1
|
Pagani I, Ghezzi S, Aimola G, Podini P, Genova F, Vicenzi E, Poli G. Restriction of Zika Virus Replication in Human Monocyte-Derived Macrophages by Pro-Inflammatory (M1) Polarization. Int J Mol Sci 2025; 26:951. [PMID: 39940721 PMCID: PMC11816608 DOI: 10.3390/ijms26030951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Zika virus (ZIKV), a member of the Flaviviridae family, is primarily transmitted through mosquito bites, but can also spread via sexual contact and from mother to fetus. While often asymptomatic, ZIKV can lead to severe neurological conditions, including microcephaly in fetuses and Guillain-Barré Syndrome in adults. ZIKV can infect placental macrophages and fetal microglia in vivo as well as human monocytes and monocyte-derived macrophages (MDMs) in vitro. Here, we observed that both human monocytes, and MDM particularly, supported ZIKV replication without evident cytopathicity, with virions accumulating in cytoplasmic vacuoles. We also investigated whether the cytokine-induced polarization of MDMs into M1 or M2 cells affected ZIKV replication. The stimulation of MDMs with pro-inflammatory cytokines (interferon-γ and tumor necrosis factor-α) polarized MDMs into M1 cells, significantly reducing ZIKV replication, akin to previous observations with a human immunodeficiency virus type-1 infection. In contrast, M2 polarization, induced by interleukin-4, did not affect ZIKV replication in MDMs. M1 polarization selectively reduced the expression of MERTK, a TAM family putative entry receptor, and increased the expression of several interferon-stimulated genes (ISGs) previously associated with the containment of ZIKV infection; of interest, ZIKV infection transiently boosted the expression of some ISGs in M1-MDMs. These findings suggest a dual mechanism of ZIKV restriction in M1-MDMs and highlight potential antiviral strategies targeting innate immune responses.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Giulia Aimola
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Paola Podini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Francesca Genova
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; (I.P.); (S.G.); (E.V.)
| | - Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
2
|
Blanco A, Coronado RA, Arun N, Ma K, Dar RD, Kieffer C. Monocyte to macrophage differentiation and changes in cellular redox homeostasis promote cell type-specific HIV latency reactivation. Proc Natl Acad Sci U S A 2024; 121:e2313823121. [PMID: 38683980 PMCID: PMC11087762 DOI: 10.1073/pnas.2313823121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.
Collapse
Affiliation(s)
- Alexandra Blanco
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Robert A. Coronado
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Neha Arun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Kelly Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Collin Kieffer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
3
|
Thompson LJP, Genovese J, Hong Z, Singh MV, Singh VB. HIV-Associated Neurocognitive Disorder: A Look into Cellular and Molecular Pathology. Int J Mol Sci 2024; 25:4697. [PMID: 38731913 PMCID: PMC11083163 DOI: 10.3390/ijms25094697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.
Collapse
Affiliation(s)
| | - Jessica Genovese
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Zhenzi Hong
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Meera Vir Singh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Vir Bahadur Singh
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| |
Collapse
|
4
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
5
|
Tuo T, Chen D, Wang L, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Infection of PRRSV inhibits CSFV C-strain replication by inducing macrophages polarization to M1. Vet Microbiol 2024; 289:109957. [PMID: 38160508 DOI: 10.1016/j.vetmic.2023.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.
Collapse
Affiliation(s)
- Tianbei Tuo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol 2023; 957:176006. [PMID: 37611840 DOI: 10.1016/j.ejphar.2023.176006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Macrophages are the mature form of monocytes that have high plasticity and can shift from one phenotype to another by the process of macrophage polarization. Macrophage has several vital pharmacological tasks like eliminating microorganism invasion, clearing dead cells, causing inflammation, repairing damaged tissues, etc. The function of macrophages is based on their phenotype. M1 macrophages are mostly responsible for the body's immune responses and M2 macrophages have healing properties. Inappropriate activation of any one of the phenotypes often leads to ROS-induced tissue damage and affects wound healing and angiogenesis. Therefore, maintaining tissue macrophage homeostasis is necessary. Studies are being done to find techniques for macrophage polarization. But, the process of macrophage polarization is very complex as it involves multiple signalling pathways involving innate immunity. Thus, identifying the right pathways for macrophage polarization is essential to apply the polarizing technique for the treatment of various inflammatory diseases where macrophage physiology influences the disease pathology. In this review, we highlighted the various techniques so far used to change macrophage plasticity. We believe that soon macrophage targeting therapeutics will hit the market for the management of inflammatory disease. Hence this review will help macrophage researchers choose suitable methods and materials/agents to polarize macrophages artificially in various disease models.
Collapse
Affiliation(s)
- Oishani Chaterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India.
| |
Collapse
|
7
|
Pagani I, Demela P, Ghezzi S, Vicenzi E, Pizzato M, Poli G. Host Restriction Factors Modulating HIV Latency and Replication in Macrophages. Int J Mol Sci 2022; 23:ijms23063021. [PMID: 35328442 PMCID: PMC8951319 DOI: 10.3390/ijms23063021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Pietro Demela
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina n. 58, 20132 Milano, Italy
- Correspondence: ; Tel.: +39-02-2643-4909
| |
Collapse
|
8
|
Kadomoto S, Izumi K, Mizokami A. Macrophage Polarity and Disease Control. Int J Mol Sci 2021; 23:144. [PMID: 35008577 PMCID: PMC8745226 DOI: 10.3390/ijms23010144] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are present in most human tissues and have very diverse functions. Activated macrophages are usually divided into two phenotypes, M1 macrophages and M2 macrophages, which are altered by various factors such as microorganisms, tissue microenvironment, and cytokine signals. Macrophage polarity is very important for infections, inflammatory diseases, and malignancies; its management can be key in the prevention and treatment of diseases. In this review, we assess the current state of knowledge on macrophage polarity and report on its prospects as a therapeutic target.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan; (S.K.); (A.M.)
| | | |
Collapse
|
9
|
Bryostatin-1 decreases HIV-1 infection and viral production in human primary macrophages. J Virol 2021; 96:e0195321. [PMID: 34878918 DOI: 10.1128/jvi.01953-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While combination antiretroviral therapy maintains undetectable viremia in People Living With HIV (PLWH), a life-long treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long lived HIV-1 latently infected cells reversing to a viral productive status. Reversing latency and elimination of these cells by the so-called shock and kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4+ T cells. However, LRAs impact on de novo infection or HIV-1 production in productively infected macrophages remain elusive. Nontoxic doses of bryostatin-1, JQ1 and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effect rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance neither HIV-1 production nor gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4+ T cells are responding differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. Importance HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing a gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo. Yet, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging anti-replicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists which is specific to myeloid cells. This study provides new insights on HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1 targeted cells.
Collapse
|
10
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Wong ME, Johnson CJ, Hearps AC, Jaworowski A. Development of a Novel In Vitro Primary Human Monocyte-Derived Macrophage Model To Study Reactivation of HIV-1 Transcription. J Virol 2021; 95:e0022721. [PMID: 34287050 PMCID: PMC8428379 DOI: 10.1128/jvi.00227-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Latent HIV reservoirs persist in people living with HIV despite effective antiretroviral therapy and contribute to rebound viremia upon treatment interruption. Macrophages are an important reservoir cell type, but analysis of agents that modulate latency in macrophages is limited by lack of appropriate in vitro models. We therefore generated an experimental system to investigate this by purifying nonproductively infected human monocyte-derived macrophages (MDM) following in vitro infection with an M-tropic enhanced green fluorescent protein reporter HIV clone and quantified activation of HIV transcription using live-cell fluorescence microscopy. The proportion of HIV-infected MDM was quantified by qPCR detection of HIV DNA, and GFP expression was validated as a marker of productive HIV infection by colabeling of HIV Gag protein. HIV transcription spontaneously reactivated in latently infected MDM at a rate of 0.22% ± 0.04% cells per day (mean ± the standard error of the mean, n = 10 independent donors), producing infectious virions able to infect heterologous T cells in coculture experiments, and both T cells and TZM-bl cells in a cell-free infection system using MDM culture supernatants. Polarization to an M1 phenotype with gamma interferon plus tumor necrosis factor resulted in a 2.3-fold decrease in initial HIV infection of MDM (P < 0.001, n = 8) and a 1.4-fold decrease in spontaneous reactivation (P = 0.025, n = 6), whereas M2 polarization using interleukin-4 prior to infection led to a 1.6-fold decrease in HIV infectivity (P = 0.028, n = 8) but a 2.0-fold increase in the rate of HIV reactivation in latently infected MDM (P = 0.023, n = 6). The latency reversing agents bryostatin and vorinostat, but not panobinostat, significantly induced HIV reactivation in latently infected MDM (P = 0.031 and P = 0.038, respectively, n = 6). IMPORTANCE Agents which modulate latent HIV reservoirs in infected cells are of considerable interest to HIV cure strategies. The present study characterizes a robust, reproducible model enabling quantification of HIV reactivation in primary HIV-infected human MDM which is relatively insensitive to the monocyte donor source and hence suitable for evaluating latency modifiers in MDM. The rate of initial viral infection was greater than the rate of HIV reactivation, suggesting that different mechanisms regulate these processes. HIV reactivation was sensitive to macrophage polarization, suggesting that cellular and tissue environments influence HIV reactivation in different macrophage populations. Importantly, latently infected MDM showed different susceptibilities to certain latency-reversing agents known to be effective in T cells, indicating that dedicated strategies may be required to target latently infected macrophage populations in vivo.
Collapse
Affiliation(s)
- Michelle E. Wong
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad J. Johnson
- Bioimaging Platform, La Trobe University, Melbourne, Australia
| | - Anna C. Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Anthony Jaworowski
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
12
|
Zhang W, Fu Z, Yin H, Han Q, Fan W, Wang F, Shang Y. Macrophage Polarization Modulated by Porcine Circovirus Type 2 Facilitates Bacterial Coinfection. Front Immunol 2021; 12:688294. [PMID: 34394082 PMCID: PMC8355693 DOI: 10.3389/fimmu.2021.688294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Polarization of macrophages to different functional states is important for mounting responses against pathogen infections. Macrophages are the major target cells of porcine circovirus type 2 (PCV2), which is the primary causative agent of porcine circovirus-associated disease (PCVAD) leading to immense economic losses in the global swine industry. Clinically, PCV2 is often found to increase risk of other pathogenic infections yet the underlying mechanisms remain to be elusive. Here we found that PCV2 infection skewed macrophages toward a M1 status through reprogramming expression of a subset of M1-associated genes and M2-associated genes. Mechanistically, induction of M1-associated genes by PCV2 infection is dependent on activation of nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways whereas suppression of M2-associated genes by PCV2 is via inhibiting expression of jumonji domain containing-3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase that regulates M2 activation of macrophages. Finally, we identified that PCV2 capsid protein (Cap) directly inhibits JMJD3 transcription to restrain expression of interferon regulatory factor (IRF4) that controls M2 macrophage polarization. Consequently, sustained infection of PCV2 facilitates bacterial infection in vitro. In summary, these findings showed that PCV2 infection functionally modulated M1 macrophage polarization via targeting canonical signals and epigenetic histone modification, which contributes to bacterial coinfection and virial pathogenesis.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Zhendong Fu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongyan Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
HIV-Infected Macrophages Are Infected and Killed by the Interferon-Sensitive Rhabdovirus MG1. J Virol 2021; 95:JVI.01953-20. [PMID: 33568507 PMCID: PMC8104113 DOI: 10.1128/jvi.01953-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.
Collapse
|
14
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M. Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
15
|
Jaguva Vasudevan AA, Balakrishnan K, Franken A, Krikoni A, Häussinger D, Luedde T, Münk C. Murine leukemia virus resists producer cell APOBEC3A by its Glycosylated Gag but not target cell APOBEC3A. Virology 2021; 557:1-14. [PMID: 33581610 DOI: 10.1016/j.virol.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The human APOBEC3A (A3A) polynucleotide cytidine deaminase has been shown to have antiviral activity against HTLV-1 but not HIV-1, when expressed in the virus producer cell. In viral target cells, high levels of endogenous A3A activity have been associated with the restriction of HIV-1 during infection. Here we demonstrate that A3A derived from both target cells and producer cells can block the infection of Moloney-MLV (MLV) and related AKV-derived strains of MLV in a deaminase-dependent mode. Furthermore, glycosylated Gag (glycoGag) of MLV inhibits the encapsidation of human A3A, but target cell A3A was not affected by glycoGag and exerted deamination of viral DNA. Importantly, our results clearly indicate that poor glycoGag expression in MLV gag-pol packaging constructs as compared to abundant levels in full-length amphotropic MLV makes these viral vectors sensitive to A3A-mediated restriction. This raises the possibility of acquiring A3A-induced mutations in retroviral gene therapy applications.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - André Franken
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Aikaterini Krikoni
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
16
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
17
|
Barboza TC, Sotto MN, Kanashiro-Galo L, de Brito AC, Duarte MIS, Quaresma JAS, Pagliari C. M2-Polarized Macrophages Determine Human Cutaneous Lesions in Lacaziosis. Mycopathologia 2020; 185:477-483. [PMID: 32378114 PMCID: PMC7201388 DOI: 10.1007/s11046-020-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Lacaziosis is a cutaneous chronic mycosis caused by Lacazia loboi. Macrophages are important cells in the host immune response in fungal infections. The macrophage population exhibits strong plasticity that varies according to the stimuli in the microenvironment of lesions M1 profile promotes a Th1 pattern of cytokines and a microbicidal function and M2 is related to Th2 cytokines and immunomodulatory response. We investigated the population of M1 and M2 polarized macrophages in human cutaneous lesions. A total of 27 biopsies from human lesions were submitted to an immunohistochemistry protocol using antibodies to detect M1 and M2 macrophages (Arginase-1, CD163, iNOS, RBP-J and cMAF). We could observe high number of cells expressing Arginase1, CD163 and c-MAF that correspond to elements of the M2 profile of macrophage, over iNOS and RBP-J (elements of the M1 profile). The results suggest a predominant phenotype of M2 macrophages, which have an immunomodulatory role and probably contributing to chronicity of Lacaziosis.
Collapse
Affiliation(s)
- Tania Cristina Barboza
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil.,Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual - SP, São Paulo, SP, Brazil
| | - Mirian Nacagami Sotto
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | - Luciane Kanashiro-Galo
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | | | - Maria Irma Seixas Duarte
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | | | - Carla Pagliari
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil. .,Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual - SP, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Kitamura T, Kato Y, Brownlie D, Soong DYH, Sugano G, Kippen N, Li J, Doughty-Shenton D, Carragher N, Pollard JW. Mammary Tumor Cells with High Metastatic Potential Are Hypersensitive to Macrophage-Derived HGF. Cancer Immunol Res 2019; 7:2052-2064. [PMID: 31615815 DOI: 10.1158/2326-6066.cir-19-0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Metastasis-associated macrophages (MAM) promote persistent growth of breast cancer cells at the metastatic site and are, thus, an attractive therapeutic target to treat breast cancer metastasis, a leading cause of cancer-related death in women. However, the precise mechanisms behind MAM-mediated metastatic tumor outgrowth have not been fully elucidated. Using mouse models of metastatic breast cancer, we showed that MAMs uniquely expressed hepatocyte growth factor (HGF) in metastatic tumors. We also demonstrated that a selected population of cancer cells with high metastatic potential (cancer cells that can establish metastatic tumors in mice with higher number and incidence than parental cells) had higher expression of HGF receptor, MNNG HOS transforming gene (MET), and were more responsive to HGF released from macrophages compared with the parental cells. Blockade of MET signaling in cancer cells suppressed metastatic tumor expansion, in part, through activation of natural killer cells. Results from this study suggest an approach to prevent life-threatening metastatic tumor formation using blockade of MAM-induced MET signal activation in metastatic cancer cells.
Collapse
Affiliation(s)
- Takanori Kitamura
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom. .,MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yu Kato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Demi Brownlie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Y H Soong
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gaël Sugano
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nicolle Kippen
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dahlia Doughty-Shenton
- Edinburgh Phenotypic Assay Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Carragher
- Edinburgh Phenotypic Assay Centre, The University of Edinburgh, Edinburgh, United Kingdom.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Petrillo C, Calabria A, Piras F, Capotondo A, Spinozzi G, Cuccovillo I, Benedicenti F, Naldini L, Montini E, Biffi A, Gentner B, Kajaste-Rudnitski A. Assessing the Impact of Cyclosporin A on Lentiviral Transduction and Preservation of Human Hematopoietic Stem Cells in Clinically Relevant Ex Vivo Gene Therapy Settings. Hum Gene Ther 2019; 30:1133-1146. [PMID: 31037976 PMCID: PMC6761585 DOI: 10.1089/hum.2019.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Improving hematopoietic stem and progenitor cell (HSPC) permissiveness to lentiviral vector (LV) transduction without compromising their biological properties remains critical for broad-range implementation of gene therapy as a treatment option for several inherited diseases. This study demonstrates that the use of one-hit ex vivo LV transduction protocols based on either cyclosporin A (CsA) or rapamycin enable as efficient gene transfer as the current two-hit clinical standard into bone marrow-derived CD34+ cells while better preserving their engraftment capacity in vivo. CsA was additive with another enhancer of transduction, prostaglandin E2, suggesting that tailored enhancer combinations may be applied to overcome multiple blocks to transduction simultaneously in HSPC. Interestingly, besides enhancing LV transduction, CsA also significantly reduced HSPC proliferation, preserving the quiescent G0 fraction and the more primitive multipotent progenitors, thereby yielding the highest engraftment levels in vivo. Importantly, no alterations in the vector integration profiles could be detected between CsA and control transduced HSPC. Overall, the present findings contribute to the development of more efficient and sustainable LV gene therapy protocols, underscoring the benefits of scaling down required vector doses, as well as shortening the HSPC ex vivo culture time.
Collapse
Affiliation(s)
- Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy.,Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
21
|
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO, Pollard JW. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019; 35:588-602.e10. [PMID: 30930117 PMCID: PMC6472943 DOI: 10.1016/j.ccell.2019.02.009] [Citation(s) in RCA: 652] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from endometrial and breast cancers are transcriptionally distinct from monocytes and their respective tissue-resident macrophages. We identified a breast TAM signature that is highly enriched in aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also identified an auto-regulatory loop between TAMs and cancer cells driven by tumor necrosis factor alpha involving SIGLEC1 and CCL8, which is self-reinforcing through the production of CSF1. Together these data provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by cancer, reflecting patient outcomes.
Collapse
Affiliation(s)
- Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stamatina Fragkogianni
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XR, UK
| | - Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hui Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York 10461, USA
| | - Daniel Y H Soong
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Tiziana Cotechini
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Pavana Anur
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Elaine Y Lin
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Martha Lopez-Yrigoyen
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Michael R Millar
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Aquila Biomedical, Edinburgh Bioquarter, Little France Road, Edinburgh EH16 4TJ, UK
| | - Alexandra Urman
- Department of Surgery, Montefiore Medical College, New York 10467, USA
| | - Zhichao Ai
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paul T Spellman
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - J Michael Dixon
- Edinburgh Breast Unit and Breast Cancer Now Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lisa Wiechmann
- Department of Surgery, Montefiore Medical College, New York 10467, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Harriet O Smith
- Department of Obstetrics and Gynecology, Albert Einstein College of Medicine and Montefiore Medical Center, New York 10461, USA
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York 10461, USA.
| |
Collapse
|
22
|
Graziano F, Vicenzi E, Poli G. The ATP/P2X7 axis in human immunodeficiency virus infection of macrophages. Curr Opin Pharmacol 2019; 47:46-52. [PMID: 30901736 DOI: 10.1016/j.coph.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
HIV-1 infects CD4+ T lymphocytes with a 'helper' function and myeloid cells, mostly tissue-resident macrophages. While infection of CD4 T lymphocytes in the absence of combination antiretroviral therapy (cART) leads to their depletion and to a profound immunodeficiency, macrophages are resistant to virus-induced cytopathicity and are a source of infectious virus, particularly in the central nervous system (CNS). Infected macrophages are characterized by accumulating newly formed viral particles (virions) in subcellular vacuoles defined as 'virus-containing compartments (VCC)', derived from invaginations of the plasma membrane, that are poorly accessible to antiretroviral agents and anti-HIV antibodies. Several factors favor the accumulation of HIV-1 virions in VCC in vitro, whereas extracellular ATP, via binding to its receptor P2X7, is the only agent described thus far as capable of triggering the rapid release of VCC-sequestered virions without simultaneously causing the death of infected macrophages. Thus, the eATP/P2X7 axis could be exploited to achieve a pharmacological control of VCC-associated viral reservoir in individuals under effective cART.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; Institute Curie Laboratoire Immunité et Cancer, INSERM U932 Equipe Benaroch, Transport Intracellulaire et Immunité, 75005, Paris, France
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University School of Medicine, Milano, Italy.
| |
Collapse
|
23
|
Abreu C, Shirk EN, Queen SE, Mankowski JL, Gama L, Clements JE. A Quantitative Approach to SIV Functional Latency in Brain Macrophages. J Neuroimmune Pharmacol 2019; 14:23-32. [PMID: 30167896 PMCID: PMC9070040 DOI: 10.1007/s11481-018-9803-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol 2019; 4:633-644. [PMID: 30718846 DOI: 10.1038/s41564-018-0335-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) eradication is prevented by the establishment on infection of cellular HIV-1 reservoirs that are not fully characterized, especially in genital mucosal tissues (the main HIV-1 entry portal on sexual transmission). Here, we show, using penile tissues from HIV-1-infected individuals under suppressive combination antiretroviral therapy, that urethral macrophages contain integrated HIV-1 DNA, RNA, proteins and intact virions in virus-containing compartment-like structures, whereas viral components remain undetectable in urethral T cells. Moreover, urethral cells specifically release replication-competent infectious HIV-1 following reactivation with the macrophage activator lipopolysaccharide, while the T-cell activator phytohaemagglutinin is ineffective. HIV-1 urethral reservoirs localize preferentially in a subset of polarized macrophages that highly expresses the interleukin-1 receptor, CD206 and interleukin-4 receptor, but not CD163. To our knowledge, these results are the first evidence that human urethral tissue macrophages constitute a principal HIV-1 reservoir. Such findings are determinant for therapeutic strategies aimed at HIV-1 eradication.
Collapse
|
25
|
Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AMS, Piras F, Cuccovillo I, Petit SJ, Ahsan F, Noursadeghi M, Clare S, Genovese P, Gentner B, Naldini L, Towers GJ, Kajaste-Rudnitski A. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell 2018; 23:820-832.e9. [PMID: 30416070 PMCID: PMC6292841 DOI: 10.1016/j.stem.2018.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Abstract
Innate immune factors may restrict hematopoietic stem cell (HSC) genetic engineering and contribute to broad individual variability in gene therapy outcomes. Here, we show that HSCs harbor an early, constitutively active innate immune block to lentiviral transduction that can be efficiently overcome by cyclosporine H (CsH). CsH potently enhances gene transfer and editing in human long-term repopulating HSCs by inhibiting interferon-induced transmembrane protein 3 (IFITM3), which potently restricts VSV glycoprotein-mediated vector entry. Importantly, individual variability in endogenous IFITM3 levels correlated with permissiveness of HSCs to lentiviral transduction, suggesting that CsH treatment will be useful for improving ex vivo gene therapy and standardizing HSC transduction across patients. Overall, our work unravels the involvement of innate pathogen recognition molecules in immune blocks to gene correction in primary human HSCs and highlights how these roadblocks can be overcome to develop innovative cell and gene therapies.
Collapse
Affiliation(s)
- Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Anna M S Giordano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Sarah J Petit
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Fatima Ahsan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy.
| |
Collapse
|
26
|
Zobel S, Lorenz M, Frascaroli G, Böhnke J, Bilz NC, Stanifer ML, Boulant S, Bergs S, Liebert UG, Claus C. Rubella Virus Strain-Associated Differences in the Induction of Oxidative Stress Are Independent of Their Interferon Activation. Viruses 2018; 10:v10100540. [PMID: 30282907 PMCID: PMC6213305 DOI: 10.3390/v10100540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 01/16/2023] Open
Abstract
Rubella virus (RV) infection impacts cellular metabolic activity in a complex manner with strain-specific nutritional requirements. Here we addressed whether this differential metabolic influence was associated with differences in oxidative stress induction and subsequently with innate immune response activation. The low passaged clinical isolates of RV examined in this study induced oxidative stress as validated through generation of the reactive oxygen species (ROS) cytoplasmic hydrogen peroxide and mitochondrial superoxide. The addition of the cytoplasmic and mitochondrial ROS scavengers N-acetyl-l-cysteine and MitoTEMPO, respectively, reduced RV-associated cytopathogenicity and caspase activation. While the degree of oxidative stress induction varied among RV clinical isolates, the level of innate immune response and interferon-stimulated gene activation was comparable. The type III IFNs were highly upregulated in all cell culture systems tested. However, only pre-stimulation with IFN β slightly reduced RV replication indicating that RV appears to have evolved the ability to counteract innate immune response mechanisms. Through the data presented, we showed that the ability of RV to induce oxidative stress was independent of its capacity to stimulate and counteract the intrinsic innate immune response.
Collapse
Affiliation(s)
- Sarah Zobel
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Mechthild Lorenz
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology, Heinrich Pette Institute, 20251 Hamburg, Germany.
| | - Janik Böhnke
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Nicole C Bilz
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sandra Bergs
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
27
|
Graziano F, Aimola G, Forlani G, Turrini F, Accolla RS, Vicenzi E, Poli G. Reversible Human Immunodeficiency Virus Type-1 Latency in Primary Human Monocyte-Derived Macrophages Induced by Sustained M1 Polarization. Sci Rep 2018; 8:14249. [PMID: 30250078 PMCID: PMC6155284 DOI: 10.1038/s41598-018-32451-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
We have reported that short-term stimulation of primary human monocyte-derived macrophages (MDM) with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), i.e. M1 polarization, leads to a significant containment of virus replication. Here we show that M1-MDM restimulation with these cytokines 7 days after infection (M12 MDM) promoted an increased restriction of HIV-1 replication characterized by very low levels of virus production near to undetectable levels. In comparison to control and M1-MDM that were not restimulated, M12 MDM showed a stronger reduction of both total and integrated HIV DNA as well as of viral mRNA expression. M12 MDM were characterized by an upregulated expression of restriction factors acting at the level of reverse transcription (RT), including apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) and APOBEC3G, but not SAM domain and HD domain-containing protein 1 (SAMHD1). M12 MDM also showed an increased expression of Class II Transactivator (CIITA) and Tripartite Motif22 (TRIM22), two negative regulators of proviral transcription, whereas expression and phosphorylation of transcriptional inducers of HIV-1, such as nuclear factor kB (NF-kB) and signal transducer and activator of transcription 1 (STAT1), were not impaired in these cells. The almost quiescent state of the infection in M12 MDM was promptly reversed by coculture with mitogen-stimulated leukocytes or cell incubation with their filtered culture supernatant. M12 MDM harbored replication-competent HIV-1 as virus spreading following cell stimulation was fully prevented by the RT inhibitor lamivudine/3TC. Selective reactivation of proviral expression in M12 MDM, but not in control or in M1-MDM that were not restimulated, was confirmed in cells infected with single round Vesicular Stomatitis Virus-G-pseudotyped HIV-1. Thus, M12 MDM represent an in vitro model of reversible, almost quiescent HIV-1 infection of primary human macrophages that could be further exploited for “Cure” related investigations.
Collapse
Affiliation(s)
- Francesca Graziano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.,Institute Curie Laboratoire Immunité et Cancer - INSERM U932, 26 rue d'Ulm, 75248, Paris cedex 05, Paris, France
| | - Giulia Aimola
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Greta Forlani
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Filippo Turrini
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Roberto S Accolla
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elisa Vicenzi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy. .,Vita-Salute San Raffaele University School of Medicine, Milano, Italy.
| |
Collapse
|
28
|
Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep 2018; 21:141-153. [PMID: 28978468 DOI: 10.1016/j.celrep.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophages are heterogeneous immune cells with distinct origins, phenotypes, functions, and tissue localization. Their susceptibility to HIV-1 is subject to variations from permissiveness to resistance, owing in part to regulatory microRNAs. Here, we used RNA sequencing (RNA-seq) to examine the expression of >400 microRNAs in productively infected and bystander cells of HIV-1-exposed macrophage cultures. Two microRNAs upregulated in bystander macrophages, miR-221 and miR-222, were identified as negative regulators of CD4 expression and CD4-mediated HIV-1 entry. Both microRNAs were enhanced by tumor necrosis factor alpha (TNF-α), an inhibitor of CD4 expression. MiR-221/miR-222 inhibitors recovered HIV-1 entry in TNF-α-treated macrophages by enhancing CD4 expression and increased HIV-1 replication and spread in macrophages by countering TNF-α-enhanced miR-221/miR-222 expression in bystander cells. In line with these findings, HIV-1-resistant intestinal myeloid cells express higher levels of miR-221 than peripheral blood monocytes. Thus, miR-221/miR-222 act as effectors of the antiviral host response activated during macrophage infection that restrict HIV-1 entry.
Collapse
|
29
|
Vicenzi E, Poli G. The interferon-stimulated gene TRIM22: A double-edged sword in HIV-1 infection. Cytokine Growth Factor Rev 2018; 40:40-47. [PMID: 29650252 DOI: 10.1016/j.cytogfr.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022]
Abstract
Infection of target cells by the human immunodeficiency virus type-1 (HIV-1) is hampered by constitutively expressed host cell proteins preventing or curtailing virus replication and therefore defined as "restriction factors". Among them, members of the tripartite motif (TRIM) family have emerged as important players endowed with both antiviral effects and modulatory capacity of the innate immune response. TRIM5α and TRIM19 (i.e. promyelocytic leukemia, PML) are among the best-characterized family members; however, in this review we will focus on the potential role of another family member, i.e. TRIM22, a factor strongly induced by interferon stimulation, in HIV infection in vivo and in vitro in the context of its broader antiviral effects. We will also focus on the potential role of TRIM22 in HIV-1-infected individuals speculating on its dual role in controlling virus replication and more complex role in chronic infection. At the molecular levels, we will review the evidence in favor of a relevant role of TRIM22 as epigenetic inhibitor of HIV-1 transcription acting by preventing the binding of the host cell transcription factor Sp1 to the viral promoter. These evidences suggest that TRIM22 should be considered a potential new player in either the establishment or maintenance of HIV-1 reservoirs of latently infected cells unaffected by combination antiretroviral therapy.
Collapse
Affiliation(s)
- Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, P2-P3 Laboratories, DIBIT, Via Olgettina n. 58, 20132, Milano, Italy.
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
30
|
Gama L, Abreu C, Shirk EN, Queen SE, Beck SE, Metcalf Pate KA, Bullock BT, Zink MC, Mankowski JL, Clements JE. SIV Latency in Macrophages in the CNS. Curr Top Microbiol Immunol 2018; 417:111-130. [PMID: 29770863 DOI: 10.1007/82_2018_89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.
Collapse
Affiliation(s)
- Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Covino DA, Gauzzi MC, Fantuzzi L. Understanding the regulation of APOBEC3 expression: Current evidence and much to learn. J Leukoc Biol 2017; 103:433-444. [DOI: 10.1002/jlb.2mr0717-310r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Laura Fantuzzi
- National Center for Global Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
32
|
Characterization of Ovine A3Z1 Restriction Properties against Small Ruminant Lentiviruses (SRLVs). Viruses 2017; 9:v9110345. [PMID: 29149056 PMCID: PMC5707552 DOI: 10.3390/v9110345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties. Using sheep blood monocytes and in vitro-derived macrophages, we found that A3Z1 expression is associated with lower viral replication in this cellular type. A3Z1 transcripts may also contain spliced variants (A3Z1Tr) lacking the cytidine deaminase motif. A3Z1 exogenous expression in fully permissive fibroblast-like cells restricted SRLVs infection while A3Z1Tr allowed infection. A3Z1Tr was induced after SRLVs infection or stimulation of blood-derived macrophages with interferon gamma (IFN-γ). Interaction between truncated isoform and native A3Z1 protein was detected as well as incorporation of both proteins into virions. A3Z1 and A3Z1Tr interacted with SRLVs Vif, but this interaction was not associated with degradative properties. Similar A3Z1 truncated isoforms were also present in human and monkey cells suggesting a conserved alternative splicing regulation in primates. A3Z1-mediated retroviral restriction could be constrained by different means, including gene expression and specific alternative splicing regulation, leading to truncated protein isoforms lacking a cytidine-deaminase motif.
Collapse
|
33
|
Wang L, Hu S, Liu Q, Li Y, Xu L, Zhang Z, Cai X, He X. Porcine alveolar macrophage polarization is involved in inhibition of porcine reproductive and respiratory syndrome virus (PRRSV) replication. J Vet Med Sci 2017; 79:1906-1915. [PMID: 28924090 PMCID: PMC5709573 DOI: 10.1292/jvms.17-0258] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage polarization is a process by which macrophages acquire a distinct phenotypic and functional profile in response to microenvironmental signals. The classically and alternatively activated (M1 and M2, respectively)
macrophage phenotypes are defined by the specific molecular characteristics induced in response to prototypic pro- and anti-inflammatory cues. In this study, we used LPS/IFN-γ and IL-4 to stimulate porcine alveolar macrophages
(PAMs) in vitro and investigated the expression changes of several novel markers during macrophage polarization. Notably, we found that LPS/IFN-γ-stimulated PAMs express prototypical M1 molecules, whereas
IL-4-stimulated PAMs express M2 molecules. We also demonstrated that replication of the highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) strain HuN4 was effectively suppressed in LPS/IFN-γ-stimulated
M1 PAMs (M1 type), but not IL-4 stimulated M2 PAMs. However, this was not observed with the classic, less pathogenic CH-1a strain. Moreover, we found that M2 marker expression gradually increased after PAM infection with PRRSV,
whereas no significant changes were found with M1 marker expression, suggesting that PRRSV infection may skew macrophage polarization towards an M2 phenotype. Finally, we found that anti-viral cytokine expression was significantly
higher in M1 macrophages than in M2 macrophages or nonpolarized controls. In summary, our results show that PRRSV replication was significantly impaired in M1 PAMs, which may serve as a foundation for further understanding of the
dynamic phenotypic changes during macrophage polarization and their effects on viral infection.
Collapse
Affiliation(s)
- Longtao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shouping Hu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qiang Liu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yiru Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lu Xu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.,Department of Animal Medicine, Agricultural College of Yanbian University, Yanji 133002, China
| | - Zhuo Zhang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xijun He
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
34
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
35
|
Robinson TO, Zhang M, Ochsenbauer C, Smythies LE, Cron RQ. CD4 regulatory T cells augment HIV-1 expression of polarized M1 and M2 monocyte derived macrophages. Virology 2017; 504:79-87. [PMID: 28157548 DOI: 10.1016/j.virol.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Previous in vitro studies have shown that the HIV-1 virus can alter the cytokine/chemokine profile of polarized macrophages which may lead to their increased susceptibility to viral infection. Here, we found that M2 monocyte derived macrophages (MDM) were significantly more permissive to productive infection by R5-tropic HIV-1 strains, including transmitted founder (T/F) viruses, than M1 MDM. Previous in vitro studies by our lab showed that regulatory T cells (Tregs) suppress HIV-1 infection in non-Treg CD4 T cells. Here, we investigated potential inhibitory effects of Tregs on HIV-1 infection of polarized MDM. We found that Tregs significantly increased HIV-1 infection in M1 and M2 MDM via a mechanism that was cell contact dependent. These findings suggest a potential role for Tregs in HIV-1 infection of tissue resident macrophages of M1 and M2 phenotype, which may contribute to the establishment and pathogenesis of HIV-1 disease.
Collapse
Affiliation(s)
- Tanya O Robinson
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Mingce Zhang
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States; Center for AIDS Research, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Randall Q Cron
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States.
| |
Collapse
|
36
|
Dickey LL, Hanley TM, Huffaker TB, Ramstead AG, O'Connell RM, Lane TE. MicroRNA 155 and viral-induced neuroinflammation. J Neuroimmunol 2017; 308:17-24. [PMID: 28139244 DOI: 10.1016/j.jneuroim.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) regulation of gene expression is becoming an increasingly recognized mechanism by which host immune responses are governed following microbial infection. miRNAs are short, non-coding RNAs that repress translation of target genes, and have been implicated in a number of activities that modulate host immune responses, including the regulation of immune cell proliferation, survival, expansion, differentiation, migration, polarization, and effector function. This review highlights several examples in which mammalian-encoded miR-155 influences immune responses following viral infection of the CNS.
Collapse
Affiliation(s)
- Laura L Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Timothy M Hanley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas B Huffaker
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Andrew G Ramstead
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Ryan M O'Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
37
|
Hansen EC, Ransom M, Hesselberth JR, Hosmane NN, Capoferri AA, Bruner KM, Pollack RA, Zhang H, Drummond MB, Siliciano JM, Siliciano R, Stivers JT. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. eLife 2016; 5. [PMID: 27644592 PMCID: PMC5030084 DOI: 10.7554/elife.18447] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI:http://dx.doi.org/10.7554/eLife.18447.001 Human immunodeficiency virus type 1 (HIV-1) infects and kills immune cells known as CD4+ T cells, leading to the disease AIDS. Current drug treatments enable HIV-1 infected patients to live relatively long and healthy lives. However, no cure for HIV-1 exists because the virus lives indefinitely in a resting state within the genetic material – or genome – of the infected cell, where it is not susceptible to drug treatments. Most HIV-1 research focuses on T cells, but another type of immune cell – the macrophage – may also harbor resting HIV-1 in its genome. Compared to other cells, macrophages are unusual because they produce large amounts of a molecule called deoxyuridine triphosphate (dUTP). Most cells, including T cells, keep dUTP levels very low because it closely resembles molecules that are used to make DNA and so it can be accidentally incorporated into the cell’s DNA. When this happens, the cell removes the dUTP from the DNA using enzymes in a process called uracil base excision repair (UBER). To hide inside the cell’s genome, HIV-1 needs to produce a DNA copy of its own genome, but it was not known what happens when HIV-1 tries to do this within a macrophage that contains high levels of dUTP and UBER enzymes. Here, Hansen et al. reveal that about 90% of macrophages have exceptionally high levels of dUTP and are poorly infected by HIV-1. The high levels of dUTP result in the virus incorporating dUTP into its DNA, which is then attacked and fragmented by UBER enzymes. However, about one in a hundred viral DNA molecules do manage to successfully integrate into the genome of the macrophage. This viral DNA later gives rise to new virus particles through an error-prone process that, by introducing new mutations into the virus genome, may help HIV-1 to evolve and persist. Further experiments examined cells that give rise to macrophages from infected patients who had been on anti-HIV drug therapy for several years. Hansen et al. found that there was lots of dUTP in the DNA sequences of HIV-1 viruses found in these “precursor” cells. These precursor cells only live for several days before being eliminated, so the presence of viruses containing dUTP suggests these cells were infected recently. A future challenge will be to identify new anti-HIV drugs that specifically target macrophages and to understand the role of error-prone production of new viral genomes. DOI:http://dx.doi.org/10.7554/eLife.18447.002
Collapse
Affiliation(s)
- Erik C Hansen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Nina N Hosmane
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Adam A Capoferri
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - Katherine M Bruner
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ross A Pollack
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hao Zhang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Michael Bradley Drummond
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Janet M Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Robert Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
38
|
Agosto LM, Hirnet JB, Michaels DH, Shaik-Dasthagirisaheb YB, Gibson FC, Viglianti G, Henderson AJ. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages. Virology 2016; 499:72-81. [PMID: 27639573 PMCID: PMC5126732 DOI: 10.1016/j.virol.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Juliane B Hirnet
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Michaels
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Jobe O, Trinh HV, Kim J, Alsalmi W, Tovanabutra S, Ehrenberg PK, Peachman KK, Gao G, Thomas R, Kim JH, Michael NL, Alving CR, Rao VB, Rao M. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region. J Leukoc Biol 2016; 99:1089-106. [PMID: 26667473 PMCID: PMC4952014 DOI: 10.1189/jlb.2a0815-361r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 02/02/2023] Open
Abstract
Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1 interaction with sialic acid-binding immunoglobulin-like lectin and entry into macrophage colony-stimulating factor-derived monocyte-derived macrophages. Removal of sialic acid residues or glycans from scaffolded V1V2 protein decreased human immunodeficiency virus type 1 infectivity. These results highlight the importance of sialic acids on the V1V2 region in binding to sialic acid-binding immunoglobulin-like lectin and suggest that the unusually long surface-exposed sialic acid-binding immunoglobulin-like lectin might aid in the capture and entry of human immunodeficiency virus type 1 into monocyte-derived macrophages.
Collapse
Affiliation(s)
- Ousman Jobe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jiae Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Wadad Alsalmi
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Sodsai Tovanabutra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Philip K Ehrenberg
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Host Genetics Section, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Kristina K Peachman
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Rasmi Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Host Genetics Section, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Jerome H Kim
- Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Nelson L Michael
- Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA;
| |
Collapse
|
40
|
Rivera LE, Kraiselburd E, Meléndez LM. Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages. J Neurovirol 2016; 22:666-673. [PMID: 27137788 DOI: 10.1007/s13365-016-0443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.
Collapse
Affiliation(s)
- L E Rivera
- Universidad del Este, Carolina, PR, 00984, USA
| | - E Kraiselburd
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00935, USA
| | - L M Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00935, USA.
| |
Collapse
|
41
|
The local environment orchestrates mucosal decidual macrophage differentiation and substantially inhibits HIV-1 replication. Mucosal Immunol 2016; 9:634-46. [PMID: 26349662 DOI: 10.1038/mi.2015.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 02/04/2023]
Abstract
Macrophages from the decidua basalis (dM), the main uterine mucosa during pregnancy, are weakly permissive to HIV-1 infection. Here, we investigated the mechanisms underlying this natural control. We show, by using freshly purified decidual macrophages and ex vivo human decidual explants, that the local decidual environment influences dM differentiation and naturally protects these cells from HIV-1 infection. Interferon (IFN)-γ, present in the decidual tissue, contributes to maintenance of the dM phenotype and restricts HIV-1 infection by mechanisms involving the cyclin-dependent kinase inhibitor p21Cip1/Waf1. We also found that activation of Toll-like receptors 7 and 8 expressed by dM reinforces the low permissivity of dM to HIV-1 by restricting viral replication and inducing secretion of cytokines in the decidual environment, including IFN-γ, that shape dM plasticity. A major challenge for HIV-1 eradication is to control infection of tissue-resident macrophages in the female reproductive tract. Our findings provide clues to the development of novel strategies to prevent HIV-1 macrophage infection.
Collapse
|
42
|
Forlani G, Turrini F, Ghezzi S, Tedeschi A, Poli G, Accolla RS, Tosi G. The MHC-II transactivator CIITA inhibits Tat function and HIV-1 replication in human myeloid cells. J Transl Med 2016; 14:94. [PMID: 27089879 PMCID: PMC4835826 DOI: 10.1186/s12967-016-0853-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022] Open
Abstract
Background We previously demonstrated that the HLA class II transactivator CIITA inhibits HIV-1 replication in T cells by competing with the viral transactivator Tat for the binding to Cyclin T1 subunit of the P-TEFb complex. Here, we analyzed the anti-viral function of CIITA in myeloid cells, another relevant HIV-1 target cell type. We sinvestigated clones of the U937 promonocytic cell line, either permissive (Plus) or non-permissive (Minus) to HIV-1 replication. This different phenotype has been associated with the expression of TRIM22 in U937 Minus but not in Plus cells. Methods U937 Plus cells stably expressing CIITA were generated and HLA-II positive clones were selected by cell sorting and cloning. HLA and CIITA proteins were analyzed by cytofluorometry and western blotting, respectively. HLA-II DR and CIITA mRNAs were quantified by qRT-PCR. Tat-dependent transactivation was assessed by performing the HIV-1 LTR luciferase gene reporter assay. Cells were infected with HIV-1 and viral replication was evaluated by measuring the RT activity in culture supernatants. Results CIITA was expressed only in HLA-II-positive U937 Minus cells, and this was strictly correlated with inhibition of Tat-dependent HIV-1 LTR transactivation in Minus but not in Plus cells. Overexpression of CIITA in Plus cells restored the suppression of Tat transactivation, confirming the inhibitory role of CIITA. Importantly, HIV-1 replication was significantly reduced in Plus-CIITA cells with respect to Plus parental cells. This effect was independent of TRIM22 as CIITA did not induce TRIM22 expression in Plus-CIITA cells. Conclusions U937 Plus and Minus cells represent an interesting model to study the role of CIITA in HIV-1 restriction in the monocytic/macrophage cell lineage. The differential expression of CIITA in CIITA-negative Plus and CIITA-positive Minus cells correlated with their capacity to support or not HIV-1 replication, respectively. In Minus cells CIITA targeted the viral transactivator Tat to inhibit HIV-1 replication. The generation of Plus-CIITA cells was instrumental to demonstrate the specific contribution of CIITA in terms of inhibition of Tat activity and HIV-1 restriction, independently from other cellular factors, including TRIM22. Thus, CIITA acts as a general restriction factor against HIV-1 not only in T cells but also in myeloid cells.
Collapse
Affiliation(s)
- Greta Forlani
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Filippo Turrini
- Viral Pathogens and Biosafety Unit San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogens and Biosafety Unit San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Tedeschi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto S Accolla
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Giovanna Tosi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| |
Collapse
|
43
|
Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4565-70. [PMID: 26546688 PMCID: PMC4638160 DOI: 10.4049/jimmunol.1501504] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Susan R Ross
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| |
Collapse
|
44
|
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72:4111-26. [PMID: 26210152 PMCID: PMC11113543 DOI: 10.1007/s00018-015-1995-y] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Marco Erreni
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
| |
Collapse
|
45
|
Cobos Jiménez V, Martinez FO, Booiman T, van Dort KA, van de Klundert MAA, Gordon S, Geijtenbeek TBH, Kootstra NA. G3BP1 restricts HIV-1 replication in macrophages and T-cells by sequestering viral RNA. Virology 2015; 486:94-104. [PMID: 26432022 DOI: 10.1016/j.virol.2015.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/16/2022]
Abstract
HIV-1 exploits the cellular machinery for replication and therefore several interactions with cellular factors take place, some of which are yet unknown. We identified GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1) as a cellular factor that restricts HIV-1, by analyzing transcriptome profiles of in vitro-cytokine-activated macrophages that are non-permissive to HIV-1 replication. Silencing of G3BP1 by RNA interference resulted in increased HIV-1 replication in primary T-cells and macrophages, but did not affect replication of other retroviruses. G3BP1 specifically interacted with HIV-1 RNA in the cytoplasm, suggesting that it sequesters viral transcripts, thus preventing translation or packaging. G3BP1 was highly expressed in resting naïve or memory T-cells from healthy donors and HIV-1 infected patients, but significantly lower in IL-2-activated T-cells. These results strongly suggest that G3BP1 captures HIV-1 RNA transcripts and thereby restricts mRNA translation, viral protein production and virus particle formation.
Collapse
Affiliation(s)
- Viviana Cobos Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Fernando O Martinez
- Kennedy Rheumatology Institute, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Thijs Booiman
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Karel A van Dort
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Maarten A A van de Klundert
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam 1105AZ, The Netherlands.
| |
Collapse
|
46
|
Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. ACTA ACUST UNITED AC 2015; 212:1043-59. [PMID: 26056232 PMCID: PMC4493415 DOI: 10.1084/jem.20141836] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/11/2015] [Indexed: 11/04/2022]
Abstract
Pulmonary metastasis of breast cancer cells is promoted by a distinct population of macrophages, metastasis-associated macrophages (MAMs), which originate from inflammatory monocytes (IMs) recruited by the CC-chemokine ligand 2 (CCL2). We demonstrate here that, through activation of the CCL2 receptor CCR2, the recruited MAMs secrete another chemokine ligand CCL3. Genetic deletion of CCL3 or its receptor CCR1 in macrophages reduces the number of lung metastasis foci, as well as the number of MAMs accumulated in tumor-challenged lung in mice. Adoptive transfer of WT IMs increases the reduced number of lung metastasis foci in Ccl3 deficient mice. Mechanistically, Ccr1 deficiency prevents MAM retention in the lung by reducing MAM-cancer cell interactions. These findings collectively indicate that the CCL2-triggered chemokine cascade in macrophages promotes metastatic seeding of breast cancer cells thereby amplifying the pathology already extant in the system. These data suggest that inhibition of CCR1, the distal part of this signaling relay, may have a therapeutic impact in metastatic disease with lower toxicity than blocking upstream targets.
Collapse
Affiliation(s)
- Takanori Kitamura
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Daniel Soong
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Roy Noy
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Gaël Sugano
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Yu Kato
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
47
|
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, Rinaldi AO, Pellegrini M, Bona R, Michelini Z, Cara A, Vella S, Gessani S, Andreotti M, Fantuzzi L. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology 2015; 12:4. [PMID: 25608886 PMCID: PMC4314729 DOI: 10.1186/s12977-014-0132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members. RESULTS CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses. CONCLUSIONS Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
48
|
Abstract
Macrophage involvement in viral infections and antiviral states is common. However, this involvement has not been well-studied in the paradigm of macrophage polarization, which typically has been categorized by the dichotomy of classical (M1) and alternative (M2) statuses. Recent studies have revealed the complexity of macrophage polarization in response to various cellular mediators and exogenous stimuli by adopting a multipolar view to revisit the differential process of macrophages, especially those re-polarized during viral infections. Here, through examination of viral infections targeting macrophages/monocytic cells, we focus on the direct involvement of macrophage polarization during viral infections. Type I and type III interferons (IFNs) are critical in regulation of viral pathogenesis and host antiviral infection; thus, we propose to incorporate IFN-mediated antiviral states into the framework of macrophage polarization. This view is supported by the multifunctional properties of type I IFNs, which potentially elicit and regulate both M1- and M2-polarization in addition to inducing the antiviral state, and by the discoveries of viral mechanisms to adapt and modulate macrophage polarization. Indeed, several recent studies have demonstrated effective prevention of viral diseases through manipulation of macrophage immune statuses.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Laura C Miller
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
49
|
Kang W, Marasco WA, Tong HI, Byron MM, Wu C, Shi Y, Sun S, Sun Y, Lu Y. Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages. J Neuroinflammation 2014; 11:195. [PMID: 25416164 PMCID: PMC4256057 DOI: 10.1186/s12974-014-0195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HIV-1 Tat is essential for HIV replication and is also a well-known neurotoxic factor causing HIV-associated neurocognitive disorder (HAND). Currently, combined antiretroviral therapy targeting HIV reverse transcriptase or protease cannot prevent the production of early viral proteins, especially Tat, once HIV infection has been established. HIV-infected macrophages and glial cells in the brain still release Tat into the extracellular space where it can exert direct and indirect neurotoxicity. Therefore, stable production of anti-Tat antibodies in the brain would neutralize HIV-1 Tat and thus provide an effective approach to protect neurons. METHODS We constructed a humanized anti-Tat Hutat2:Fc fusion protein with the goal of antagonizing HIV-1 Tat and delivered the gene into cell lines and primary human monocyte-derived macrophages (hMDM) by an HIV-based lentiviral vector. The function of the anti-Tat Hutat2:Fc fusion protein and the potential side effects of lentiviral vector-mediated gene transfer were evaluated in vitro. RESULTS Our study demonstrated that HIV-1-based lentiviral vector-mediated gene transduction resulted in a high-level, stable expression of anti-HIV-1 Tat Hutat2:Fc in human neuronal and monocytic cell lines, as well as in primary hMDM. Hutat2:Fc was detectable in both cells and supernatants and continued to accumulate to high levels within the supernatant. Hutat2:Fc protected mouse cortical neurons against HIV-1 Tat86-induced neurotoxicity. In addition, both secreted Hutat2:Fc and transduced hMDM led to reducing HIV-1BaL viral replication in human macrophages. Moreover, lentiviral vector-based gene introduction did not result in any significant changes in cytomorphology and cell viability. Although the expression of IL8, STAT1, and IDO1 genes was up-regulated in transduced hMDM, such alternation in gene expression did not affect the neuroprotective effect of Hutat2:Fc. CONCLUSIONS Our study demonstrated that lentivirus-mediated gene transfer could efficiently deliver the Hutat2:Fc gene into primary hMDM and does not lead to any significant changes in hMDM immune-activation. The neuroprotective and HIV-1 suppressive effects produced by Hutat2:Fc were comparable to that of a full-length anti-Tat antibody. This study provides the foundation and insights for future research on the potential use of Hutat2:Fc as a novel gene therapy approach for HAND through utilizing monocytes/macrophages, which naturally cross the blood-brain barrier, for gene delivery.
Collapse
Affiliation(s)
- Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China. .,Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 50 Brookline Avenue, Boston, MA, 02215, USA.
| | - Hsin-I Tong
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Mary Margaret Byron
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB, Suite 231, Honolulu, HI, 96813, USA.
| | - Chengxiang Wu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yingli Shi
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Si Sun
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China.
| | - Yuanan Lu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
50
|
Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Mol Ther 2014; 23:352-62. [PMID: 25270076 DOI: 10.1038/mt.2014.193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
Improving hematopoietic stem and progenitor cell (HSPC) permissiveness to HIV-derived lentiviral vectors (LVs) remains a challenge for the field of gene therapy as high vector doses and prolonged ex vivo culture are still required to achieve clinically relevant transduction levels. We report here that Cyclosporin A (CsA) and Rapamycin (Rapa) significantly improve LV gene transfer in human and murine HSPC. Both compounds increased LV but not gammaretroviral transduction and acted independently of calcineurin and autophagy. Improved gene transfer was achieved across all CD34(+) subpopulations, including in long-term SCID repopulating cells. Effects of CsA were specific of HSPC and opposite to its known impact on HIV replication. Mutating the Cyclophilin A binding pocket of the viral capsid (CA) further improved transduction in combination with CsA. Tracking of the LV genome fate revealed that CsA relieves a CA-dependent early block and increases integration, while Rapa acts early in LV infection independently of the viral CA. In agreement, only Rapa was able to improve transduction by an integrase-defective LV harboring wild-type CA. Overall, our findings pave the way for more efficient and sustainable LV gene therapy in human HSPCs and shed light on the multiple innate barriers specifically hampering LV transduction in these cells.
Collapse
|