1
|
Gasson SB, Dobson LK, Pfau-Cloud MR, Beltran FO, Gregory CA, Grunlan MA, Saunders WB. Shape Memory Polymer Scaffolds-Utility for In Vitro Osteogenesis of Canine Multipotent Stromal Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35503. [PMID: 39587932 DOI: 10.1002/jbm.b.35503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
A biodegradable, shape memory polymer (SMP) scaffold based on poly(ε-caprolactone) (PCL) represents an attractive alternative therapy for the repair of critically sized bone defects given its ability to press-fit within irregular defects. Clinical translation of SMP scaffolds requires successful movement beyond proof-of-concept rodent studies through a relevant large-animal model and into the clinical setting. In addition to representing a clinical veterinary population, the canine species is a strong translational model for humans due to similarities in orthopedic disorders, biomechanics, and bone healing. The present study was performed to assess in vitro cytocompatibility and osteogenic differentiation of canine multipotent stromal cells (cMSCs) cultured on SMP scaffolds in preparation for future canine in vivo studies. Two different SMP scaffold compositions were utilized: a "PCL-only" scaffold prepared from PCL-diacrylate (PCL-DA) and a semi-interpenetrating network (semi-IPN) formed from PCL-DA and poly(L-lactic acid) (PCL:PLLA). The PCL:PLLA scaffolds degrade faster and are more mechanically rigid versus the PCL scaffolds. Canine bone marrow-derived MSCs (cMSCs) were evaluated in terms of attachment, proliferation, and osteogenic differentiation. cMSCs exhibited excellent cytocompatibility, attachment, and proliferation on both SMP scaffold compositions. PCL scaffolds were more conducive to both early- and late-stage in vitro osteogenesis of cMSCs versus PCL:PLLA scaffolds. However, cMSCs deposited mineralized extracellular matrix over 21 days when cultured on both SMP scaffold compositions. These results demonstrate that the SMP scaffolds are suitable for in vitro cMSC attachment, proliferation, and osteogenic differentiation, representing a significant step toward canine in vivo studies and potential translation to human patients.
Collapse
Affiliation(s)
- Shelby B Gasson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michaela R Pfau-Cloud
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Felipe O Beltran
- Department of Materials Science & Engineering, College of Engineering, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular & Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science & Engineering, College of Engineering, College Station, Texas, USA
- Department of Chemistry, College of Engineering, College Station, Texas, USA
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Soltani L, Ghaneialvar H, Abbasi N, Bayat P, Nazari M. Chitosan/alginate scaffold enhanced with Berberis vulgaris extract for osteocyte differentiation of ovine fetal stem cells. Cell Biochem Funct 2024; 42:e3924. [PMID: 38269507 DOI: 10.1002/cbf.3924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Designing biocompatible polymers using plant derivatives can be extremely useful in tissue engineering, nanomedicine, and many other fields of medicine. In this study, it was first looked into how chitosan/alginate scaffolds were made and characterized in the presence of berberine and barberry fruit extract. Second, the process of proliferation and differentiation of ovine fetal BM-MSCs (bone marrow-mesenchymal stem cells) was assessed on these scaffolds after BM-MSCs were extracted and confirmed by developing into osteocyte and adipose cells. To investigate the differentiation, treatment groups include (1) ovine fetal BM-MSCs were plated in Dulbecco's modified eagle medium culture medium with high glucose containing 10% fetal bovine serum and antibiotics (negative control), (2) ovine fetal BM-MSCs were plated in osteogenic differentiation medium (positive control group), (3) positive control group + barberry fruit extract, (4) positive control group + berberine, (5) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold (hydrogel group), (6) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/barberry fruit extract scaffold (hydrogel group containing barberry fruit extract), and (7) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/berberine scaffold (hydrogel group containing berberine). Alkaline phosphatase (ALP) enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were all found after 21 days of culture. In addition, real-time quantitative reverse transcription polymerase chain reaction was used to assess the expression of the ALP, COL1A2, and Runx2 genes. Days 5 and 7 had the lowest water absorption by the hydrogel scaffold containing barberry extract, which was significant in comparison to other groups (p < .05). Among the hydrogel scaffolds under study, the one containing barberry extract exhibited the lowest tensile strength, and this difference was statistically significant (p < .05). The chitosan/alginate hydrogel has the highest tensile strength of all of them. In comparison to the control and other treatment groups, the inclusion of berberine in the chitosan/alginate hydrogel significantly increased the expression of the ALP, Runx2, and COL1A2 genes (p < .05). The osteocyte differentiation of mesenchymal stem cells in in vitro settings appears to have been enhanced by the inclusion of berberine in the chitosan/alginate scaffold.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Clinical Biochemistry, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Parvaneh Bayat
- Department of Chemistry, Isfahan University of Technology, Ilam, Iran
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Lynn JV, Lalchandani KB, Daniel M, Urlaub KM, Ettinger RE, Nelson NS, Donneys A, Buchman SR. Adipose-Derived Stem Cells Enhance Graft Incorporation and Mineralization in a Murine Model of Irradiated Mandibular Nonvascularized Bone Grafting. Ann Plast Surg 2023; 91:154-158. [PMID: 37450875 DOI: 10.1097/sap.0000000000003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nonvascularized bone grafting represents a practical method of mandibular reconstruction. However, the destructive effects of radiotherapy on native bone preclude the use of nonvascularized bone grafts in head and neck cancer patients. Adipose-derived stem cells have been shown to enhance bone healing and regeneration in numerous experimental models. The purpose of this study was to determine the impact of adipose-derived stem cells on nonvascularized bone graft incorporation in a murine model of irradiated mandibular reconstruction. METHODS Thirty isogenic rats were randomly divided into 3 groups: nonvascularized bone graft (control), radiation with nonvascularized bone graft (XRT), and radiation with nonvascularized bone graft and adipose-derived stem cells (ASC). Excluding the control group, all rats received a human-equivalent dose of radiation. All groups underwent mandibular reconstruction of a critical-sized defect with a nonvascularized bone graft from the contralateral hemimandible. After a 60-day recovery period, graft incorporation and bone mineralization were compared between groups. RESULTS Compared with the control group, the XRT group demonstrated significantly decreased graft incorporation (P = 0.011), bone mineral density (P = 0.005), and bone volume fraction (P = 0.001). Compared with the XRT group, the ASC group achieved a significantly increased graft incorporation (P = 0.006), bone mineral density (P = 0.005), and bone volume fraction (P = 0.013). No significant differences were identified between the control and ASC groups. CONCLUSIONS Adipose-derived stem cells enhance nonvascularized bone graft incorporation in the setting of human-equivalent radiation.
Collapse
Affiliation(s)
- Jeremy V Lynn
- From the Craniofacial Research Laboratory, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ferreira‐Baptista C, Queirós A, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites. J Anat 2023; 242:277-288. [PMID: 36056547 PMCID: PMC9877480 DOI: 10.1111/joa.13758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells-based regenerative orthopedic therapies have been used in cats as a promising and innovative therapeutic approach to enhance the repair of bone defects. Adipose tissue-derived stromal cells (ADSCs) can be obtained from two main sites-subcutaneous and visceral-with established differences regarding structure, composition, cell content, and functionality. However, in cats, to the best of the authors' knowledge, no studies have been conducted to compare the functional activity of the ADSCs isolated from the two sites, and the impact of these differences on the induced osteogenic potential. Additionally, retinoic acid has been recently regarded as a new osteogenic inducer within cells of distinct species, with undisclosed functionality on cat-derived cell populations. Thus, the present study aimed to evaluate the functional activity of ADSCs isolated from the subcutaneous and visceral adipose sites (SCAT and VAT, respectively) of the cat, as well as the effects of two osteogenic-inducing conditions-the classic dexamethasone, β-glycerophosphate and ascorbic acid-supplemented media (Dex + β + AAM), and Retinoic Acid-supplemented media (RAM). The adipose tissue of subcutaneous and visceral origin was isolated, characterized, and ADSCs were isolated and grown in the presence of the two osteogenic-inducing conditions, and characterized in terms of proliferation, metabolic activity, morphology, and osteogenic activity. Our results demonstrated a distinct biological profile of the two adipose tissue sites regarding cell size, vascularization, and morphology. Further, osteogenic-induced ADSCs from both sites presented an increased expression of alkaline phosphatase activity (ALP) and cytochemical staining, as compared with control. Overall, RAM induced higher levels of ALP activity than Dex + β + AAM, supporting an increased osteogenic activation. Additionally, VAT was the tissue with the best osteogenic potential, showing higher levels of ALP expression, particularly with RAM. In conclusion, different characteristics were found between the two adipose tissue sites-SCAT and VAT, which probably reflect the differences found in the functionality of isolated ADSCs from both tissues. Furthermore, for cat, VAT shows a greater osteogenic-inductive capacity than SCAT, particularly with RAM, which can be of therapeutic relevance for regenerative medicine applications.
Collapse
Affiliation(s)
- Carla Ferreira‐Baptista
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | | | - Rita Ferreira
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | - Maria Helena Fernandes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Pedro Sousa Gomes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- CECAV—Animal and Veterinary Research Centre UTADUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)Vila RealPortugal
| |
Collapse
|
6
|
The Osteogenic Potential of Falciform Ligament-Derived Stromal Cells-A Comparative Analysis between Two Osteogenic Induction Programs. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120810. [PMID: 36551016 PMCID: PMC9774535 DOI: 10.3390/bioengineering9120810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) have gained special relevance in bone tissue regenerative applications. MSCs have been isolated from different depots, with adipose tissue being acknowledged as one of the most convenient sources, given the wide availability, high cellular yield, and obtainability. Recently, the falciform ligament (FL) has been regarded as a potential depot for adipose tissue-derived stromal cells (FL-ADSCs) isolation. Nonetheless, the osteogenic capability of FL-ADSCs has not been previously characterized. Thus, the present study aimed the detailed characterization of FL-ADSCs' functionality upon osteogenic induction through a classic (dexamethasone-based-DEX) or an innovative strategy with retinoic acid (RA) in a comparative approach with ADSCs from a control visceral region. Cultures were characterized for cell proliferation, metabolic activity, cellular morphology, fluorescent cytoskeletal and mitochondrial organization, and osteogenic activity-gene expression analysis and cytochemical staining. FL-derived populations expressed significantly higher levels of osteogenic genes and cytochemical markers, particularly with DEX induction, as compared to control ADSCs that were more responsive to RA. FL-ADSCs were identified as a potential source for bone regenerative applications, given the heightened osteogenic functionality. Furthermore, data highlighted the importance of the selection of the most adequate osteogenic-inducing program concerning the specificities of the basal cell population.
Collapse
|
7
|
Therapeutic Efficacy of Adipose-Derived Stem Cells Versus Bone Marrow Stromal Cells for Irradiated Mandibular Fracture Repair. Ann Plast Surg 2022; 89:459-464. [PMID: 36149985 DOI: 10.1097/sap.0000000000003301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells have immense potential in applications of bone healing and regeneration. However, few studies have evaluated the therapeutic efficacy of adipose-derived stem cells (ASCs) and bone marrow stromal cells (BMSCs) in irradiated bone. The purpose of this study is to compare the ability of ASCs versus BMSCs to enhance healing outcomes in a murine model of irradiated mandibular fracture repair. METHODS Forty-eight isogenic male Lewis rats underwent radiation therapy followed by mandibular osteotomy with intraoperative placement of either ASCs or BMSCs. Animals were killed on postoperative day 40. Mandibles were analyzed for union rate, biomechanical strength, vascularity, and mineralization. Groups were compared at P < 0.05 significance. RESULTS The ASC and BMSC groups demonstrated 92% and 75% union rates. Compared with the BMSC group, the ASC group demonstrated a trending increase in maximum load ( P = 0.095) on biomechanical strength analysis and a significant increase in vessel number ( P = 0.001), vessel thickness ( P = 0.035), and vessel volume fraction ( P = 0.007) on micro-computed tomography angiography analysis. No significant differences in bone mineralization were identified on micro-computed tomography analysis. CONCLUSION This study demonstrates the superior therapeutic efficacy of ASCs over BMSCs in irradiated fracture healing as evidenced by union rate, vascular morphometry, and a trend in biomechanical strength. We posit that the robust vascular response induced by ASCs better recapitulates the sequence and synchronicity of physiologic bone healing compared with BMSCs, thereby improving the reliability of irradiated fracture repair.
Collapse
|
8
|
Dobson LK, Zeitouni S, McNeill EP, Bearden RN, Gregory CA, Saunders WB. Canine Mesenchymal Stromal Cell-Mediated Bone Regeneration is Enhanced in the Presence of Sub-Therapeutic Concentrations of BMP-2 in a Murine Calvarial Defect Model. Front Bioeng Biotechnol 2021; 9:764703. [PMID: 34796168 PMCID: PMC8592971 DOI: 10.3389/fbioe.2021.764703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
Novel bone regeneration strategies often show promise in rodent models yet are unable to successfully translate to clinical therapy. Sheep, goats, and dogs are used as translational models in preparation for human clinical trials. While human MSCs (hMSCs) undergo osteogenesis in response to well-defined protocols, canine MSCs (cMSCs) are more incompletely characterized. Prior work suggests that cMSCs require additional agonists such as IGF-1, NELL-1, or BMP-2 to undergo robust osteogenic differentiation in vitro. When compared directly to hMSCs, cMSCs perform poorly in vivo. Thus, from both mechanistic and clinical perspectives, cMSC and hMSC-mediated bone regeneration may differ. The objectives of this study were twofold. The first was to determine if previous in vitro findings regarding cMSC osteogenesis were substantiated in vivo using an established murine calvarial defect model. The second was to assess in vitro ALP activity and endogenous BMP-2 gene expression in both canine and human MSCs. Calvarial defects (4 mm) were treated with cMSCs, sub-therapeutic BMP-2, or the combination of cMSCs and sub-therapeutic BMP-2. At 28 days, while there was increased healing in defects treated with cMSCs, defects treated with cMSCs and BMP-2 exhibited the greatest degree of bone healing as determined by quantitative μCT and histology. Using species-specific qPCR, cMSCs were not detected in relevant numbers 10 days after implantation, suggesting that bone healing was mediated by anabolic cMSC or ECM-driven cues and not via engraftment of cMSCs. In support of this finding, defects treated with cMSC + BMP-2 exhibited robust deposition of Collagens I, III, and VI using immunofluorescence. Importantly, cMSCs exhibited minimal ALP activity unless cultured in the presence of BMP-2 and did not express endogenous canine BMP-2 under any condition. In contrast, human MSCs exhibited robust ALP activity in all conditions and expressed human BMP-2 when cultured in control and osteoinduction media. This is the first in vivo study in support of previous in vitro findings regarding cMSC osteogenesis, namely that cMSCs require additional agonists to initiate robust osteogenesis. These findings are highly relevant to translational cell-based bone healing studies and represent an important finding for the field of canine MSC-mediated bone regeneration.
Collapse
Affiliation(s)
- Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Noncultured Minimally Processed Adipose-Derived Stem Cells Improve Radiated Fracture Healing. Ann Plast Surg 2021; 85:83-88. [PMID: 32187072 DOI: 10.1097/sap.0000000000002354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.
Collapse
|
10
|
Dziedzic DSM, Francisco JC, Mogharbel BF, Irioda AC, Stricker PEF, Floriano J, de Noronha L, Abdelwahid E, Franco CRC, de Carvalho KAT. Combined Biomaterials: Amniotic Membrane and Adipose Tissue to Restore Injured Bone as Promoter of Calcification in Bone Regeneration: Preclinical Model. Calcif Tissue Int 2021; 108:667-679. [PMID: 33420810 PMCID: PMC8064990 DOI: 10.1007/s00223-020-00793-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Discarded tissues, like human amniotic membranes and adipose tissue, were investigated for the application of Decellularized Human Amniotic Membrane (DAM) as a viable scaffold for transplantation of Adipose-derived stromal cells (ASCs) in bone regeneration of non-healing calvarial defects in rats. Amniotic membrane was decellularized to provide a scaffold for male Wistar rats ASCs expansion and transplantation. ASCs osteoinduction in vitro promoted the deposition of a mineralized bone-like matrix by ASCs, as calcified globular accretions associated with the cells on the DAM surface and inside the collagenous matrix. Non-healing calvarial defects on male Wistar rats were randomly divided in control without treatment, treatment with four layers of DAM, or four layers of DAM associated with ASCs. After 12 weeks, tissue blocks were examined by micro-computed tomography and histology. DAM promoted osteoconduction by increasing the collagenous matrix on both DAM treatments. DAM with ASCs stimulated bone deposition, demonstrated by a higher percentage of bone volume and trabecular bone number, compared to control. Besides the osteogenic capacity in vitro, ASCs stimulated the healing of calvarial defects with significant DAM graft incorporation concomitant with higher host bone deposition. The enhanced in vivo bone regeneration by undifferentiated ASCs loaded onto DAM confirmed the potential of an easily collected autologous cell source associated with a broadly available collagenous matrix in tissue engineering.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Júlio César Francisco
- Positivo University, St.Professor Pedro Viriato Parigot de Souza, Box 80710-570, Curitiba, Paraná 5300 Brazil
| | - Bassam Felipe Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Ana Carolina Irioda
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Priscila Elias Ferreira Stricker
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Juliana Floriano
- Physics Department, São Paulo State University (UNESP), Ave. Eng. Luís Edmundo Carrijo Coube, 2085 - Núcleo Res. Pres. Geisel, Box 17033-360, Bauru, São Paulo Brazil
| | - Lúcia de Noronha
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University, Ave. Imaculada Conceição, 1155, Box 80215-901, Curitiba, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14–725, Chicago, IL 60611 USA
| | - Célia Regina Cavichiolo Franco
- Cell Biology Department, Federal University of Paraná, Ave. Coronel Francisco Heráclito dos Santos 210, Box 81531-970, Curitiba, Paraná Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| |
Collapse
|
11
|
van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci 2021; 22:3800. [PMID: 33917615 PMCID: PMC8038786 DOI: 10.3390/ijms22073800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.
Collapse
Affiliation(s)
- Ingmar A. J. van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands; (M.W.A.M.T.); (L.E.F.-A.); (I.A.); (A.A.Z.)
| | | | | | | | | |
Collapse
|
12
|
Gasson SB, Dobson LK, Chow L, Dow S, Gregory CA, Saunders WB. Optimizing In Vitro Osteogenesis in Canine Autologous and Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells with Dexamethasone and BMP-2. Stem Cells Dev 2021; 30:214-226. [PMID: 33356875 PMCID: PMC7891305 DOI: 10.1089/scd.2020.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
A growing body of work suggests that canine mesenchymal stromal cells (cMSCs) require additional agonists such as bone morphogenic protein-2 (BMP-2) for consistent in vitro osteogenic differentiation. BMP-2 is costly and may challenge the translational relevance of the canine model. Dexamethasone enhances osteogenic differentiation of human MSCs (hMSCs) and is widely utilized in osteogenic protocols. The aim of this study was to determine the effect of BMP-2 and dexamethasone on early- and late-stage osteogenesis of autologous and induced pluripotent stem cell (iPS)-derived cMSCs. Two preparations of marrow-derived cMSCs were selected to represent exceptionally or marginally osteogenic autologous cMSCs. iPS-derived cMSCs were generated from canine fibroblasts. All preparations were evaluated using alkaline phosphatase (ALP) activity, Alizarin Red staining of osteogenic monolayers, and quantitative polymerase chain reaction. Data were reported as mean ± standard deviation and compared using one- or two-way analysis of variance and Tukey or Sidak post hoc tests. Significance was established at P < 0.05. In early-stage assays, dexamethasone decreased ALP activity for all cMSCs in the presence of BMP-2. In late-stage assays, inclusion of dexamethasone and BMP-2 at Day 1 of culture produced robust monolayer mineralization for autologous cMSCs. Delivering 100 nM dexamethasone at Day 1 improved mineralization and reduced the BMP-2 concentrations required to achieve mineralization of the marginal cMSCs. For iPS-cMSCs, dexamethasone was inhibitory to both ALP activity and monolayer mineralization. There was increased expression of osteocalcin and osterix with BMP-2 in autologous cMSCs but a more modest expression occurred in iPS cMSCs. While autologous and iPS-derived cMSCs respond similarly in early-stage osteogenic assays, they exhibit unique responses to dexamethasone and BMP-2 in late-stage mineralization assays. This study demonstrates that dexamethasone and BMP-2 can be titrated in a time- and concentration-dependent manner to enhance osteogenesis of autologous cMSC preparations. These results will prove useful for investigators performing translational studies with cMSCs while providing insight into iPS-derived cMSC osteogenesis.
Collapse
Affiliation(s)
- Shelby B. Gasson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren K. Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Carl A. Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - William Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Kafarnik C, McClellan A, Dziasko M, Daniels JT, Guest DJ. Canine Corneal Stromal Cells Have Multipotent Mesenchymal Stromal Cell Properties In Vitro. Stem Cells Dev 2020; 29:425-439. [PMID: 31973649 DOI: 10.1089/scd.2019.0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine whether corneal stromal cells (CSCs) from the limbal and central corneal stroma in dogs have multipotent mesenchymal stem/stromal cell (MSC) properties, and whether this cell population can be differentiated into keratocyte-like cells (KDCs). Normal, donated, mesocephalic dog corneas were used to isolate CSC in vitro. Immunohistochemistry demonstrated a distinct population of CD90 expressing cells in the anterior stroma throughout the limbal and central cornea. CSC could be cultured from both the limbal and central cornea and the culture kinetics showed a progenitor cell profile. The CSC expressed stem cell markers CD90, CD73, CD105, N-cadherin, and Pax6, while CD34 was negative. Limbal and central CSC differentiated into osteoblasts, chondrocytes, and adipocytes confirming their multipotency. Coculturing allogeneic peripheral blood mononuclear cells (PBMCs) with limbal CSCs did not affect baseline PBMC proliferation indicating a degree of innate immune privilege. Limbal CSC could be differentiated into KDCs that expressed Keratocan, Lumican, and ALDH1A3 and downregulated Pax6 and N-cadherin. In conclusion, canine CSCs have multipotent MSC properties similarly described in humans and could serve as a source of cells for cell therapy and studying corneal diseases.
Collapse
Affiliation(s)
- Christiane Kafarnik
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Marc Dziasko
- Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Julie T Daniels
- Rescue, Repair and Regeneration Theme, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Deborah J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
14
|
Differentiation and Anti-inflammatory Potentials of Eucomis autumnalis and Pterocarpus angolensis Extracts Scaffolds in Porcine Adipose–Derived Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00119-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Hsieh HHS, Agarwal S, Cholok DJ, Loder SJ, Kaneko K, Huber A, Chung MT, Ranganathan K, Habbouche J, Li J, Butts J, Reimer J, Kaura A, Drake J, Breuler C, Priest CR, Nguyen J, Brownley C, Peterson J, Ozgurel SU, Niknafs YS, Li S, Inagaki M, Scott G, Krebsbach PH, Longaker MT, Westover K, Gray N, Ninomiya-Tsuji J, Mishina Y, Levi B. Coordinating Tissue Regeneration Through Transforming Growth Factor-β Activated Kinase 1 Inactivation and Reactivation. Stem Cells 2019; 37:766-778. [PMID: 30786091 DOI: 10.1002/stem.2991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/24/2018] [Accepted: 11/24/2018] [Indexed: 12/13/2022]
Abstract
Aberrant wound healing presents as inappropriate or insufficient tissue formation. Using a model of musculoskeletal injury, we demonstrate that loss of transforming growth factor-β activated kinase 1 (TAK1) signaling reduces inappropriate tissue formation (heterotopic ossification) through reduced cellular differentiation. Upon identifying increased proliferation with loss of TAK1 signaling, we considered a regenerative approach to address insufficient tissue production through coordinated inactivation of TAK1 to promote cellular proliferation, followed by reactivation to elicit differentiation and extracellular matrix production. Although the current regenerative medicine paradigm is centered on the effects of drug treatment ("drug on"), the impact of drug withdrawal ("drug off") implicit in these regimens is unknown. Because current TAK1 inhibitors are unable to phenocopy genetic Tak1 loss, we introduce the dual-inducible COmbinational Sequential Inversion ENgineering (COSIEN) mouse model. The COSIEN mouse model, which allows us to study the response to targeted drug treatment ("drug on") and subsequent withdrawal ("drug off") through genetic modification, was used here to inactivate and reactivate Tak1 with the purpose of augmenting tissue regeneration in a calvarial defect model. Our study reveals the importance of both the "drug on" (Cre-mediated inactivation) and "drug off" (Flp-mediated reactivation) states during regenerative therapy using a mouse model with broad utility to study targeted therapies for disease. Stem Cells 2019;37:766-778.
Collapse
Affiliation(s)
- Hsiao Hsin Sung Hsieh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Experimental Rheumatology Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David J Cholok
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shawn J Loder
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kieko Kaneko
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda Huber
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael T Chung
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Joe Habbouche
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - John Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Butts
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Reimer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Arminder Kaura
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - James Drake
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Caitlin R Priest
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Joe Nguyen
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Cameron Brownley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Peterson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Yashar S Niknafs
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shuli Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Greg Scott
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Paul H Krebsbach
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kenneth Westover
- Department of Biochemistry, University of Texas Southwestern, Dallas, Texas, USA
| | - Nathanael Gray
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yuji Mishina
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Gharat TP, Diaz-Rodriguez P, Erndt-Marino JD, Jimenez Vergara AC, Munoz Pinto DJ, Bearden RN, Huggins SS, Grunlan M, Saunders WB, Hahn MS. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds. J Biomed Mater Res A 2018; 106:2382-2393. [PMID: 29633508 PMCID: PMC6158043 DOI: 10.1002/jbm.a.36430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Tissue engineered bone grafts based on bone marrow mesenchymal stromal cells (MSCs) are being actively developed for craniomaxillofacial (CMF) applications. As for all tissue engineered implants, the bone-regenerating capacity of these MSC-based grafts must first be evaluated in animal models prior to human trials. Canine models have traditionally resulted in improved clinical translation of CMF grafts relative to other animal models. However, the utility of canine CMF models for evaluating MSC-based bone grafts rests on canine MSCs (cMSCs) responding in a similar manner to scaffold-based stimuli as human MSCs (hMSCs). Herein, cMSC and hMSC responses to polyethylene glycol (PEG)-based scaffolds were therefore compared in the presence or absence of osteoinductive polydimethylsiloxane (PDMS). Notably, the conjugation of PDMS to PEG-based constructs resulted in increases in both cMSC and hMSC osteopontin and calcium deposition. Based on these results, cMSCs were further used to assess the efficacy of tethered bone morphogenic protein 2 (BMP2) in enhancing PEG-PDMS scaffold osteoinductivity. Addition of low doses of tethered BMP2 (100 ng/mL) to PEG-PDMS systems increased cMSC expression of osterix and osteopontin compared to both PEG-PDMS and PEG-BMP2 controls. Furthermore, these increases were comparable to effects seen with up to five-times higher BMP2 doses noted in literature. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2382-2393, 2018.
Collapse
Affiliation(s)
- Tanmay P. Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Josh D. Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Dany J. Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert N. Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shannon S. Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Melissa Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - W. Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
17
|
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther 2017; 8:218. [PMID: 28974260 PMCID: PMC5627404 DOI: 10.1186/s13287-017-0639-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. Methods Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. Results All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. Conclusions While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0639-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon S Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - William B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Alves EGL, Serakides R, Rosado IR, Boeloni JN, Ocarino NM, Rezende CMDF. ISOLAMENTO E CULTIVO DE CÉLULAS TRONCO MESENQUIMAIS EXTRAÍDAS DO TECIDO ADIPOSO E DA MEDULA ÓSSEA DE CÃES. CIÊNCIA ANIMAL BRASILEIRA 2017. [DOI: 10.1590/1089-6891v18e-34050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resumo Objetivou-se estabelecer um protocolo para extração, cultivo e expansão de células tronco mesenquimais (CTM), utilizando-se 3,0 mL da medula óssea e 3,0 cm3 de tecido adiposo do subcutâneo de três cães machos com seis meses de idade. As amostras foram processadas e as células extraídas e cultivadas em DMEM. Para comprovação do isolamento de CTM, procedeu-se a caracterização fenotípica e a diferenciação osteogênica, adipogênica e condrogênica. As células isoladas apresentaram morfologia alongada e fusiforme e capacidade de se diferenciar em osteoblastos, adipócitos e condrócitos. A caracterização fenotípica revelou alta expressão de marcadores de CTM CD90 (80,04%) e CD29 (96%) nas células de origem medular e CD90 (60,94%) e CD29 (77,08%) nas de origem adiposa. A expressão de marcadores hematopoiéticos foi baixa tanto nas células de origem medular CD45 (1,45%) e CD34 (1,53%), quanto nas de origem adiposa CD45 (1,45%) e CD34 (1,53%). As modificações e adaptações realizadas nos protocolos clássicos simplificaram o processo e foram eficientes, permitindo o isolamento e cultivo de CTM da medula óssea e do tecido adiposo de cães.
Collapse
|
19
|
Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Mol Ther 2017; 25:1974-1987. [PMID: 28716575 DOI: 10.1016/j.ymthe.2017.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Trauma-induced heterotopic ossification (tHO) is a condition of pathologic wound healing, defined by the progressive formation of ectopic bone in soft tissue following severe burns or trauma. Because previous studies have shown that genetic variants of HO, such as fibrodysplasia ossificans progressiva (FOP), are caused by hyperactivating mutations of the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1/ALK2, studies evaluating therapies for HO have been directed primarily toward drugs for this specific receptor. However, patients with tHO do not carry known T1-BMPR mutations. Here we show that, although BMP signaling is required for tHO, no single T1-BMPR (ACVR1/ALK2, BMPR1a/ALK3, or BMPR1b/ALK6) alone is necessary for this disease, suggesting that these receptors have functional redundancy in the setting of tHO. By utilizing two different classes of BMP signaling inhibitors, we developed a translational approach to treatment, integrating treatment choice with existing diagnostic options. Our treatment paradigm balances either immediate therapy with reduced risk for adverse effects (Alk3-Fc) or delayed therapy with improved patient selection but greater risk for adverse effects (LDN-212854).
Collapse
|
20
|
James AW, Zhang X, Crisan M, Hardy WR, Liang P, Meyers CA, Lobo S, Lagishetty V, Childers MK, Asatrian G, Ding C, Yen YH, Zou E, Ting K, Peault B, Soo C. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One 2017; 12:e0177308. [PMID: 28489940 PMCID: PMC5425216 DOI: 10.1371/journal.pone.0177308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/25/2017] [Indexed: 01/04/2023] Open
Abstract
For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mihaela Crisan
- Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Winters R. Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Pei Liang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sonja Lobo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Venu Lagishetty
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Martin K. Childers
- Rehabilitation Medicine Clinic, UWMC, Seattle, Washington, United States of America
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine Ding
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yu-Hsin Yen
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
- Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Chen YW, Wang JR, Liao X, Li SH, Xiao LL, Cheng B, Xie GH, Song JX, Liu HW. Effect of suction pressures on cell yield and functionality of the adipose-derived stromal vascular fraction. J Plast Reconstr Aesthet Surg 2017; 70:257-266. [DOI: 10.1016/j.bjps.2016.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
|
22
|
Agarwal S, Drake J, Qureshi AT, Loder S, Li S, Shigemori K, Peterson J, Cholok D, Forsberg JA, Mishina Y, Davis TA, Levi B. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS One 2016; 11:e0156253. [PMID: 27494521 PMCID: PMC4975503 DOI: 10.1371/journal.pone.0156253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is the pathologic formation of bone separate from the normal skeleton. Although several models exist for studying HO, an understanding of the common in vitro properties of cells isolated from these models is lacking. We studied three separate animal models of HO including two models of trauma-induced HO and one model of genetic HO, and human HO specimens, to characterize the properties of cells derived from tissue containing pre-and mature ectopic bone in relation to analogous mesenchymal cell populations or osteoblasts obtained from normal muscle tissue. We found that when cultured in vitro, cells isolated from the trauma sites in two distinct models exhibited increased osteogenic differentiation when compared to cells isolated from uninjured controls. Furthermore, osteoblasts isolated from heterotopic bone in a genetic model of HO also exhibited increased osteogenic differentiation when compared with normal osteoblasts. Finally, osteoblasts derived from mature heterotopic bone obtained from human patients exhibited increased osteogenic differentiation when compared with normal bone from the same patients. These findings demonstrate that across models, cells derived from tissues forming heterotopic ossification exhibit increased osteogenic differentiation when compared with either normal tissues or osteoblasts. These cell types can be used in the future for in vitro investigations for drug screening purposes.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - James Drake
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Ammar T Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Shuli Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Kay Shigemori
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan Peterson
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan A Forsberg
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Yuji Mishina
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| |
Collapse
|
23
|
Alves EG, Serakides R, Boeloni JN, Rosado IR, Ocarino NM, Oliveira HP, Góes AM, Rezende CM. Estudo comparativo da diferenciação osteogênica das células tronco mesenquimais da medula óssea e do tecido adiposo de cães adultos. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x201600130004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resumo: O objetivo deste estudo foi comparar o potencial osteogênico das células tronco mesenquimais extraídas da medula óssea (CTM-MO) com as do tecido adiposo (CTM-AD) de cães adultos. As células foram caracterizadas fenotipicamente quanto à expressão de CD29, CD90, CD34 e CD45 e submetidas à diferenciação adipogênica e condrogênica por 21 dias e osteogênica por 7, 14 e 21 dias. Foram constituídos quatro grupos: 1) CTM-MO em meio osteogênico, 2) CTM-MO em meio basal, 3) CTM-AD em meio osteogênico e 4) CTM-AD em meio basal. Aos 7, 14 e 21 dias de diferenciação osteogênica as culturas foram submetidas às avaliações da conversão de MTT em formazan, da atividade da fosfatase alcalina (FA), da síntese de colágeno e de matriz mineralizada, avaliação do número de células por campo e foram quantificados os transcritos gênicos para osterix, sialoproteina óssea (BSP), osteonectina (ON) e osteocalcina (OC). Tanto as células extraídas da medula óssea quanto do tecido adiposo mostraram elevada expressão de marcadores para células tronco e baixa expressão de marcadores de células hematopoiéticas (menor que 2%). Além disso, foram capazes de se diferenciar em osteoblastos, condrócitos e adipócitos. As CTM-AD submetidas à diferenciação osteogênica mostraram maior conversão do MTT em formazan que as CTM-MO, sob mesmas condições aos 7 e 21 dias. O número de células por campo, a atividade da FA, a síntese de colágeno e de matriz mineralizada foram superior nas CTM-AD em diferenciação, em relação às CTM-MO sob as mesmas condições, em todos os tempos estudados. As expressões de osterix, BSP e OC foram predominantemente superiores nas CTM-MO diferenciadas, mas a expressão de ON foi superior nas CTM-AD diferenciadas aos 7, 14 e 21 dias. Conclui-se que as CTM-AD apresentam maior potencial osteogênico que as CTM-MO quando extraídas de cães adultos.
Collapse
|
24
|
Peterson JR, De La Rosa S, Eboda O, Cilwa KE, Agarwal S, Buchman SR, Cederna PS, Xi C, Morris MD, Herndon DN, Xiao W, Tompkins RG, Krebsbach PH, Wang SC, Levi B. Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med 2016; 6:255ra132. [PMID: 25253675 DOI: 10.1126/scitranslmed.3008810] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation.
Collapse
Affiliation(s)
- Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sara De La Rosa
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Oluwatobi Eboda
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine E Cilwa
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Steven R Buchman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul S Cederna
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Section of Plastic Surgery, Department of Biomedical Engineering, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch at Galveston, and Shriners Hospitals for Children, Galveston, TX 77550, USA
| | - Wenzhong Xiao
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paul H Krebsbach
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Stewart C Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Agarwal S, Loder S, Li J, Brownley C, Peterson JR, Oluwatobi E, Drake J, Cholok D, Ranganathan K, Sung HH, Goulet J, Li S, Levi B. Diminished Chondrogenesis and Enhanced Osteoclastogenesis in Leptin-Deficient Diabetic Mice (ob/ob) Impair Pathologic, Trauma-Induced Heterotopic Ossification. Stem Cells Dev 2015; 24:2864-72. [PMID: 26413838 DOI: 10.1089/scd.2015.0135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic trauma patients exhibit delayed postsurgical wound, bony healing, and dysregulated bone development. However, the impact of diabetes on the pathologic development of ectopic bone or heterotopic ossification (HO) following trauma is unknown. In this study, we use leptin-deficient mice as a model for type 2 diabetes to understand how post-traumatic HO development may be affected by this disease process. Male leptin-deficient (ob/ob) or wild-type (C57BL/6 background) mice aged 6-8 weeks underwent 30% total body surface area burn injury with left hind limb Achilles tenotomy. Micro-CT (μCT) imaging showed significantly lower HO volumes in diabetic mice compared with wild-type controls (0.70 vs. 7.02 mm(3), P < 0.01) 9 weeks after trauma. Ob/ob mice showed evidence of HO resorption between weeks 5 and 9. Quantitative real time PCR (qRT-PCR) demonstrated high Vegfa levels in ob/ob mice, which was followed by disorganized vessel growth at 7 weeks. We noted diminished chondrogenic gene expression (SOX9) and diminished cartilage formation at 5 days and 3 weeks, respectively. Tartrate-resistant acid phosphatase stain showed increased osteoclast presence in normal native bone and pathologic ectopic bone in ob/ob mice. Our findings suggest that early diminished HO in ob/ob mice is related to diminished chondrogenic differentiation, while later bone resorption is related to osteoclast presence.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Shawn Loder
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - John Li
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Cameron Brownley
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Eboda Oluwatobi
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - James Drake
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - David Cholok
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Kavitha Ranganathan
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Hsiao Hsin Sung
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - James Goulet
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Shuli Li
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health System , Ann Arbor, Michigan
| |
Collapse
|
26
|
Peterson JR, Eboda ON, Brownley RC, Cilwa KE, Pratt LE, De La Rosa S, Agarwal S, Buchman SR, Cederna PS, Morris MD, Wang SC, Levi B. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev 2015; 24:205-13. [PMID: 25122460 DOI: 10.1089/scd.2014.0291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heterotopic ossification (HO) is a common and debilitating complication of burns, traumatic brain injuries, and musculoskeletal trauma and surgery. Although the exact mechanism of ectopic bone formation is unknown, mesenchymal stem cells (MSCs) capable of osteogenic differentiation are known to play an essential role. Interestingly, the prevalence of HO in the elderly population is low despite the high overall occurrence of musculoskeletal injury and orthopedic procedures. We hypothesized that a lower osteogenicity of MSCs would be associated with blunted HO formation in old compared with young mice. In vitro osteogenic differentiation of adipose-derived MSCs from old (18-20 months) and young (6-8 weeks) C57/BL6 mice was assessed, with or without preceding burn injury. In vivo studies were then performed using an Achilles tenotomy with concurrent burn injury HO model. HO formation was quantified using μCT scans, Raman spectroscopy, and histology. MSCs from young mice had more in vitro bone formation, upregulation of bone formation pathways, and higher activation of Smad and nuclear factor kappa B (NF-κB) signaling following burn injury. This effect was absent or blunted in cells from old mice. In young mice, burn injury significantly increased HO formation, NF-κB activation, and osteoclast activity at the tenotomy site. This blunted, reactive osteogenic response in old mice follows trends seen clinically and may be related to differences in the ability to mount acute inflammatory responses. This unique characterization of HO and MSC osteogenic differentiation following inflammatory insult establishes differences between age populations and suggests potential pathways that could be targeted in the future with therapeutics.
Collapse
Affiliation(s)
- Jonathan R Peterson
- 1 Division of Plastic Surgery, Department of Surgery, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Donneys A, Blough JT, Nelson NS, Perosky JE, Deshpande SS, Kang SY, Felice PA, Figueredo C, Peterson JR, Kozloff KM, Levi B, Chepeha DB, Buchman SR. Translational treatment paradigm for managing non-unions secondary to radiation injury utilizing adipose derived stem cells and angiogenic therapy. Head Neck 2015; 38 Suppl 1:E837-43. [PMID: 25917284 DOI: 10.1002/hed.24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bony non-unions arising in the aftermath of collateral radiation injury are commonly managed with vascularized free tissue transfers. Unfortunately, these procedures are invasive and fraught with attendant morbidities. This study investigated a novel, alternative treatment paradigm utilizing adipose-derived stem cells (ASCs) combined with angiogenic deferoxamine (DFO) in the rat mandible. METHODS Rats were exposed to a bioequivalent dose of radiation and mandibular osteotomy. Those exhibiting non-unions were subsequently treated with surgical debridement alone or debridement plus combination therapy. Radiographic and biomechanical outcomes were assessed after healing. RESULTS Significant increases in biomechanical strength and radiographic metrics were observed in response to combination therapy (p < .05). Importantly, combined therapy enabled a 65% reduction in persisting non-unions when compared to debridement alone. CONCLUSION We support the continued investigation of this promising combination therapy in its potential translation for the management of radiation-induced bony pathology. © 2015 Wiley Periodicals, Inc. Head Neck 38: E837-E843, 2016.
Collapse
Affiliation(s)
- Alexis Donneys
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jordan T Blough
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Noah S Nelson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Joseph E Perosky
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sagar S Deshpande
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Stephen Y Kang
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Peter A Felice
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan.,Department of General Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Christian Figueredo
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jonathan R Peterson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Kenneth M Kozloff
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Levi
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Steven R Buchman
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Heo SC, Shin WC, Lee MJ, Kim BR, Jang IH, Choi EJ, Lee JS, Kim JH. Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold. PLoS One 2015; 10:e0116698. [PMID: 25775460 PMCID: PMC4361583 DOI: 10.1371/journal.pone.0116698] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Periostin, an extracellular matrix protein, is expressed in bone, more specifically, the periosteum and periodontal ligaments, and plays a key role in formation and metabolism of bone tissues. Human adipose tissue-derived mesenchymal stem cells (hASCs) have been reported to differentiate into osteoblasts and stimulate bone repair. However, the role of periostin in hASC-mediated bone healing has not been clarified. In the current study, we examined the effect of periostin on bone healing capacity of hASCs in a critical size calvarial defect model. METHODS AND RESULTS Recombinant periostin protein stimulated migration, adhesion, and proliferation of hASCs in vitro. Implantation of either hASCs or periostin resulted in slight, but not significant, stimulation of bone healing, whereas co-implantation of hASCs together with periostin further potentiated bone healing. In addition, the number of Ki67-positive proliferating cells was significantly increased in calvarial defects by co-implantation of both hASCs and periostin. Consistently, proliferation of administered hASCs was stimulated by co-implantation with periostin in vivo. In addition, co-delivery of hASCs with periostin resulted in markedly increased numbers of CD31-positive endothelial cells and α-SMA-positive arterioles in calvarial defects. CONCLUSIONS These results suggest that recombinant periostin potentiates hASC-mediated bone healing by stimulating proliferation of transplanted hASCs and angiogenesis in calvarial defects.
Collapse
Affiliation(s)
- Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Won Chul Shin
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Mi Jeong Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Eun-Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
- * E-mail: (JHK); (JSL)
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea
- * E-mail: (JHK); (JSL)
| |
Collapse
|
29
|
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11:140-50. [PMID: 25560703 PMCID: PMC4338988 DOI: 10.1038/nrendo.2014.234] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Bruce A Bunnell
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Elizabeth Martin
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Trivia Frazier
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Ben P Hung
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Jeffrey M Gimble
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
In Vitro Osteoinductive Effects of Hydroxycholesterol on Human Adipose-Derived Stem Cells Are Mediated through the Hedgehog Signaling Pathway. Plast Reconstr Surg 2014; 134:960-968. [DOI: 10.1097/prs.0000000000000601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Peterson JR, Eboda O, Agarwal S, Ranganathan K, Buchman SR, Lee M, Wang SC, Mishina Y, Levi B. Targeting of ALK2, a Receptor for Bone Morphogenetic Proteins, Using the Cre/lox System to Enhance Osseous Regeneration by Adipose-Derived Stem Cells. Stem Cells Transl Med 2014; 3:1375-80. [PMID: 25232183 DOI: 10.5966/sctm.2014-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Access to readily available autogenous tissue that regenerates bone would greatly improve clinical care. We believe the osteogenic phenotype caused by mutations in ALK2 can be harnessed in adipose-derived stem cells (ASCs) to improve bone tissue engineering. We set out to demonstrate that ALK2 may serve as a novel target to (a) improve in vitro ASC osteogenic differentiation and (b) enhance in vivo bone regeneration and calvarial healing. Transgenic mice were designed using the Cre/lox system to express constitutively active ALK2 (caALK2) with ubiquitously inducible Cre expression after tamoxifen exposure. ASCs from caALK2+/- and caALK2-/-(control) mice were exposed to tamoxifen and assessed for pro-osteogenic gene expression, bone morphogenetic protein (BMP) signaling, and osteogenic differentiation. Next, ASCs collected from these transgenic mice were analyzed in vivo using a calvarial defect model and analyzed by micro-computed tomography (micro-CT) and histology. ASCs from caALK2+/-mice had increased BMP signaling as demonstrated by upregulation of pSmad 1/5. ASCs from caALK2+/-mice had enhanced bone signaling and osteogenic differentiation compared with caALK2-/-mice (n=4, p<.05). Transcription of pro-osteogenic genes at day 7 was significantly higher in ASCs from caALK2-overexpressing mice (Alp, Runx2, Ocn, Opn) (n=4, p<.05). Using micro-CT and histomorphometry, we found that bone formation was significantly higher in mice treated with caALK2-expressing ASCs in vivo. Using a novel transgenic mouse model, we show that expression of constitutively active ALK2 receptor results in significantly increased ASC osteogenic differentiation. Furthermore, we demonstrate that this increased ASC differentiation can be harnessed to improve calvarial healing.
Collapse
Affiliation(s)
- Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oluwatobi Eboda
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kavitha Ranganathan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven R Buchman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Min Lee
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stewart C Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yuji Mishina
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA; Department of Biologic and Materials Sciences, University of Michigan Dental School, Ann Arbor, Michigan, USA; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Alves EGL, Serakides R, Boeloni JN, Rosado IR, Ocarino NM, Oliveira HP, Góes AM, Rezende CMF. Comparison of the osteogenic potential of mesenchymal stem cells from the bone marrow and adipose tissue of young dogs. BMC Vet Res 2014; 10:190. [PMID: 25178540 PMCID: PMC4236816 DOI: 10.1186/s12917-014-0190-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The aim of the present study was to compare the osteogenic potential of mesenchymal stem cells extracted from the bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of young dogs. The following parameters were assessed: dimethyl thiazolyl diphenyl tetrazolium (MTT) conversion, alkaline phosphatase (ALP) activity, collagen and mineralised matrix synthesis, and the expressions of osterix, bone sialoprotein (BSP), and osteocalcin (OC). RESULTS MTT conversion was greater in BM-MSCs compared to AD-MSCs after 14 and 21 days of differentiation; ALP activity was greater in differentiated AD-MSCs on day 7; collagen synthesis was greater in BM-MSCs on days 14 and 21; the percentage of mineralized area per field was greater in BM-MSCs compared to AD-MSCs; osterix expression was greater in BM-MSCs in days 14 and 21, and BSP and OC expression levels were greater in BM-MSCs at all the investigation time-points. CONCLUSIONS It was concluded that the osteogenic potential was greater in BM-MSCs than AD-MSCs when extracted from young dogs.
Collapse
Affiliation(s)
- Endrigo GL Alves
- Curso de Medicina Veterinária da Universidade de Uberaba (UNIUBE), Uberaba, Brazil
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jankerle N Boeloni
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel R Rosado
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Natália M Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Humberto P Oliveira
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo M Góes
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cleuza MF Rezende
- Núcleo de Células Tronco e Terapia Celular Animal, NCT-TCA Departamento de Clínica e Cirurgia, Escola de veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Deshpande SS, Donneys A, Kang SY, Page EE, Felice PA, Kiryakoza L, Nelson NS, Rodriguez J, Deshpande SS, Buchman SR. Vascular analysis as a proxy for mechanostransduction response in an isogenic, irradiated murine model of mandibular distraction osteogenesis. Microvasc Res 2014; 95:143-8. [PMID: 25173587 DOI: 10.1016/j.mvr.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Head and neck cancer is a debilitating and disfiguring disease. Although numerous treatment options exist, an array of debilitating side effects accompany them, causing physiological and social problems. Distraction osteogenesis (DO) can avoid many of the pathologies of current reconstructive strategies; however, due to the deleterious effects of radiation on bone vascularity, DO is generally ineffective. This makes investigating the effects of radiation on neovasculature during DO and creating quantifiable metrics to gauge the success of future therapies vital. The purpose of this study was to develop a novel isogenic rat model of impaired vasculogenesis of the regenerate mandible in order to determine quantifiable metrics of vascular injury and associated damage. METHODS Male Lewis rats were divided into two groups: DO only (n=5) AND Radiation Therapy (XRT)+DO (n=7). Afterwards, a distraction device was surgically implanted into the mandible. Finally, they were distracted a total of 5.1mm. Animals were perfused with a radiopaque casting agent concomitant with euthanasia, and subsequently demineralization, microcomputed tomography, and vascular analysis were performed. RESULTS Vessel volume fraction, vessel thickness, vessel number, and degree of anisotropy were diminished by radiation. Vessel separation was increased by radiation. CONCLUSION The DO group experienced vigorous vessel formation during distraction and neovascularization with a clear, directional progression, while the XRT/DO group saw weak vessel formation during distraction and neovascularization. Further studies are warranted to more deeply examine the impairments in osteogenic mechanotransductive pathways following radiation in the murine mandible. This isogenic model provides quantifiable metrics for future studies requiring a controlled approach to immunogenicity.
Collapse
Affiliation(s)
- Sagar S Deshpande
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States
| | - Alexis Donneys
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States
| | - Stephen Y Kang
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States; Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Erin E Page
- College of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, United States
| | - Peter A Felice
- Department of General Surgery, University of South Carolina, Charleston, SC, United States
| | - Lauren Kiryakoza
- College of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, United States
| | - Noah S Nelson
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States
| | - Jose Rodriguez
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States
| | - Samir S Deshpande
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States; Kalamazoo College, Kalamazoo, MI, United States
| | - Steven R Buchman
- Craniofacial Research Laboratory, University of Michigan Health System, Ann Arbor, MI, United States; Section of Plastic Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States.
| |
Collapse
|
34
|
Abstract
OBJECTIVE To demonstrate the pro-osteogenic effect of burn injury on heterotopic bone formation using a novel burn ossicle in vivo model. BACKGROUND Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, is a troubling sequela of burn and trauma injuries. The exact mechanism by which burn injury influences bone formation is unknown. The aim of this study was to develop a mouse model to study the effect of burn injury on heterotopic bone formation. We hypothesized that burn injury would enhance early vascularization and subsequent bone formation of subcutaneously implanted mesenchymal stem cells. METHODS Mouse adipose-derived stem cells were harvested from C57/BL6 mice, transfected with a BMP-2 adenovirus, seeded on collagen scaffolds (ossicles), and implanted subcutaneously in the flank region of 8 adult mice. Burn and sham groups were created with exposure of 30% surface area on the dorsum to 60°C water or 30°C water for 18 seconds, respectively (n = 4/group). Heterotopic bone volume was analyzed in vivo by micro-computed tomography for 3 months. Histological analysis of vasculogenesis was performed with platelet endothelial cell adhesion molecule staining. Osteogenic histological analysis was performed by Safranin O, Picrosirius red, and aniline blue staining. Qualitative analysis of heterotopic bone composition was completed with ex vivo Raman spectroscopy. RESULTS Subcutaneously implanted ossicles formed heterotopic bone. Ossicles from mice with burn injuries developed significantly more bone than sham control mice, analyzed by micro-computed tomography at 1, 2, and 3 months (P < 0.05), and had enhanced early and late endochondral ossification as demonstrated by Safranin O, Picrosirius red, and aniline blue staining. In addition, burn injury enhanced vascularization of the ossicles (P < 0.05). All ossicles demonstrated chemical composition characteristic of bone as demonstrated by Raman spectroscopy. CONCLUSIONS Burn injury increases the predilection to osteogenic differentiation of ectopically implanted ossicles. Early differences in vascularity correlated with later bone development. Understanding the role of burn injury on heterotopic bone formation is an important first step toward the development of treatment strategies aimed to prevent unwanted and detrimental heterotopic bone formation.
Collapse
|
35
|
Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity. Expert Rev Mol Med 2014; 16:e9. [PMID: 24810570 PMCID: PMC4017835 DOI: 10.1017/erm.2014.9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of multipotent adipose-derived stromal cells (ASC) has raised hope that tissue regeneration approaches established with bone-marrow-derived stromal cells (BMSC) can be reproduced with a cell-type that is far more accessible in large quantities. Recent detailed comparisons, however, revealed subtle functional differences between ASC and BMSC, stressing the concept of a common mesenchymal progenitor existing in a perivascular niche across all tissues. Focussing on bone and cartilage repair, this review summarises recent in vitro and in vivo studies aiming towards tissue regeneration with ASC. Advantages of good accessibility, high yield and superior growth properties are counterbalanced by an inferiority of ASC to form ectopic bone and stimulate long-bone healing along with their less pronounced osteogenic and angiogenic gene expression signature. Hence, particular emphasis is placed on establishing whether stem cell activity of ASC is so far proven and relevant for successful osteochondral regeneration, or whether trophic activity may largely determine therapeutic outcome.
Collapse
|
36
|
PARRILLI A, PAGANI S, MALTARELLO MC, SANTI S, SALERNO A, NETTI PA, GIARDINO R, RIMONDINI L, FINI M. Three-dimensional cellular distribution in polymeric scaffolds for bone regeneration: a microCT analysis compared to SEM, CLSM and DNA content. J Microsc 2014; 255:20-9. [DOI: 10.1111/jmi.12132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Affiliation(s)
- A. PARRILLI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - S. PAGANI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| | - M. C. MALTARELLO
- Laboratory of Muscoskeletal Cell Biology; Rizzoli Orthopaedic Institute; Bologna Italy
- RAMSES Laboratory; Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - S. SANTI
- Laboratory of Muscoskeletal Cell Biology; Rizzoli Orthopaedic Institute; Bologna Italy
- CNR, Institute of Molecular Genetics; Bologna Italy
| | - A. SALERNO
- Interdisciplinary Research Centre of Biomaterials; University of Naples Federico II; Naples Italy
- Institute for Composite and Biomedical Materials; National Research Council; (IMCB-CNR); Naples Italy
| | - P. A. NETTI
- Interdisciplinary Research Centre of Biomaterials; University of Naples Federico II; Naples Italy
- Centre for Advanced Biomaterials for Health Care (CRIB-IIT); Istituto Italiano di Tecnologia; Naples Italy
| | - R. GIARDINO
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - L. RIMONDINI
- Department of Health Sciences; University of Piemonte Orientale “Amedeo Avogadro”; Novara Italy
| | - M. FINI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| |
Collapse
|
37
|
Ma J, Yang F, Both SK, Prins HJ, Helder MN, Pan J, Cui FZ, Jansen JA, van den Beucken JJ. Bone forming capacity of cell- and growth factor-based constructs at different ectopic implantation sites. J Biomed Mater Res A 2014; 103:439-50. [DOI: 10.1002/jbm.a.35192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Jinling Ma
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen the Netherlands
- Department of VIP service; Beijing Stomatological Hospital, Capital Medical University; Beijing 100050 China
| | - Fang Yang
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Sanne K. Both
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Henk-Jan Prins
- Department of Oral Cell Biology; Academic Centre for Dentistry Amsterdam; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
- Department of Oral and Maxillofacial Surgery; VU University Medical Centre/ACTA; Amsterdam the Netherlands
| | - Marco N. Helder
- Department of Orthopedic Surgery; VU University Medical Centre; Amsterdam the Netherlands
| | - Juli Pan
- Department of VIP service; Beijing Stomatological Hospital, Capital Medical University; Beijing 100050 China
- Department of Oral and Maxillofacial Surgery; Beijing Stomatological Hospital, Capital Medical University; Beijing 100050 China
| | - Fu-Zhai Cui
- Department of Materials Science and Engineering; State Key Laboratory of New Ceramics and Fine Processing; Tsinghua University; Beijing 100084 China
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen the Netherlands
| | | |
Collapse
|
38
|
Controlled release of granulocyte colony-stimulating factor enhances osteoconductive and biodegradable properties of Beta-tricalcium phosphate in a rat calvarial defect model. Int J Biomater 2014; 2014:134521. [PMID: 24829581 PMCID: PMC4009298 DOI: 10.1155/2014/134521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
Autologous bone grafts remain the gold standard for the treatment of congenital craniofacial disorders; however, there are potential problems including donor site morbidity and limitations to the amount of bone that can be harvested. Recent studies suggest that granulocyte colony-stimulating factor (G-CSF) promotes fracture healing or osteogenesis. The purpose of the present study was to investigate whether topically applied G-CSF can stimulate the osteoconductive properties of beta-tricalcium phosphate (β-TCP) in a rat calvarial defect model. A total of 27 calvarial defects 5 mm in diameter were randomly divided into nine groups, which were treated with various combinations of a β-TCP disc and G-CSF in solution form or controlled release system using gelatin hydrogel. Histologic and histomorphometric analyses were performed at eight weeks postoperatively. The controlled release of low-dose (1 μg and 5 μg) G-CSF significantly enhanced new bone formation when combined with a β-TCP disc. Moreover, administration of 5 μg G-CSF using a controlled release system significantly promoted the biodegradable properties of β-TCP. In conclusion, the controlled release of 5 μg G-CSF significantly enhanced the osteoconductive and biodegradable properties of β-TCP. The combination of G-CSF slow-release and β-TCP is a novel and promising approach for treating pediatric craniofacial bone defects.
Collapse
|
39
|
Kalaszczynska I, Ruminski S, Platek AE, Bissenik I, Zakrzewski P, Noszczyk M, Lewandowska-Szumiel M. Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage? Biores Open Access 2013; 2:356-63. [PMID: 24083091 PMCID: PMC3776620 DOI: 10.1089/biores.2013.0029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
It is expected that use of adult multipotential mesenchymal stem cells (MSCs) for bone tissue engineering (TE) will lead to improvement of TE products. Prior to clinical application, biocompatibility of bone TE products need to be tested in vitro and in vivo. In orthopedic research, sheep are a well-accepted model due to similarities with humans and are assumed to be predictive of human outcomes. In this study we uncover differences between human and ovine bone marrow–derived MSCs (BMSCs) and adipose tissue–derived MSCs (ADSCs) in response to osteogenic media. Osteogenic differentiation of BMSCs and ADSCs was monitored by alkaline phosphatase (ALP) activity and calcium deposition. Mineralization of ovine BMSC was achieved in medium containing NaH2PO4 as a source of phosphate ions (Pi), but not in medium containing β-glycerophosphate (β-GP), which is most often used. In a detailed study we found no induction of ALP activity in ovine BMSCs and ADSCs upon osteogenic stimulation, which makes β-GP an unsuitable source of phosphate ions for ovine cells. Moreover, mineralization of human ADSCs was more efficient in osteogenic medium containing NaH2PO4. These results indicate major differences between ovine and human MSCs and suggest that standard in vitro osteogenic differentiation techniques may not be suitable for all types of cells used in cell-based therapies. Since mineralization is a widely accepted marker of the osteogenic differentiation and maturation of cells in culture, it may lead to potentially misleading results and should be taken into account at the stage of planning and interpreting preclinical observations performed in animal models. We also present a cell culture protocol for ovine ADSCs, which do not express ALP activity and do not mineralize under routine pro-osteogenic conditions in vitro. We plan to apply it in preclinical experiments of bone tissue–engineered products performed in an ovine model.
Collapse
Affiliation(s)
- Ilona Kalaszczynska
- Tissue Engineering Lab, Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Slawomir Ruminski
- Tissue Engineering Lab, Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna E. Platek
- Tissue Engineering Lab, Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Igor Bissenik
- Division of Small Animal Surgery and Anesthesiology, Department and Clinic of Small Animal Diseases, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Piotr Zakrzewski
- Department of Musculoskeletal Trauma Surgery and Orthopedics, Center of Postgraduate Medical Education, Otwock, Poland
| | - Maria Noszczyk
- Melitus Esthetic Dermatology and Anti-Aging Clinic, Academy of Cosmetics and Health Care, Warsaw, Poland
| | - Malgorzata Lewandowska-Szumiel
- Tissue Engineering Lab, Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Chung MT, Zimmermann AS, Paik KJ, Morrison SD, Hyun JS, Lo DD, McArdle A, Montoro DT, Walmsley GG, Senarath-Yapa K, Sorkin M, Rennert R, Chen HH, Chung AS, Vistnes D, Gurtner GC, Longaker MT, Wan DC. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cells Transl Med 2013; 2:808-17. [PMID: 24018794 DOI: 10.5966/sctm.2012-0183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34(+)CD31(-)CD45(-)) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro-computed tomography revealed significantly more healing with ASCs isolated from suction-assisted lipoaspirate relative to laser-assisted lipoaspirate at the 4-, 6-, and 8-week time points (p < .05). Therefore, as laser-assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes.
Collapse
Affiliation(s)
- Michael T Chung
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Deshpande S, James AW, Blough J, Donneys A, Wang SC, Cederna PS, Buchman SR, Levi B. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res 2013; 185:278-85. [PMID: 23972621 DOI: 10.1016/j.jss.2013.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/09/2013] [Accepted: 06/28/2013] [Indexed: 01/07/2023]
Abstract
Therapies using mesenchymal stem cells are a popular current avenue for development and utilization, especially in the fields of de novo tissue engineering (Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247.) or tissue regeneration after physical injury (Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis-a preliminary result of three cases. Bone 2004;35:892; Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192; Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994;56:283.). The osteogenic potential of these cells is of particular interest, given their recent usage for the closure of critical-sized bone defects and other nonhealing bone scenarios such as a nonunion. Recent literature suggests that inflammatory cytokines can significantly impact the osteogenic potential of these cells. A review of relevant, recent literature is presented regarding the impact of the inflammatory cascade on the osteogenic differentiation of these cells and how this varies across species. Finally, we identify areas of conflicting or absent evidence regarding the behavior of mesenchymal stem cells in response to inflammatory cytokines.
Collapse
Affiliation(s)
- Sagar Deshpande
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ma J, Both SK, Ji W, Yang F, Prins HJ, Helder MN, Pan J, Cui FZ, Jansen JA, van den Beucken JJP. Adipose tissue-derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: performance in vitro and in rat cranial defects. J Biomed Mater Res A 2013; 102:1026-36. [PMID: 23640784 DOI: 10.1002/jbm.a.34775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to compare the osteogenic capacity between human adipose tissue-derived mesenchymal stem cells (AT-MSCs) and their cocultures with human umbilical vein endothelial cells (HUVECs) in vitro and their biological performance in vivo. First, the optimal cell ratio in cocultures for osteogenic differentiation was determined by seeding AT-MSCs and HUVECs in ratios varying from 100:0 to 0:100 on tissue culture plates. Afterward, AT-MSCs and AT-MSCs/HUVECs (50:50) were seeded on porous titanium fiber mesh scaffolds (Ti) for both in vitro and in vivo osteogenic evaluation. For in vitro evaluation, cell osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity and calcium assay. For in vivo evaluation, the scaffolds were implanted bilaterally into rat cranial defects (5 mm diameter) and bone formation was assessed histologically and histomorphometrically after 8 weeks. The ratio of 50:50 was chosen in the cocultures because this coculture condition retained similar amount of calcium deposition while using the least amount of AT-MSCs. Moreover, AT-MSCs showed higher osteogenic differentiation in comparison to AT-MSCs/HUVECs on Ti in vitro. Furthermore, superior bone formation was observed in AT-MSCs compared to AT-MSCs/HUVECs in rat cranial defects. In conclusion, AT-MSCs showed significantly higher osteogenic potential compared to AT-MSCs/HUVECs both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinling Ma
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cruz ACC, Silva ML, Caon T, Simões CMO. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 2013; 20:628-35. [PMID: 23329244 PMCID: PMC3881851 DOI: 10.1590/s1678-77572012000600007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/14/2012] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes
bone formation and has been used as an osteogenic supplement for mesenchymal stem
cells.
Collapse
|
44
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Boeloni JN, Ocarino NM, Goes AM, Serakides R. Efeito in vitro da triiodotironina sob o potencial osteogênico reduzido de células-tronco mesenquimais do tecido adiposo de ratas ovariectomizadas e com osteoporose. ACTA ACUST UNITED AC 2013; 57:98-111. [DOI: 10.1590/s0004-27302013000200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/27/2012] [Indexed: 11/21/2022]
Abstract
OBJETIVO: Avaliar se a triiodotironina (T3) aumenta a diferenciação osteogênica das células-tronco mesenquimais do tecido adiposo (CTM-TA) de ratas adultas ovariectomizadas e com osteoporose e compará-lo ao de ratas adultas e jovens sem osteoporose. MATERIAIS E MÉTODOS: CTM-TA foram cultivadas em meio osteogênico e distribuídas em sete grupos: 1) CTM-TA de ratas jovens sem osteoporose; 2) CTM-TA de ratas adultas sem osteoporose; 3) CTM-TA de ratas adultas com osteoporose e 4, 5, 6 e 7) CTM-TA de ratas adultas com osteoporose tratadas com T3 (0,01 nM, 1 nM, 100 nM e 1.000 nM). AVALIARAM-SE: atividade da fosfatase alcalina, conversão do dimetiltiazol (MTT), porcentagem de nódulos de mineralização, celularidade e quantificação de transcriptos gênicos para colágeno I, osteocalcina, osteopontina e Bmp-2. RESULTADOS: Independente da dose, T3 reduziu a conversão do MTT, a atividade da fosfatase, a porcentagem de células e a expressão de colágeno I em pelo menos uma das doses e dos períodos estudados (p < 0,05). Mas o tratamento com T3 não alterou o número de nódulos de mineralização e a expressão de osteopontina e Bmp-2 em culturas de CTM-TA de ratas adultas com osteoporose (p > 0,05). CONCLUSÃO: T3 apresenta efeitos negativos sobre alguns fatores envolvidos na diferenciação osteogênica de CTM-TA, sem, no entanto, reduzir a formação de nódulos de mineralização e a expressão de proteínas ósseas.
Collapse
|
46
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2013; 17:9-17. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0763-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 05/23/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Cell-based therapies for bone augmentation after tooth loss and for the treatment of periodontal defects improve healing defects. Usually, osteogenic cells or stem cells are cultivated in 2D primary cultures, before they are combined with scaffold materials, even though this means a loss of the endogenous 3D microenvironment for the cells. Moreover, the use of single-cell suspensions for the inoculation of scaffolds or for the direct application into an area of interest has the disadvantages of low initial cell numbers and susceptibility to unwanted cellular distribution, respectively. MATERIALS AND METHODS We addressed the question whether an alternative to monolayer cultures, namely 3D microtissues, has the potential to improve osteogenic tissue engineering and its clinical outcome. RESULTS By contrast, to monolayer cultures, osteogenic differentiation of 3D microtissues is enhanced by mimicking in vivo conditions. It seems that the osteogenic differentiation in microtissues is enhanced by strong integrin-extracellular matrix interaction and by stronger autocrine BMP2 signaling. Moreover, microtissues are less prone to wash out by body fluids and allow the precise administration of large cell numbers. CONCLUSION Microtissue cultures have closer characteristics with cells in vivo and their enhanced osteogenic differentiation makes scaffold-free microtissues a promising concept in osteogenic tissue engineering. CLINICAL RELEVANCE Microtissues are particularly suitable for tissue engineering because they improve seeding efficiency of biomaterials by increasing the cell load of a scaffold. This results in accelerated osteogenic tissue formation and could contribute to earlier implant stability in mandibular bone augmentation.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
47
|
Wong VW, Sorkin M, Gurtner GC. Enabling stem cell therapies for tissue repair: current and future challenges. Biotechnol Adv 2012. [PMID: 23178704 DOI: 10.1016/j.biotechadv.2012.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Stem cells embody the tremendous potential of the human body to develop, grow, and repair throughout life. Understanding the biologic mechanisms that underlie stem cell-mediated tissue regeneration is key to harnessing this potential. Recent advances in molecular biology, genetic engineering, and material science have broadened our understanding of stem cells and helped bring them closer to widespread clinical application. Specifically, innovative approaches to optimize how stem cells are identified, isolated, grown, and utilized will help translate these advances into effective clinical therapies. Although there is growing interest in stem cells worldwide, this enthusiasm must be tempered by the fact that these treatments remain for the most part clinically unproven. Future challenges include refining the therapeutic manipulation of stem cells, validating these technologies in randomized clinical trials, and regulating the global expansion of regenerative stem cell therapies.
Collapse
Affiliation(s)
- Victor W Wong
- Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
48
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2012; 17 Suppl 1:S9-19. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0887-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022]
Abstract
Objectives The paper’s aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. Materials and methods Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). Results The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. Conclusions The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. Clinical relevance Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients’ pain and expectations and prevent further dentin exposure with subsequent sensitivity.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|