1
|
Villablanca EJ. Organismal mucosal immunology: A perspective through the eyes of game theory. Mucosal Immunol 2025; 18:16-25. [PMID: 39672543 DOI: 10.1016/j.mucimm.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In complex organisms, functional units must interact cohesively to maintain homeostasis, especially within mucosal barriers that house diverse, specialized cell exposed to constant environmental challenges. Understanding how homeostasis at mucosal barriers is maintained and how its disruption can lead to autoimmune diseases or cancer, requires a holistic view. Although omics approaches and systems immunology have become powerful tools, they are not without limitations; interpretations may reflect researchers' assumptions, even if other explanations exist. In this perspective, I propose that applying game theory concepts to mucosal immunology could help interpret complex data, offering fresh perspectives and supporting the exploration of alternative scenarios. By framing the mucosal immune system as a network of strategic interactions with multiple possible outcomes, game theory, which analyzes strategic interactions and decision-making processes, could illuminate novel cell types and functions, cell interactions, and responses to pathogens and commensals, leading to a more comprehensive understanding of immune homeostasis and diseases. In addition, game theory might encourage researchers to consider a broader range of possibilities, reduce the risk of myopic thinking, and ultimately enable a more refined and comprehensive understanding of the complexity of the immune system at mucosal barriers. This perspective aims to introduce game theory as a complementary framework for mucosal immunologists, encouraging them to incorporate these concepts into data interpretation and system modeling.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
2
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Gleeson PJ, Monteiro RC. The Role of Mucosal Immunity: What Can We Learn From Animal and Human Studies? Semin Nephrol 2024; 44:151566. [PMID: 40082160 DOI: 10.1016/j.semnephrol.2025.151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Immunoglobulin A (IgA) is a key actor in the mucosal immune system, which moderates interactions between the host and environmental factors such as food antigens and commensal microorganisms. The pathogenesis of IgA nephropathy (IgAN) involves a multistep process starting with deglycosylation of mucosally derived, polymeric IgA1 (dg-IgA1) that reaches the circulation. Modified O-glycans on dg-IgA1 are targeted by IgG-autoantibodies, leading to the formation of circulating immune complexes that deposit in the glomerular mesangium. Infections of mucosal surfaces trigger flares of primary IgAN, while inflammatory bowel disease and liver cirrhosis are important causes of secondary IgAN, supporting a mucosal source of nephritogenic IgA1. In the presence of microbial pathogens or food antigens, activated dendritic cells in the gut mucosa induce T-cell-dependent or T-cell-independent B-cell differentiation into IgA-secreting plasma cells. Herein we review the literature concerning mucosal immune function and how it is altered in this disease. We discuss recent evidence supporting a causal role of gut microbiota dysbiosis in IgAN pathogenesis.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Nephrology Department.
| | - Renato C Monteiro
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Immunology laboratory of Bichat hospital, Paris, France
| |
Collapse
|
4
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Xu R, Wu J, Zheng L, Zhao M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res Rev 2023; 91:102080. [PMID: 37774932 DOI: 10.1016/j.arr.2023.102080] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, affecting 32.5 million US adults or 242 million people worldwide. There is no cure for OA. Many animal and clinical trials showed that oral administration of undenatured type II collagen could significantly reduce the incidence of OA or alleviate the symptoms of articular cartilage. Type II collagen is an important component of cartilage matrix. This article reviewed research progress of undenatured type II collagen including its methods of extraction and preparation, structure and characterization, solubility, thermal stability, gastrointestinal digestive stability, its role in improving OA, and the mechanism of its action in improving OA. Type II collagen has been extensively explored for its potential in improving arthritis. Methods of extraction of type II collagen are inefficient and tedious. The method of limited enzymatic hydrolysis is mainly used to prepare soluble undenatured type II collagen (SC II). The solubility, thermal and gastrointestinal digestive stability of SC II are affected by the sources of raw material, pH, salt ions, and temperature. Oral administration of undenatured type II collagen improves OA, whereas its activity is affected by the sources, degree of denaturalization, intervention methods and doses. However, the influence of the structure of undenatured type II collagen on its activity and the mechanism are unclear. The findings in this review support that undenatured type II collagen can be used in the intervention or auxiliary intervention of patients with OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
6
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
7
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Filardy AA, Ferreira JRM, Rezende RM, Kelsall BL, Oliveira RP. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol Lett 2023; 253:41-53. [PMID: 36623708 PMCID: PMC9907447 DOI: 10.1016/j.imlet.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.
Collapse
Affiliation(s)
- Alessandra A Filardy
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | - Jesuino R M Ferreira
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, USA
| | | |
Collapse
|
9
|
Ojo BA, Alake SE, Kaur A, Wong SY, Keirns B, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Supplemental wheat germ modulates phosphorylation of STAT3 in the gut and NF-κBp65 in the adipose tissue of mice fed a Western diet. Curr Dev Nutr 2023; 7:100023. [PMID: 37181127 PMCID: PMC10100941 DOI: 10.1016/j.cdnut.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3β. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.
Collapse
Affiliation(s)
- Babajide A. Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanmi E. Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Amritpal Kaur
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Siau Yen Wong
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A. Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
10
|
Ng KW, Hobbs A, Wichmann C, Victora GD, Donaldson GP. B cell responses to the gut microbiota. Adv Immunol 2022; 155:95-131. [PMID: 36357013 DOI: 10.1016/bs.ai.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most antibody produced by humans originates from mucosal B cell responses. The rules, mechanisms, and outcomes of this process are distinct from B cell responses to infection. Within the context of the intestine, we discuss the induction of follicular B cell responses by microbiota, the development and maintenance of mucosal antibody-secreting cells, and the unusual impacts of mucosal antibody on commensal bacteria. Much remains to be learned about the interplay between B cells and the microbiota, but past and present work hints at a complex, nuanced relationship that may be critical to the way the mammalian gut fosters a beneficial microbial ecosystem.
Collapse
Affiliation(s)
- Kevin W Ng
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Alvaro Hobbs
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Christopher Wichmann
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States; Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States; Immune Regulation Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States.
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
11
|
Polystyrene microplastics induce an immunometabolic active state in macrophages. Cell Biol Toxicol 2022; 38:31-41. [PMID: 34021430 PMCID: PMC8606615 DOI: 10.1007/s10565-021-09616-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Anti-inflammatory and proinflammatory responses in macrophages are influenced by cellular metabolism. Macrophages are the primary phagocyte in mucosal environments (i.e., intestinal tract and lungs) acting as first-line defense against microorganisms and environmental pollutants. Given the extensive contamination of our food and water sources with microplastics, we aimed to examine the metabolic response in macrophages to microplastic particles (MPs). Utilizing murine macrophages, we assessed the metabolic response of macrophages after polystyrene MP phagocytosis. The phagocytosis of MP by macrophages induced a metabolic shift toward glycolysis and a reduction in mitochondrial respiration that was associated with an increase of cell surface markers CD80 and CD86 and cytokine gene expression associated with glycolysis. The gastrointestinal consequences of this metabolic switch in the context of an immune response remain uncertain, but the global rise of plastic pollution and MP ingestion potentially poses an unappreciated health risk. Macrophage phagocytosis of microplastics alters cellular metabolism. - Macrophages cannot degrade PS MP. - MP phagocytosis increases glycolysis in murine macrophages. - MP phagocytosis reduces mitochondrial respiration in murine macrophages.
Collapse
|
12
|
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15:40-50. [PMID: 34465895 DOI: 10.1038/s41385-021-00448-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.
Collapse
Affiliation(s)
| | | | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
13
|
Primary Site of Coxsackievirus B Replication in the Small Intestines: No Proof of Peyer's Patches Involvement. Microorganisms 2021; 9:microorganisms9122600. [PMID: 34946201 PMCID: PMC8709031 DOI: 10.3390/microorganisms9122600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Enterovirus (EV) infections are associated with a broad range of diseases. Since the first experimental infection of primates with poliovirus (PV), tonsils and the Peyer’s patches (PPs) have been believed to be the primary replication sites of EVs. Our aim was to localize different viral markers in the small intestines (SI) of coxsackievirus B (CVB) orally and intraperitoneally (i.p.) infected mice. Methods: Transverse sections of SIs of both infected and control male outbred mice were collected at different intervals post-infection (p.i) and analyzed for presence of interferon-alpha (IFN-α) and viral protein VP1 by immunohistochemistry and in situ hybridization (ISH). Fluorescent marker, eGFP, was identified in cryosections of mice infected with eGFP-CVB3. Results: In the infected SIs, we observed enlarged germinating centers (GCs) in the PPs; IFN-α was detected in the PPs and mucosal layer of the SIs. However, VP1, viral RNA and the eGFP were absent in the GCs of PPs at all stages of infection irrespective of the virus strains used. Conclusions: Virus was present in the epithelial cells but not in GCs of the PPs of the murine SIs. Our results do not support the hypothesis of EV replication in the PP especially in the GCs.
Collapse
|
14
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Murtaza G. Recent strategies driving oral biologic administration. Expert Rev Vaccines 2021; 20:1587-1601. [PMID: 34612121 DOI: 10.1080/14760584.2021.1990044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION High patient compliance, noninvasiveness, and self-administration are the leading features of vaccine delivery through the oral route. The implementation of swift mass vaccination campaigns in pandemic outbreaks fascinates the use of oral vaccination. This approach can elicit both mucosal and systemic immune responses to protect against infection at the surface of the mucosa. AREA COVERED As pathogen entry and spread mainly occurs through the gastrointestinal tract (GIT) mucosal surfaces, oral vaccination may protect and limit disease spread. Oral vaccines target various potential mucosal inductive sites in the GIT, such as the oral cavity, gastric area, and small intestine. Orally delivered vaccines having subunit and nucleic acid pass through various GIT-associated risks, such as the biodegradation of biologics and their reduced absorption. This article presents a summarized review of the existing technologies and prospects for oral vaccination. EXPERT OPINION The intestinal mucosa focuses on current approaches, while future strategies target new mucosal sites, i.e. oral cavity and stomach. Recent developments in biologic delivery through the oral route and their potential use in future oral vaccination are mainly considered.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| |
Collapse
|
15
|
Enterocytes in Food Hypersensitivity Reactions. Animals (Basel) 2021; 11:ani11092713. [PMID: 34573679 PMCID: PMC8466009 DOI: 10.3390/ani11092713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Hypersensitivity to food, affecting both animals and humans, is increasing. Until a decade ago, it was thought that enterocytes, the most abundant constituent of the intestinal surface mucosa layer, served only to absorb digested food and prevent foreign and non-digested substances from passing below the intestinal layer. Growing evidence supports the involvement of enterocytes in immunological responses. Here, we present a comprehensive review of the new roles of enterocytes in food hypersensitivity conducted in animal models in order to better understand complicated immune pathological conditions. In addition, resources for further work in this area are suggested, along with a literature overview of the specific roles of enterocytes in maintaining oral tolerance. Lastly, it will be beneficial to investigate the various animal models involved in food hypersensitivity to reach the needed momentum necessary for the complete and profound understanding of the mechanisms of the ever-growing number of food allergies in animal and human populations. Abstract Food hypersensitivity reactions are adverse reactions to harmless dietary substances, whose causes are hidden within derangements of the complex immune machinery of humans and mammals. Until recently, enterocytes were considered as solely absorptive cells providing a physical barrier for unwanted lumen constituents. This review focuses on the enterocytes, which are the hub for innate and adaptive immune reactions. Furthermore, the ambiguous nature of enterocytes is also reflected in the fact that enterocytes can be considered as antigen-presenting cells since they constitutively express major histocompatibility complex (MHC) class II molecules. Taken together, it becomes clear that enterocytes have an immense role in maintaining oral tolerance to foreign antigens. In general, the immune system and its mechanisms underlying food hypersensitivity are still unknown and the involvement of components belonging to other anatomical systems, such as enterocytes, in these mechanisms make their elucidation even more difficult. The findings from studies with animal models provide us with valuable information about allergic mechanisms in the animal world, while on the other hand, these models are used to extrapolate results to the pathological conditions occurring in humans. There is a constant need for studies that deal with this topic and can overcome the glitches related to ethics in working with animals.
Collapse
|
16
|
Yokanovich LT, Newberry RD, Knoop KA. Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy. Clin Exp Allergy 2021; 51:518-526. [PMID: 33403739 PMCID: PMC8743004 DOI: 10.1111/cea.13823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The increasing incidence of food allergy remains a significant public health concern. Food allergy is partially due to a lack, or loss of tolerance to food allergens. Clinical outcomes surrounding early life practices, such as breastfeeding, antibiotic use and food allergen exposure, indicate the first year of life in children represents a unique time for shaping the immune system to reduce allergic outcomes. Animal models have identified distinctive aspects of when and where dietary antigens are delivered within the intestinal tract to promote oral tolerance prior to weaning. Additionally, animal models have identified contributions from maternal proteins from breast milk and bacterial products from the gut microbiota in regulating dietary antigen exposure and promoting oral tolerance, thus connecting decades of clinical observations on the benefits of breastfeeding, early food allergen introduction and antibiotic avoidance in the first year of life in reducing allergic outcomes. Here, we discuss how exposure to gut luminal antigens, including food allergens, is regulated in early life to generate protective tolerance and the implications of this process for preventing and treating food allergies.
Collapse
Affiliation(s)
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
17
|
Targeting the Gut Microbiome to Mitigate Immunotherapy-Induced Colitis in Cancer. Trends Cancer 2021; 7:583-593. [PMID: 33741313 DOI: 10.1016/j.trecan.2021.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have been a transformational advance in cancer therapy in the past decade. However, ICIs can produce immune-related adverse effects (irAEs), which can lead to both morbidity and premature termination of therapy. Recent studies suggest that the gut microbiota and its metabolites affect ICI efficacy and toxicity. Herein, we review such evidence in the context of ICI-induced colitis. In particular, the short-chain fatty acid butyrate, a microbial metabolite, has known protective effects on the intestine. We discuss how the use of dietary prebiotics, which can be metabolized by bacteria to produce butyrate, can be an intriguing new investigational approach to prevent ICI-associated colitis and lead to improved patient outcomes.
Collapse
|
18
|
Coffey JW, Gaiha GD, Traverso G. Oral Biologic Delivery: Advances Toward Oral Subunit, DNA, and mRNA Vaccines and the Potential for Mass Vaccination During Pandemics. Annu Rev Pharmacol Toxicol 2021; 61:517-540. [PMID: 32466690 PMCID: PMC8057107 DOI: 10.1146/annurev-pharmtox-030320-092348] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.
Collapse
Affiliation(s)
- Jacob William Coffey
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunology, University of Melbourne, Victoria, 3000, Australia
| | - Gaurav Das Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
19
|
Mao RF, Chen YY, Zhang J, Chang X, Wang YF. Type 1 diabetes mellitus and its oral tolerance therapy. World J Diabetes 2020; 11:400-415. [PMID: 33133388 PMCID: PMC7582116 DOI: 10.4239/wjd.v11.i10.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a T cell-mediated autoimmune disease, type 1 diabetes mellitus (T1DM) is marked by insulin defect resulting from the destruction of pancreatic β-cells. The understanding of various aspects of T1DM, such as its epidemiology, pathobiology, pathogenesis, clinical manifestations, and complications, has been greatly promoted by valuable research performed during the past decades. However, these findings have not been translated into an effective treatment. The ideal treatment should safely repair the destroyed immune balance in a long-lasting manner, preventing or stopping the destruction of β-cells. As a type of immune hypo-responsiveness to the orally administrated antigen, oral tolerance may be induced by enhancement of regulatory T cells (Tregs) or by anergy/deletion of T cells, depending on the dosage of orally administrated antigen. Acting as an antigen-specific immunotherapy, oral tolerance therapy for T1DM has been mainly performed using animal models and some clinical trials have been completed or are still ongoing. Based on the review of the proposed mechanism of the development of T1DM and oral tolerance, we give a current overview of oral tolerance therapy for T1DM conducted in both animal models and clinical trials.
Collapse
Affiliation(s)
- Rui-Feng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ying-Ying Chen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Xin Chang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Ye-Fu Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| |
Collapse
|
20
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Coméra C, Cartier C, Gaultier E, Catrice O, Panouille Q, El Hamdi S, Tirez K, Nelissen I, Théodorou V, Houdeau E. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO 2 particles: an in vivo and ex vivo study in mice. Part Fibre Toxicol 2020; 17:26. [PMID: 32527323 PMCID: PMC7345522 DOI: 10.1186/s12989-020-00357-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Background Food-grade TiO2 (E171 in the EU) is widely used as a coloring agent in foodstuffs, including sweets. Chronic dietary exposure raises concerns for human health due to proinflammatory properties and the ability to induce and promote preneoplastic lesions in the rodent gut. Characterization of intestinal TiO2 uptake is essential for assessing the health risk in humans. We studied in vivo the gut absorption kinetics of TiO2 in fasted mice orally given a single dose (40 mg/kg) to assess the ability of intestinal apical surfaces to absorb particles when available without entrapment in the bolus. The epithelial translocation pathways were also identified ex vivo using intestinal loops in anesthetized mice. Results The absorption of TiO2 particles was analyzed in gut tissues by laser-reflective confocal microscopy and ICP-MS at 4 and 8 h following oral administration. A bimodal pattern was detected in the small intestine: TiO2 absorption peaked at 4 h in jejunal and ileal villi before returning to basal levels at 8 h, while being undetectable at 4 h but significantly present at 8 h in the jejunal Peyer’s patches (PP). Lower absorption occurred in the colon, while TiO2 particles were clearly detectable by confocal microscopy in the blood at 4 and 8 h after treatment. Ex vivo, jejunal loops were exposed to the food additive in the presence and absence of pharmacological inhibitors of paracellular tight junction (TJ) permeability or of transcellular (endocytic) passage. Thirty minutes after E171 addition, TiO2 absorption by the jejunal villi was decreased by 66% (p < 0.001 vs. control) in the presence of the paracellular permeability blocker triaminopyrimidine; the other inhibitors had no significant effect. Substantial absorption through a goblet cell (GC)-associated pathway, insensitive to TJ blockade, was also detected. Conclusions After a single E171 dose in mice, early intestinal uptake of TiO2 particles mainly occurred through the villi of the small intestine, which, in contrast to the PP, represent the main absorption surface in the small intestine. A GC-associated passage and passive diffusion through paracellular TJ spaces between enterocytes appeared to be major absorption routes for transepithelial uptake of dietary TiO2.
Collapse
Affiliation(s)
- Christine Coméra
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France.
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Olivier Catrice
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Quentin Panouille
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Sarah El Hamdi
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Kristof Tirez
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| |
Collapse
|
22
|
Graversen KB, Ballegaard AR, Kræmer LH, Hornslet SE, Sørensen LV, Christoffersen HF, Jacobsen LN, Untersmayr E, Smit JJ, Bøgh KL. Cow’s milk allergy prevention and treatment by heat‐treated whey—A study in Brown Norway rats. Clin Exp Allergy 2020; 50:708-721. [DOI: 10.1111/cea.13587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Louise H. Kræmer
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Sofie E. Hornslet
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Laila V. Sørensen
- Research & Development Arla Foods Ingredients Group P/S Videbæk Denmark
| | | | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| |
Collapse
|
23
|
Kulkarni DH, Gustafsson JK, Knoop KA, McDonald KG, Bidani SS, Davis JE, Floyd AN, Hogan SP, Hsieh CS, Newberry RD. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol 2020; 13:271-282. [PMID: 31819172 PMCID: PMC7044050 DOI: 10.1038/s41385-019-0240-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Tolerance to innocuous antigens from the diet and the commensal microbiota is a fundamental process essential to health. Why tolerance is efficiently induced to substances arising from the hostile environment of the gut lumen is incompletely understood but may be related to how these antigens are encountered by the immune system. We observed that goblet cell associated antigen passages (GAPs), but not other pathways of luminal antigen capture, correlated with the acquisition of luminal substances by lamina propria (LP) antigen presenting cells (APCs) and with the sites of tolerance induction to luminal antigens. Strikingly this role extended beyond antigen delivery. The GAP function of goblet cells facilitated maintenance of pre-existing LP T regulatory cells (Tregs), imprinting LP-dendritic cells with tolerogenic properties, and facilitating LP macrophages to produce the immunomodulatory cytokine IL-10. Moreover, tolerance to dietary antigen was impaired in the absence of GAPs. Thus, by delivering luminal antigens, maintaining pre-existing LP Tregs, and imprinting tolerogenic properties on LP-APCs GAPs support tolerance to substances encountered in the hostile environment of the gut lumen.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jenny K Gustafsson
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Shay S Bidani
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jazmyne E Davis
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Alexandria N Floyd
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Simon P Hogan
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Knoop KA, Kulkarni DH, McDonald KG, Gustafsson JK, Davis JE, Floyd AN, Newberry RD. In vivo labeling of epithelial cell-associated antigen passages in the murine intestine. Lab Anim (NY) 2020; 49:79-88. [PMID: 32042160 DOI: 10.1038/s41684-019-0438-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The intestinal immune system samples luminal contents to induce adaptive immune responses that include tolerance in the steady state and protective immunity during infection. How luminal substances are delivered to the immune system has not been fully investigated. Goblet cells have an important role in this process by delivering luminal substances to the immune system through the formation of goblet cell-associated antigen passages (GAPs). Soluble antigens in the intestinal lumen are transported across the epithelium transcellularly through GAPs and delivered to dendritic cells for presentation to T cells and induction of immune responses. GAPs can be identified and quantified by using the ability of GAP-forming goblet cells to take up fluorescently labeled dextran. Here, we describe a method to visualize GAPs and other cells that have the capacity to take up luminal substances by intraluminal injection of fluorescent dextran in mice under anesthesia, tissue sectioning for slide preparation and imaging with fluorescence microscopy. In contrast to in vivo two-photon imaging previously used to identify GAPs, this technique is not limited by anatomical constraints and can be used to visualize GAP formation throughout the length of the intestine. In addition, this method can be combined with common immunohistochemistry protocols to visualize other cell types. This approach can be used to compare GAP formation following different treatments or changes to the luminal environment and to uncover how sampling of luminal substances is altered in pathophysiological conditions. This protocol requires 8 working hours over 2-3 d to be completed.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jazmyne E Davis
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandria N Floyd
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Chiaranunt P, Burrows K, Ngai L, Mortha A. Isolation of mononuclear phagocytes from the mouse gut. Methods Enzymol 2019; 632:67-90. [PMID: 32000915 DOI: 10.1016/bs.mie.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intestinal tract is home to trillions of microbes that make up the gut microbiota and is a major source of environmental antigens that can be derived from food, commensal microorganisms, and potential pathogens. Amidst this complex environment, myeloid cells, including macrophages (MPs) and dendritic cells (DCs), are key immunological sentinels that locally maintain both tissue and immune homeostasis. Recent research has revealed substantial functional and developmental heterogeneity within the intestinal DC and MP compartments, with evidence pointing to their regulation by the microbiota. DCs are classically divided into three subsets based on their CD103 and CD11b expression: CD103+CD11b-(XCR1+) cDC1s, CD103+CD11b+ cDC2s, and CD103-CD11b+ cDC2s. Meanwhile, mature gut MPs have recently been classified by their expression of Tim-4 and CD4 into a long-lived, self-maintaining Tim-4+CD4+ population and short-lived, monocyte-derived Tim-4-CD4+ and Tim-4-CD4- populations. In this chapter, we provide experimental procedures to classify and isolate these myeloid subsets from the murine intestinal lamina propria for functional characterization.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
|
27
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
28
|
Abstract
Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3+ Tregs and Foxp3- Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.
Collapse
Affiliation(s)
- Leticia Tordesillas
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1198, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
29
|
Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 2018; 11:1551-1557. [PMID: 29867079 PMCID: PMC8767637 DOI: 10.1038/s41385-018-0039-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/07/2023]
Abstract
Goblet cells (GCs) are specialized epithelial cells that line multiple mucosal surfaces and have a well-appreciated role in barrier maintenance through the secretion of mucus. Moreover, GCs secrete anti-microbial proteins, chemokines, and cytokines demonstrating functions in innate immunity beyond barrier maintenance. Recently it was appreciated that GCs can form goblet cell-associated antigen passages (GAPs) and deliver luminal substances to underlying lamina propria (LP) antigen-presenting cells (APCs) in a manner capable of inducing adaptive immune responses. GCs at other mucosal surfaces share characteristics with the GAP forming intestinal GCs, suggesting that GAP formation may not be restricted to the gut, and that GCs may perform this gatekeeper function at other mucosal surfaces. Here we review observations of how GCs contribute to immunity at mucosal surfaces through barrier maintenance, the delivery of luminal substances to APCs, interactions with APCs, and secretion of factors modulating immune responses.
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123,Send correspondence to: , 314-362-2670, Fax 314-362-2609, Correspondence and requests for materials should be addressed to KAK
| | - Rodney D. Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123
| |
Collapse
|
30
|
González-Cano P, Gamage LNA, Marciniuk K, Hayes C, Napper S, Hayes S, Griebel PJ. Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 2017; 35:7256-7263. [PMID: 29153779 DOI: 10.1016/j.vaccine.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
Bacteriophage are structurally stable in the gastro-intestinal tract and have favorable traits of safety, stability, ease of production, and immunogenicity. These attributes make them potential candidates as oral vaccine delivery vehicles but little is known about their capacity to induce mucosal immune responses in the small intestine. Whole body imaging of mice confirmed lambda bacteriophage (LP) were distributed throughout the gastro-intestinal tract 24 h after oral delivery. In newborn calves, targeted delivery of LP within the small intestine confirmed LP were immunogenic in a dose-dependent manner and were taken up by Peyer's patches. LP-specific IgA responses were induced within both Peyer's patches and draining mesenteric lymph nodes. A lambda display phage (LDP) was constructed to present three immunogenic disease specific epitopes (DSE) from cervid prion protein (amino acids 130-140 [YML]; 163-170 [YRR]; and 171-178[YRR]) fused to phage capsid head protein D (LDP-DSE). Targeted delivery of purified LDP-DSE to intestinal segments induced IgA responses to all three peptide epitopes. Further, delivery of bacteria expressing soluble D-DSE also induced epitope-specific IgA responses in the targeted Peyer's patches. These are the first studies to report use of LDP to induce epitope-specific IgA responses in the small intestine andconfirm Peyer's patchesfunction as a site for LP uptake. Furthermore, IgA responses to peptide epitopes on LDP were observed in the absence of a mucosal adjuvant. These observations confirm LDP have the capacity to function as a mucosal delivery vehicle with protein D as an effective carrier for peptide epitopes.
Collapse
Affiliation(s)
| | | | - Kristen Marciniuk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Connie Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Scott Napper
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Philip J Griebel
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
31
|
Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol 2017; 10:1375-1386. [PMID: 28766556 PMCID: PMC5939566 DOI: 10.1038/mi.2017.65] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
The mammalian gastrointestinal tract can harbor both beneficial commensal bacteria important for host health, but also pathogenic bacteria capable of intestinal damage. It is therefore important that the host immune system mount the appropriate immune response to these divergent groups of bacteria-promoting tolerance in response to commensal bacteria and sterilizing immunity in response to pathogenic bacteria. Failure to induce tolerance to commensal bacteria may underlie immune-mediated diseases such as human inflammatory bowel disease. At homeostasis, regulatory T (Treg) cells are a key component of the tolerogenic response by adaptive immunity. This review examines the mechanisms by which intestinal bacteria influence colonic T-cells and B-cell immunoglobulin A (IgA) induction, with an emphasis on Treg cells and the role of antigen-specificity in these processes. In addition to discussing key primary literature, this review highlights current controversies and important future directions.
Collapse
|
32
|
Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 2017; 10:845-864. [PMID: 28378807 DOI: 10.1038/mi.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt to deal with the challenges specific to their environment. Understanding these processes should help target individual subsets for 'fine tuning' immunological responses within the intestine, a process that may be of relevance both for the treatment of inflammatory bowel disease (IBD) and for optimized vaccine design.
Collapse
|
33
|
Diets containing different fermentable substrates can affect mucosal and systemic immune parameters in rats under homeostatic conditions. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
34
|
Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol 2015; 8:799-814. [PMID: 25492476 DOI: 10.1038/mi.2014.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 10/09/2014] [Indexed: 02/04/2023]
Abstract
Intestinal mucosa remains a pivotal barrier for the oral vaccine absorption of H9N2 whole inactivated influenza virus (WIV). However, CpG DNA, as an adjuvant, can effectively improve relevant mucosal and systemic immunity. The downstream mechanism is well confirmed, yet the evidence of CpG DNA assisting H9N2 WIV in transepithelial delivery is lacking. Here, we reported both in vitro and in vivo that CpG DNA combined with H9N2 WIV was capable of recruiting additional dendritic cells (DCs) to the intestinal epithelial cells (ECs) to form transepithelial dendrites (TEDs) for luminal viral uptake. Both CD103(+) and CD103(-) DCs participated in this process. The engagement of the chemokine CCL20 from the apical ECs and the DCs drove DC recruitment and TED formation. Virus-loaded CD103(+) but not CD103(-) DCs also quickly migrated into mesenteric lymph nodes within 2 h. Moreover, the mechanism of CpG DNA was independent of epithelial transcytosis and disruption of the epithelial barriers. Finally, the subsequent phenotypic and functional maturation of DCs was also enhanced. Our findings indicated that CpG DNA improved the delivery of H9N2 WIV via TEDs of intestinal DCs, and this may be an important mechanism for downstream effective antigen-specific immune responses.
Collapse
Affiliation(s)
- Y Yin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - T Qin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - X Wang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - J Lin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Q Yu
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Q Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 2015; 308:G840-51. [PMID: 25747351 PMCID: PMC4437018 DOI: 10.1152/ajpgi.00029.2015] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/27/2015] [Indexed: 01/31/2023]
Abstract
A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders.
Collapse
Affiliation(s)
- M. Kristina Hamilton
- 1Department of Anatomy, Physiology and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California;
| | - Gaëlle Boudry
- 3Institut National de la Recherche Agronomique (INRA) UR 1341 Alimentation and Adaptations Digestives, Nerveuses et Comportementales (ADNC), St.-Gilles, France
| | | | - Helen E. Raybould
- 1Department of Anatomy, Physiology and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California;
| |
Collapse
|
36
|
H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:421-9. [PMID: 25673304 DOI: 10.1128/cvi.00778-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza whole inactivated virus (WIV) is more immunogenic and induces protective antibody responses compared with other formulations, like split virus or subunit vaccines, after intranasal mucosal delivery. Polyethyleneimine (PEI), an organic polycation, is widely used as a reagent for gene transfection and DNA vaccine delivery. Although PEI recently has demonstrated potent mucosal adjuvant activity for viral subunit glycoprotein antigens, its immune activity with H9N2 WIV is not well demonstrated. Here, mice were immunized intranasally with H9N2 WIV combined with PEI, and the levels of local respiratory tract and systemic immune responses were measured. Compared to H9N2 WIV alone, antigen-specific IgA levels in the local nasal cavity, trachea, and lung, as well as levels of IgG and its subtypes (IgG1 and IgG2a) in the serum, were strongly enhanced with the combination. Similarly, the activation and proliferation of splenocytes were markedly increased. In addition, PEI is superior as an H9N2 WIV delivery system due to its ability to greatly increase the viral adhesion to mucosal epithelial cells and to enhance the cellular uptake and endosomal escape of antigens in dendritic cells (DCs) and further significantly activate DCs to mature. Taken together, these results provided more insights that PEI has potential as an adjuvant for H9N2 particle antigen intranasal vaccination.
Collapse
|
37
|
Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol 2015; 8:198-210. [PMID: 25005358 PMCID: PMC4268115 DOI: 10.1038/mi.2014.58] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 02/07/2023]
Abstract
The delivery of luminal substances across the intestinal epithelium to the immune system is a critical event in immune surveillance, resulting in tolerance to dietary antigens and immunity to pathogens. How this process is regulated is largely unknown. Recently goblet cell-associated antigen passages (GAPs) were identified as a pathway delivering luminal antigens to underlying lamina propria (LP) dendritic cells in the steady state. Here, we demonstrate that goblet cells (GCs) form GAPs in response to acetylcholine (ACh) acting on muscarinic ACh receptor 4. GAP formation in the small intestine was regulated at the level of ACh production, as GCs rapidly formed GAPs in response to ACh analogs. In contrast, colonic GAP formation was regulated at the level of GC responsiveness to ACh. Myd88-dependent microbial sensing by colonic GCs inhibited the ability of colonic GCs to respond to Ach to form GAPs and deliver luminal antigens to colonic LP-antigen-presenting cells (APCs). Disruption of GC microbial sensing in the setting of an intact gut microbiota opened colonic GAPs, and resulted in recruitment of neutrophils and APCs and production of inflammatory cytokines. Thus GC intrinsic sensing of the microbiota has a critical role regulating the exposure of the colonic immune system to luminal substances.
Collapse
|
38
|
Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson MEV. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2014; 16:164-77. [PMID: 25525071 PMCID: PMC4328744 DOI: 10.15252/embr.201439263] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen-free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria—which is comparable to what we observed in free-living wild mice—whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.
Collapse
Affiliation(s)
- Hedvig E Jakobsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences, Oslo, Norway
| | - Mats Bemark
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Felix Sommer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Feehley T, Nagler CR. Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens. Curr Opin Immunol 2014; 31:79-86. [PMID: 25458998 PMCID: PMC4255329 DOI: 10.1016/j.coi.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Food allergies are a growing public health concern. The rapidly increasing prevalence of allergic disease cannot be explained by genetic variation alone, suggesting a role for gene-by-environment interactions. The bacteria that colonize barrier surfaces, often referred to as the commensal microbiota, are dramatically affected by environmental factors and have a major impact on host health and homeostasis. Increasing evidence suggests that alterations in the composition of the microbiota, caused by factors such as antibiotic use and diet, are contributing to increased sensitization to dietary antigens. This review will discuss the cellular and molecular pathways activated by commensal bacteria to protect against allergic sensitization. By understanding the interplay between the environment, the microbiota, and the host, we may uncover novel therapeutic targets that will allow us to control the allergy epidemic.
Collapse
Affiliation(s)
- Taylor Feehley
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA.
| |
Collapse
|
40
|
Abstract
Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggest that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Teresa L Ai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
41
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
42
|
Abstract
The intestinal epithelium is covered with mucus with the main structural building block being the densely O-glycosylated MUC2 mucin. The intestinal epithelium is exposed to ingested material, our digestive machinery, and large amounts of microorganisms. Mucus is the first line of defense and aids to limit exposure to all these threats to the epithelium. In the small intestine, mucus acts as a matrix, which contains antimicrobial products, such as defensins and immunoglobulin A that limit epithelial exposure to the luminal bacteria. In the colon, the stratified inner mucus layer acts as a physical barrier excluding bacteria from the epithelium. Bacterial penetration of this normally restricted zone is observed in many colitis models and also in patients with ulcerative colitis. Mucus defects that allow bacteria to reach the epithelium and to stimulate an immune system response can lead to the development of intestinal inflammation. The current state of our knowledge concerning the function of the mucus layers and the main mucin component, MUC2, in inflammatory bowel disease is described in this review.
Collapse
|
43
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Boudry G, Hamilton M. 35. Milk formula and intestinal barrier function. HUMAN HEALTH HANDBOOKS 2014. [DOI: 10.3920/978-90-8686-223-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J Virol 2014; 88:6934-43. [PMID: 24696493 DOI: 10.1128/jvi.00204-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. M cells have also been suggested as a portal for pathogen entry into the host. While virus particles have been observed in M cells, it is not known whether viruses use M cells to initiate a productive infection. Noroviruses (NoVs) are single-stranded RNA viruses that infect host organisms via the fecal-oral route. Murine NoV (MNV) infects intestinal macrophages and dendritic cells and provides a tractable experimental system for understanding how an enteric virus overcomes the intestinal epithelial barrier to infect underlying target cells. We found that replication of two divergent MNV strains was reduced in mice depleted of M cells. Reoviruses are double-stranded RNA viruses that infect hosts via respiratory or enteric routes. In contrast to MNV, reovirus infects enterocytes in the intestine. Despite differences in cell tropism, reovirus infection was also reduced in M cell-depleted mice. These data demonstrate that M cells are required for the pathogenesis of two unrelated enteric viruses that replicate in different cell types within the intestine. IMPORTANCE To successfully infect their hosts, pathogens that infect via the gastrointestinal tract must overcome the multilayered system of host defenses. Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. Virus particles have been observed within M cells. However, it is not known whether viruses use M cells to initiate a productive infection. To address this question, we use MNV and reovirus, two enteric viruses that replicate in different cell types in the intestine, intestinal epithelial cells for reovirus and intestinal mononuclear phagocytes for MNV. Interestingly, MNV- and reovirus-infected mice depleted of M cells showed reduced viral loads in the intestine. Thus, our work demonstrates the importance of M cells in the pathogenesis of enteric viruses irrespective of the target cell type in which the virus replicates.
Collapse
|
46
|
Büsing K, Elhensheri M, Entzian K, Meyer U, Zeyner A. Microscopic examination of the intestinal wall and selected organs of minipigs orally supplemented with humic acids. Res Vet Sci 2014; 96:308-10. [PMID: 24411655 DOI: 10.1016/j.rvsc.2013.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Humic acids are used to prophylactically treat intestinal diseases in a wide number of species, yet the mechanism of action remains unknown. The general assumption has been that humic acids act locally; however studies using young piglets show orally supplemented humic acids can penetrate the intestinal wall, and thus potentially act systemically. The objective of this study was to determine if humic acids could also cross the intestinal barrier in adult pigs and be detected in other organs. Adult minipigs (>18 months old) orally received either 1g humic acids/kg body weight (verum, n=3) or placebo (control, n=3), for 2 weeks. At the end of the feeding period tissue samples were harvested from the intestine, various glands and organs. Unstained tissue samples were examined by light microscopy for the presence of humic acid particles. No humic acid particles were detected in any of the unstained tissues from verum or control pigs.
Collapse
Affiliation(s)
- Kirsten Büsing
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Chair for Nutritional Physiology and Animal Nutrition, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | - Mohamed Elhensheri
- BIOSERV Analytik und Medizinprodukte GmbH, Test Laboratory of Medical Devices, Drugs and Chemicals, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Kristin Entzian
- BIOSERV Analytik und Medizinprodukte GmbH, Test Laboratory of Medical Devices, Drugs and Chemicals, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Udo Meyer
- BIOSERV Analytik und Medizinprodukte GmbH, Test Laboratory of Medical Devices, Drugs and Chemicals, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Annette Zeyner
- Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences III, Department of Animal Nutrition, Theodor-Lieser-Straße 11, 06120 Halle (Saale), Germany
| |
Collapse
|
47
|
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14:660-7. [PMID: 23778793 DOI: 10.1038/ni.2611] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023]
Abstract
The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.
Collapse
Affiliation(s)
- Eric M Brown
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
48
|
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4:185. [PMID: 23874333 PMCID: PMC3709412 DOI: 10.3389/fimmu.2013.00185] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Department of Immunology and Allergy, University State Hospital Lausanne (CHUV) , Lausanne , Switzerland
| |
Collapse
|