1
|
Sharma A, Duseja A, Parkash J, Changotra H. Intronic region polymorphisms of autophagy gene ATG16L1 predispose individuals to Hepatitis B virus infection. Hum Immunol 2025; 86:111293. [PMID: 40112491 DOI: 10.1016/j.humimm.2025.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Intronic region polymorphisms, rs2241879 G/A, rs13005285 G/T, and rs7587633 C/T of ATG16L1 were analyzed in this case-control study in HBV-infected patients to find their role in HBV infection. The mutant alleles rs2241879A (OR = 1.57) and rs13005285T (OR = 1.39) were the risk factors for HBV infection. These alleles were associated with different stages of infection: asymptomatic rs13005285T (OR = 1.91), acute rs13005285T (OR = 1.58), chronic rs2241879A (OR = 1.62), and cirrhosis rs2241879A (OR = 3.02). Moreover, on applying various genetic models, rs2241879A predisposed individuals to HBV infection (homozygous model; AA vs. GG; OR = 2.58). Patients with CHB infection, the homozygous model showed an OR of 2.79, while the dominant model had an OR of 1.96. Among cirrhosis patients, the homozygous model resulted in an OR of 9.43, and the dominant model showed an OR of 4.92. The rs13005285 variant significantly increased the risk of acute HBV infection in the co-dominant model (OR = 1.78) and dominant model (OR = 1.84). Individuals with the rs7587633 variant at the asymptomatic stage of infection showed a reduced risk under the co-dominant model (OR = 0.41) and the dominant model (OR = 0.54). We identified GCG, GTG and GCT haplotypes corresponding to rs2241879, rs7587633, and rs13005285 SNPs, which play a protective role in HBV infection. Furthermore, we also developed a PCR-ARFLP assay for genotyping rs13005285G/T which would help to analyze this polymorphism in low-income settings where high-end instrumentation is not accessible.
Collapse
Affiliation(s)
- Ambika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 1732 34, Himachal Pradesh, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Mansa Road, Bathinda 151 001, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
2
|
Gómez Armengol E, Merckx C, De Sutter H, De Bleecker JL, De Paepe B. Changes to the Autophagy-Related Muscle Proteome Following Short-Term Treatment with Ectoine in the Duchenne Muscular Dystrophy Mouse Model mdx. Int J Mol Sci 2025; 26:439. [PMID: 39859157 PMCID: PMC11765399 DOI: 10.3390/ijms26020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach. Osmolytes are protective organic molecules that regulate osmotic pressure and cellular homeostasis and may support tissue-repairing autophagy. We therefore explored the effects of the osmolyte ectoine in the standard mouse model of DMD, the mdx, focusing on the autophagy-related proteome. Mice were treated with ectoine in their drinking water (150 mg/kg) or through daily intraperitoneal injection (177 mg/kg) until they were 5.5 weeks old. Hind limb muscles were dissected, and samples were prepared for Western blotting for protein quantification and for immunofluorescence for an evaluation of tissue distribution. We report changes in the protein levels of autophagy-related 5 (ATG5), Ser366-phosphorylated sequestosome 1 (SQSTM1), heat shock protein 70 (HSP70), activated microtubule-associated protein 1A/1B-light chain 3 (LC3 II) and mammalian target of rapamycin (mTOR). Most importantly, ectoine significantly improved the balance between LC3 II and SQSTM1 levels in mdx gastrocnemius muscle, and LC3 II immunostaining was most pronounced in muscle fibers of the tibialis anterior from treated mdx. These findings lend support for the further investigation of ectoine as a potential therapeutic intervention for DMD.
Collapse
MESH Headings
- Animals
- Amino Acids, Diamino/pharmacology
- Amino Acids, Diamino/administration & dosage
- Autophagy/drug effects
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Mice, Inbred mdx
- Mice
- Disease Models, Animal
- Proteome/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Male
- Sequestosome-1 Protein/metabolism
- HSP70 Heat-Shock Proteins/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
| | | | | | | | - Boel De Paepe
- Neuromuscular Reference Center and Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium (J.L.D.B.)
| |
Collapse
|
3
|
Jia L, Meng Q, Xu X. Autophagy-related miRNAs, exosomal miRNAs, and circRNAs in tumor progression and drug-and radiation resistance in colorectal cancer. Pathol Res Pract 2024; 263:155597. [PMID: 39426141 DOI: 10.1016/j.prp.2024.155597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Targeted therapies are often more tolerable than traditional cytotoxic ones. Nurses play a critical role in providing patients and caregivers with information about the disease, available therapies, and the kind, severity, and identification of any potential adverse events. By doing this, it may be possible to ensure that any adverse effects are managed quickly, maximizing the therapeutic benefit. In colorectal cancer (CRC), autophagy-related activities are significantly influenced by miRNAs and exosomal miRNAs. CRC development and treatment resistance have been associated with the cellular process of autophagy. miRNAs, which are short non-coding RNA molecules, have the ability to control the expression of genes by binding to the 3' untranslated region (UTR) of target mRNAs and either preventing or suppressing translation. It has been discovered that several miRNAs are significant regulators of CRC autophagy. By preventing autophagy, these miRNAs enhance the survival and growth of cancer cells. Exosomes are small membrane vesicles that are released by cells and include miRNAs among other bioactive compounds. Exosomes have the ability to modify recipient cells' biological processes by delivering their cargo, which includes miRNAs. It has been demonstrated that exosomal miRNAs control autophagy in CRC in both autocrine and paracrine ways. We will discuss the potential roles of miRNAs, exosomal miRNAs, and circRNAs in CRC autophagy processes and how nursing care can reduce unfavorable outcomes.
Collapse
Affiliation(s)
- Liting Jia
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 102413, China
| | - Qingyun Meng
- Gastroenterology Department, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiaofeng Xu
- Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266000, China.
| |
Collapse
|
4
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Wang Y, Wu N, Li J, Liang J, Zhou D, Cao Q, Li X, Jiang N. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer. Pharmacol Res 2024; 203:107162. [PMID: 38554788 DOI: 10.1016/j.phrs.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMP-activated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China.
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
6
|
Yang X, Xiong S, Zhao X, Jin J, Yang X, Du Y, Zhao L, He Z, Gong C, Guo L, Liang T. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Int J Mol Sci 2024; 25:1561. [PMID: 38338839 PMCID: PMC10855840 DOI: 10.3390/ijms25031561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.
Collapse
Affiliation(s)
- Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| |
Collapse
|
7
|
Chen H, Li S, Wang J, Ma Y, Yin H. Screening of key biomarkers in osteoporosis: Evidence from bioinformatic analysis. Int J Rheum Dis 2023; 26:69-79. [PMID: 36219533 DOI: 10.1111/1756-185x.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To analyze the expression characteristics of osteoporosis-related genes by bioinformatics and elucidate the pathogenesis of osteoporosis. METHODS The differentially expressed genes (DEGs), microRNA (miRNA), and genes with differentially methylated regions (DMRS) in promoters were identified. The protein-protein interaction (PPI) network was constructed and performed. The Clue Gene Ontology analysis and miRNA-mRNA (messenger RNA) regulatory network were constructed using Cytoscape. RESULTS Fifty-nine DEGs, 10 differential miRNAs, and 2083 genes with DMRs were screened out. The Proteasome-Modulator (PSMD) family proteins and estrogen receptor 1 (ESR1) are vital for the PPI analysis of DEGs. The interaction network of the Smad3 protein showed that the degree of connection to ESR1, PSMD11, and transcription factor 4 (TCF4) is very high. Homo sapiens (hsa)-miR-106b-5p was differential and regulated TCF4 through building the miRNA-mRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs focused on vascular smooth muscle contraction, thyroid hormone signaling pathway, and estrogen signaling pathway. The Gene Ontology (GO) function analysis of genes with DMRs in promoters was primarily concentrated in the cell differentiation, positive regulation of CDP-diacylglycerol-serine O-phosphatidyltransferase activity, and positive regulation of C-palmitoyltransferase activity. The KEGG enrichment of genes with DMRs in promoters largely focused on glycerol phospholipid metabolism, histidine metabolism, Adenosine 5'-monophosphate-activated protein kinase signaling pathway, Hedgehog signaling pathway, and mRNA surveillance pathway. CONCLUSION Hsa-miRNA-106b-5p regulates bone formation and the pathogenesis of osteoporosis by controlling TCF4, and methylation modification of TCF4 can also affect the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Hao Chen
- Traditional Chinese Medicine Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics and Traumatology, Yancheng Dafeng Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Shaoshuo Li
- Traditional Chinese Medicine Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yong Ma
- Traditional Chinese Medicine Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Yin
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
8
|
Madadi S, Saidijam M, Yavari B, Soleimani M. Downregulation of serum miR-106b: a potential biomarker for Alzheimer disease. Arch Physiol Biochem 2022; 128:875-879. [PMID: 32141790 DOI: 10.1080/13813455.2020.1734842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Analysis of miRNAs has a strong potential for the identification of novel prognostic or predictive biomarkers in the serum of AD patients. In this study, we investigated the serum levels of miR-106b as a diagnostic biomarker for AD and evaluate its predictive value for therapeutic response to the drug rivastigmine. Patients were divided into either responding (n = 33) or non-responding (n = 23) groups according to rivastigmine treatment and to Mini-Mental State Exam score. The serum concentrations of miR-106b were measured with real-time PCR. Here, we found that miR-106b was significantly down-regulated in the serum samples of AD patients compared with those of controls (p < .001). ROC results showed a specificity of 62% and a sensitivity of 94%. The serum values of miR-106b tended to be positively associated with the therapeutic response but were not significant (p = .15). Taken together, detection of serum miR-106b might be a promising serum biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of pharmaceutical biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahram Yavari
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of pharmaceutical biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
10
|
Xiao X, Mao X, Chen D, Yu B, He J, Yan H, Wang J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front Immunol 2022; 13:868229. [PMID: 35493445 PMCID: PMC9043318 DOI: 10.3389/fimmu.2022.868229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The most obvious pathological characterization of inflammatory bowel disease (IBD) is intestinal epithelium erosion and severe inflammation invasion. Micro-ribonucleic acids (miRNA or microRNA), single-stranded noncoding RNAs of ~22 nucleotides, have been considered as the potential therapeutic targets in the pathogenesis of IBD. Many previous studies have focused on the mechanisms that miRNAs use to regulate inflammation, immunity, and microorganisms in IBD. The review highlights in detail the findings of miRNAs in the intestinal epithelial barrier of IBD, and focuses on their gene targets, signaling pathways associated with IBD, and some potential therapies. It will be beneficial for the elucidation of the interaction between miRNAs and the intestinal epithelial barrier in IBD and provide a theoretical reference for preventing and treating IBD in the future.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
12
|
Han L, Huang Z, Liu Y, Ye L, Li D, Yao Z, Wang C, Zhang Y, Yang H, Tan Z, Tang J, Yang Z. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in lung cancer with bone metastasis. Cell Death Dis 2021; 12:1037. [PMID: 34718338 PMCID: PMC8557209 DOI: 10.1038/s41419-021-04324-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Bone metastasis is one of the most serious complications in lung cancer patients. MicroRNAs (miRNAs) play important roles in tumour development, progression and metastasis. A previous study showed that miR-106a is highly expressed in the tissues of lung adenocarcinoma with bone metastasis, but its mechanism remains unclear. In this study, we showed that miR-106a expression is dramatically increased in lung cancer patients with bone metastasis (BM) by immunohistochemical analysis. MiR-106a promoted A549 and SPC-A1 cell proliferation, migration and invasion in vitro. The results of bioluminescence imaging (BLI), micro-CT and X-ray demonstrated that miR-106a promoted bone metastasis of lung adenocarcinoma in vivo. Mechanistic investigations revealed that miR-106a upregulation promoted metastasis by targeting tumour protein 53-induced nuclear protein 1 (TP53INP1)-mediated metastatic progression, including cell migration, autophagy-dependent death and epithelial-mesenchymal transition (EMT). Notably, autophagy partially attenuated the effects of miR-106a on promoting bone metastasis in lung adenocarcinoma. These findings demonstrated that restoring the expression of TP53INP1 by silencing miR-106a may be a novel therapeutic strategy for bone metastatic in lung adenocarcinoma.
Collapse
Affiliation(s)
- Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Cao Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Hang Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zunxian Tan
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Jiadai Tang
- Department of Gastrointestinal Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021; 8:735590. [PMID: 34660642 PMCID: PMC8514698 DOI: 10.3389/fmed.2021.735590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Kim Y, Lee DH, Park SH, Jeon TI, Jung CH. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:548-559. [PMID: 33879861 PMCID: PMC8102505 DOI: 10.1038/s12276-021-00611-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosomal degradation system has an important role in maintaining liver homeostasis by removing unnecessary intracellular components. Impaired autophagy has been linked to nonalcoholic fatty liver disease (NAFLD), which includes hepatitis, steatosis, fibrosis, and cirrhosis. Thus, gaining an understanding of the mechanisms that regulate autophagy and how autophagy contributes to the development and progression of NAFLD has become the focus of recent studies. Autophagy regulation has been thought to be primarily regulated by cytoplasmic processes; however, recent studies have shown that microRNAs (miRNAs) and transcription factors (TFs) also act as key regulators of autophagy by targeting autophagy-related genes. In this review, we summarize the miRNAs and TFs that regulate the autophagy pathway in NAFLD. We further focus on the transcriptional and posttranscriptional regulation of autophagy and discuss the complex regulatory networks involving these regulators in autophagy. Finally, we highlight the potential of targeting miRNAs and TFs involved in the regulation of autophagy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yumi Kim
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Da-Hye Lee
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - So-Hyun Park
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Il Jeon
- grid.14005.300000 0001 0356 9399Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hwa Jung
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Zhou W, Zhang H, Pan Y, Xu Y, Cao Y. circRNA expression profiling of colon tissue from mesalazine-treated mouse of inflammatory bowel disease reveals an important circRNA-miRNA-mRNA pathway. Aging (Albany NY) 2021; 13:10187-10207. [PMID: 33819198 PMCID: PMC8064189 DOI: 10.18632/aging.202780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Mesalazine (5-aminosalicylic acid, 5-ASA) has been widely used to treat inflammatory bowel disease (IBD). However, it remains unclear about the underlying biological mechanisms of IBD pathogenesis and mesalazine treatment, which could be partially clarified by exploring the profiling of circular RNAs (circRNAs) using RNA-seq. A total of 15 mice (C57BL/6) were randomly assigned to three equally sized groups: control, dextran sulfate sodium (DSS, using DSS to induce IBD), and DSS+5-ASA (using mesalazine to treat IBD). We randomly selected three mice of each group to collect colon tissues for RNA-seq and then performed bioinformatic analysis for two comparisons: DSS vs. control and DSS+5-ASA vs. DSS. Comparisons of a series of indicators (e.g., body weight) verified the establishment of DSS-induced IBD mouse model and the effectiveness of mesalazine in treating IBD. We identified 182 differentially expressed circRNAs, including 55 up-regulated and 47 down-regulated circRNAs when comparing the DSS+5-ASA with the DSS group. These 102 circRNA-associated genes were significantly involved in the N-Glycan biosynthesis and lysine degradation. The network analysis of circRNA-miRNA-mRNAs identified an important pathway, i.e., chr10:115386962-115390436+/mmu-miR-6914-5p/Atg7, which is related to autophagy. The findings provide new insights into the biological mechanisms of IBD pathogenesis and mesalazine treatment, particularly highlighting the circRNA-miRNA-mRNA pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, United States of America
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Pan
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Cao
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
17
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
18
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
21
|
Jiang S, Fang X, Liu M, Ni Y, Ma W, Zhao R. MiR-20b Down-Regulates Intestinal Ferroportin Expression In Vitro and In Vivo. Cells 2019; 8:cells8101135. [PMID: 31554201 PMCID: PMC6829237 DOI: 10.3390/cells8101135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ferroportin (FPN) is the only known cellular iron exporter in mammalian. However, post-transcriptional regulation of intestinal FPN has not yet been completely understood. In this study, bioinformatics algorithms (TargetScan, PicTar, PITA, and miRanda) were applied to predict, screen and obtain microRNA-17 family members (miR-17, miR-20a, miR-20b, and miR-106a) targeting FPN, ‘seed sequence’ and responding binding sites on the 3′untranslated region (3′UTR) region of FPN. Dual-luciferase reporter assays revealed miRNA-17 family members’ mimics decreased the luciferase activity, whereas their inhibitors increased the luciferase activity. Compared with the FPN 3′UTR wild type reporter, co-transfection of a miRNA-17 family members’ over-expression plasmids and FPN 3′UTR mutant reporters enhanced the luciferase activity in HCT116 cells. Transfection with miR-20b overexpression plasmid significantly enhanced its expression, and it inhibited endogenous FPN protein expression in Caco-2 cells. Additionally, tail-vein injection of miR-20b resulted in increasing duodenal miR-20b expression, decreasing duodenal FPN protein expression, which was closely related to lower plasma iron level in mice. Taken together, these data suggest that the miR-20b is identified to regulate intestinal FPN expression in vitro and in vivo, which will provide a potential target for intestinal iron exportation.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xi Fang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Mingni Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
22
|
Jiang S, Guo S, Li H, Ni Y, Ma W, Zhao R. Identification and Functional Verification of MicroRNA-16 Family Targeting Intestinal Divalent Metal Transporter 1 (DMT1) in vitro and in vivo. Front Physiol 2019; 10:819. [PMID: 31316397 PMCID: PMC6610423 DOI: 10.3389/fphys.2019.00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Divalent metal transporter 1 (DMT1) is a key transporter of iron uptake and delivering in human and animals. However, post-transcriptional regulation of DMT1 is poorly understood. In this study, bioinformatic algorithms (TargetScan, PITA, miRanda, and miRDB) were applied to predict, screen, analyze, and obtain microRNA-16 family members (miR-16, miR-195, miR-497, and miR-15b) targeting DMT1, seed sequence and their binding sites within DMT1 3′ untranslated region (3′ UTR) region. As demonstrated by dual-luciferase reporter assays, luciferase activity of DMT1 3′ UTR reporter was impaired/enhanced when microRNA-16 family member over-expression plasmid/its inhibitor was transfected to HCT116 cells. Corroboratively, co-transfection of microRNA-16 family member over-expression plasmid and DMT1 3′ UTR mutant reporter repressed the luciferase activity in HCT116 cells. In addition, over-expression microRNA-16 family member augmented its expression and diminished DMT1 protein expression in HCT116 cells. Interestingly, tail vein injection of miR-16 assay revealed reduced plasma iron levels, higher miR-16 expression, and lower DMT1 protein expression in the duodenum of mice. Taken together, we provide evidence that microRNA-16 family (miR-16, miR-195, miR-497, and miR-15b) is confirmed to repress intestinal DMT1 expression in vitro and in vivo, which will give valuable insight into post-transcriptional regulation of DMT1.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Huifang Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy. Clin Sci (Lond) 2019; 133:CS20190008. [PMID: 30988132 DOI: 10.1042/cs20190008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague-Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.
Collapse
|
24
|
Gòdia M, Estill M, Castelló A, Balasch S, Rodríguez-Gil JE, Krawetz SA, Sánchez A, Clop A. A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes. Front Genet 2019; 10:299. [PMID: 31040860 PMCID: PMC6476908 DOI: 10.3389/fgene.2019.00299] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Understanding the molecular basis of cell function and ultimate phenotypes is crucial for the development of biological markers. With this aim, several RNA-seq studies have been devoted to the characterization of the transcriptome of ejaculated spermatozoa in relation to sperm quality and fertility. Semen quality follows a seasonal pattern and decays in the summer months in several animal species. The aim of this study was to deeply profile the transcriptome of the boar sperm and to evaluate its seasonal changes. We sequenced the total and the short fractions of the sperm RNA from 10 Pietrain boars, 5 collected in summer and 5 five sampled in winter, and identified a complex and rich transcriptome with 4,436 coding genes of moderate to high abundance. Transcript fragmentation was high but less obvious in genes related to spermatogenesis, chromatin compaction and fertility. Short non-coding RNAs mostly included piwi-interacting RNAs, transfer RNAs and microRNAs. We also compared the transcriptome of the summer and the winter ejaculates and identified 34 coding genes and 7 microRNAs with a significantly distinct distribution. These genes were mostly related to oxidative stress, DNA damage and autophagy. This is the deepest characterization of the boar sperm transcriptome and the first study linking the transcriptome and the seasonal variability of semen quality in animals. The annotation described here can be used as a reference for the identification of markers of sperm quality in pigs.
Collapse
Affiliation(s)
- Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
| | - Molly Estill
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, United States
| | - Anna Castelló
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Joan E. Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Barcelona, Spain
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Armand Sánchez
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
25
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
26
|
Pires D, Bernard EM, Pombo JP, Carmo N, Fialho C, Gutierrez MG, Bettencourt P, Anes E. Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation. Front Immunol 2017; 8:1819. [PMID: 29326705 PMCID: PMC5741618 DOI: 10.3389/fimmu.2017.01819] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
The success of tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), relies on the ability to survive in host cells and escape to immune surveillance and activation. We recently demonstrated that Mtb manipulation of host lysosomal cathepsins in macrophages leads to decreased enzymatic activity and pathogen survival. In addition, while searching for microRNAs (miRNAs) involved in posttranscriptional gene regulation during mycobacteria infection of human macrophages, we found that selected miRNAs such as miR-106b-5p were specifically upregulated by pathogenic mycobacteria. Here, we show that miR-106b-5p is actively manipulated by Mtb to ensure its survival in macrophages. Using an in silico prediction approach, we identified miR-106b-5p with a potential binding to the 3'-untranslated region of cathepsin S (CtsS) mRNA. We demonstrated by luminescence-based methods that miR-106b-5p indeed targets CTSS mRNA resulting in protein translation silencing. Moreover, miR-106b-5p gain-of-function experiments lead to a decreased CtsS expression favoring Mtb intracellular survival. By contrast, miR-106b-5p loss-of-function in infected cells was concomitant with increased CtsS expression, with significant intracellular killing of Mtb and T-cell activation. Modulation of miR-106b-5p did not impact necrosis, apoptosis or autophagy arguing that miR-106b-5p directly targeted CtsS expression as a way for Mtb to avoid exposure to degradative enzymes in the endocytic pathway. Altogether, our data suggest that manipulation of miR-106b-5p as a potential target for host-directed therapy for Mtb infection.
Collapse
Affiliation(s)
- David Pires
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elliott M. Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - João Palma Pombo
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Carmo
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Fialho
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | | | - Paulo Bettencourt
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Radtke FA, Chapman G, Hall J, Syed YA. Modulating Neuroinflammation to Treat Neuropsychiatric Disorders. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5071786. [PMID: 29181395 PMCID: PMC5664241 DOI: 10.1155/2017/5071786] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is recognised as one of the potential mechanisms mediating the onset of a broad range of psychiatric disorders and may contribute to nonresponsiveness to current therapies. Both preclinical and clinical studies have indicated that aberrant inflammatory responses can result in altered behavioral responses and cognitive deficits. In this review, we discuss the role of inflammation in the pathogenesis of neuropsychiatric disorders and ask the question if certain genetic copy-number variants (CNVs) associated with psychiatric disorders might play a role in modulating inflammation. Furthermore, we detail some of the potential treatment strategies for psychiatric disorders that may operate by altering inflammatory responses.
Collapse
Affiliation(s)
- Franziska A. Radtke
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Gareth Chapman
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Yasir A. Syed
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
28
|
Kassambara A, Jourdan M, Bruyer A, Robert N, Pantesco V, Elemento O, Klein B, Moreaux J. Global miRNA expression analysis identifies novel key regulators of plasma cell differentiation and malignant plasma cell. Nucleic Acids Res 2017; 45:5639-5652. [PMID: 28459970 PMCID: PMC5449613 DOI: 10.1093/nar/gkx327] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/14/2017] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that attenuate expression of their mRNA targets. Here, we developed a new method and an R package, to easily infer candidate miRNA–mRNA target interactions that could be functional during a given biological process. Using this method, we described, for the first time, a comprehensive integrated analysis of miRNAs and mRNAs during human normal plasma cell differentiation (PCD). Our results reveal 63 miRNAs with significant temporal changes in their expression during normal PCD. We derived a high-confidence network of 295 target relationships comprising 47 miRNAs and 141 targets. These relationships include new examples of miRNAs that appear to coordinately regulate multiple members of critical pathways associated with PCD. Consistent with this, we have experimentally validated a role for the miRNA-30b/c/d-mediated regulation of key PCD factors (IRF4, PRDM1, ELL2 and ARID3A). Furthermore, we found that 24 PCD stage-specific miRNAs are aberrantly overexpressed in multiple myeloma (MM) tumor plasma cells compared to their normal counterpart, suggesting that MM cells frequently acquired expression changes in miRNAs already undergoing dynamic expression modulation during normal PCD. Altogether, our analysis identifies candidate novel key miRNAs regulating networks of significance for normal PCD and malignant plasma cell biology.
Collapse
Affiliation(s)
- Alboukadel Kassambara
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Michel Jourdan
- Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Angélique Bruyer
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Bernard Klein
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France.,University of Montpellier 1, UFR de Médecine, 34000 Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France.,University of Montpellier 1, UFR de Médecine, 34000 Montpellier, France
| |
Collapse
|
29
|
Fesler A, Liu H, Wu N, Liu F, Ling P, Ju J. Autophagy regulated by miRNAs in colorectal cancer progression and resistance. CANCER TRANSLATIONAL MEDICINE 2017; 3:96-100. [PMID: 28748218 PMCID: PMC5524452 DOI: 10.4103/ctm.ctm_64_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by non-coding microRNAs (miRNAs) has been recognized in human cancer. In colorectal cancer, Autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we will focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Hua Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Ning Wu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| |
Collapse
|
30
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|
31
|
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017; 7:65. [PMID: 28459042 PMCID: PMC5394422 DOI: 10.3389/fonc.2017.00065] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Yunus Akkoc
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Muhammed Kocak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
32
|
Liu K, Jing Y, Zhang W, Fu X, Zhao H, Zhou X, Tao Y, Yang H, Zhang Y, Zen K, Zhang C, Li D, Shi Q. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone 2017; 97:130-138. [PMID: 28108317 DOI: 10.1016/j.bone.2017.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- Ke Liu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Ying Jing
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Wen Zhang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xuejie Fu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huan Zhao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xichao Zhou
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yunxia Tao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huilin Yang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Chenyu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Donghai Li
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Qin Shi
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China.
| |
Collapse
|
33
|
Abstract
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa B Frankel
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Michal Lubas
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Anders H Lund
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
34
|
Guo J, Mei Y, Li K, Huang X, Yang H. Downregulation of miR-17-92a cluster promotes autophagy induction in response to celastrol treatment in prostate cancer cells. Biochem Biophys Res Commun 2016; 478:804-10. [PMID: 27501757 DOI: 10.1016/j.bbrc.2016.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
Celastrol has potential application for the treatment of prostate cancer. However it causes autophagy as a protective response in prostate and other types of cancers, thus unveiling the underlying mechanisms may benefit its future application. In the present study, we demonstrate that the miR-17-92a cluster plays a negative role in celastrol induced-autophagy. Dissection of miR-17-92a cluster revealed the role of miR-17 seed family (miR-20a and miR-17) in autophagy inhibition in the context of prostate cancer cells. Autophagy-related gene ATG7 was validated as a target of miR-17 seed family by dual-luciferase assay and qPCR. Celastrol induced autophagy was inhibited by miR-20a or miR-17, while the inhibitory effects were rescued in the presence of pcDNA-ATG7 lacking 3' UTR, demonstrating that these two members target ATG7 to inhibit celastrol-induced autophagy. As celastrol degrades androgen receptor (AR), a key transcription factor in prostate cancer cells, we further investigated whether AR affected miR-17-92a expression in prostate cancer cells. AR binding sites were found in the promoter and two introns of miR-17-92a. In addition, higher expression levels of miR-17-92a were observed in AR positive cells compared with AR negative cells. Ectopic expression of AR could enhance the expression of miR-17-92a cluster in AR-negative prostate cancer cells while knockdown of AR decreased miR-17-92a expression in AR-positive cells, demonstrating the regulation of AR on miR-17-92a transcription. In summary, our results demonstrate that celastrol downregulates AR and its target miR-17-92a, leading to autophagy induction in prostate cancer cells.
Collapse
Affiliation(s)
- Jianquan Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs), small noncoding RNA molecules of approximately 22 nucleotides, have emerged as critical mediators of gene expression. As the dysregulation of gene expression can have far reaching impact on health and disease, miRNAs are being examined as potent new mediators of disease as either biomarkers or potential therapeutic targets. The purpose of this review is to evaluate the contribution of miRNAs to inflammatory bowel disease (IBD) pathophysiology. RECENT FINDINGS Recent studies have evaluated the expression of miRNAs in tissue and body fluid specimens from patients with the main subtypes of IBD - Crohn's disease and ulcerative colitis. Unique miRNA expression patterns that may distinguish IBD subtypes have been uncovered. SUMMARY Significant progress has been made in illuminating the complex interactive networks of miRNAs and gene targets in IBD. The potential use of miRNAs as disease biomarkers or therapeutics shows promise. However, there are still significant hurdles to overcome before miRNA-based therapeutics and diagnostics will be of clinical utility.
Collapse
|
36
|
Rothschild SI, Gautschi O, Batliner J, Gugger M, Fey MF, Tschan MP. MicroRNA-106a targets autophagy and enhances sensitivity of lung cancer cells to Src inhibitors. Lung Cancer 2016; 107:73-83. [PMID: 27372519 DOI: 10.1016/j.lungcan.2016.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Src tyrosine kinase inhibitors (TKIs) significantly inhibit cell migration and invasion in lung cancer cell lines with minor cytotoxic effects. In clinical trials, however, they show modest activity in combination with chemotherapeutic agents. Possible resistance mechanisms include the induction of cytoprotective autophagy upon Src inhibition. Autophagy is a cellular recycling process that allows cell survival in response to a variety of stress stimuli including responses to various treatments. MATERIAL AND METHODS We screened autophagic activity in A549, H460, and H1299 NSCLC cell lines treated with two different Src-TKIs (saracatinib, dasatinib) or shRNA targeting SRC. The autophagy response was determined by LC3B-I to -II conversion, increased ULK1 epxression and increased GFP-LC3B dot formation. Autophagy was inhibited by pharmacological (bafilomycin A, chloroquine) or genetic (ULK1 shRNA) means. Expression of miR-106a and miR-20b was analyzed by qPCR, and we used different lentivral vectors for ectopic expression of either miR-106a mimetics, anti-sense miR-106a or different miR-106a-363 cluster constructs. RESULTS In the current study we found that Src-TKIs induce autophagy in lung adenocarcinoma cell lines and that a combination of autophagy and Src tyrosine kinase inhibition results in cell death. Moreover, Src-TKI induced autophagy depends on the induction of the key autophagy kinase ULK1. This ULK1 upregulation is caused by downregulation of the ULK1-targeting microRNA-106a. An inverse correlation of miR-106a and ULK1 expression was seen in lung adenocarcinoma. Accordingly, ectopic expression of miR-106a in combination with Src-TKI treatment resulted in significant cell death as compared to control transduced cells. CONCLUSIONS Autophagy protects lung adenocarcinoma cells from Src-TKIs via a newly identified miR-106a-ULK1 signaling pathway. The combined inhibition of Src and ULK1/autophagy might represent a promising treatment option for future clinical trials. Lastly, our data might challenge the term "oncogenic" miR-106a as it can promote sensitivity to Src-TKIs thereby underlining the context-dependent function of miRNAs.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department of Medical Oncology, Inselspital, Bern University Hospital, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Oliver Gautschi
- Department of Medical Oncology, Inselspital, Bern University Hospital, Switzerland; Medical Oncology, Cantonal Hospital, Luzern, Switzerland
| | - Jasmin Batliner
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Mathias Gugger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Martin F Fey
- Department of Medical Oncology, Inselspital, Bern University Hospital, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
37
|
Xu F, Gong WQ, Li TY, Zhang S. Role of competing endogenous RNAs in development of gastric cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:1676-1681. [DOI: 10.11569/wcjd.v24.i11.1676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common digestive system tumors and the second cause of malignancy related death, and it is caused by multiple factors such as genetic susceptibility, environment and living habits. It is reported that members of competitive endogenous RNAs, including microRNAs and long non-coding RNAs, play an important role in gastric cancer development. This article reviews the role of competing endogenous RNAs in the development of gastric cancer.
Collapse
|
38
|
Chi Y, Zhou D. MicroRNAs in colorectal carcinoma--from pathogenesis to therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:43. [PMID: 26964533 PMCID: PMC4787051 DOI: 10.1186/s13046-016-0320-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Background Acting as inflammatory mediators, tumor oncogenes or suppressors, microRNAs are involved in cell survival, death, epithelial–mesenchymal transition and metastasis, etc. Investigating the communication between microRNAs and tumorigenesis is critical to our understanding of the pathogenesis of multiple disease states. Main body Currently, colorectal carcinoma (CRC), one of the most common malignancies worldwide, has a poor prognosis due to lack of an effective therapeutic option. Increasing evidence has identified altered profiles and regulatory potential of microRNAs in conditions related to environmentally-caused colorectal inflammation and colitis-associated cancer. Many studies have shed light on a more thorough understanding of the function and distribution of microRNAs in CRC initiation and emergence. However, the molecular mechanisms by which microRNAs modulate cellular processes still need to be further elucidated and may offer a foundation for evaluating microRNA-based therapeutic potential for CRC in both animal models and clinical trials. Conclusion In this review, the roles and mechanisms of microRNAs involved in CRC from pathogenesis to therapy are summarized and discussed, which may provide more useful hints for CRC prevention and therapy.
Collapse
Affiliation(s)
- Yudan Chi
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
39
|
Kumar R, Sahu SK, Kumar M, Jana K, Gupta P, Gupta UD, Kundu M, Basu J. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol 2015; 18:679-91. [PMID: 26513648 DOI: 10.1111/cmi.12540] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
Abstract
Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | | | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Pushpa Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | - Umesh D Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| |
Collapse
|
40
|
Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease. PLoS One 2015; 10:e0140155. [PMID: 26466382 PMCID: PMC4605644 DOI: 10.1371/journal.pone.0140155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The diagnosis of inflammatory bowel disease (IBD) still remains a clinical challenge and the most accurate diagnostic procedure is a combination of clinical tests including invasive endoscopy. In this study we evaluated whether systematic miRNA expression profiling, in conjunction with machine learning techniques, is suitable as a non-invasive test for the major IBD phenotypes (Crohn's disease (CD) and ulcerative colitis (UC)). Based on microarray technology, expression levels of 863 miRNAs were determined for whole blood samples from 40 CD and 36 UC patients and compared to data from 38 healthy controls (HC). To further discriminate between disease-specific and general inflammation we included miRNA expression data from other inflammatory diseases (inflammation controls (IC): 24 chronic obstructive pulmonary disease (COPD), 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases) as well as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4 groups were solved using different types of penalized support vector machines (SVMs). The resulting models were assessed regarding sparsity and performance and a subset was selected for further investigation. Measured by the area under the ROC curve (AUC) the corresponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00 (including IC) and 0.89 to 0.98 (excluding IC), respectively. In combination, the corresponding models provide tools for the distinction of CD and UC as well as CD, UC and HC with expected classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incorporating not more than 16 distinct miRNAs. Validated target genes of these miRNAs have been previously described as being related to IBD. For others we observed significant enrichment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the proposed miRNA signature is of relevance for the etiology of IBD. Its diagnostic value, however, should be further evaluated in large, independent, clinically well characterized cohorts.
Collapse
|
41
|
Abstract
Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn's disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies.
Collapse
Affiliation(s)
| | - Joel Pekow
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, 900 East 57th Street, MB # 9, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Abstract
Crohn's disease (CD) is characterized by a breakdown of the intestinal epithelial barrier function leading to an uncontrolled immune response to bacterial antigens. Available data demonstrate that appropriate response and early host defense against invading bacteria are crucial to maintain tolerance towards commensal bacteria. When the mechanisms of early removal of invading bacteria are disturbed, a loss of tolerance and a full-blown adaptive immune reaction, which is mounted against the usually harmless commensal flora, are induced. Dysfunction of autophagy caused by genetic variations within CD susceptibility genes, such as ATG16L1 and IRGM, results in defective handling of intracellular and invading bacteria and causes prolonged survival and defective clearance of those microbes. Dysfunction of ATG16L1 and IRGM has also been shown to cause aberrant Paneth cell function and uncontrolled secretion of proinflammatory cytokines finally resulting in increased susceptibility to bacterial infection and the onset of colitis. Interestingly, autophagy can also be regulated by other CD susceptibility genes, such as NOD2 (nucleotide oligomerization domain 2) or PTPN2 (protein tyrosine phosphatase nonreceptor type 2) and the presence of the CD-associated variations within these genes results in similar effects. Taken together, more and more evidence suggests a close functional correlation between loss of tolerance and defective autophagy in CD patients. Therefore, most likely, the onset of CD is triggered by both a loss of tolerance as well as a dysfunction of autophagy, which finally results in the onset of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
43
|
Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes. Curr Opin Genet Dev 2014; 26:16-23. [PMID: 24907664 DOI: 10.1016/j.gde.2014.04.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022]
Abstract
Malfunction of autophagy, the process that mediates breakdown and recycling of intracellular components in lysosomes, has been linked to a variety of human diseases. As the number of pathologies associated with defective autophagy increases, emphasis has switched from the mere description of the status of autophagy in these conditions to a more mechanistic dissection of the autophagic changes. Understanding the reasons behind the autophagic defect, the immediate consequences of the autophagic compromise and how autophagy changes with the evolution of the disease has become a 'must,' especially now that manipulation of autophagy is being considered as a therapeutic strategy. Here, we comment on some of the common themes that have emerged from such detailed analyses of the interplay between autophagy and disease conditions.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Chen WX, Ren LH, Shi RH. Implication of miRNAs for inflammatory bowel disease treatment: Systematic review. World J Gastrointest Pathophysiol 2014; 5:63-70. [PMID: 24891977 PMCID: PMC4025074 DOI: 10.4291/wjgp.v5.i2.63] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/08/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is believed to develop via a complex interaction between genetic, environmental factors and the mucosal immune system. Crohn's disease and ulcerative colitis are two major clinical forms of IBD. MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNA molecules, and evolutionary conserved in animals and plants. It controls protein production at the post-transcriptional level by targeting mRNAs for translational repression or degradation. MiRNAs are important in many biological processes, such as signal transduction, cellular proliferation, differentiation and apoptosis. Considerable attention has been paid on the key role of miRNAs in autoimmune and inflammatory disease, especially IBD. Recent studies have identified altered miRNA profiles in ulcerative colitis, Crohn's disease and inflammatory bowel disease-associated colorectal cancer. In addition, emerging data have implicated that special miRNAs which suppress functional targets play a critical role in regulating key pathogenic mechanism in IBD. MiRNAs were found involving in regulation of nuclear transcription factor kappa B pathway (e.g., miR-146a, miR-146b, miR-122, miR-132, miR-126), intestinal epithelial barrier function (e.g., miR-21, miR-150, miR-200b) and the autophagic activity (e.g., miR-30c, miR-130a, miR-106b, miR-93, miR-196). This review aims at discussing recent advances in our understanding of miRNAs in IBD pathogenesis, their role as disease biomarkers, and perspective for future investigation and clinical application.
Collapse
|
45
|
Zhai Z, Wu F, Dong F, Chuang AY, Messer JS, Boone DL, Kwon JH. Human autophagy gene ATG16L1 is post-transcriptionally regulated by MIR142-3p. Autophagy 2014; 10:468-79. [PMID: 24401604 DOI: 10.4161/auto.27553] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple genetic studies have implicated the autophagy-related gene, ATG16L1, in the pathogenesis of Crohn disease (CD). While CD-related research on ATG16L1 has focused on the functional significance of ATG16L1 genetic variations, the mechanisms underlying the regulation of ATG16L1 expression are unclear. Our laboratory has described that microRNAs (miRNAs), key regulators of gene expression, are dysregulated in CD. Here, we report miRNA-mediated regulation of ATG16L1 in colonic epithelial cells as well as Jurkat T cells. Dual luciferase reporter assays following the transfection of vectors containing the ATG16L1 3'-untranslated region (3'UTR) or truncated 3'UTR fragments suggest that the first half of ATG16L1 3'UTR in the 5' end is more functional for miRNA targeting. Of 5 tested miRNAs with putative binding sites within the region, MIR142-3p, upon transient overexpression in the cells, resulted in decreased ATG16L1 mRNA and protein levels. Further observation demonstrated that the luciferase reporter vector with a mutant MIR142-3p binding sequence in the 3'UTR was unresponsive to the inhibitory effect of MIR142-3p, suggesting ATG16L1 is a gene target of MIR142-3p. Moreover, the regulation of ATG16L1 expression by a MIR142-3p mimic blunted starvation- and L18-MDP-induced autophagic activity in HCT116 cells. Additionally, we found that a MIR142-3p inhibitor enhanced starvation-induced autophagy in Jurkat T cells. Our study reveals MIR142-3p as a new autophagy-regulating small molecule by targeting ATG16L1, implying a role of this miRNA in intestinal inflammation and CD.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - Feng Wu
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - Fengshi Dong
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - Alice Y Chuang
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - Jeannette S Messer
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - David L Boone
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| | - John H Kwon
- Department of Medicine; Section of Gastroenterology; University of Chicago; Chicago, IL USA
| |
Collapse
|
46
|
Lu C, Chen J, Xu HG, Zhou X, He Q, Li YL, Jiang G, Shan Y, Xue B, Zhao RX, Wang Y, Werle KD, Cui R, Liang J, Xu ZX. MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology 2014; 146:188-99. [PMID: 24036151 PMCID: PMC3870037 DOI: 10.1053/j.gastro.2013.09.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 08/14/2013] [Accepted: 09/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Variants in genes that regulate autophagy have been associated with Crohn's disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to the pathogenesis of CD. We investigated the role of the microRNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD. METHODS We studied the ability of MIR106B and MIR93 to regulate ATG transcripts in human cancer cell lines (HCT116, SW480, HeLa, and U2OS) using luciferase report assays and bioinformatics analyses; MIR106B and MIR93 mimics and antagonists were transfected into cells to modify levels of miRs. Cells were infected with LF82, a CD-associated adherent-invasive strain of Escherichia coli, and monitored by confocal microscopy and for colony-forming units. Colon tissues from 41 healthy subjects (controls), 22 patients with active CD, 16 patients with inactive CD, and 7 patients with chronic inflammation were assessed for levels of MIR106B and ATG16L1 by in situ hybridization and immunohistochemistry. RESULTS Silencing Dicer1, an essential processor of miRs, increased levels of ATG protein and formation of autophagosomes in cells, indicating that miRs regulate autophagy. Luciferase reporter assays indicated that MIR106B and MIR93 targeted ATG16L1 messenger RNA. MIR106B and MIR93 reduced levels of ATG16L1 and autophagy; these increased after expression of ectopic ATG16L1. In contrast, MIR106B and MIR93 antagonists increased formation of autophagosomes. Levels of MIR106B were increased in intestinal epithelia from patients with active CD, whereas levels of ATG16L1 were reduced compared with controls. Levels of c-Myc were also increased in intestinal epithelia of patients with active CD compared with controls. These alterations could impair removal of CD-associated bacteria by autophagy. CONCLUSIONS In human cell lines, MIR106B and MIR93 reduce levels of ATG16L1 and autophagy and prevent autophagy-dependent eradication of intracellular bacteria. This process also appears to be altered in colon tissues from patients with active CD.
Collapse
Affiliation(s)
- Changming Lu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianfeng Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hua-Guo Xu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xianzheng Zhou
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Departments of Pediatrics, Microbiology and Immunology, and Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Qiongqiong He
- Department of Pathology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Lin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guoqing Jiang
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yuxi Shan
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Boxin Xue
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Rui-Xun Zhao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaitlin D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rutao Cui
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jiyong Liang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Xiang Xu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|