1
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
2
|
Santoso A, Levink I, Pihlak R, Chau I. The Immune Landscape and Its Potential for Immunotherapy in Advanced Biliary Tract Cancer. Curr Oncol 2024; 32:24. [PMID: 39851940 PMCID: PMC11763487 DOI: 10.3390/curroncol32010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Biliary tract cancers (BTC) are a highly heterogeneous group of cancers at the genomic, epigenetic and molecular levels. The vast majority of patients initially present at an advanced (unresectable) disease stage due to a lack of symptoms and an aggressive tumour biology. Chemotherapy has been the mainstay of treatment in patients with advanced BTC but the survival outcomes and prognosis remain poor. The addition of immune checkpoint inhibitors (ICI) to chemotherapy have shown only a marginal benefit over chemotherapy alone due to the complex tumour immune microenvironment of these cancers. This review appraises our current understanding of the immune landscape of advanced BTC, including emerging transcriptome-based classifications, highlighting the mechanisms of immune evasion and resistance to ICI and their therapeutic implications. It describes the shifting treatment paradigm from traditional chemotherapy to immunotherapy combinations as well as the potential biomarkers for predicting response to ICI.
Collapse
Affiliation(s)
- Andry Santoso
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| | - Iris Levink
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Rille Pihlak
- University Hospitals Sussex NHS Foundation Trust, Brighton BN1 9RW, UK;
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| |
Collapse
|
3
|
Zhong JC, Lerrer S, Mor A. An Imaging-Based Assay to Measure the Location of PD-1 at the Immune Synapse for Testing the Binding Efficacy of Anti-PD-1 and Anti-PD-L1 Antibodies. Bio Protoc 2024; 14:e5057. [PMID: 39282229 PMCID: PMC11393042 DOI: 10.21769/bioprotoc.5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 09/18/2024] Open
Abstract
PD-1 is an immune checkpoint on T cells. Antibodies to PD-1 or its ligand PD-L1 are gaining popularity as a leading immunotherapy approach. In the US, 40% of all cancer patients will be treated with anti-PD-1 or anti-PD-L1 antibodies but, unfortunately, only 30% will respond, and many will develop immune-related adverse events. There are nine FDA-approved anti-PD-1/PD-L1 antibodies, and approximately 100 are in different stages of clinical development. It is a clinical challenge to choose the correct antibody for a given patient, and this is critical in advanced malignancies, which often do not permit a second-line intervention. To resolve that, an in vitro assay to compare the performance of the different anti-PD-1/PD-L1 antibodies is not only a critical tool for research purposes but also a possible tool for personalized medicine. There are some assays describing the binding affinity and function of anti-PD-1/PD-L1 antibodies. However, a significant limitation of existing assays is that they need to consider the location of PD-1 in the immune synapse, the interface between the T cell and tumor cells, and, therefore, ignore a critical component in its biology. To address this, we developed and validated an imaging-based assay to quantify and compare the ability of different anti-PD-1/PD-L1 antibodies to remove PD-1 from the immune synapse. We correlated that with the same antibodies' ability to increase cytokine secretion from the targeted cells. The strong correlation between PD-1 location and its function in vitro and in vivo within the antibody treatment setting validates this assay's usability, which is easily recordable and straightforward. Key features • Live-cell imaging quantifies and compares how anti-PD-1 and anti-PD-L1 antibodies disrupt PD-1 localization, causing the removal of PD-1 during immune synapse formation. • Hao et al. [1] validated the protocol, and the findings were extended to a live confocal microscopy method. • It requires a Zeiss LSM 900 confocal microscope and appropriate imaging software and is optimized for the latest version of Zen Blue. • Anti-PD-1 antibodies are commonly used in cancer therapies, and this protocol optimizes the analysis of their effectiveness.
Collapse
Affiliation(s)
- Justin C. Zhong
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
- John Hopkins University, Department of Biology, Baltimore, MD, USA
| | - Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Long F, Zhong W, Zhao F, Xu Y, Hu X, Jia G, Huang L, Yi K, Wang N, Si H, Wang J, Wang B, Rong Y, Yuan Y, Yuan C, Wang F. DAB2 + macrophages support FAP + fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics 2024; 14:4822-4843. [PMID: 39239526 PMCID: PMC11373629 DOI: 10.7150/thno.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the key components of the immune barrier in liver cancer. Therefore, gaining a deeper understanding of the heterogeneity and intercellular communication of CAFs holds utmost importance in boosting immunotherapy effectiveness and improving clinical outcomes. Methods: A comprehensive analysis by combing single-cell, bulk, and spatial transcriptome profiling with multiplexed immunofluorescence was conducted to unravel the complexities of CAFs in liver cancer. Results: Through an integrated approach involving 235 liver cancer scRNA-seq samples encompassing over 1.2 million cells, we found that CAFs were particularly increased in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). FAP + fibroblasts were identified as the dominant subtype of CAFs, and which were mainly involved in extracellular matrix organization and angiogenesis. These CAFs were enriched in the tumor boundary of HCC, but diffusely scattered within ICC. The DAB2 + and SPP1 + tumor-associated macrophages (TAMs) reinforce the function of FAP + CAFs through signals such as TGF-β, PDGF, and ADM. Notably, the interaction between DAB2 + TAMs and FAP + CAFs promoted the formation of immune barrier and correlated with poorer patient survival, non-response to immunotherapy in HCC. High FAP and DAB2 immunohistochemical scores predicted shorter survival and higher serum AFP concentration in a local clinical cohort of 90 HCC patients. Furthermore, this communication pattern might be applicable to other solid malignancies as well. Conclusions: The interaction between DAB2 + TAMs and FAP + CAFs appears crucial in shaping the immune barrier. Strategies aimed at disrupting this communication or inhibiting the functions of FAP + CAFs could potentially enhance immunotherapy effectiveness and improve clinical outcomes.
Collapse
Affiliation(s)
- Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Faming Zhao
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaqi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
6
|
Tsujikawa T, Ohno K, Morita KI, Saburi S, Mitsuda J, Yoshimura K, Kimura A, Morimoto H, Ogi H, Shibata S, Akashi T, Kurata M, Imoto I, Shimizu Y, Kano S, Watanabe A, Yamazaki T, Asada Y, Hayashi R, Saito Y, Ozawa H, Tsukahara K, Oridate N, Sano D, Horii A, Ueki Y, Maruo T, Mukoyama N, Hanai N, Fukusumi T, Iwai H, Fujisawa T, Fujii T, Nibu KI, Iwae S, Ueda T, Chikuie N, Yasumatsu R, Matsuo M, Umeno H, Ono T, Masuda M, Toh S, Itoh K, Hirano S, Asakage T. Clinical, genomic and immune microenvironmental determinants of nivolumab response in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1390873. [PMID: 39136017 PMCID: PMC11317249 DOI: 10.3389/fimmu.2024.1390873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Background In view of improving biomarkers predicting the efficacy of immunotherapy for head and neck squamous cell carcinoma (R/M HNSCC), this multicenter retrospective study aimed to identify clinical, tumor microenvironmental, and genomic factors that are related to therapeutic response to the anti- Programmed cell death protein 1 (PD-1) antibody, nivolumab, in patients with R/M HNSCC. Methods The study compared 53 responders and 47 non-responders, analyzing formalin-fixed paraffin-embedded samples using 14-marker multiplex immunohistochemistry and targeted gene sequencing. Results Of 100 patients included, responders had significantly lower smoking and alcohol index, higher incidence of immune related adverse events, and higher PD-1 ligand (PD-L1) expression in immune cells as well as PD-L1 combined positive score (CPS) than non-responders. The frequency of natural killer cells was associated with nivolumab response in patients with prior cetuximab use, but not in cetuximab-naïve status. Age-stratified analysis showed nivolumab response was linked to high CPS and lymphoid-inflamed profiles in patients aged ≥ 65. In contrast, lower NLR in peripheral blood counts was associated with response in patients aged < 65. Notably, TP53 mutation-positive group had lower CPS and T cell densities, suggesting an immune-excluded microenvironment. Patients with altered tumor suppressor gene pathways, including TP53, CDKN2A, and SMAD4 mutations, had lower CPS, higher smoking index, and were associated with poor responses. Conclusion Nivolumab treatment efficacy in HNSCC is influenced by a combination of clinical factors, age, prior treatment, immune environmental characteristics, and gene mutation profiles.
Collapse
Affiliation(s)
- Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Kazuchika Ohno
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junichi Mitsuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanako Yoshimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Alisa Kimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Morimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings, Kyoto, Japan
| | | | - Takumi Akashi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasushi Shimizu
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihito Watanabe
- Department of Otolaryngology- Head and Neck Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Tomoko Yamazaki
- Department Head and Neck Oncology Division, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Ryuichi Hayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuki Saito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Maruo
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Mukoyama
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takuo Fujisawa
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takashi Fujii
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Ken-ichi Nibu
- Department of Otolaryngology–Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigemichi Iwae
- Department of Head and Neck Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Tsutomu Ueda
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuyuki Chikuie
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mioko Matsuo
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Ono
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Restrepo JC, Martínez Guevara D, Pareja López A, Montenegro Palacios JF, Liscano Y. Identification and Application of Emerging Biomarkers in Treatment of Non-Small-Cell Lung Cancer: Systematic Review. Cancers (Basel) 2024; 16:2338. [PMID: 39001401 PMCID: PMC11240412 DOI: 10.3390/cancers16132338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) comprises approximately 85% of all lung cancer cases, often diagnosed at advanced stages, which diminishes the effective treatment options and survival rates. This systematic review assesses the utility of emerging biomarkers-circulating tumor DNA (ctDNA), microRNAs (miRNAs), and the blood tumor mutational burden (bTMB)-enhanced by next-generation sequencing (NGS) to improve the diagnostic accuracy, prognostic evaluation, and treatment strategies in NSCLC. Analyzing data from 37 studies involving 10,332 patients from 2020 to 2024, the review highlights how biomarkers like ctDNA and PD-L1 expression critically inform the selection of personalized therapies, particularly beneficial in the advanced stages of NSCLC. These biomarkers are critical for prognostic assessments and in dynamically adapting treatment plans, where high PD-L1 expression and specific genetic mutations (e.g., ALK fusions, EGFR mutations) significantly guide the use of targeted therapies and immunotherapies. The findings recommend integrating these biomarkers into standardized clinical pathways to maximize their potential in enhancing the treatment precision, ultimately fostering significant advancements in oncology and improving patient outcomes and quality of life. This review substantiates the prognostic and predictive value of these biomarkers and emphasizes the need for ongoing innovation in biomarker research.
Collapse
Affiliation(s)
- Juan Carlos Restrepo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Darly Martínez Guevara
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Andrés Pareja López
- Grupo de Investigación Unidad de Toxicidad In Vitro-UTi, Facultad de Ciencias, Universidad CES, Medellin 050021, Colombia
| | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
8
|
Bafor EE, Erwin-Cohen RA, Martin T, Baker C, Kimmel AE, Duverger O, Fenimore JM, Ramba M, Spindel T, Hess MM, Sanford M, Lazarevic V, Benayoun BA, Young HA, Valencia JC. Aberrant CD8 +T cells drive reproductive dysfunction in female mice with elevated IFN-γ levels. Front Immunol 2024; 15:1368572. [PMID: 38698852 PMCID: PMC11064017 DOI: 10.3389/fimmu.2024.1368572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.
Collapse
Affiliation(s)
- Enitome E. Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Rebecca A. Erwin-Cohen
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Toni Martin
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Clayton Baker
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Adrienne E. Kimmel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - John M. Fenimore
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Meredith Ramba
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Thea Spindel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Megan M. Hess
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Michael Sanford
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julio C. Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
9
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X, Liu Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer 2024; 23:75. [PMID: 38582847 PMCID: PMC10998345 DOI: 10.1186/s12943-024-01980-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengjun Xu
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Marín-Aquino LA, Mora-García MDL, Moreno-Lafont MC, García-Rocha R, Montesinos-Montesinos JJ, López-Santiago R, Sánchez-Torres LE, Torres-Pineda DB, Weiss-Steider B, Hernández-Montes J, Don-López CA, Monroy-García A. Adenosine increases PD-L1 expression in mesenchymal stromal cells derived from cervical cancer through its interaction with A 2AR/A 2BR and the production of TGF-β1. Cell Biochem Funct 2024; 42:e4010. [PMID: 38613217 DOI: 10.1002/cbf.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-β1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-β1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-β1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-β1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-β1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-β1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-β1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCyT, Ciudad de México, México
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ruben López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Laboratorio de Inmunología de los microorganismos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| |
Collapse
|
11
|
Wang X, Pan H, Cui J, Chen X, Yoon WH, Carlino MS, Li X, Li H, Zhang J, Sun J, Guo J, Cui C. SAFFRON-103: a phase Ib study of sitravatinib plus tislelizumab in anti-PD-(L)1 refractory/resistant advanced melanoma. Immunotherapy 2024; 16:243-256. [PMID: 38197138 DOI: 10.2217/imt-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Aim: Investigate TKI sitravatinib plus anti-PD-1 antibody tislelizumab in patients with unresectable/advanced/metastatic melanoma with disease progression on/after prior first-line anti-PD-(L)1 monotherapy. Methods: Open-label, multicenter, multicohort study (NCT03666143). Patients in the melanoma cohort (N = 25) received sitravatinib once daily plus tislelizumab every 3 weeks. The primary end point was safety and tolerability. Results: Treatment-emergent adverse events (TEAEs) occurred in all patients, with ≥grade 3 TEAEs in 52.0%. Most TEAEs were mild-or-moderate in severity, none were fatal, and few patients discontinued treatment owing to TEAEs (12.0%). Objective response rate was 36.0% (95% CI: 18.0-57.5). Median progression-free survival was 6.7 months (95% CI: 4.1-not estimable). Conclusion: Sitravatinib plus tislelizumab had manageable safety/tolerability in patients with anti-PD-(L)1 refractory/resistant unresectable/advanced/metastatic melanoma, with promising antitumor activity. Clinical Trial Registration: NCT03666143 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xuan Wang
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Xiao Chen
- The First Hospital of Jilin University, Changchun, China
| | - Won-Hee Yoon
- Blacktown Cancer and Haematology Centre, Blacktown, NSW, Australia
| | - Matteo S Carlino
- Blacktown Cancer and Haematology Centre, Blacktown, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Xin Li
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Hui Li
- BeiGene (Shanghai) Co., Ltd., Shanghai, China
| | - Juan Zhang
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | - Jun Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
12
|
Jiang T, Xia Y, Li Y, Lu C, Lin J, Shen Y, Lv J, Xie L, Gu C, Xu Z, Wang L. TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer. Cancer Lett 2024; 581:216510. [PMID: 38029830 DOI: 10.1016/j.canlet.2023.216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.
Collapse
Affiliation(s)
- Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Lee JH, Lee JD, Paulson K, Voillet V, Berndt A, Church C, Lachance K, Park SY, Yamamoto NK, Cromwell EA, Gottardo R, Chapuis AG, Nghiem P. Enhancing immunogenic responses through CDK4/6 and HIF2α inhibition in Merkel cell carcinoma. Heliyon 2024; 10:e23521. [PMID: 38173534 PMCID: PMC10761584 DOI: 10.1016/j.heliyon.2023.e23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Approximately 50% of Merkel cell carcinoma (MCC) patients facing this highly aggressive skin cancer initially respond positively to PD-1-based immunotherapy. Nevertheless, the recurrence of MCC post-immunotherapy emphasizes the pressing need for more effective treatments. Recent research has highlighted Cyclin-dependent kinases 4 and 6 (CDK4/6) as pivotal cell cycle regulators gaining prominence in cancer studies. This study reveals that the CDK4/6 inhibitor, palbociclib can enhance PD-L1 gene transcription and surface expression in MCC cells by activating HIF2α. Inhibiting HIF2α with TC-S7009 effectively counteracts palbociclib-induced PD-L1 transcription and significantly intensifies cell death in MCC. Simultaneously, co-targeting CDK4/6 and HIF2α boosts ROS levels while suppressing SLC7A11, a key regulator of cellular redox balance, promoting ferroptosis- a form of immunogenic cell death linked to iron. Considering the rising importance of immunogenic cell death in immunotherapy, this strategy holds promise for improving future MCC treatments, markedly increasing immunogenic cell death various across various MCC cell lines, thus advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Justin Daho Lee
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kelly Paulson
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andre Berndt
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Candice Church
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kristina Lachance
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Song Y. Park
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Naomi K. Yamamoto
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aude G. Chapuis
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
- Seattle Cancer Care Alliance, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul Nghiem
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
- Seattle Cancer Care Alliance, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
14
|
Lin Z, Liu M, Xing W, Wang F, Zhang H, Wei X, Schmitthenner H, Xie X, Xia X, Yang J. A near-infrared fluorescence-enhancing plasmonic biosensing microarray identifies soluble PD-L1 and ICAM-1 as predictive checkpoint biomarkers for cancer immunotherapy. Biosens Bioelectron 2023; 240:115633. [PMID: 37683502 DOI: 10.1016/j.bios.2023.115633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Sensitive and accurate biomarker-driven assay guidance has been widely adopted to identify responsive patients for immune checkpoint blockade (ICB) therapy to impede disease progression and extend survival. However, most current assays are invasive, requiring surgical pathology specimens and only informing monochronic information. Here, we report a multiplexed enhanced fluorescence microarray immunoassay (eFMIA) based on a nanostructured gold nanoisland substrate (AuNIS), which macroscopically amplifies near-infrared fluorescence (NIRF) of a structurally symmetric IRDye78 fluorophore by over two orders of magnitude of 202.6-fold. Aided by non-contact piezo-driven micro-dispensing (PDMD), eFMIA simultaneously and semi-quantitatively detected intracellular and secreted programmed death-ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1) in human nasopharyngeal carcinoma (NPC) cells. The assay performance was superior to fluorescence immunoassays (FIA) and enzyme-linked immunosorbent assays (ELISA), with lower detection limits. Using eFMIA, we found significantly differential levels of soluble PD-L1 (sPD-L1) and sICAM-1 in the sera of 28 cancer patients, with different clinical outcomes following anti-PD-1 ICB therapy. With a well-characterized mechanism, the high-performance plasmonic multiplexed assay with the composite biomarkers may be a valuable tool to assist clinicians with decision-making and patient stratification to afford predictive ICB therapy responses.
Collapse
Affiliation(s)
- Zhijun Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mengyao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Xing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fenghua Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hans Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, 14623, United States
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Douguet L, Fert I, Lopez J, Vesin B, Le Chevalier F, Moncoq F, Authié P, Nguyen T, Noirat A, Névo F, Blanc C, Bourgine M, Hardy D, Anna F, Majlessi L, Charneau P. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med 2023; 15:e17723. [PMID: 37675835 PMCID: PMC10565635 DOI: 10.15252/emmm.202317723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Laëtitia Douguet
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Ingrid Fert
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Jodie Lopez
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Benjamin Vesin
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Le Chevalier
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fanny Moncoq
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Authié
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Trang‐My Nguyen
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Amandine Noirat
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Névo
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Catherine Blanc
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Maryline Bourgine
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - David Hardy
- Histopathology Platform, Institut PasteurUniversité de ParisParisFrance
| | - François Anna
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Laleh Majlessi
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Charneau
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| |
Collapse
|
16
|
Fahey CC, Gracie TJ, Johnson DB. Immune checkpoint inhibitors: maximizing benefit whilst minimizing toxicity. Expert Rev Anticancer Ther 2023; 23:673-683. [PMID: 37194222 PMCID: PMC10330517 DOI: 10.1080/14737140.2023.2215435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION The advent of immunotherapy has revolutionized the treatment of cancer; anti-tumor efficacy has been observed with immune checkpoint inhibitors (ICI) in ~20 different cancer types with durable responses in some cases. However, the risk of toxicity in the form of immune-related adverse events (irAE) partially counterbalances these benefits, and there are no FDA-approved biomarkers to categorize patients by likelihood of response or risk of irAEs. AREAS COVERED We conducted a thorough review of the literature of clinical studies regarding ICI and their toxicities. In this review, we synthesize the current body of literature about ICI treatment and irAE by summarizing the classes and uses of ICI, how to identify patients at risk for irAE, present the current understanding of irAE development, describe ongoing research into biomarkers of irAE, examine opportunities for irAE prevention, described management of steroid refractory irAE, and highlight future directions for development of prevention and management strategies. EXPERT OPINION While ongoing biomarker studies are promising, it is unlikely that there will be a 'one-size-fits-all' approach to categorizing irAE risk. In contrast, improved management and irAE prophylaxis are potentially in reach, and ongoing trials will help elucidate best practices.
Collapse
|
17
|
Eldridge RC, Qin ZS, Saba NF, Houser MC, Hayes DN, Miller AH, Bruner DW, Jones DP, Xiao C. Unsupervised Hierarchical Clustering of Head and Neck Cancer Patients by Pre-Treatment Plasma Metabolomics Creates Prognostic Metabolic Subtypes. Cancers (Basel) 2023; 15:3184. [PMID: 37370794 PMCID: PMC10296258 DOI: 10.3390/cancers15123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
There is growing evidence that the metabolism is deeply intertwined with head and neck squamous cell carcinoma (HNSCC) progression and survival but little is known about circulating metabolite patterns and their clinical potential. We performed unsupervised hierarchical clustering of 209 HNSCC patients via pre-treatment plasma metabolomics to identify metabolic subtypes. We annotated the subtypes via pathway enrichment analysis and investigated their association with overall and progression-free survival. We stratified the survival analyses by smoking history. High-resolution metabolomics extracted 186 laboratory-confirmed metabolites. The optimal model created two patient clusters, of subtypes A and B, corresponding to 41% and 59% of the study population, respectively. Fatty acid biosynthesis, acetyl-CoA transport, arginine and proline, as well as the galactose metabolism pathways differentiated the subtypes. Relative to subtype B, subtype A patients experienced significantly worse overall and progression-free survival but only among ever-smokers. The estimated three-year overall survival was 61% for subtype A and 86% for subtype B; log-rank p = 0.001. The association with survival was independent of HPV status and other HNSCC risk factors (adjusted hazard ratio = 3.58, 95% CI: 1.46, 8.78). Our findings suggest that a non-invasive metabolomic biomarker would add crucial information to clinical risk stratification and raise translational research questions about testing such a biomarker in clinical trials.
Collapse
Affiliation(s)
- Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Madelyn C. Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - D. Neil Hayes
- Department of Medicine, UT/West Institute for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew H. Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Deborah W. Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| |
Collapse
|
18
|
Grajek J, Poleszczuk J. Carbonic Anhydrase IX Suppression Shifts Partial Response to Checkpoint Inhibitors into Complete Tumor Eradication: Model-Based Investigation. Int J Mol Sci 2023; 24:10068. [PMID: 37373220 DOI: 10.3390/ijms241210068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of solid malignancies, including non-small-cell lung cancer. However, immunotherapy resistance constitutes a significant challenge. To investigate carbonic anhydrase IX (CAIX) as a driver of resistance, we built a differential equation model of tumor-immune interactions. The model considers treatment with the small molecule CAIX inhibitor SLC-0111 in combination with ICIs. Numerical simulations showed that, given an efficient immune response, CAIX KO tumors tended toward tumor elimination in contrast to their CAIX-expressing counterparts, which stabilized close to the positive equilibrium. Importantly, we demonstrated that short-term combination therapy with a CAIX inhibitor and immunotherapy could shift the asymptotic behavior of the original model from stable disease to tumor eradication. Finally, we calibrated the model with data from murine experiments on CAIX suppression and combination therapy with anti-PD-1 and anti-CTLA-4. Concluding, we have developed a model that reproduces experimental findings and enables the investigation of combination therapies. Our model suggests that transient CAIX inhibition may induce tumor regression, given a sufficient immune infiltrate in the tumor, which can be boosted with ICIs.
Collapse
Affiliation(s)
- Julia Grajek
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, 02-109 Warsaw, Poland
| |
Collapse
|
19
|
Yang J, Wei M, Liu X, Shao X, Yan J, Liu J, Wen J, Zhang X, Dong R, Min M. PD-L1 expression downregulation by RNF43 in gastric carcinoma enhances antitumour activity of T cells. Scand J Immunol 2023; 97:e13268. [PMID: 39007965 DOI: 10.1111/sji.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Ring finger protein 43 (RNF43), a transmembrane E3 ubiquitin ligase, has been indicated to be a potential biomarker for gastric cancer treatment, as this protein increases tumour cell apoptosis and suppresses cellular proliferation. The role of RNF43 in cellular immunotherapy remains unclear. Herein, we aimed to explore the expression level of RNF43 in gastric cancer cell lines and its role in cellular immunotherapy. The expression level of RNF43 and PD-L1 and their correlation in gastric cancer cell lines were analysed. The expression of PD-L1 was negatively correlated with that of RNF43 in gastric cancer cell lines. RNF43 interacted with PD-L1 to augment both K48- and K63-linked ubiquitination of PD-L1 in gastric cancer cell lines. In addition, RNF43 expression in gastric cancer cell lines could enhance the antitumour activity of T cells. In conclusion, this study reveals that RNF43 can inhibit PD-L1 expression to enhance the antitumour activity of cellular immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xin Liu
- Department of Laboratory Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Shao
- Department of Pharmacology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingshuang Yan
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wen
- Department of Gastroenterology, Chinese PLA 984 Hospital, Beijing, China
| | - Xueting Zhang
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruihua Dong
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Min
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
William WN, Zhang J, Zhao X, Parra E, Uraoka N, Lin HY, Peng SA, El-Naggar AK, Rodriguez-Canales J, Song J, Gillenwater AM, Wistuba I, Myers J, Gold K, Ferrarotto R, Hwu P, Davoli T, Lee JJ, Heymach JV, Papadimitrakopoulou VA, Lippman SM. Spatial PD-L1, immune-cell microenvironment, and genomic copy-number alteration patterns and drivers of invasive-disease transition in prospective oral precancer cohort. Cancer 2023; 129:714-727. [PMID: 36597662 PMCID: PMC10508302 DOI: 10.1002/cncr.34607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Studies of the immune landscape led to breakthrough trials of programmed death-1 (PD-1) inhibitors for recurrent/metastatic head and neck squamous cell carcinoma therapy. This study investigated the timing, influence of somatic copy-number alterations (SCNAs), and clinical implications of PD-L1 and immune-cell patterns in oral precancer (OPC). METHODS The authors evaluated spatial CD3, CD3/8, and CD68 density (cells/mm2 ) and PD-L1 (membranous expression in cytokeratin-positive intraepithelial neoplastic cells and CD68) patterns by multiplex immunofluorescence in a 188-patient prospective OPC cohort, characterized by clinical, histologic, and SCNA risk factors and protocol-specified primary end point of invasive cancer. The authors used Wilcoxon rank-sum and Fisher exact tests, linear mixed effect models, mediation, and Cox regression and recursive-partitioning analyses. RESULTS Epithelial, but not CD68 immune-cell, PD-L1 expression was detected in 28% of OPCs, correlated with immune-cell infiltration, 9p21.3 loss of heterozygosity (LOH), and inferior oral cancer-free survival (OCFS), notably in OPCs with low CD3/8 cell density, dysplasia, and/or 9p21.3 LOH. High CD3/8 cell density in dysplastic lesions predicted better OCFS and eliminated the excess risk associated with prior oral cancer and dysplasia. PD-L1 and CD3/8 patterns revealed inferior OCFS in PD-L1 high intrinsic induction and dysplastic immune-cold subgroups. CONCLUSION This report provides spatial insight into the immune landscape and drivers of OPCs, and a publicly available immunogenomic data set for future precancer interrogation. The data suggest that 9p21.3 LOH triggers an immune-hot inflammatory phenotype; whereas increased 9p deletion size encompassing CD274 at 9p24.1 may contribute to CD3/8 and PD-L1 depletion during invasive transition. The inferior OCFS in PD-L1-high, immune-cold OPCs support the development of T-cell recruitment strategies.
Collapse
Affiliation(s)
- William N. William
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Hospital BP, a Beneficência Portuguesa de São Paulo, 01323-001 São Paulo, Brazil
| | - Jianjun Zhang
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xin Zhao
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, New York University Langone Health, New York, NY 10016
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Heather Y. Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - S. Andrew Peng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jaime Rodriguez-Canales
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jaejoon Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ann M. Gillenwater
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jeffrey Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kathryn Gold
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Renata Ferrarotto
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | - Teresa Davoli
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, New York University Langone Health, New York, NY 10016
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - John V. Heymach
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Vassiliki A. Papadimitrakopoulou
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Pfizer Inc, New York, NY
| | - Scott M. Lippman
- Department of Thoracic / Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
21
|
Tomlins SA, Khazanov NA, Bulen BJ, Hovelson DH, Shreve MJ, Lamb LE, Matrana MR, Burkard ME, Yang ESH, Edenfield WJ, Dees EC, Onitilo AA, Thompson M, Buchschacher GL, Miller AM, Menter A, Parsons B, Wassenaar T, Hwang LC, Suga JM, Siegel R, Irvin W, Nair S, Slim JN, Misleh J, Khatri J, Masters G, Thomas S, Safa M, Anderson DM, Kwiatkowski K, Mitchell K, Hu-Seliger T, Drewery S, Fischer A, Plouffe K, Czuprenski E, Hipp J, Reeder T, Vakil H, Johnson DB, Rhodes DR. Development and validation of an integrative pan-solid tumor predictor of PD-1/PD-L1 blockade benefit. COMMUNICATIONS MEDICINE 2023; 3:14. [PMID: 36750617 PMCID: PMC9905474 DOI: 10.1038/s43856-023-00243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Anti-PD-1 and PD-L1 (collectively PD-[L]1) therapies are approved for many advanced solid tumors. Biomarkers beyond PD-L1 immunohistochemistry, microsatellite instability, and tumor mutation burden (TMB) may improve benefit prediction. METHODS Using treatment data and genomic and transcriptomic tumor tissue profiling from an observational trial (NCT03061305), we developed Immunotherapy Response Score (IRS), a pan-tumor predictive model of PD-(L)1 benefit. IRS real-world progression free survival (rwPFS) and overall survival (OS) prediction was validated in an independent cohort of trial patients. RESULTS Here, by Cox modeling, we develop IRS-which combines TMB with CD274, PDCD1, ADAM12 and TOP2A quantitative expression-to predict pembrolizumab rwPFS (648 patients; 26 tumor types; IRS-High or -Low groups). In the 248 patient validation cohort (248 patients; 24 tumor types; non-pembrolizumab PD-[L]1 monotherapy treatment), median rwPFS and OS are significantly longer in IRS-High vs. IRS-Low patients (rwPFS adjusted hazard ratio [aHR] 0.52, p = 0.003; OS aHR 0.49, p = 0.005); TMB alone does not significantly predict PD-(L)1 rwPFS nor OS. In 146 patients treated with systemic therapy prior to pembrolizumab monotherapy, pembrolizumab rwPFS is only significantly longer than immediately preceding therapy rwPFS in IRS-High patients (interaction test p = 0.001). In propensity matched lung cancer patients treated with first-line pembrolizumab monotherapy or pembrolizumab+chemotherapy, monotherapy rwPFS is significantly shorter in IRS-Low patients, but is not significantly different in IRS-High patients. Across 24,463 molecularly-evaluable trial patients, 7.6% of patients outside of monotherapy PD-(L)1 approved tumor types are IRS-High/TMB-Low. CONCLUSIONS The validated, predictive, pan-tumor IRS model can expand PD-(L)1 monotherapy benefit outside currently approved indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Burkard
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eddy Shih-Hsin Yang
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | | | - E Claire Dees
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Adedayo A Onitilo
- Cancer Care and Research Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Michael Thompson
- Aurora Cancer Care, Advocate Aurora Health, Milwaukee, WI, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Alan M Miller
- SCL Health-CO, Broomfield, CO, USA
- Translational Drug Development, Scottsdale, USA
| | | | | | | | - Leon C Hwang
- Kaiser Permanente of the Mid-Atlantic States, Rockville, MD, USA
| | - J Marie Suga
- Kaiser Permanente Northern California, Vallejo, CA, USA
| | - Robert Siegel
- Bon Secours St. Francis Cancer Center, Greenville, SC, USA
| | | | - Suresh Nair
- Lehigh Valley Topper Cancer Institute, Allentown, PA, USA
| | | | | | - Jamil Khatri
- ChristianaCare Oncology Hematology, Newark, DE, USA
| | - Gregory Masters
- Medical Oncology Hematology Consultants, Helen F Graham Cancer Center and Research Institute,, Newark, DE, USA
| | - Sachdev Thomas
- Kaiser Permanente - Northern California, Oakland, CA, USA
| | | | - Daniel M Anderson
- Metro-Minnesota Community Oncology Research Consortium, St. Louis Park, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheng Y, Zhou Q, Han B, Fan Y, Shan L, Chang J, Sun S, Fang J, Chen Y, Sun J, Wu G, Mann H, Naicker K, Shire N, Mok T, de Castro G. NEPTUNE China cohort: First-line durvalumab plus tremelimumab in Chinese patients with metastatic non-small-cell lung cancer. Lung Cancer 2023; 178:87-95. [PMID: 36806898 DOI: 10.1016/j.lungcan.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The phase 3 NEPTUNE study (NCT02542293) evaluated first-line durvalumab plus tremelimumab (DT) versus chemotherapy for metastatic NSCLC. Prespecified exploratory analyses were conducted in an extended cohort enrolled in China. MATERIALS AND METHODS Patients were randomized (1:1) to DT or standard chemotherapy, stratified by PD-L1 tumor cell (TC) expression (≥25 % vs < 25 %), histology, and smoking history. The primary analysis for this cohort was overall survival (OS) in patients with PD-L1 TC < 1 %. Secondary analyses included OS and progression-free survival (PFS) in the ITT population and PD-L1 subgroups, and safety. No alpha was allocated to these cohort analyses (data cut-off, 21-September-2020). RESULTS 78 and 82 patients were randomized to DT and chemotherapy, respectively; 26 and 29 had PD-L1 TC < 1 % (median follow-up, 31.2 and 29.7 months [censored patients]). Among patients with PD-L1 TC < 1 %, OS favored DT versus chemotherapy (HR 0.60; 95 % CI, 0.32-1.11), with medians of 15.0 months (95 % CI, 10.5-27.4) and 11.7 months (95 % CI, 8.6-20.5), respectively; 24-month rates were 36.0 % (95 % CI, 18.2-54.2) and 17.9 % (95 % CI, 6.5-33.7). In the ITT population, OS was prolonged with DT versus chemotherapy (HR 0.70; 95 % CI, 0.48-1.02); medians were 20.0 and 14.1 months and 24-month rates were 44.2 % and 30.4 %. PFS was similar in the PD-L1 TC < 1 % (HR 1.13; 95 % CI, 0.59-2.14) and ITT (HR 0.95; 95 % CI, 0.66-1.36) populations; 12-month rates were 15.6 % versus 11.3 % and 23.9 % versus 16.6 %. Grade 3/4 treatment-related adverse events (TRAEs) occurred in 31.2 % with DT and 52.6 % with chemotherapy; 3.9 % versus 10.3 % discontinued due to TRAEs. CONCLUSIONS In exploratory analyses, first-line DT showed a trend towards improved OS versus chemotherapy among Chinese patients in the PD-L1 TC < 1 % population and ITT population, with 24-month OS and 12-month PFS rates indicating benefit in survival curve tails. DT was well tolerated with no new safety signals.
Collapse
Affiliation(s)
- Ying Cheng
- Jilin Cancer Hospital, Changchun, China.
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yun Fan
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Shan
- The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Chang
- Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen and Fudan University Shanghai Cancer Center, Shanghai (during study conduct), China
| | - Si Sun
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Fang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | - Tony Mok
- State Key Laboratory of South China, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
23
|
Vranic S, Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. BIOMOLECULES AND BIOMEDICINE 2023; 23:15-25. [PMID: 35964287 PMCID: PMC9901897 DOI: 10.17305/bjbms.2022.7953] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunotherapy, based on immune checkpoint inhibitors targeting the Programmed cell death ligand 1 (PD-L1) and/or Programmed Death Receptor 1 (PD-1), has substantially improved the outcomes of patients with various cancers. However, only ~30% of patients benefit from immune checkpoint inhibitors. Tumor PD-L1 expression, assessed by immunohistochemistry, is the most widely validated and used predictive biomarker to guide the selection of patients for immune checkpoint inhibitors. PD-L1 assessment may be challenging due to the necessity for different companion diagnostic assays for required specific immune checkpoint inhibitors and a relatively high level of inter-assay variability in terms of performance and cutoff levels. In this review, we discuss the role of PD-L1 immunohistochemistry as a predictive test in immunotherapy (immuno-oncology), highlight the complexity of the PD-L1 testing landscape, discuss various preanalytical, analytical and clinical issues that are associated with PD-L1 assays, and provide some insights into optimization of PD-L1 as a predictive biomarker in immuno-oncology.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar,Correspondence to Semir Vranic:
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| |
Collapse
|
24
|
de Castro G, Rizvi NA, Schmid P, Syrigos K, Martin C, Yamamoto N, Cheng Y, Moiseyenko V, Summers Y, Vynnychenko I, Lee SY, Bryl M, Zer A, Erman M, Timcheva C, Raja R, Naicker K, Scheuring U, Walker J, Mann H, Chand V, Mok T. NEPTUNE: Phase 3 Study of First-Line Durvalumab Plus Tremelimumab in Patients With Metastatic NSCLC. J Thorac Oncol 2023; 18:106-119. [PMID: 36240972 DOI: 10.1016/j.jtho.2022.09.223] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION NEPTUNE, a phase 3, open-label study, evaluated first-line durvalumab plus tremelimumab versus chemotherapy in metastatic NSCLC (mNSCLC). METHODS Eligible patients with EGFR and ALK wild-type mNSCLC were randomized (1:1) to first-line durvalumab (20 mg/kg every 4 weeks until progression) plus tremelimumab (1 mg/kg every 4 weeks for up to four doses) or standard chemotherapy. Randomization was stratified by tumor programmed death-ligand 1 expression (≥25% versus <25%), tumor histologic type, and smoking history. The amended primary end point was overall survival (OS) in patients with blood tumor mutational burden (bTMB) greater than or equal to 20 mutations per megabase (mut/Mb). Secondary end points included progression-free survival (PFS) in patients with bTMB greater than or equal to 20 mut/Mb and safety and tolerability in all treated patients. RESULTS As of June 24, 2019, 823 patients were randomized (intention-to-treat [ITT]); 512 (62%) were bTMB-evaluable, with 129 of 512 (25%) having bTMB greater than or equal to 20 mut/Mb (durvalumab plus tremelimumab [n = 69]; chemotherapy [n = 60]). Baseline characteristics were balanced in the intention-to-treat. Among patients with bTMB greater than or equal to 20 mut/Mb, OS improvement with durvalumab plus tremelimumab versus chemotherapy did not reach statistical significance (hazard ratio 0.71 [95% confidence interval: 0.49-1.05; p = 0.081]; median OS, 11.7 versus 9.1 months); the hazard ratio for PFS was 0.77 (95% confidence interval, 0.51-1.15; median PFS, 4.2 versus 5.1 months). In the overall safety population, incidence of grade 3 or 4 treatment-related adverse events was 20.7% (durvalumab plus tremelimumab) and 33.6% (chemotherapy). CONCLUSIONS NEPTUNE did not meet its primary end point of improved OS with durvalumab plus tremelimumab versus chemotherapy in patients with mNSCLC and bTMB greater than or equal to 20 mut/Mb. Despite the amended study design, with a resultant small primary analysis population, therapeutic activity was aligned with expectations based on mechanistic biology and previous studies.
Collapse
Affiliation(s)
| | | | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Konstantinos Syrigos
- 3rd Department of Medicine, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ying Cheng
- Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | | | - Yvonne Summers
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ihor Vynnychenko
- Sumy State University, Sumy Regional Oncology Centre, Sumy, Ukraine
| | | | - Maciej Bryl
- E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznań, Poland
| | - Alona Zer
- Rabin Medical Center, Petah Tikva, Israel
| | - Mustafa Erman
- Hacettepe University Cancer Institute, Ankara, Turkey
| | | | | | | | | | | | | | | | - Tony Mok
- State Key Laboratory of South China, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | | |
Collapse
|
25
|
Grajek J, Kather JN, Poleszczuk J. An in silico model to study the impact of carbonic anhydrase IX expression on tumour growth and anti-PD-1 therapy. J R Soc Interface 2023; 20:20220654. [PMID: 36695125 PMCID: PMC9874981 DOI: 10.1098/rsif.2022.0654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are revolutionary cancer treatments. However, the mechanisms behind their effectiveness are not yet fully understood. Here, we aimed to investigate the role of the pH-regulatory enzyme carbonic anhydrase IX (CAIX) in ICI success. Consequently, we developed an in silico model of the tumour microenvironment. The hybrid model consists of an agent-based model of tumour-immune cell interactions, coupled with a set of diffusion-reaction equations describing substances in the environment. It is calibrated with data from the literature, enabling the study of its qualitative behaviour. In our model, CAIX-expressing tumours acidified their neighbourhood, thereby reducing immune infiltration by 90% (p < 0.001) and resulting in a 25% increase in tumour burden (p < 0.001). Moreover, suppression of CAIX improved the response to anti-PD-1 (23% tumour reduction in CAIX knockouts and 6% in CAIX-expressing tumours, p < 0.001), independently of initial PD-L1 expression. Our simulations suggest that patients with CAIX-expressing tumours could respond favourably to combining ICIs with CAIX suppression, even in the absence of pre-treatment PD-L1 expression. Furthermore, when calibrated with tumour-type-specific data, our model could serve as a high-throughput tool for testing the effectiveness of such a combinatorial approach.
Collapse
Affiliation(s)
- Julia Grajek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw 02-109, Poland
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden 01309, Germany
| | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw 02-109, Poland
| |
Collapse
|
26
|
Yigit A, Kuscu B, Kirik A, Ozcaglayan R, Afsar CU. New Biomarkers and Immunotherapy Decision. Biomark Med 2022. [DOI: 10.2174/9789815040463122010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As immune checkpoint blockade and other immune-based therapy
approaches lead to broad treatment advances among patients with advanced cancer, an
important consideration is how to best select patients whose tumors will respond to
these therapies. As a consequence predictive and prognostic markers are needed. There
are genomic features, such as tumour mutation burden (TMB), microsatellite instability
(MSI), and immune phenotype features, such as programmed death-ligand 1 (PD-L1),
CTLA-4 and tumour infiltrating lymphocytes (TILs), to predict response to
immunotherapies (ITs). Several studies show the correlation between TMB and
predicted neoantigen load across multiple cancer types. Response to immune
checkpoint inhibitors is higher in tumours with high TMB. The candidate biomarker
that has been studied mostly other than TMB is PD-L1 expression in trials utilizing
programmed cell death-1 (PD-1) blockade. PD-L1 and PD-1 expression are dynamic
markers that change in relation to local cytokines and other factors, and the thresholds
that separate “positive” and “negative” PD-L1 expressions remain under debate. PD-L1
expression is now a routine diagnostic marker for patients with newly diagnosed
NSCLC. The potential applicability of PD-L1 in other disease settings is still uncertain.
Microsatellite instability is characterised by high rates of alterations to repetitive DNA
sequences caused by impaired mismatch repair (MMR); MSI was the biomarker was
approved according to tumor's initial location. Combining TMB with specific genomic
alterations is crucial. Moreover, new biomarkers are being investigated.
Collapse
Affiliation(s)
- Abdurrahman Yigit
- Department of Internal Medicine and Medical Oncology, Canakkale 18 Mart University Medical Faculty, Canakkale, Turkey
| | - Berkay Kuscu
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Ali Kirik
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Ruhsen Ozcaglayan
- Department of Internal Medicine, Balikesir University Medical Faculty, Balıkesir,Turkey
| | - Cigdem Usul Afsar
- Department of Internal Medicine and Medical Oncology, Istinye University Medical Faculty, İstinye Üniversitesi Topkapı Kampüsü, Istanbul 34010,Turkey
| |
Collapse
|
27
|
Kumar N, Papillon-Cavanagh S, Tang H, Wang S, Stromko C, Ho CP, Soni-Sheth S, Vasquez-Grinnell S, Broz ML, Tenney DJ, Wichroski MJ, Walsh AM, Hu Y, Benci JL. A multi-omic single cell sequencing approach to develop a CD8 T cell specific gene signature for anti-PD1 response in solid tumors. Int J Cancer 2022; 151:2043-2054. [PMID: 35932450 DOI: 10.1002/ijc.34218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.
Collapse
Affiliation(s)
- Namit Kumar
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | | | - Hao Tang
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Shiliang Wang
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Caitlyn Stromko
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Ching-Ping Ho
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Sonal Soni-Sheth
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | | | - Miranda L Broz
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Daniel J Tenney
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Michael J Wichroski
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Alice M Walsh
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Yanhua Hu
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| | - Joseph L Benci
- Bristol Myers Squibb: Research & Early Development, Princeton, New Jersey, USA
| |
Collapse
|
28
|
Zhou H, Wang Y, Xu H, Shen X, Zhang T, Zhou X, Zeng Y, Li K, Zhang L, Zhu H, Yang X, Li N, Yang Z, Liu Z. Noninvasive interrogation of CD8+ T cell effector function for monitoring tumor early responses to immunotherapy. J Clin Invest 2022; 132:161065. [PMID: 35788116 PMCID: PMC9374377 DOI: 10.1172/jci161065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Accurately identifying patients who respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that PET imaging using a granzyme B–targeted radiotracer named 68Ga-grazytracer, could noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several radiotracers based on non-aldehyde peptidomimetics, and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells during immune responses. 68Ga-grazytracer permitted more sensitive discrimination of responders and nonresponders than did 18F-fluorodeoxyglucose, distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with 5 patients, no adverse events were observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET to enhance the clinical effectiveness of granzyme B secretion–related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.
Collapse
Affiliation(s)
- Haoyi Zhou
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Yanpu Wang
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiuling Shen
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Xin Zhou
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Yuwen Zeng
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Kui Li
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital, Beijing, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Nan Li
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Zhi Yang
- Department of Nuclear Medicine, Peking University Cancer Hospital, Beijing, China
| | - Zhaofei Liu
- Department of Radiation Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
29
|
Hamed MM, Gouida MS, Abd EL-Aziz SR, EL-Sokkary AM. Evaluation PD-L1, CD8 and CD20 as early predictor and tracking markers for breast cancer (BC) in Egypt. Heliyon 2022; 8:e09474. [PMID: 35647336 PMCID: PMC9136277 DOI: 10.1016/j.heliyon.2022.e09474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background Breast cancer (BC) is considered as a common type of cancer threatening women throughout the world. Therefore, development of early predication biomarkers for BC got more concern especially for Egyptian females. This study was aimed to evaluate PD-L1, CD8, and CD20 as early prediction breast cancer biomarkers. Methods Flow cytometry (FC), immunohistochemistry (IHC), Western Blot, and q-PCR were used to compare PD-L1, CD20, and CD8 levels in tissues and blood samples of Breast Cancer and controls. Results Blood samples showed a significant increase in PD-L1, CD20, and CD8 compared to controls (p˂0.005). A Significant correlation was shown between PD-L1, CD8, and CD20 in tissue and breast cancer subtypes. Whereas, invasive lobular carcinoma (ILC) was characterized by superior PD-L1 and CD20 levels compared to invasive ductal carcinoma (IDC). FC studies on Blood showed 83% and 45.7% PD-L1 expressions for IDC and ILC, respectively. CD20 in ILC and IDC were 78.2% and 62.5%, respectively. Nevertheless, CD8 was 74.2% for IDC and 67.7% for ILC. Whereas, FC studies for PD-L1, CD20, and CD8 in ILC in tissues gave 34.4%, 30.2% and 35.1%, respectively. In addition, IDC tissue samples showed 16%, 12.5, and 13.5% for PD-L1, CD20, and CD8. The moderate stage of adenocarcinoma caused expression of PD-L1 within inflammatory cells, while expression was within neoplastic glandular cells in late stage. Conclusion PD-L1, CD8, and CD20 are considered as early predictor and tracking markers for breast cancer.
Collapse
Affiliation(s)
- Manar M. Hamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Egypt
| | - Mona S. Gouida
- Genetic Unit, Children Hospital, Mansoura University, Egypt
| | | | - Ahmed M.A. EL-Sokkary
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
30
|
Immunohistochemical assessment of PD-L1 expression using three different monoclonal antibodies in triple negative breast cancer patients. Arch Gynecol Obstet 2022; 306:1689-1695. [PMID: 35377046 PMCID: PMC9519646 DOI: 10.1007/s00404-022-06529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
Background PD-L1 receptor expression in breast cancer tissue can be assessed with different anti-human PD-L1 monoclonal antibodies. The performance of three specific monoclonal antibodies in a head-to-head comparison is unknown. In addition, a potential correlation of PD-L1 expression and clinico-pathological parameters has not been investigated. Methods This was a retrospective study on tissue samples of patients with histologically confirmed triple negative breast cancer (TNBC). PD-L1 receptors were immune histochemically stained with three anti-human PD-L1 monoclonal antibodies: 22C3 and 28-8 for staining of tumor cell membranes (TC) and cytoplasm (Cyt), SP142 for immune cell staining (IC). Three different tissue samples of each patient were evaluated separately by two observers in a blinded fashion. The percentage of PD-L1 positive tumor cells in relation to the total number of tumor cells was determined. For antibodies 22C3 and 28-8 PD-L1 staining of 0 to < 1% of tumor cells was rated "negative", 1–50% was rated "positive" and > 50% was rated "strong positive". Cyt staining was defined as “negative” when no signal was observed and as “positive”, when any positive signal was observed. For IC staining with SP142 all samples with PD-L1 expression ≥ 1% were rated as “positive”. Finally, the relationship between PD-L1 expression and clinico-pathological parameters was analyzed. Results Tissue samples from 59 of 60 enrolled patients could be analyzed. Mean age was 55 years. Both the monoclonal antibodies 22C3 and 28-8 had similar properties, and were positive for both TC in 13 patients (22%) and for Cyt staining in 24 patients (40.7%). IC staining with antibody SP142 was positive in 24 patients (40.7%), who were also positive for Cyt staining. The differences between TC and Cyt staining and TC and IC staining were significant (p = 0.001). Cases with positive TC staining showed higher Ki67 expression compared to those with negative staining, 40 vs 30%, respectively (p = 0.05). None of the other clinico-pathological parameters showed any correlation with PDL1 expression. Conclusions Antibodies 22C3 and 28-8 can be used interchangeably for PD-L1 determination in tumor cells of TNBC patients. Results for Cyt staining with 22C3 or 28-8 and IC staining with SP142 were identical. In our study PD-L1 expression correlates with Ki67 expression but not with OS or DFS.
Collapse
|
31
|
Abraham G, Noronha V, Rajappa S, Agarwal A, Batra U, Somani N, Raja T, Patil S, Kaushal AM, Joshi A, Radhakrishnan V, Singh N, Babu G, Tewani R, Baghmar S, Dodagoudar C, Ananthakrishnan R, Haragadde Poppareddy S, Sharma V, Menon N, M Patil V, Joshi A, Gupta S, Prabhash K, Bajpai J. The clinical utility and safety of short-course immune checkpoint inhibitors in multiple tumours-A real-world multicentric study from India. Int J Cancer 2022; 150:1045-1052. [PMID: 34751432 DOI: 10.1002/ijc.33868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022]
Abstract
The real-world data on short course of immune checkpoint inhibitor (ICI) use are sparse and merit exploration. A multicentric observational study on the safety and efficacy of ICI in oncology patients between August 2014 and October 2020 involves 1011 patients across 13 centers in India. The median age was 59 (min 16-max 98) years with male preponderance (77.9%). The predominant cohort received short-course ICI therapy; the median number of cycles was 5 (95% confidence interval [CI] 1-27), and the median duration of therapy was 3 (95% CI 0.5-13) months. ICIs were used commonly in the second and third line setting in our study (66.4%, n = 671). Objective response rate (complete or partial response) was documented in 254 (25.1%) of the patients, 202 (20.0%) had stable disease, and 374 (37.0%) had progressive disease. The clinical benefit rate was present in 456 (45.1%). Among the patients whom ICI was stopped (n = 906), the most common reason for cessation of ICI was disease progression (616, 68.0%) followed by logistic reasons like financial constraints (234, 25.82%). With a median follow-up of 14.1 (95% CI 12.9-15.3) months, there were 616 events of progression and 443 events of death, and the median progression free survival and overall survival were 6.4 (95% CI 5.5-7.3) and 13.6 (95% CI 11.6-15.7) months, respectively, in the overall cohort. Among the immune-related adverse events, autoimmune pneumonitis (29, 3.8%) and thyroiditis (24, 2.4%) were common. Real-world multicentric Indian data predominantly with short-course ICI therapy have comparable efficacy/safety to international literature with standard ICI therapy.
Collapse
Affiliation(s)
- George Abraham
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Senthil Rajappa
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, India
| | - Amit Agarwal
- Department of Medical Oncology, BLK Superspeciality Hospital, Delhi, India
| | - Ullas Batra
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Naresh Somani
- Department of Medical Oncology, HCG Cancer Centre, Jaipur, India
| | | | - Shekhar Patil
- Department of Medical Oncology, HCG Cancer Centre, Bengaluru, India
| | - Ashish M Kaushal
- Department of Medical Oncology, HCG Cancer Centre, Ahmedabad, India
| | - Ashish Joshi
- Department of Medical Oncology, Mumbai Oncocare Centre, Mumbai, India
| | | | - Navneet Singh
- Department of Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Govind Babu
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - Rohan Tewani
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, India
| | - Saphalta Baghmar
- Department of Medical Oncology, BLK Superspeciality Hospital, Delhi, India
| | | | | | | | - Vibhor Sharma
- Department of Medical Oncology, Paras Hospitals, Gurgaon, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Vijay M Patil
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Amit Joshi
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
32
|
Bruns IB, Beltman JB. Quantifying the contribution of transcription factor activity, mutations and microRNAs to CD274 expression in cancer patients. Sci Rep 2022; 12:4374. [PMID: 35289334 PMCID: PMC8921511 DOI: 10.1038/s41598-022-08356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis have been remarkably successful in inducing tumor remissions in several human cancers, yet a substantial number of patients do not respond to treatment. Because this may be partially due to the mechanisms giving rise to high PD-L1 expression within a patient, it is highly relevant to fully understand these mechanisms. In this study, we conduct a bioinformatic analysis to quantify the relative importance of transcription factor (TF) activity, microRNAs (miRNAs) and mutations in determining PD-L1 (CD274) expression at mRNA level based on data from the Cancer Genome Atlas. To predict individual CD274 levels based on TF activity, we developed multiple linear regression models by taking the expression of target genes of the TFs known to directly target PD-L1 as independent variables. This analysis showed that IRF1, STAT1, NFKB and BRD4 are the most important regulators of CD274 expression, explaining its mRNA levels in 90–98% of the patients. Because the remaining patients had high CD274 levels independent of these TFs, we next investigated whether mutations associated with increased CD274 mRNA levels, and low levels of miRNAs associated with negative regulation of CD274 expression could cause high CD274 levels in these patients. We found that mutations or miRNAs offered an explanation for high CD274 levels in 81–100% of the underpredicted patients. Thus, CD274 expression is largely explained by TF activity, and the remaining unexplained cases can largely be explained by mutations or low miRNA abundance.
Collapse
Affiliation(s)
- Imke B Bruns
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
33
|
Zheng H, Zheng WJ, Wang ZG, Tao YP, Huang ZP, Yang L, Ouyang L, Duan ZQ, Zhang YN, Chen BN, Xiang DM, Jin G, Fang L, Zhou F, Liang B. Decreased Expression of Programmed Death Ligand-L1 by Seven in Absentia Homolog 2 in Cholangiocarcinoma Enhances T-Cell-Mediated Antitumor Activity. Front Immunol 2022; 13:845193. [PMID: 35154166 PMCID: PMC8828655 DOI: 10.3389/fimmu.2022.845193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/03/2023] Open
Abstract
N6-methyladenosine (m6A) has been reported as an important mechanism of post-transcriptional regulation. Programmed death ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. In addition, seven in absentia homolog 2 (Siah2), a RING E3 ubiquitin ligase, has been involved in tumorigenesis and cancer progression. However, the role of m6A-METTL14-Siah2-PD-L1 axis in immunotherapy remains to be elucidated. In this study, we showed that METTL14, a component of the m6A methyltransferase complex, induced Siah2 expression in cholangiocarcinoma (CCA). METTL14 was shown to enrich m6A modifications in the 3'UTR region of the Siah2 mRNA, thereby promoting its degradation in an YTHDF2-dependent manner. Furthermore, co-immunoprecipitation experiments demonstrated that Siah2 interacted with PD-L1 by promoting its K63-linked ubiquitination. We also observed that in vitro and in vivo Siah2 knockdown inhibited T cells expansion and cytotoxicity by sustaining tumor cell PD-L1 expression. The METTL14-Siah2-PD-L1-regulating axis was further confirmed in human CCA specimens. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with low Siah2 levels were more sensitive to anti-PD1 immunotherapy. Taken together, our results evidenced a new regulatory mechanism of Siah2 by METTL14-induced mRNA epigenetic modification and the potential role of Siah2 in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, China,Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Wen-juan Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen-guang Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Yuan-ping Tao
- National Liver Tissue Bank, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Le Yang
- National Liver Tissue Bank, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liu Ouyang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Zhi-qing Duan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-nuo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo-ning Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dai-min Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Lu Fang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| |
Collapse
|
34
|
Wu Y, Dutta P, Clayton S, McCloud A, Vadgama JV. Elevated Baseline Serum PD-L1 Level May Predict Poor Outcomes from Breast Cancer in African-American and Hispanic Women. J Clin Med 2022; 11:283. [PMID: 35053979 PMCID: PMC8779890 DOI: 10.3390/jcm11020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The therapeutic targeting of PD-1/PD-L1 has shown clinical efficacy in treating metastatic breast cancer. We investigated the clinical significance of measuring serum PD-L1 levels in African-American and Hispanic women with breast cancer. METHODS PD-L1 levels were measured with the ELISA method from the serum samples of 244 African-Americans and Hispanics with breast cancer and 155 women without cancers. The levels of INFα2 and TNFα were measured with a Luminex multiplex assay. The protein levels of pAkt and CD44/CD24 in tumor cells were tested with immunohistochemistry analysis. Cox regression was used to assess the predicting role of serum PD-L1 for disease-free survival (DFS). RESULTS PD-L1 levels were significantly elevated in breast cancer cases compared to non-cancer cases. The high PD-L1 levels were associated with HER2-positive and triple-negative breast cancer. PD-L1 level independently predicted DFS in both African-American and Hispanic women. The evaluated PD-L1 level was found to be associated with high IFNα2 and TNFα in breast cancer patients. CONCLUSIONS PD-L1 serum levels can predict DFS in African American and Hispanic women with breast cancer. Furthermore, a high level of PD-L1 is more likely to be associated with tumor loss PTEN and the activation of Akt or with breast cancer cells expressing CD44high/CD24low. Further validation studies are needed to determine if PD-L1 could serve as a biomarker for patient selection for anti-PD-L1 therapy and assess treatment outcomes.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Sheilah Clayton
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Amaya McCloud
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Singh V, Khurana A, Allawadhi P, Banothu AK, Bharani KK, Weiskirchen R. Emerging Role of PD-1/PD-L1 Inhibitors in Chronic Liver Diseases. Front Pharmacol 2021; 12:790963. [PMID: 35002724 PMCID: PMC8733625 DOI: 10.3389/fphar.2021.790963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/PD-ligand (L)1, the immune checkpoint inhibitors have emerged as a promising strategy for the treatment of various diseases including chronic liver diseases (CLDs) such as hepatitis, liver injury and hepatocellular carcinoma (HCC). The role of PD-1/PD-L1 has been widely inspected in the treatment of viral hepatitis and HCC. PD-1 is known to play a crucial role in inhibiting immunological responses and stimulates self-tolerance by regulating the T-cell activity. Further, it promotes apoptosis of antigen-specific T-cells while preventing apoptosis of Treg cells. PD-L1 is a trans-membrane protein which is recognized as a co-inhibitory factor of immunological responses. Both, PD-1 and PD-L1 function together to downregulate the proliferation of PD-1 positive cells, suppress the expression of cytokines and stimulate apoptosis. Owing to the importance of PD-1/PD-L1 signaling, this review aims to summarize the potential of PD-1/PD-L1 inhibitors in CLDs along with toxicities associated with them. We have enlisted some of the important roles of PD-1/PD-L1 in CLDs, the clinically approved products and the pipelines of drugs under clinical evaluation.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital,Aachen, Germany
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, New Delhi, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Hyderabad, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Hyderabad, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital,Aachen, Germany
| |
Collapse
|
36
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
37
|
García-Sancha N, Corchado-Cobos R, Bellido-Hernández L, Román-Curto C, Cardeñoso-Álvarez E, Pérez-Losada J, Orfao A, Cañueto J. Overcoming Resistance to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:5134. [PMID: 34680282 PMCID: PMC8533861 DOI: 10.3390/cancers13205134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans, and is now responsible for as many deaths as melanoma. Immunotherapy has changed the therapeutic landscape of advanced CSCC after the FDA approval of anti-PD1 molecules for the treatment of locally advanced and metastatic CSCC. However, roughly 50% of patients will not respond to this systemic treatment and even those who do respond can develop resistance over time. The etiologies of primary and secondary resistance to immunotherapy involve changes in the neoplastic cells and the tumor microenvironment. Indirect modulation of immune system activation with new therapies, such as vaccines, oncolytic viruses, and new immunotherapeutic agents, and direct modulation of tumor immunogenicity using other systemic treatments or radiotherapy are now under evaluation in combined regimens. The identification of predictors of response is an important area of research. In this review, we focus on the features associated with the response to immunotherapy, and the evaluation of combination treatments and new molecules, a more thorough knowledge of which is likely to improve the survival of patients with advanced CSCC.
Collapse
Affiliation(s)
- Natalia García-Sancha
- IBMCC-CSIC, Laboratory 7, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; (N.G.-S.); (R.C.-C.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
| | - Roberto Corchado-Cobos
- IBMCC-CSIC, Laboratory 7, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; (N.G.-S.); (R.C.-C.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
| | - Lorena Bellido-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
- Departament of Medical Oncology, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Concepción Román-Curto
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain;
| | - Esther Cardeñoso-Álvarez
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain;
| | - Jesús Pérez-Losada
- IBMCC-CSIC, Laboratory 7, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; (N.G.-S.); (R.C.-C.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
| | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
- IBMCC-CSIC, Laboratory 11, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
- Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) (CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480), Instituto Carlos III, 28029 Madrid, Spain
| | - Javier Cañueto
- IBMCC-CSIC, Laboratory 7, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; (N.G.-S.); (R.C.-C.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain; (L.B.-H.); (C.R.-C.); (A.O.)
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain;
| |
Collapse
|
38
|
Fukuhara M, Muto S, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, Yamaura T, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Suzuki H. The clinical significance of tertiary lymphoid structure and its relationship with peripheral blood characteristics in patients with surgically resected non-small cell lung cancer: a single-center, retrospective study. Cancer Immunol Immunother 2021; 71:1129-1137. [PMID: 34596720 DOI: 10.1007/s00262-021-03067-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The presence of tertiary lymphoid structure (TLS) in tumor tissues has been reported to be a factor associated with a good prognosis in several types of cancers. However, the relationship between TLS formation and peripheral blood findings remains unclear. The purposes of the study were to evaluate the effect of the presence of TLS on survival and determine the peripheral blood characteristics associated with TLS formation in non-small cell lung cancer (NSCLC) patients. METHODS A total of 147 consecutive NSCLC patients who underwent lung resection at Fukushima Medical University Hospital between 2013 and 2017 were enrolled. TLS expression was evaluated, and the relationships between clinical parameters and outcomes were analyzed. Peripheral blood mononuclear cells (PBMCs) were further analyzed by mass cytometry to characterize the TLS-positive microenvironment. RESULTS Forty-six patients had high TLS expression, and the remaining 101 patients had low TLS expression. In stage II to IV patients (n = 35), disease-free survival was longer in the high TLS expression group (p = 0.027). A low neutrophil to lymphocyte ratio (NLR) < 2.75 in the peripheral blood was associated with high TLS expression (p = 0.003). Citrus analysis after mass cytometry assay showed that the number of cells expressing HLA-DR and CD9 in PBMCs was lower in the high TLS expression group. CONCLUSION High TLS expression is associated with a good prognosis after surgery in stage II and III NSCLC patients. In the peripheral blood, a low NLR and few antigen-presenting cells indicate the presence of TLS in the tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuro Fukuhara
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Sho Inomata
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hikaru Yamaguchi
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hayato Mine
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hironori Takagi
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takuya Inoue
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takumi Yamaura
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takeo Hasegawa
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Jun Osugi
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Mika Hoshino
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Mitsunori Higuchi
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yutaka Shio
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
39
|
Özcan D, Lade-Keller J, Tramm T. Can evaluation of mismatch repair defect and TILs increase the number of triple-negative breast cancer patients eligible for immunotherapy? Pathol Res Pract 2021; 226:153606. [PMID: 34530255 DOI: 10.1016/j.prp.2021.153606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Programmed-cell-death-ligand 1 (PD-L1) inhibitor treatment is approved for metastatic/recurrent, PD-L1 positive, triple-negative breast cancer (TNBC) and solid tumors with mismatch repair (MMR) defect regardless of PD-L1 status. The analytical validity of PD-L1 has been questioned and adding evaluation of tumor-infiltrating lymphocytes (TILs) may identify patients likely to respond to immunotherapy. We investigated the association between MMR-deficiency and PD-L1 in TNBC; aiming to identify PD-L1 negative, TNBC patients that may be candidates for anti-PD-L1 immunotherapy. METHODOLOGY Paraffin-embedded tumor material from 44 TNBC patients was included. In 38 cases, immunohistochemical-staining´s on whole-slide sections were successful for all four MMR proteins (MSH2, MSH6, MLH1 and PMS2) and PD-L1 in 36 cases. MMR-status was categorized as positive (pMMR), heterogeneous (hMMR) or deficient (dMMR). Tumor-infiltrating lymphocytes (TILs) were evaluated on H&E sections. RESULTS MMR stainings showed substantial intratumor heterogeneity. Four of 38 cases (11%) were recorded as dMMR with loss of ≥ 1 MMR-protein and 19 cases (50%) showed heterogeneous expression or partial loss (hMMR) of ≥ 1 MMR-protein. Three of 22 PD-L1 negative cases were dMMR (14%) and ten cases hMMR (45%). 16 of 22 PD-L1 negative cases (73%) showed high TILs. CONCLUSIONS A substantial proportion of PD-L1 negative, TNBC patients showed complete/partial loss of MMR and/or high TILs indicating that supplementing PD-L1 examination with these biomarkers may identify TNBC-patients that may be selected for immunotherapy.
Collapse
Affiliation(s)
- Demet Özcan
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark; Department of Surgery, Regional Hospital in Horsens, Horsens, Denmark
| | | | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
40
|
Robu S, Richter A, Gosmann D, Seidl C, Leung D, Hayes W, Cohen D, Morin P, Donnelly DJ, Lipovšek D, Bonacorsi SJ, Smith A, Steiger K, Aulehner C, Krackhardt AM, Weber WA. Synthesis and Preclinical Evaluation of a 68Ga-Labeled Adnectin, 68Ga-BMS-986192, as a PET Agent for Imaging PD-L1 Expression. J Nucl Med 2021; 62:1228-1234. [PMID: 33517324 PMCID: PMC8882891 DOI: 10.2967/jnumed.120.258384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022] Open
Abstract
Blocking the interaction of the immune checkpoint molecule programmed cell death protein-1 and its ligand, PD-L1, using specific antibodies has been a major breakthrough for immune oncology. Whole-body PD-L1 expression PET imaging may potentially allow for a better prediction of response to programmed cell death protein-1-targeted therapies. Imaging of PD-L1 expression is feasible by PET with the adnectin protein 18F-BMS-986192. However, radiofluorination of proteins such as BMS-986192 remains complex and labeling yields are low. The goal of this study was therefore the development and preclinical evaluation of a 68Ga-labeled adnectin protein (68Ga-BMS-986192) to facilitate clinical trials. Methods:68Ga labeling of DOTA-conjugated adnectin (BXA-206362) was performed in NaOAc-buffer at pH 5.5 (50°C, 15 min). In vitro stability in human serum at 37°C was analyzed using radio-thin layer chromatography and radio-high-performance liquid chromatography. PD-L1 binding assays were performed using the transduced PD-L1-expressing lymphoma cell line U-698-M and wild-type U-698-M cells as a negative control. Immunohistochemical staining studies, biodistribution studies, and small-animal PET studies of 68Ga-BMS-986192 were performed using PD-L1-positive and PD-L1-negative U-698-M-bearing NSG mice. Results:68Ga-BMS-986192 was obtained with quantitative radiochemical yields of more than 97% and with high radiochemical purity. In vitro stability in human serum was at least 95% after 4 h of incubation. High and specific binding of 68Ga-BMS-986192 to human PD-L1-expressing cancer cells was confirmed, which closely correlates with the respective PD-L1 expression level determined by flow cytometry and immunohistochemistry staining. In vivo, 68Ga-BMS-986192 uptake was high at 1 h after injection in PD-L1-positive tumors (9.0 ± 2.1 percentage injected dose [%ID]/g) and kidneys (56.9 ± 9.2 %ID/g), with negligible uptake in other tissues. PD-L1-negative tumors demonstrated only background uptake of radioactivity (0.6 ± 0.1 %ID/g). Coinjection of an excess of unlabeled adnectin reduced tumor uptake of PD-L1 by more than 80%. Conclusion:68Ga-BMS-986192 enables easy radiosynthesis and shows excellent in vitro and in vivo PD-L1-targeting characteristics. The high tumor uptake combined with low background accumulation at early imaging time points demonstrates the feasibility of 68Ga-BMS-986192 for imaging of PD-L1 expression in tumors and is encouraging for further clinical applications of PD-L1 ligands.
Collapse
Affiliation(s)
- Stephanie Robu
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany;
| | - Antonia Richter
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dario Gosmann
- School of Medicine, Clinic and Policlinic for Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - David Leung
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Wendy Hayes
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Daniel Cohen
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Paul Morin
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - David J Donnelly
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Daša Lipovšek
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | | | - Adam Smith
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium, Munich, Germany, and German Cancer Research Center, Heidelberg, Germany; and
| | - Christina Aulehner
- School of Medicine, Clinic and Policlinic for Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Angela M Krackhardt
- School of Medicine, Clinic and Policlinic for Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium, Munich, Germany, and German Cancer Research Center, Heidelberg, Germany; and
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium, Munich, Germany, and German Cancer Research Center, Heidelberg, Germany; and
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Munich, Germany
| |
Collapse
|
41
|
Emens LA, Adams S, Cimino-Mathews A, Disis ML, Gatti-Mays ME, Ho AY, Kalinsky K, McArthur HL, Mittendorf EA, Nanda R, Page DB, Rugo HS, Rubin KM, Soliman H, Spears PA, Tolaney SM, Litton JK. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer 2021; 9:e002597. [PMID: 34389617 PMCID: PMC8365813 DOI: 10.1136/jitc-2021-002597] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has historically been a disease for which immunotherapy was largely unavailable. Recently, the use of immune checkpoint inhibitors (ICIs) in combination with chemotherapy for the treatment of advanced/metastatic triple-negative breast cancer (TNBC) has demonstrated efficacy, including longer progression-free survival and increased overall survival in subsets of patients. Based on clinical benefit in randomized trials, ICIs in combination with chemotherapy for the treatment of some patients with advanced/metastatic TNBC have been approved by the United States (US) Food and Drug Administration (FDA), expanding options for patients. Ongoing questions remain, however, about the optimal chemotherapy backbone for immunotherapy, appropriate biomarker-based selection of patients for treatment, the optimal strategy for immunotherapy treatment in earlier stage disease, and potential use in histological subtypes other than TNBC. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). The expert panel drew upon the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for breast cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence-based and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with breast cancer.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Langone, New York, New York, USA
| | - Ashley Cimino-Mathews
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Margaret E Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| | - David B Page
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Krista M Rubin
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Hatem Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patricia A Spears
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Qiu X, Yang S, Wang S, Wu J, Zheng B, Wang K, Shen S, Jeong S, Li Z, Zhu Y, Wu T, Wu X, Wu R, Liu W, Wang HY, Chen L. M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Res 2021; 81:4778-4793. [PMID: 34301762 DOI: 10.1158/0008-5472.can-21-0468] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
N6-methyladenosine (m6A) has been reported as an important mechanism of post-transcriptional regulation. Programmed death-ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. Here we report ALKBH5 as an important m6A demethylase that orchestrates PD-L1 expression in intrahepatic cholangiocarcinoma (ICC). Regulation of PD-L1 expression by ALKBH5 was confirmed in human ICC cell lines. Sequencing of the m6A methylome identified PD-L1 mRNA as a direct target of m6A modification whose levels were regulated by ALKBH5. Furthermore, ALKBH5 and PD-L1 mRNA were shown to interact. ALKBH5 deficiency enriched m6A modification in the 3'UTR region of PD-L1 mRNA, thereby promoting its degradation in a YTHDF2-dependent manner. In vitro and in vivo, tumor-intrinsic ALKBH5 inhibited the expansion and cytotoxicity of T cells by sustaining tumor cell PD-L1 expression. The ALKBH5-PD-L1-regulating axis was further confirmed in human ICC specimens. Single-cell mass cytometry analysis unveiled a complex role of ALKBH5 in the tumor immune microenvironment by promoting the expression of PD-L1 on monocytes/macrophages and decreasing the infiltration of myeloid-derived suppressor-like cells. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with strong nuclear expression patterns of ALKBH5 are more sensitive to anti-PD1 immunotherapy. Collectively, these results describe a new regulatory mechanism of PD-L1 by mRNA epigenetic modification by ALKBH5 and the potential role of ALKBH5 in immunotherapy response, which might provide insights for cancer immunotherapies.
Collapse
Affiliation(s)
- Xinyao Qiu
- Department of Oncology, Fudan University Shanghai Cancer Center
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Fudan University
| | - Shan Wang
- Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University
| | - Bo Zheng
- National Center for Liver Cancer, Second Military Medical University
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University
| | | | | | - Zhixuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital
| | - Yanjing Zhu
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University
| | - Tong Wu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University
| | - Xuan Wu
- Department of Laboratory Medicine, The Tenth People's Hospital of Shanghai, Tongji University
| | - Rui Wu
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Changhai Road 225, Shanghai, China
| | - Weiwei Liu
- Shanghai Tenth People's Hospital, Tongji University
| | - Hong-Yang Wang
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital,Eastern Hepatobiliary Surgery Institute, Second Military Medical University, National center for liver cancer
| |
Collapse
|
43
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
44
|
Lv L, Zhang Y, Zhao Y, Wei Q, Zhao Y, Yi Q. Effects of 1p/19q Codeletion on Immune Phenotype in Low Grade Glioma. Front Cell Neurosci 2021; 15:704344. [PMID: 34335194 PMCID: PMC8322528 DOI: 10.3389/fncel.2021.704344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Chromosome 1p/19q codeletion is one of the most important genetic alterations for low grade gliomas (LGGs), and patients with 1p/19q codeletion have significantly prolonged survival compared to those without the codeletion. And the tumor immune microenvironment also plays a vital role in the tumor progression and prognosis. However, the effect of 1p/19q codeletion on the tumor immune microenvironment in LGGs is unclear. Methods: Immune cell infiltration of 281 LGGs from The Cancer Genome Atlas (TCGA) and 543 LGGs from the Chinese Glioma Genome Atlas (CGGA) were analyzed for immune cell infiltration through three bioinformatics tools: ESTIMATE algorithm, TIMER, and xCell. The infiltrating level of immune cells and expression of immune checkpoint genes were compared between different groups classified by 1p/19q codeletion and IDH (isocitrate dehydrogenase) mutation status. The differential biological processes and signaling pathways were evaluated through Gene Set Enrichment Analysis (GSEA). Correlations were analyzed using Spearman correlation. Results: 1p/19q codeletion was associated with immune-related biological processes in LGGs. The infiltrating level of multiple kinds of immune cells and expression of immune checkpoint genes were significantly lower in 1p/19q codeletion LGGs compared to 1p/19q non-codeletion cohorts. There are 127 immune-related genes on chromosome 1p or 19q, such as TGFB1, JAK1, and CSF1. The mRNA expression of these genes was positively correlated with their DNA copy number. These genes are distributed in multiple immune categories, such as chemokines/cytokines, TGF-β family members, and TNF family members, regulating immune cell infiltration and expression of the immune checkpoint genes in tumors. Conclusion: Our results indicated that 1p/19q codeletion status is closely associated with the immunosuppressive microenvironment in LGGs. LGGs with 1p/19q codeletion display less immune cell infiltration and lower expression of immune checkpoint genes than 1p/19q non-codeletion cases. Mechanistically, this may be, at least in part, due to the deletion of copy number of immune-related genes in LGGs with 1p/19q codeletion. Our findings may be relevant to investigate immune evasion in LGGs and contribute to the design of immunotherapeutic strategies for patients with LGGs.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuliu Zhang
- Department of Thoracic Surgery, Dingyuan County General Hospital of Chuzhou City in Anhui, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 2021; 18:625-644. [PMID: 34168333 DOI: 10.1038/s41571-021-00520-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The treatment landscape of driver-negative non-small-cell lung cancer (NSCLC) is rapidly evolving. Immune-checkpoint inhibitors, specifically those targeting PD-1 or PD-L1, have demonstrated durable efficacy in a subset of patients with NSCLC, and these agents have become the cornerstone of first-line therapy. Approved immunotherapeutic strategies for treatment-naive patients now include monotherapy, immunotherapy-exclusive regimens or chemotherapy-immunotherapy combinations. Decision making in this space is complex given the absence of head-to-head prospective comparisons, although a thorough analysis of long-term efficacy and safety data from pivotal clinical trials can provide insight into the optimal management of each subset of patients. Indeed, histological subtype and the extent of tumour cell PD-L1 expression are paramount to regimen selection, although other clinicopathological factors and patient preferences might also be relevant in certain scenarios. Finally, several emerging biomarkers and novel therapeutic strategies are currently under investigation, and these might further refine the current treatment paradigm. In this Review, we discuss the current treatment landscape and detail our approach to first-line immunotherapy regimen selection for patients with advanced-stage, driver-negative NSCLC.
Collapse
|
46
|
Siewe N, Friedman A. TGF-β inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS One 2021; 16:e0252620. [PMID: 34061898 PMCID: PMC8168900 DOI: 10.1371/journal.pone.0252620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated, over the recent years, impressive clinical response in cancer patients, but some patients do not respond at all to checkpoint blockade, exhibiting primary resistance. Primary resistance to PD-1 blockade is reported to occur under conditions of immunosuppressive tumor environment, a condition caused by myeloid derived suppressor cells (MDSCs), and by T cells exclusion, due to increased level of T regulatory cells (Tregs). Since TGF-β activates Tregs, TGF-β inhibitor may overcome primary resistance to anti-PD-1. Indeed, recent mice experiments show that combining anti-PD-1 with anti-TGF-β yields significant therapeutic improvements compared to anti-TGF-β alone. The present paper introduces two cancer-specific parameters and, correspondingly, develops a mathematical model which explains how primary resistance to PD-1 blockade occurs, in terms of the two cancer-specific parameters, and how, in combination with anti-TGF-β, anti-PD-1 provides significant benefits. The model is represented by a system of partial differential equations and the simulations are in agreement with the recent mice experiments. In some cancer patients, treatment with anti-PD-1 results in rapid progression of the disease, known as hyperprogression disease (HPD). The mathematical model can also explain how this situation arises, and it predicts that HPD may be reversed by combining anti-TGF-β to anti-PD-1. The model is used to demonstrate how the two cancer-specific parameters may serve as biomarkers in predicting the efficacy of combination therapy with PD-1 and TGF-β inhibitors.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Avner Friedman
- Department of Mathematics, Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
47
|
Kumar A, Watkins R, Vilgelm AE. Cell Therapy With TILs: Training and Taming T Cells to Fight Cancer. Front Immunol 2021; 12:690499. [PMID: 34140957 PMCID: PMC8204054 DOI: 10.3389/fimmu.2021.690499] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023] Open
Abstract
The rationale behind cancer immunotherapy is based on the unequivocal demonstration that the immune system plays an important role in limiting cancer initiation and progression. Adoptive cell therapy (ACT) is a form of cancer immunotherapy that utilizes a patient’s own immune cells to find and eliminate tumor cells, however, donor immune cells can also be employed in some cases. Here, we focus on T lymphocyte (T cell)-based cancer immunotherapies that have gained significant attention after initial discoveries that graft-versus-tumor responses were mediated by T cells. Accumulating knowledge of T cell development and function coupled with advancements in genetics and data science has enabled the use of a patient’s own (autologous) T cells for ACT (TIL ACTs). In TIL ACT, tumor-infiltrating lymphocytes (TILs) are collected from resected tumor material, enhanced and expanded ex-vivo, and delivered back to the patient as therapeutic agents. ACT with TILs has been shown to cause objective tumor regression in several types of cancers including melanoma, cervical squamous cell carcinoma, and cholangiocarcinoma. In this review, we provide a brief history of TIL ACT and discuss the current state of TIL ACT clinical development in solid tumors. We also discuss the niche of TIL ACT in the current cancer therapy landscape and potential strategies for patient selection.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Reese Watkins
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
48
|
Manne A, Mulekar MS, Escobar DE, Alsayed A, Sharma G, Prodduturvar P, Khushman M, Howard JH, Gilbert R, Alkharabsheh O. Clinical and Hematological Predictors of High-Grade Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors. J Clin Med Res 2021; 13:268-275. [PMID: 34104278 PMCID: PMC8166288 DOI: 10.14740/jocmr4511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Life-threatening immune-related adverse events (irAEs) that require hospital admission are not uncommon in patients treated with immune checkpoint inhibitors (ICIs). The clinical and hematological parameters are attractive biomarkers as potential predictors of irAE. Methods This is a retrospective study of patients with melanoma and lung cancer treated with ICIs between 2015 and 2019 at the University of South Alabama Mitchell Cancer Institute. Fisher’s exact test, Pearson Chi-squared test, log-rank test, and Cox proportional hazard model were used to evaluate clinical and hematological parameters as possible predictors of irAE. Results The cohort consisted of 160 patients treated with at least two doses of ICI, of which 54 (33.8%) patients had melanoma and 106 (66.3%) had lung cancer. Incidence of irAE did not have any bearing on the overall survival (OS) or progression-free survival (PFS) of the cohort. The clinical factors associated with irAE were dual-agent therapy (ipilimumab/nivolumab combination) and high disease burden (≥ 2 metastatic sites). The irAE-group had a lower mean platelet-to-lymphocyte ration (PLR, 200 vs. 257, P = 0.04). Although not statistically significant at the level of 0.05, other factors such as type of cancer (lung cancer > melanoma (P = 0.06)), stage at treatment (stage IV > stage II and III disease (P = 0.06)), and higher absolute lymphocyte counts (P = 0.07) showed a considerable association with irAE and warrants further review with different patient data. Conclusions Irrespective of ICI used to treat lung cancer and melanoma, patients with high disease burden and dual-agent ICI therapy were more prone to irAE. The only hematological parameter that may predict the incidence of irAE is low baseline PLR.
Collapse
Affiliation(s)
- Ashish Manne
- Division of Medical Oncology, Department of Internal Medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, The University of South Alabama, Mobile, AL, USA
| | - Daisy E Escobar
- Department of Medicine, The University of South Alabama, Mobile, AL, USA
| | - Alhareth Alsayed
- Division of Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, AL, USA
| | - Gaurav Sharma
- Department of Medicine, The University of South Alabama, Mobile, AL, USA
| | | | - Moh'd Khushman
- Division of Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Robert Gilbert
- Division of Radiation Oncology, The University of South Alabama, Mobile, AL, USA
| | - Omar Alkharabsheh
- Division of Medical Oncology, The University of South Alabama, Mitchell Cancer Institute, Mobile, AL, USA
| |
Collapse
|
49
|
Hsu EJ, Cao X, Moon B, Bae J, Sun Z, Liu Z, Fu YX. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun 2021; 12:2768. [PMID: 33986267 PMCID: PMC8119481 DOI: 10.1038/s41467-021-22980-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
As a potent lymphocyte activator, interleukin-2 (IL-2) is an FDA-approved treatment for multiple metastatic cancers. However, its clinical use is limited by short half-life, low potency, and severe in vivo toxicity. Current IL-2 engineering strategies exhibit evidence of peripheral cytotoxicity. Here, we address these issues by engineering an IL-2 prodrug (ProIL2). We mask the activity of a CD8 T cell-preferential IL-2 mutein/Fc fusion protein with IL2 receptor beta linked to a tumor-associated protease substrate. ProIL2 restores activity after cleavage by tumor-associated enzymes, and preferentially activates inside tumors, where it expands antigen-specific CD8 T cells. This significantly reduces IL-2 toxicity and mortality without compromising antitumor efficacy. ProIL2 also overcomes resistance of cancers to immune checkpoint blockade. Lastly, neoadjuvant ProIL2 treatment can eliminate metastatic cancer through an abscopal effect. Taken together, our approach presents an effective tumor targeting therapy with reduced toxicity.
Collapse
Affiliation(s)
- Eric J Hsu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xuezhi Cao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Benjamin Moon
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joonbeom Bae
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhichen Sun
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhida Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang-Xin Fu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
Human leukocyte antigen I is significantly downregulated in patients with myxoid liposarcomas. Cancer Immunol Immunother 2021; 70:3489-3499. [PMID: 33893830 PMCID: PMC8571150 DOI: 10.1007/s00262-021-02928-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The characteristics of the tumor immune microenvironment remains unclear in liposarcomas, and here we aimed to determine the prognostic impact of the tumor immune microenvironment across separate liposarcomas subtypes. A total of 70 liposarcoma patients with three subtypes: myxoid liposarcoma (n = 45), dedifferentiated liposarcoma (n = 17), and pleomorphic liposarcoma (n = 8) were enrolled. The presence of tumor infiltrating lymphocytes (CD4+ , CD8+ , FOXP3+ lymphocytes) and CD163+ macrophages and expression of HLA class I and PD-L1 were assessed by immunohistochemistry in the diagnostic samples; overall survival and progression-free survival were estimated from outcome data. For infiltrating lymphocytes and macrophages, dedifferentiated liposarcoma and pleomorphic liposarcoma patients had a significantly higher number than myxoid liposarcoma patients. While myxoid liposarcoma patients with a high number of macrophages were associated with worse overall and progression-free survival, dedifferentiated liposarcoma patients with high macrophage numbers showed a trend toward favorable prognosis. Expression of HLA class I was negative in 35 of 45 (77.8%) myxoid liposarcoma tumors, whereas all dedifferentiated liposarcoma and pleomorphic liposarcoma tumors expressed HLA class I. The subset of myxoid liposarcoma patients with high HLA class I expression had significantly poor overall and progression-free survival, while dedifferentiated liposarcoma patients with high HLA class I expression tended to have favorable outcomes. Only four of 17 (23.5%) dedifferentiated liposarcomas, two of eight (25%) pleomorphic liposarcomas, and no myxoid liposarcoma tumors expressed PD-L1. Our results demonstrate the unique immune microenvironment of myxoid liposarcomas compared to other subtypes of liposarcomas, suggesting that the approach for immunotherapy in liposarcomas should be based on subtype.
Collapse
|