2019. Meteorological conditions and PM10 concentration were the exposure variables, and data were obtained from Korea Meteorological Administration 75. The presence and cumulative number of epistaxis presentations per day were considered outcome variables. Air temperature, wind speed, sunshine duration, and PM10 concentration in younger children, and sunshine duration and air pressure in older children, significantly correlated with the presence of and cumulative number of epistaxis presentations per day. The PM10 concentration was not a significant factor in older children. Thus, meteorological factors and PM10 concentration may differentially affect epistaxis in younger (0-5-year-olds) and older (6-18-year-olds) children. Risk factors for pediatric epistaxis should be considered according to age.
Collapse
|
41
|
Blaauw SA, Maina JW, O'Connell J. Exposure of construction workers to hazardous emissions in highway rehabilitation projects measured with low-cost sensors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:119872. [PMID: 35995294 DOI: 10.1016/j.envpol.2022.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Construction workers on highway rehabilitation projects can be exposed to a combination of traffic- and construction-related emissions. To assess the personal exposure a worker experiences, a portable battery-operated Air Quality Device (AQD) was utilised to measure emissions during normal construction operations of a major road rehabilitation project. Emissions measured were nitrogen dioxide (NO2), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM10, PM2.5, and PM1). The objective of the paper is to document the hazardous emissions that construction workers may be exposed to and allow for a basis of informed decision making to mitigate the risks of a road construction project. Most critically, this article is designed to raise awareness of the potential impact to a worker's wellbeing as well as highlight the need for further research. Through statistical analysis, asphalt paving was identified as the most hazardous activity in terms of exposure relative to other activities. This activity was further assessed using discrete-time Markov chain Monte Carlo simulations with results indicating a high probability that workers may be exposed to greater hazardous emission concentrations than measured. Limiting the distance to the source of emissions, large-scale use of warm-mix asphalt and reducing the idling times of construction vehicles were identified as practical mitigation measures to reduce exposure and aid in achieving zero-harm objectives. Finally, it is found that males are more susceptible to long-term implications of hazardous emission inhalation and should be more aware if the scenarios they might work in expose them to this.
Collapse
Affiliation(s)
- Sheldon A Blaauw
- Arup, 1st Floor City Gate West, Tollhouse Hill, Nottingham, NG1 5AT, UK; Department of Civil Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - James W Maina
- Department of Civil Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Johan O'Connell
- Department of Civil Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa; Smart Mobility, Council for Scientific and Industrial Research (CSIR), Private Bag 395, Pretoria, 0001, South Africa.
| |
Collapse
|
42
|
Würzner P, Jörres RA, Karrasch S, Quartucci C, Böse-O'Reilly S, Nowak D, Rakete S. Effect of experimental exposures to 3-D printer emissions on nasal allergen responses and lung diffusing capacity for inhaled carbon monoxide/nitric oxide in subjects with seasonal allergic rhinitis. INDOOR AIR 2022; 32:e13174. [PMID: 36437663 DOI: 10.1111/ina.13174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
3-D printers are widely used. Based on previous findings, we hypothesized that their emissions could enhance allergen responsiveness and reduce lung diffusing capacity. Using a cross-over design, 28 young subjects with seasonal allergic rhinitis were exposed to 3-D printer emissions, either from polylactic acid (PLA) or from acrylonitrile butadiene styrene copolymer (ABS), for 2 h each. Ninety minutes later, nasal allergen challenges were performed, with secretions sampled after 1.5 h. Besides nasal functional and inflammatory responses, assessments included diffusing capacity. There was also an inclusion day without exposure. The exposures elicited slight reductions in lung diffusing capacity for inhaled nitric oxide (DLNO ) that were similar for PLA and ABS. Rhinomanometry showed the same allergen responses after both exposures. In nasal secretions, concentrations of interleukin 6 and tumor necrosis factor were slightly reduced after ABS exposure versus inclusion day, while that of interleukin 5 was slightly increased after PLA exposure versus inclusion.
Collapse
Affiliation(s)
- Philipp Würzner
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Rudolf A Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Caroline Quartucci
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany
| | - Stephan Böse-O'Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Rakete
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Epidemiological characteristics of fractures of spine, hip, proximal humerus and forearm during the haze epidemic period. Injury 2022; 53:3139-3148. [PMID: 35973869 DOI: 10.1016/j.injury.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Air pollutants have an impact on the occurrence of spine fractures, hip fractures, proximal humerus fractures and forearm fractures. This study aimed at evaluating the short-term impact of particulate matter with aerodynamic diameters of less than 2.5 µm (PM2.5) on the occurrence of those fractures in Shijiazhuang, Hebei, China. METHODS The daily meteorological, pollution, and fracture data of Shijiazhuang from 2014 to 2019 were collected. Distribution characteristics of fractures were described using descriptive epidemiological methods. The distributed lag nonlinear model (DLNM) was used to reveal the description of those fractures in the exposed and lag dimensions at the same time. Based on gender and age (<18 years old, 18-69 years old and >69 years old), stratified analysis was performed. Sensitivity analysis was performed to ascertain the robustness of the results. RESULTS Between 2014 and 2019, fracture incidences in Shijiazhuang exhibited an overall increasing trend, with an obvious seasonality. PM2.5 was positively related to daily fracture cases and the effects were more obvious in women, adolescents and people of working age. When PM2.5 concentrations increased by one interquartile range (IQR) (70 μg/m3), RR exhibited a unimodal distribution. Its peak appeared on the 16th day of lag (RR=1.005987, 95% CI:1.002472,1.009652), and the RRs were also statistically significant from the 10th to 22nd day of lag. Similarly, cumulative effects of each increase in the concentration of PM2.5 IQR also showed a unimodal distribution. The largest cumulative effect occurred on the 28th day of lag (RR=1.084457, 95% CI:1.012207,1.161864), and the cumulative RRs were also statistically significant from the 19th day to 30nd days. In the dose-response relationship, as PM2.5 concentrations increased, RR increased. CONCLUSION Year by year, fractures in Shijiazhuang City exhibited an increasing trend. PM2.5 can affect the occurrence of those fractures. The impact on women, adolescents and people of working age is even greater. The supervision of PM2.5 should be strengthened while large-scale emissions should be limited.
Collapse
|
44
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Sandys O, Te Velde A. Raising the Alarm: Environmental Factors in the Onset and Maintenance of Chronic (Low-Grade) Inflammation in the Gastrointestinal Tract. Dig Dis Sci 2022; 67:4355-4368. [PMID: 34981314 DOI: 10.1007/s10620-021-07327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory disease of the gastrointestinal (GI) tract is defined by several pathophysiological characteristics, such as dysbiosis of the microbiota, epithelial barrier hyperpermeability, systemic dissemination of endotoxins and chronic inflammation. In addition to well-reported environmental factors in non-communicable disease, such as smoking, diet, and exercise, humans are frequently exposed to myriads more environmental factors, from pesticides to food additives. Such factors are ubiquitous across both our diet and indoor/outdoor environments. A major route of human exposure to these factors is ingestion, which frequently occurs due to their intentional addition (intentional food additives) and/or unintentional contamination (unintentional food contaminants) of food products-often linked to environmental pollution. Understanding how this persistent, diverse exposure impacts GI health is of paramount importance, as deterioration of the GI barrier is proposed to be the first step towards systemic inflammation and chronic disease. Therefore, we aim to evaluate the impact of ingestion of environmental factors on inflammatory processes in the GI tract. In this review, we highlight human exposure to intentional food additives (e.g. emulsifiers, bulking agents) and unintentional food contaminants (e.g. persistent organic pollutants, pesticides, microplastics), then present evidence for their association with chronic disease, modification of the GI microbiota, increased permeability of the GI barrier, systemic dissemination of endotoxins, local (and distal) pro-inflammatory signalling, and induction of oxidative stress and/or endoplasmic reticulum stress. We also propose a link to NLRP3-inflammasome activation. These findings highlight the contribution of common environmental factors towards deterioration of GI health and the induction of pathophysiology associated with onset and maintenance of chronic inflammation in the GI tract.
Collapse
Affiliation(s)
- Oliver Sandys
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anje Te Velde
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Toward a molecular understanding of the surface composition of atmospherically relevant organic particles. Proc Natl Acad Sci U S A 2022; 119:e2209134119. [PMID: 35994653 PMCID: PMC9436373 DOI: 10.1073/pnas.2209134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many mass spectrometry methods using various ionization sources provide bulk composition of airborne particles, but little is known about the surface species that play a major role in determining their physicochemical properties that impact air quality, climate, and health. The present work shows that the composition of surface layers of atmospherically relevant submicron organic particles can be probed without the use of an external ionization source. Solid dicarboxylic acid particles are used as models, with glutaric acid being the most efficient at generating ions. Coating with small diacids or products from α-pinene ozonolysis demonstrates that ions are ejected from the surface, providing surface molecular characterization of organic particles on the fly. This unique approach provides a path forward for elucidating the role of the surface in determining chemical and physical properties of particles, including heterogeneous reactions, particle growth, water uptake, and interactions with biological systems.
Collapse
|
47
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
48
|
Hill CJ, Meyer CD, McLean JE, Anderson DC, Hao Y, Lin FC, Kimple AJ, Capra GG. Burn Pit Exposure Is Associated With Increased Sinonasal Disease. J Occup Environ Med 2022; 64:629-634. [PMID: 35673272 PMCID: PMC9357047 DOI: 10.1097/jom.0000000000002551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether self-reported burn pit exposure is associated with increased subjective and objective sinus disease. DESIGN A cross-sectional study was performed evaluating consecutive adult patients presenting to a US Military rhinology clinic. Demographics, medical histories, sinonasal quality-of-life scores, and nasal endoscopy examinations were obtained. Participants were divided into three cohorts based on self-reported exposure histories and outcomes compared. RESULTS One hundred eighty-six patients met the inclusion criteria, the majority of whom were male. Patients with burn pit exposure had worse Sinonasal Outcome Test-22 scores (49.9) compared with those deployed without burn pit exposure (31.8) or never deployed (31.5). Endoscopic findings demonstrated worse disease within those exposed (Lund-Kennedy score, 3.3) compared with the other cohorts (1.8 and 1.7, respectively). CONCLUSIONS These novel findings suggest that deployment-related burn pit exposure is associated with increased subjective and objective sinus disease.
Collapse
Affiliation(s)
- Christopher J. Hill
- Department of Otolaryngology - Head & Neck Surgery, Naval Medical Center Portsmouth, VA
| | - Charles D. Meyer
- Department of Otolaryngology - Head & Neck Surgery, Naval Medical Center Portsmouth, VA
| | - James E. McLean
- Department of Otolaryngology - Head & Neck Surgery, Naval Medical Center Portsmouth, VA
| | - Danielle C. Anderson
- Department of Otolaryngology - Head & Neck Surgery, Naval Medical Center Portsmouth, VA
| | - Yajing Hao
- Department of Biostatistics, Gillings School of Global Public Health
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health
| | - Adam J. Kimple
- Department of Otolaryngology - Head & Neck Surgery, University of North Carolina Chapel Hill
| | - Gregory G. Capra
- Department of Otolaryngology - Head & Neck Surgery, Naval Medical Center Portsmouth, VA
| |
Collapse
|
49
|
Integrative analysis to explore the biological association between environmental skin diseases and ambient particulate matter. Sci Rep 2022; 12:9750. [PMID: 35697899 PMCID: PMC9192598 DOI: 10.1038/s41598-022-13001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Although numerous experimental studies have suggested a significant association between ambient particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM and environmental skin diseases is not clearly understood. Here, we aimed to explore the association between PM and skin diseases through biological big data analysis. Differential gene expression profiles associated with PM and environmental skin diseases were retrieved from public genome databases. The co-expression among them was analyzed using a text-mining-based network analysis software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate their relationships using public genome data. We found that changes in upstream regulators and inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a literature-based co-expression analysis and experimental validation not only improves the reliability of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced dermal toxicity that can be applied to screen the relationship between other chemicals and adverse effects.
Collapse
|
50
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|