1
|
Mpabalwani EM, Sakala C, Kamiji E, Simwaka J, Soko J, Kabwe M, Chisanga A, Chisanga K, Sakala J, Kiulia NM, Sakubita P, Kalesha-Masumbu P, Bakyaita N, Worwui AK, Mwenda JM. Challenges and lessons learned during the switching of rotavirus vaccine from Rotarix to Rotavac in Zambia. Vaccine 2025; 55:127012. [PMID: 40107130 DOI: 10.1016/j.vaccine.2025.127012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Active Rotavirus diarrhea surveillance has been ongoing in Zambia at three dedicated sentinel sites since 2007, focusing on hospitalized children under five years of age. During 2021 and 2022, many African countries, including Zambia, experienced a severe shortage of rotavirus vaccines. This vaccine shortage resulted in many children who were eligible for vaccination remaining unvaccinated. Consequently, these children were exposed to a higher risk of severe acute gastroenteritis. METHODS To ascertain the impact of rotavirus vaccine stock-out and switch in Zambia, a comprehensive desk review was conducted focusing on the switch of the vaccine from Rotarix to Rotavac and the change of the Rotavac formulation. This review encompassed all children under five years of age recruited at the surveillance sites between 2017 and 2023 and the country's comparison of national administrative and WUENIC 2023 rotavirus vaccine coverage rate estimates for 2014 to 2023. March 2022 to April 2023 was defined as the Rotarix vaccine stock-out period. Hospitalization trends, demographic and clinical data, and rotavirus confirmed ELISA results were analyzed. RESULTS Following the introduction of rotavirus vaccine, the number of fully vaccinated children increased steadily over the years, reaching 4.73 million in 2023. However, 2.63 million children missed vaccination between 2016 and 2023. The administrative and WUENIC 2023 estimates for rotavirus coverage rates were the same during the period under review. Hospitalized diarrhea cases and rotavirus positivity rates remained essentially the same during the in-stock and stock-out periods of rotavirus vaccine. However, mortality rates increased three-fold during the vaccine stock-out period. CONCLUSION The impact of the Rotarix vaccine era was reversed due to the global supply chain disruptions, leading to missed vaccinations, increased diarrhea-related hospitalizations, and higher infant mortality in Zambia. The COVID-19 pandemic may also have further disrupted the vaccination sessions, further impacting rotavirus vaccination. Rotarix shortages likely contributed to rising rotavirus cases. There is an urgent need to completely replace the old under-5 vaccination card with a revised one to improve documentation for new rotavirus vaccines.
Collapse
Affiliation(s)
- E M Mpabalwani
- University of Zambia, School of Medicine, Department of Paediatrics & Child Health, Lusaka, Zambia; University Teaching Hospitals, Children's Hospital, Lusaka, Zambia.
| | - C Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - E Kamiji
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - J Simwaka
- Levy Mwanawasa Medical University, Institute of Basic and Biomedical Sciences, Lusaka, Zambia
| | - J Soko
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - M Kabwe
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - Andrew Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - Kelly Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - J Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - N M Kiulia
- Enteric Pathogens and Water Research Laboratory, Kenya Institute of Primate Research, Karen, Nairobi, Kenya
| | - P Sakubita
- WHO/Zambia Country Office, Lusaka, Zambia
| | | | - N Bakyaita
- WHO/Zambia Country Office, Lusaka, Zambia
| | - A K Worwui
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| | - J M Mwenda
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| |
Collapse
|
2
|
Trujillo E, Angulo C. Plant-Made Vaccines Targeting Enteric Pathogens-Safe Alternatives for Vaccination in Developing Countries. Biotechnol Bioeng 2025; 122:457-480. [PMID: 39620322 DOI: 10.1002/bit.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
Enteric diseases by pathogenic organisms are one of the leading causes of death worldwide, particularly in low-income countries. Despite antibiotics, access to clean water and vaccination are the most economically affordable options to prevent those infections and their health consequences. Vaccines, such as those approved for rotavirus and cholera, have played a key role in preventing several enteric diseases. However, vaccines for other pathogens are still in clinical trials. Distribution and cost remain significant barriers to vaccine access in developing regions due to poor healthcare infrastructure, cold-chain requirements, and high production costs. Plant-made vaccines offer a promising alternative to address these challenges. Plants can be easily grown, lowering production costs, and can be administered in oral forms, potentially eliminating cold-chain dependency. Although there are some promising prototypes of vaccines produced in plants, challenges remain, including yields and achieving sufficient immunogenicity. This review aims to describe common enteric pathogens and available vaccines, followed by a strategic summary of plant-made vaccine development and a discussion of plant-made enteric vaccine prototypes. Trends to overcome the key challenges for plant-made vaccines are identified and placed in perspective for the development of affordable and effective vaccines for populations at the highest risk of enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
3
|
Wang Z, Huang W, Yan G, Tian Y, Wang C, Mao X, Sun M, Zhou L, Yu C, Xia H. Isolation, Genomic Characterization, and Immunogenicity Evaluation of a G9P[23] Porcine Rotavirus Strain. Vet Sci 2025; 12:180. [PMID: 40005940 PMCID: PMC11861734 DOI: 10.3390/vetsci12020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background: Rotavirus (RV) is the primary pathogen causing diarrhea in infants and young children. The G9-type is an emerging genotype; however, its isolation is challenging, and its immunogenicity to piglets is poorly understood. This study aimed to isolate, characterize, and evaluate the immunogenicity of a PoRVA strain, RHeN2, obtained from the diarrhea samples of piglets from a pig farm in Henan Province, China. (2) Methods: Porcine rotavirus A (PoRVA) was isolated from diarrheal samples of piglets on a farm in Henan Province, China, through sequential passaging on MA-104 cells. Its immunogenicity and cross-neutralization potential were evaluated. Inactivated vaccines were prepared using two agents (formaldehyde and binary ethyleneimine, BEI) and administered intramuscularly to 28-day-old piglets. Dulbecco's Modified Eagle Medium (DMEM) served as the control. (3) Results: A PoRVA strain, G9P[23] type, was successfully isolated and named RHeN2. Full-genome Sanger sequencing revealed the genetic constellation of this strain as G9-P[23]-I5-R1-C1- M1-A8-N1-T1-E1-H1. In addition, the titers of neutralizing antibodies peaked at 45 days post-vaccination, and the immunogenicity of the BEI-inactivated group of vaccines was better than that of the formaldehyde-inactivated group. The RHeN2 (G9P[23]) strain demonstrated a strong cross-neutralization ability against the same G9P[23] and G4P[23] strains and a stronger cross-neutralizing ability against the P[23] strains than against the P[7] strains. (4) Conclusion: The newly isolated G9P[23] strain demonstrates favorable immunogenicity, holding potential as a G9-type vaccine candidate.
Collapse
Affiliation(s)
- Zixuan Wang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Huang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gengxuan Yan
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Tian
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chune Wang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xue Mao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Sun
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Zhou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Yu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihua Xia
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Ghonaim AH, Rouby SR, Nageeb WM, Elgendy AA, Xu R, Jiang C, Ghonaim NH, He Q, Li W. Insights into recent advancements in human and animal rotavirus vaccines: Exploring new frontiers. Virol Sin 2025; 40:1-14. [PMID: 39672271 PMCID: PMC11962973 DOI: 10.1016/j.virs.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Rotavirus infections cause severe gastroenteritis and dehydration in young children and animals worldwide, leading to high rates of morbidity and mortality, predominantly in low- and middle-income countries. In the past decade, substantial progress has been made in the development and implementation of rotavirus vaccines, which have been essential in alleviating the global burden of this disease, not only in human being but also in livestock species like calves and piglets, where these infections can cause significant economic losses. By synthesizing the latest research and real-world evidence, this review article is designated to provide deep insights into the current state of rotavirus vaccine technology and its global implementation as well as the application of rotavirus vaccines in veterinary settings and their importance in controlling zoonotic transmission and maintaining food security.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Sherin R Rouby
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wedad M Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
| | - Ashraf Ahmed Elgendy
- Department of Immunology, Faculty of Medicine, New Kaser Al-Aini Teaching Hospital, Cairo University, 11435, Egypt
| | - Rong Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Changsheng Jiang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Noha H Ghonaim
- Family Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
5
|
Thobari JA, Watts E, Carvalho N, Haposan JH, Clark A, Debellut F, Mulyadi AWE, Sundoro J, Nadjib M, Hadinegoro SR, Bines J, Soenarto Y. Cost effectiveness analysis of rotavirus vaccination in Indonesia. Vaccine 2025; 43:126478. [PMID: 39500219 DOI: 10.1016/j.vaccine.2024.126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Rotavirus (RV) remains the most common cause of morbidity and mortality due to acute gastroenteritis (AGE) in children under five. In Indonesia, RV is responsible for 60 % of severe AGE and 40 % of non-severe AGE in these children. This study assessed the cost-effectiveness of introduction of rotavirus vaccines (RVV) into the National Immunization Program in Indonesia. METHODS We conducted a cost-effectiveness analysis (CEA) of RVV introduction in Indonesia, assuming a three-dose vaccine schedule based on the planned introduction proposed by the Strategic Advisory Group of Experts on Immunization. The analysis involved an initial introduction of an imported RVV (Rotavac®, Bharat Biotech, India) followed by a staged implementation of the locally produced RVV (Bio Farma, Indonesia) from both health system and societal perspectives. The primary outcome measure was the incremental cost (2019 USD) per disability-adjusted life year (DALY) averted, compared to no vaccination. We took model inputs from an Indonesian cost-of-illness study, national information systems and scientific literature, covering disease incidence, hospitalization, mortality, healthcare costs, and vaccine related factors. Our analyses included univariate and probabilitistic sensitivity analyses to assess various parameters. FINDINGS The cost of a 10-year vaccination program is 82.6 million USD and can potentially prevent 7.3 million cases of rotavirus and 0.42 million DALYs. From a societal perspective, the incremental cost-effectiveness ratio (ICER) for the staged program is 464 USD per DALY averted (12 % of Indonesia's gross domestic product (GDP) per capita). From a healthcare sector perspective, ICER is similar at 479 USD (13 % GDP per capita). INTERPRETATION The introduction of RVV into the National Immunization Program is likely to be highly cost-effective in Indonesia. FUNDING This work was supported by funding agreement with the Murdoch Children's Research Institute (MCRI), PATH, and the Indonesian Technical Advisory Group on Immunization (ITAGI).
Collapse
Affiliation(s)
- Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Center for Child Health, Pediatric Research Office (CCH/PRO), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Emma Watts
- Enteric Diseases Research Group, Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Natalie Carvalho
- School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Jonathan Hasian Haposan
- Center for Child Health, Pediatric Research Office (CCH/PRO), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Enteric Diseases Research Group, Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Andrew Clark
- Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Asal Wahyuni Erlin Mulyadi
- Center for Child Health, Pediatric Research Office (CCH/PRO), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Faculty of Social and Political Sciences Universitas Sebelas Maret Surakarta, Central Java, Indonesia
| | - Julitasari Sundoro
- Health Economic Working Group, Indonesia Task Advisory Group for Immunization (ITAGI), Indonesia
| | - Mardiati Nadjib
- Health Economic Working Group, Indonesia Task Advisory Group for Immunization (ITAGI), Indonesia
| | - Sri Redzeki Hadinegoro
- Health Economic Working Group, Indonesia Task Advisory Group for Immunization (ITAGI), Indonesia
| | - Julie Bines
- Enteric Diseases Research Group, Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Yati Soenarto
- Center for Child Health, Pediatric Research Office (CCH/PRO), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Peng R, Wang M, Shahar S, Xiong G, Zhang Q, Pang L, Wang H, Kong X, Li D, Duan Z. Epidemiological, molecular, and evolutionary characteristics of G1P[8] rotavirus in China on the eve of RotaTeq application. Front Cell Infect Microbiol 2024; 14:1453862. [PMID: 39717546 PMCID: PMC11666228 DOI: 10.3389/fcimb.2024.1453862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction This study, conducted in China prior to RotaTeq's launch, examined the epidemiological, molecular, and evolutionary features of the G1P[8] genotype RVA in children admitted with diarrhea, to aid in evaluating its efficacy and impact on G1P[8] RVA in China. Methods Data from the Chinese viral diarrhea surveillance network were collected from January 2016 to December 2018. RVA strains identified as the G1P[8] genotype were subjected to whole-genome sequencing. Neutralizing epitope, amino acid selection pressure, and evolution dynamics analyses on VP7 and VP4 were performed using BioEdit v.7.0.9.0 and PyMOL v.2.5.2, four algorithms (MEME, SLAC, FEL, and FUBAR) in the Datamonkey online software, and the MCMC model in BEAST v. 1.10.4, respectively. Phylogenetic and identity features of 11 genes were assessed by DNAStar and MEGA v.7. Results Results showed that the detection rate of G1P[8] in China from 2016 to 2018 was generally low with significant seasonality. The whole genome of G1P[8] of four 2016 childhood diarrhea specimens was successfully sequenced. Phylogenetic and neutralizing epitope analysis showed that Rotavin-M1 might have better protection on G1P[8] prevalent in China than Rotarix and RotaTeq. Two conserved N-glycosylation sites on VP7 of Chinese G1P[8] might affect the protective effect of the vaccine. Evolution rate and selection pressure analysis identified the possibility of rapidly evolving and adapting to the new environment introduced by vaccines of G1P[8], whereas positive selection specific to VP4 indicated the potential tendency to select for dominant traits. Identity and phylogeny analysis showed that Chinese G1P[8] from before 2018 was generally stable with possible genetic recombination among local strains. Discussion These findings not only are of great significance for predicting the prevalence of G1P [8] in China, but also provide data reference for evaluating rotavirus vaccine efficacy.
Collapse
Affiliation(s)
- Rui Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mengxuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saleha Shahar
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Guangping Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Sunil-Chandra NP, Jayasundara MVML, Mendis BCG, Dissanayaka DMPV. Burden of rotavirus and adenovirus gastroenteritis in children and adults hospitalized in two geo-climatically different provinces of Sri Lanka. Virusdisease 2024; 35:620-629. [PMID: 39677844 PMCID: PMC11635066 DOI: 10.1007/s13337-024-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/17/2024] [Indexed: 12/17/2024] Open
Abstract
Acute gastroenteritis is common in infants and children of Sri Lanka. There is limited information on the burden of rotavirus gastroenteritis in infants and children in Sri Lanka but none in adults. Adenovirus gastroenteritis is not previously reported in Sri Lanka. This study is aimed to determine the viral etiology of acute gastroenteritis in hospitalized infants, children and adults of two geo-climatically different provinces of Sri Lanka. Diarrhoeic specimens from patients hospitalized with acute gastroenteritis in Western (n = 300) and Central (n = 271) provinces of Sri Lanka were tested for rotavirus and enteric adenovirus antigens by Enzyme Linked Immunosorbent Assay. In Western and Central provinces, overall positivity was 25.3 and 44.7% for rotavirus, 1.7 and 3.3% for enteric adenoviruses and, 0.7 and 1.5% for co-infections with rotavirus and adenovirus respectively. In children of Western and Central provinces, the positivity was 32.1 and 52.9% for rotavirus, and 2.2 and 3.4% for enteric adenoviruses respectively, whereas among adults, the positivity was 13.9 and 15.6% for rotavirus, and 0.9 and 0% for enteric adenoviruses respectively. Occurrence of rotavirus gastroenteritis in hospitalized children is significantly higher compared to adults in both Western and Central provinces. Adenovirus gastroenteritis in Sri Lanka occurs at a very low frequency with no significant difference between children and adults in both provinces. Rotavirus and adenovirus co-infection also occurs at a very low frequency.
Collapse
Affiliation(s)
- N. P. Sunil-Chandra
- Department of Medical Microbiology, Faculty of Medicine, University of Kelaniya, Talagolla Road, P.O. Box 6, Ragama, 11010 Sri Lanka
- Professor H.Y. Ranjit Perera Institute for Applied Research, Nugegoda, 10250 Sri Lanka
| | - M. V. M. L. Jayasundara
- Department of Medical Microbiology, Faculty of Medicine, University of Kelaniya, Talagolla Road, P.O. Box 6, Ragama, 11010 Sri Lanka
| | - B. C. G. Mendis
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, 20400 Sri Lanka
| | - D. M. P. V. Dissanayaka
- Department of Statistics and Computer Science, Faculty of Science, University of Kelaniya, Kelaniya, 11600 Sri Lanka
| |
Collapse
|
8
|
Herbert J, van Dijk AA. Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain. J Gen Virol 2024; 105. [PMID: 39320365 DOI: 10.1099/jgv.0.002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Collapse
Affiliation(s)
- Jayme Herbert
- University of the Free State, Bloemfontein, South Africa
- Deltamune PTY (LTD), Pretoria, South Africa
| | | |
Collapse
|
9
|
Munlela B, João ED, Strydom A, Bauhofer AFL, Chissaque A, Chilaúle JJ, Maurício IL, Donato CM, O’Neill HG, de Deus N. Whole-Genome Characterization of Rotavirus G9P[6] and G9P[4] Strains That Emerged after Rotavirus Vaccine Introduction in Mozambique. Viruses 2024; 16:1140. [PMID: 39066302 PMCID: PMC11281483 DOI: 10.3390/v16071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mozambique introduced the Rotarix® vaccine into the National Immunization Program in September 2015. Following vaccine introduction, rotavirus A (RVA) genotypes, G9P[4] and G9P[6], were detected for the first time since rotavirus surveillance programs were implemented in the country. To understand the emergence of these strains, the whole genomes of 47 ELISA RVA positive strains detected between 2015 and 2018 were characterized using an Illumina MiSeq-based sequencing pipeline. Of the 29 G9 strains characterized, 14 exhibited a typical Wa-like genome constellation and 15 a DS-1-like genome constellation. Mostly, the G9P[4] and G9P[6] strains clustered consistently for most of the genome segments, except the G- and P-genotypes. For the G9 genotype, the strains formed three different conserved clades, separated by the P type (P[4], P[6] and P[8]), suggesting different origins for this genotype. Analysis of the VP6-encoding gene revealed that seven G9P[6] strains clustered close to antelope and bovine strains. A rare E6 NSP4 genotype was detected for strain RVA/Human-wt/MOZ/HCN1595/2017/G9P[4] and a genetically distinct lineage IV or OP354-like P[8] was identified for RVA/Human-wt/MOZ/HGJM0644/2015/G9P[8] strain. These results highlight the need for genomic surveillance of RVA strains detected in Mozambique and the importance of following a One Health approach to identify and characterize potential zoonotic strains causing acute gastroenteritis in Mozambican children.
Collapse
Affiliation(s)
- Benilde Munlela
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Eva D. João
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Adilson Fernando Loforte Bauhofer
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Assucênio Chissaque
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Jorfélia J. Chilaúle
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Isabel L. Maurício
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal;
| | - Celeste M. Donato
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia;
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Julius Nyerere Avenue, Maputo 3453, Mozambique
| |
Collapse
|
10
|
Yarmohammadi H, Aghasadeghi M, Akhavan Sepahi A, Hamidi-fard M, Bahramali G. Designing the fusion protein of rotavirus VP8 and hepatitis A virus VP1 and evaluating the immunological response in BALB/c mice. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:401-410. [PMID: 39005596 PMCID: PMC11245353 DOI: 10.18502/ijm.v16i3.15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background and Objectives Rotavirus and Hepatitis A virus are responsible for causing gastroenteritis and jaundice. The current vaccination approaches have proven insufficient, especially in low-income countries. In this study, we presented a novel dual-vaccine candidate that combines the rotavirus VP8 protein and the hepatitis A virus VP1. Materials and Methods The VP8*-rotavirus+AAY+HAV-VP1 fusion protein was produced using an Escherichia coli expression system. The recombinant protein had a molecular weight of approximately 45.5 kDa and was purified through affinity chromatography. BALB/c mice were injected subcutaneously with the recombinant protein, VP1, VP8 and vaccines for rotavirus and hepatitis A virus, both with and without ALUM and M720 adjuvants. ELISA assays were used to measure total IgG, IgG1, IgG2, and short-term and long-term IL-5 and IFN-γ responses. Results The fusion protein, when combined with adjuvants, elicited significantly higher total IgG, IgG1, and IgG2 responses compared to VP1 and VP8 alone, as well as the rotavirus and hepatitis A vaccines. Furthermore, it induced a higher short-term IL-5 and IFN-γ response while demonstrating a higher long-term IL-5 response compared to the rotavirus and hepatitis A vaccines. Conclusion This study demonstrates that the VP8*-rotavirus+AAY+HAV-VP1 fusion protein is a promising dual vaccine candidate for immunization against hepatitis A and rotaviruses.
Collapse
Affiliation(s)
- Hassan Yarmohammadi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Akhavan Sepahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Dakouo D, Ouermi D, Ouattara AK, Simpore A, Compaore TR, Traore MAE, Gamsore Z, Zoure AA, Traore L, Zohoncon TM, Yonli AT, Ilboudo PD, Djigma FW, Simpore J. Rotavirus vaccines in Africa and Norovirus genetic diversity in children aged 0 to 5 years old: a systematic review and meta-analysis : Rotavirus vaccines in Africa and Norovirus genetic diversity. BMC Infect Dis 2024; 24:547. [PMID: 38822241 PMCID: PMC11143598 DOI: 10.1186/s12879-024-09434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.
Collapse
Affiliation(s)
- Dako Dakouo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Djénéba Ouermi
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Département de Biologie et Physiologie Animales, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso.
| | - Abibou Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Agence Nationale pour la Sécurité Sanitaire de l'Environnement, de l'Alimentation, du Travail et des Produits de Santé (ANSSEAT), Ouagadougou, Burkina Faso
| | - Tégwendé Rebecca Compaore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Mah Alima Esther Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Zakaria Gamsore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Abdou Azaque Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Théodora Mahoukèdè Zohoncon
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Faculté de Médecine, Université Saint Thomas d'Aquin, Ouagadougou 01, 06 BP 10212, Burkina Faso
| | - Albert Théophane Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - P Denise Ilboudo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| |
Collapse
|
12
|
Amin AB, Cates JE, Liu Z, Wu J, Ali I, Rodriguez A, Panjwani J, Tate JE, Lopman BA, Parashar UD. Rotavirus Genotypes in the Postvaccine Era: A Systematic Review and Meta-analysis of Global, Regional, and Temporal Trends by Rotavirus Vaccine Introduction. J Infect Dis 2024; 229:1460-1469. [PMID: 37738554 PMCID: PMC11095550 DOI: 10.1093/infdis/jiad403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Even moderate differences in rotavirus vaccine effectiveness against nonvaccine genotypes may exert selective pressures on circulating rotaviruses. Whether this vaccine effect or natural temporal fluctuations underlie observed changes in genotype distributions is unclear. METHODS We systematically reviewed studies reporting rotavirus genotypes from children <5 years of age globally between 2005 and 2023. We compared rotavirus genotypes between vaccine-introducing and nonintroducing settings globally and by World Health Organization (WHO) region, calendar time, and time since vaccine introduction. RESULTS Crude pooling of genotype data from 361 studies indicated higher G2P[4], a nonvaccine genotype, prevalence in vaccine-introducing settings, both globally and by WHO region. This difference did not emerge when examining genotypes over time in the Americas, the only region with robust longitudinal data. Relative to nonintroducing settings, G2P[4] detections were more likely in settings with recent introduction (eg, 1-2 years postintroduction adjusted odds ratio [aOR], 4.39; 95% confidence interval [CI], 2.87-6.72) but were similarly likely in settings with more time elapsed since introduction, (eg, 7 or more years aOR, 1.62; 95% CI, .49-5.37). CONCLUSIONS When accounting for both regional and temporal trends, there was no substantial evidence of long-term vaccine-related selective pressures on circulating genotypes. Increased prevalence of G2P[4] may be transient after rotavirus vaccine introduction.
Collapse
Affiliation(s)
- Avnika B Amin
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jordan E Cates
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zihao Liu
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Joanne Wu
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Iman Ali
- Centers for Disease Control and Prevention Foundation, Atlanta, Georgia, USA
| | - Alexia Rodriguez
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Junaid Panjwani
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline E Tate
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin A Lopman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Umesh D Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Kang G. Success from the South: the rotavirus vaccine story and its lessons. Lancet 2024; 403:111-116. [PMID: 38040012 DOI: 10.1016/s0140-6736(23)02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Gagandeep Kang
- Enterics, Diagnostics, Genomics & Epidemiology, Bill and Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
14
|
Sadiq A, Khan J. Rotavirus in developing countries: molecular diversity, epidemiological insights, and strategies for effective vaccination. Front Microbiol 2024; 14:1297269. [PMID: 38249482 PMCID: PMC10797100 DOI: 10.3389/fmicb.2023.1297269] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Rotavirus (RV) causes the loss of numerous children's lives worldwide each year, and this burden is particularly heavy in low- and lower-middle-income countries where access to healthcare is limited. RV epidemiology exhibits a diverse range of genotypes, which can vary in prevalence and impact across different regions. The human genotypes that are most commonly recognized are G1P[8], G2P[4], G3P[8], G4P[8], G8P[8], G9P[8], and G12P[8]. The diversity of rotavirus genotypes presents a challenge in understanding its global distribution and developing effective vaccines. Oral, live-attenuated rotavirus vaccines have undergone evaluation in various contexts, encompassing both low-income and high-income populations, demonstrating their safety and effectiveness. Rotavirus vaccines have been introduced and implemented in over 120 countries, offering an opportunity to assess their effectiveness in diverse settings. However, these vaccines were less effective in areas with more rotavirus-related deaths and lower economic status compared to wealthier regions with fewer rotavirus-related deaths. Despite their lower efficacy, rotavirus vaccines significantly decrease the occurrence of diarrheal diseases and related mortality. They also prove to be cost-effective in regions with a high burden of such diseases. Regularly evaluating the impact, influence, and cost-effectiveness of rotavirus vaccines, especially the newly approved ones for worldwide use, is essential for deciding if these vaccines should be introduced in countries. This is especially important in places with limited resources to determine if a switch to a different vaccine is necessary. Future research in rotavirus epidemiology should focus on a comprehensive understanding of genotype diversity and its implications for vaccine effectiveness. It is crucial to monitor shifts in genotype prevalence and their association with disease severity, especially in high-risk populations. Policymakers should invest in robust surveillance systems to monitor rotavirus genotypes. This data can guide vaccine development and public health interventions. International collaboration and data sharing are vital to understand genotype diversity on a global scale and facilitate the development of more effective vaccines.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jadoon Khan
- Department of Allied and Health Sciences, IQRA University, Chak Shahzad Campus, Islamabad, Pakistan
| |
Collapse
|
15
|
Ray S, Pathak S, Kshtriya P. Critical Analysis of Economic Evaluation of the Childhood Rotavirus Vaccination in Low- and Lower-Middle-Income Countries: A Systematic Review. Value Health Reg Issues 2023; 38:18-28. [PMID: 37437462 DOI: 10.1016/j.vhri.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES To identify, critically appraise, and summarize the use of different methods and results of economic evaluations to assess the efficiency of rotavirus vaccination programs in low- and lower-middle-income countries. METHODS A systematic literature search was performed in 3 bibliographic databases, including PubMed, ProQuest, Cochrane Library, and Science Direct (Elsevier) journal website, using key search terms. The study selection process was based on predefined inclusion criteria. The search results were presented using the research flow diagram based on guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). The quality assessment of the selected studies was carried out using the CHEERS (Consolidated Health Economic Evaluation Reporting Standards) checklist. RESULTS A total of 21 studies were selected for review. All the studies, except 1, reported rotavirus vaccination to be a cost-effective intervention and a high-impact strategy to reduce substantial rotavirus disease burden. A decision analysis model was considered appropriate by all studies, although there were variabilities in the analytic horizon used. Lack of country-level data was highlighted by most studies. Multiples of gross domestic product of respective countries were used as a threshold to interpret cost-effectiveness. CONCLUSIONS Rotavirus vaccination was found to be cost-efficient in most settings, including complex humanitarian emergencies. The use of thresholds for interpreting incremental cost-effectiveness ratios and lack of local-level disease incidence and cost of illness data remains a point of contention. Lack of reporting probabilistic sensitivity analysis renders limited robustness to study results.
Collapse
Affiliation(s)
- Shomik Ray
- Department of Research, Indian Institute of Public Health-Delhi, Public Health Foundation of India, Gurgaon, Haryana, India.
| | - Sukanya Pathak
- Department of Research, Indian Institute of Public Health-Delhi, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Pranav Kshtriya
- Department of Research, Indian Institute of Public Health-Delhi, Public Health Foundation of India, Gurgaon, Haryana, India
| |
Collapse
|
16
|
Philip AA, Hu S, Dai J, Patton JT. Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2. J Gen Virol 2023; 104:001899. [PMID: 37830788 PMCID: PMC10721933 DOI: 10.1099/jgv.0.001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Reverse genetic systems have been used to introduce heterologous sequences into the rotavirus segmented double-stranded (ds)RNA genome, enabling the generation of recombinant viruses that express foreign proteins and possibly serve as vaccine vectors. Notably, insertion of SARS-CoV-2 sequences into the segment seven (NSP3) RNA of simian SA11 rotavirus was previously shown to result in the production of recombinant viruses that efficiently expressed the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the S1 region of the SARS-CoV-2 spike protein. However, efforts to generate a similar recombinant (r) SA11 virus that efficiently expressed full-length S1 were less successful. In this study, we describe modifications to the S1-coding cassette inserted in the segment seven RNA that allowed recovery of second-generation rSA11 viruses that efficiently expressed the ~120-kDa S1 protein. The ~120-kDa S1 products were shown to be glycosylated, based on treatment with endoglycosidase H, which reduced the protein to a size of ~80 kDa. Co-pulldown assays demonstrated that the ~120-kDa S1 proteins had affinity for the human ACE2 receptor. Although all the second-generation rSA11 viruses expressed glycosylated S1 with affinity for the ACE receptor, only the S1 product of one virus (rSA11/S1f) was appropriately recognized by anti-S1 antibodies, suggesting the rSA11/S1f virus expressed an authentic form of S1. Compared to the other second-generation rSA11 viruses, the design of the rSA11/S1f was unique, encoding an S1 product that did not include an N-terminal FLAG tag. Probably due to the impact of FLAG tags upstream of the S1 signal peptides, the S1 products of the other viruses (rSA11/3fS1 and rSA11/3fS1-His) may have undergone defective glycosylation, impeding antibody binding. In summary, these results indicate that recombinant rotaviruses can serve as expression vectors of foreign glycosylated proteins, raising the possibility of generating rotavirus-based vaccines that can induce protective immune responses against enteric and mucosal viruses with glycosylated capsid components, including SARS-CoV-2.
Collapse
Affiliation(s)
- Asha A. Philip
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Present address: CSL Seqirus, 225 Wyman Street, Waltham, MA 02452, USA
| | - Sannoong Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jin Dai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Dong HJ, Liu LY, Jia LP, Zhao LQ, Jin FH, Zhou L, Qian Y. Prevalence and genomic analysis of t203-like G9 (G9-VI) rotaviruses circulating in children with gastroenteritis in Beijing, China. Arch Virol 2023; 168:257. [PMID: 37755543 PMCID: PMC10533636 DOI: 10.1007/s00705-023-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/28/2023]
Abstract
Our previous surveillance revealed that t203-like G9 (tentatively designated subtype G9-VI) rotaviruses re-emerged in 2010 in Beijing and rapidly prevailed over the G9-III subtype (the most common G9 subtype globally) and previously predominant G genotypes over the following two years. G9-VI belongs to the VP7 evolutionary lineage VI, which includes unusual and sporadic human rotaviruses from China (t203) and Japan. To obtain insight into the epidemiology, evolution, and transmission advantages of G9-VI rotavirus, we performed follow-up surveillance (2014-2017) and whole-genome analysis of 12 representative G9 strains. The results showed that the G9 genotype was predominant (77.4%), with a marked increase in prevalence (previously 43.5%). Within the G9 genotype, subtype G9-VI accounted for the majority (98.3%) of cases. The most prevalent P-genotype was P[8] (93.7%), within which subtype P[8]b was rare (0.7%). Phylogenetically, the G9-VI subtype strains in this study clustered closely with contemporary emerging human rotaviruses from many other countries in VP7 lineage VI, indicating that this subtype is capable of spreading globally. These currently emerging G9-VI rotaviruses formed a distinct monophyletic subcluster when compared to early G9-VI rotaviruses. Furthermore, four specific amino acid substitutions and synonymous codon substitutions were observed in the VP7 genes between the current G9-VI and globally common G9-III rotaviruses. The remaining nine genes of all of the analyzed representative G9 strains, whether G9-VI or G9-III, combined with the P[8]a, P[8]b, or P[6] genotype and exhibited the same Wa-like backbone constellation.
Collapse
Affiliation(s)
- Hui-Jin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li-Ying Liu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li-Ping Jia
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin-Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Feng-Hua Jin
- Department of Infectious Diseases, Affiliated Children's Hospital to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Zhou
- Department of Clinical Laboratory, Affiliated Children's Hospital to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
18
|
Gutierrez MB, de Assis RMS, de Andrade JDSR, Fialho AM, Fumian TM. Rotavirus A during the COVID-19 Pandemic in Brazil, 2020-2022: Emergence of G6P[8] Genotype. Viruses 2023; 15:1619. [PMID: 37631962 PMCID: PMC10458023 DOI: 10.3390/v15081619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Rotavirus A (RVA) remains a leading cause of acute gastroenteritis (AGE) hospitalizations in children worldwide. During the COVID-19 pandemic, a reduction in vaccination coverage in Brazil and elsewhere was observed, and some reports have demonstrated a reduction in AGE notifications during the pandemic. This study aims to investigate the diversity and prevalence of RVA genotypes in children and adults presenting with AGE symptoms in Brazil during the COVID-19 pandemic between 2020 and 2022. RVA was screened using RT-qPCR; then, G and P genotypes were characterized using one-step multiplex RT-PCR. A total of 2173 samples were investigated over the three-year period, and we detected RVA in 7.7% of samples (n = 167), being 15.5% in 2020, 0.5% in 2021, and 13.8% in 2022. Higher RVA prevalence was observed in the Northeastern region (19.3%) compared to the Southeastern (6.1%) and Southern regions (5.5%). The most affected age group was children aged between 0 and 6 months old; however, this was not statistically significant. Genotyping and phylogenetic analysis identified the emergence of G6P[8] during the period; moreover, it was detected in 10.6% of samples in 2020 and in 83.5% in 2022. In contrast, the prevalence of G3P[8], the previous dominant genotype, decreased from 72.3% in 2020 to 11.3% in 2022. We also identified unusual strains, such as G3P[9] and G9P[4], being sporadically detected during the period. This is the first report on the molecular epidemiology and surveillance of RVA during the COVID-19 pandemic period in Brazil. Our study provides evidence for the importance of maintaining high and sustainable levels of vaccine coverage to protect against RVA disease. Furthermore, it highlights the need to maintain nationwide surveillance in order to monitor future trends and changes in the epidemiology of RVA in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (M.B.G.)
| |
Collapse
|
19
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch Virol 2023; 168:173. [PMID: 37269384 DOI: 10.1007/s00705-023-05803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
21
|
Tran H, Friendship R, Poljak Z. Classification of group A rotavirus VP7 and VP4 genotypes using random forest. Front Genet 2023; 14:1029185. [PMID: 37323680 PMCID: PMC10267748 DOI: 10.3389/fgene.2023.1029185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Group A rotaviruses are major pathogens in causing severe diarrhea in young children and neonates of many different species of animals worldwide and group A rotavirus sequence data are becoming increasingly available over time. Different methods exist that allow for rotavirus genotyping, but machine learning methods have yet to be explored. Usage of machine learning algorithms such as random forest alongside alignment-based methodology may allow for both efficient and accurate classification of circulating rotavirus genotypes through the dual classification system. Methods: Random forest models were trained on positional features obtained from pairwise and multiple sequence alignment and cross-validated using methods of repeated 10-fold cross-validation thrice and leave one- out cross validation. Models were then validated on unseen data from the testing datasets to observe real-world performance. Results: All models were found to perform strongly in classification of VP7 and VP4 genotypes with high overall accuracy and kappa values during model training (0.975-0.992, 0.970-0.989) and during model testing (0.972-0.996, 0.969-0.996), respectively. Models trained on multiple sequence alignment generally had slightly higher overall accuracy and kappa values than models trained on pairwise sequence alignment method. In contrast, pairwise sequence alignment models were found to be generally faster than multiple sequence alignment models in computational speed when models do not need to be retrained. Models that used repeated 10-fold cross-validation thrice were also found to be much faster in model computational speed than models that used leave-one-out cross validation, with no noticeable difference in overall accuracy and kappa values between the cross-validation methods. Discussion: Overall, random forest models showed strong performance in the classification of both group A rotavirus VP7 and VP4 genotypes. Application of these models as classifiers will allow for rapid and accurate classification of the increasing amounts of rotavirus sequence data that are becoming available.
Collapse
|
22
|
Xu X, Luo Y, He C, Dian Z, Mi H, Yang J, Feng Y, Miao Z, Xia X. Increased Risk of Neurological Disease Following Pediatric Rotavirus Infection: A Two-Center Case-Control Study. J Infect Dis 2023; 227:1313-1321. [PMID: 36520652 PMCID: PMC10226661 DOI: 10.1093/infdis/jiac486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Whether pediatric rotavirus infection is associated with extraintestinal complications remains unknown. METHODS We conducted a case-control study to investigate the incidences and risks of rotavirus-associated extraintestinal complications in hospitalized newborns, infants, and children younger than 5 years. RESULTS A total of 1325 young inpatients with rotavirus infection (754 male and 539 newborns) and 1840 controls without rotavirus infection (1035 male and 836 newborns) were included. The incidences of neurological disease were higher among rotavirus individuals compared with controls: newborns, 7.24% (39/539) versus 2.87% (24/836), P < .001; infants and young children, 19.59% (154/786) versus 12.35% (124/1004), P < .001. The associated odd ratios (ORs) for neurological disease frequency following rotavirus infection was 2.64 (95% confidence interval [CI], 1.57-4.44) for newborns and 1.73 (95% CI, 1.34-2.24) for infants and young children, which increased to 2.56 (95% CI, 1.57-4.18) in case-control (1:1) matching analysis and 1.85 (95% CI, 1.41-2.42) in confounder adjustment. Rotavirus infection was associated with other extraintestinal complications, depending on study population and disease severity. Outcome analysis revealed rotavirus infection and its consequences had a significant impact on hospitalization and discharge. CONCLUSIONS Rotavirus exposure was associated with a spectrum of extraintestinal complications, particularly neurological disease. Rotavirus infection and subsequent consequences resulted in poor clinical outcomes.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yunjiao Luo
- Department of Infectious Disease, Kunming Children's Hospital, Kunming, Yunnan Province, China
| | - Canlin He
- Neonatal Department, Kunming Children's Hospital, Kunming, Yunnan Province, China
| | - Ziqin Dian
- Clinical Laboratory Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Hongying Mi
- Department of Pediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Jinghui Yang
- Department of Pediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Zhijiang Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
23
|
Amin AB, Tate JE, Waller LA, Lash TL, Lopman BA. Monovalent Rotavirus Vaccine Efficacy Against Different Rotavirus Genotypes: A Pooled Analysis of Phase II and III Trial Data. Clin Infect Dis 2023; 76:e1150-e1156. [PMID: 36031386 PMCID: PMC10169401 DOI: 10.1093/cid/ciac699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rotavirus vaccine performance appears worse in countries with high rotavirus genotype diversity. Evidence suggests diminished vaccine efficacy (VE) against G2P[4], which is heterotypic with existing monovalent rotavirus vaccine formulations. Most studies assessing genotype-specific VE have been underpowered and inconclusive. METHODS We pooled individual-level data from 10 Phase II and III clinical trials of rotavirus vaccine containing G1 and P[8] antigens (RV1) conducted between 2000 and 2012. We estimated VE against both any-severity and severe (Vesikari score ≥11) rotavirus gastroenteritis (RVGE) using binomial and multinomial logistic regression models for non-specific VE against any RVGE, genotype-specific VE, and RV1-typic VE against genotypes homotypic, partially heterotypic, or fully heterotypic with RV1 antigens. We adjusted models for concomitant oral poliovirus and RV1 vaccination and the country's designated child mortality stratum. RESULTS Analysis included 87 644 infants from 22 countries in the Americas, Europe, Africa, and Asia. For VE against severe RVGE, non-specific VE was 91% (95% confidence interval [CI]: 87-94%). Genotype-specific VE ranged from 96% (95% CI: 89-98%) against G1P[8] to 71% (43-85%) against G2P[4]. RV1-typic VE was 92% (95% CI: 84-96%) against partially heterotypic genotypes but 83% (67-91%) against fully heterotypic genotypes. For VE against any-severity RVGE, non-specific VE was 82% (95% CI: 75-87%). Genotype-specific VE ranged from 94% (95% CI: 86-97%) against G1P[8] to 63% (41-77%) against G2P[4]. RV1-typic VE was 83% (95% CI: 72-90%) against partially heterotypic genotypes but 63% (40-77%) against fully heterotypic genotypes. CONCLUSIONS RV1 VE is comparatively diminished against fully heterotypic genotypes including G2P[4].
Collapse
Affiliation(s)
- Avnika B Amin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jacqueline E Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Zafari E, Soleimanjahi H, Mohammadi A, Teimoori A, Shatizadeh Malekshahi S. Comparison of IgA Antibody Titer Induced by Human-Bovine Rotavirus Candidate Vaccine with Bovine Rotavirus and Rotarix. ARCHIVES OF RAZI INSTITUTE 2023; 78:405-412. [PMID: 37312718 PMCID: PMC10258266 DOI: 10.22092/ari.2021.354821.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/09/2021] [Indexed: 06/15/2023]
Abstract
Rotavirus (RV) is the most common cause of acute gastroenteritis in early childhood worldwide. Gastroenteritis is a preventable disease by the vaccine, and vigorous efforts were made to produce attenuated oral rotavirus vaccines. In recent years, despite the existence of three types of live attenuated rotavirus vaccines, several countries, such as China and Vietnam, have intended to produce indigenous vaccines based on rotavirus serotypes circulating among their population. In this study, the immunogenicity of homemade human-bovine reassortant RV candidate vaccine was tested in an animal model. Rabbits were randomly distributed into eight experimental groups with three animals per group. Afterward, three rabbits in each test group designated as P1, P2, and P3 were experimentally inoculated with the 106, 107, and 108 tissue culture infectious dose 50 (TCID50) of the reassortant virus, respectively. The N1 group received the reassortant rotavirus vaccine containing 107 TCID50+zinc. The N2, N3, and N4 groups received rotavirus vaccine strain, RV4 human rotavirus, and bovine rotavirus strain, respectively, and the control group received phosphate-buffered saline. It is noteworthy that three rabbits have been included in each group. The IgA total antibody titer was measured and evaluated by non-parametric Mann-Whitney and Kruskal-Wallis tests. The antibody titer produced in the studied groups did not significantly differ. The candidate vaccine showed immunogenicity, protectivity, stability, and safety. The findings of this study indicated a critical role of IgA production, which can induce immunity against a gastroenteritis viral pathogen. Regardless of purification, candidate reassortant vaccine and cell adapted animal strains could be used as a vaccine candidate for production.
Collapse
Affiliation(s)
- E Zafari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - A Mohammadi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - A Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S Shatizadeh Malekshahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS OMEGA 2023; 8:190-207. [PMID: 36643547 PMCID: PMC9835168 DOI: 10.1021/acsomega.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/06/2023]
Abstract
Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.
Collapse
|
26
|
Cohen R, Martinón-Torres F, Posiuniene I, Benninghoff B, Oh KB, Poelaert D. The Value of Rotavirus Vaccination in Europe: A Call for Action. Infect Dis Ther 2023; 12:9-29. [PMID: 36355309 PMCID: PMC9647247 DOI: 10.1007/s40121-022-00697-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed many healthcare systems into crisis. High vaccine coverage amongst children reduces emergency room presentations, hospital admissions and deaths due to vaccine-preventable diseases, freeing up healthcare resources including polymerase chain reaction testing for patients with SARS-CoV-2. In Europe, rotavirus gastroenteritis leads to 75,000-150,000 hospitalisations and up to 600,000 medical encounters annually. Nevertheless, in 2022, only 18 countries in Europe (out of 38) have a publicly funded routine universal mass immunisation programme against rotavirus gastroenteritis. Evidence available in the last few years re-emphasises that rotavirus vaccines currently available in Europe are highly effective, preventing up to 96% of rotavirus-related hospitalisations in children less than 1 year of age (potentially 72,000-144,000 hospitalisations Europe-wide). Long-term surveillance indicates that rotavirus vaccination does not result in an overall increase in intussusception. On the contrary, increasing evidence suggests an overall reduction in intussusception in the first 12 months of life when early, high rotavirus vaccine coverage is achieved. Prevention of rotavirus gastroenteritis has marked positive impacts on parental wages and government tax revenue, with benefits extending across the whole economy. In the SARS-CoV-2 pandemic setting there is a new imperative to achieve high levels of paediatric vaccination against vaccine-preventable diseases, including rotavirus gastroenteritis. The introduction of rotavirus universal mass vaccination can be expected to reduce the number of preventable illnesses, hospitalisations and deaths caused by rotavirus gastroenteritis. Reducing vaccine-preventable diseases is particularly urgent at this time when healthcare systems are preoccupied and overwhelmed with SARS-CoV-2. Graphical abstract available for this article.
Collapse
Affiliation(s)
- Robert Cohen
- Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Groupe de Pathologie Infectieuse Pédiatrique, Paris, France
- Clinical Research Centre, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Université Paris Est, Mondor Institute of Biomedical Research-Groupement de Recherche Clinique Groupe d'étude de Maladies Infectieuses Néonatales Et Infantiles, Créteil, France
- Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
- Centro de Investigación Biomédica en Enfermedades Respiratorias (CIBERES), Instituto Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Vetter V, Gardner RC, Debrus S, Benninghoff B, Pereira P. Established and new rotavirus vaccines: a comprehensive review for healthcare professionals. Hum Vaccin Immunother 2022; 18:1870395. [PMID: 33605839 PMCID: PMC8920198 DOI: 10.1080/21645515.2020.1870395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023] Open
Abstract
Robust scientific evidence related to two rotavirus (RV) vaccines available worldwide demonstrates their significant impact on RV disease burden. Improving RV vaccination coverage may result in better RV disease control. To make RV vaccination accessible to all eligible children worldwide and improve vaccine effectiveness in high-mortality settings, research into new RV vaccines continues. Although current and in-development RV vaccines differ in vaccine design, their common goal is the reduction of RV disease risk in children <5 years old for whom disease burden is the most significant. Given the range of RV vaccines available, informed decision-making is essential regarding the choice of vaccine for immunization. This review aims to describe the landscape of current and new RV vaccines, providing context for the assessment of their similarities and differences. As data for new vaccines are limited, future investigations will be required to evaluate their performance/added value in a real-world setting.
Collapse
Affiliation(s)
- Volker Vetter
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Robert C. Gardner
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Serge Debrus
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Bernd Benninghoff
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Priya Pereira
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| |
Collapse
|
28
|
Gabutti G. Available evidence and potential for vaccines for reduction in antibiotic prescriptions. Hum Vaccin Immunother 2022; 18:2151291. [PMID: 36469620 PMCID: PMC9762846 DOI: 10.1080/21645515.2022.2151291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial antibiotic resistance is a public health issue. It means that drugs become ineffective, infections persist and have a huge impact on the health of patients and their spreading increases. To address a complex threat such as bacterial antibiotic resistance different and integrated approaches are needed including discovery of new antibiotics, improvement of diagnostics tools and improvement of antibiotic stewardship. Absolutely relevant are prevention of infections as well as decrease in the use of antibiotics. Vaccines are an important tool in the fight against bacterial antibiotic resistance and can help prevent it in several ways. Indeed, vaccines are highly effective in preventing diseases that might otherwise require the use of antibiotics to treat symptoms and associated complications. Preventing infections through vaccination helps reduce the need for and widespread and inappropriate use of antibiotics, including for secondary bacterial infections.
Collapse
Affiliation(s)
- Giovanni Gabutti
- Coordinator Working Group, Vaccines and Immunization Policies of the Italian Scientific Society of Hygiene, Preventive Medicine and Public Health (SItI), Cogorno (Ge), Italy,CONTACT Giovanni Gabutti Coordinator Working Group, “Vaccines and Immunization Policies” of the Italian Scientific Society of Hygiene, Preventive Medicine and Public Health (SItI), Cogorno (Ge), Italy
| |
Collapse
|
29
|
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022; 10:microorganisms10122392. [PMID: 36557645 PMCID: PMC9781831 DOI: 10.3390/microorganisms10122392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Enteric viruses, including the rotavirus, norovirus, and adenoviruses, are the most common cause of acute gastroenteritis. The rotavirus disease is especially prevalent among children, and studies over the past decade have revealed complex interactions between rotaviruses and the gut microbiota. One way to treat and prevent dysbiosis is the use of probiotics as an antiviral agent. This review focuses on the latest scientific evidence on the antiviral properties of probiotics against rotavirus gastroenteric infections in children. A total of 19 studies exhibited a statistically significant antiviral effect of probiotics. The main probiotics that were effective were Saccharomyces cerevisiae var. boulardii, Lacticaseibacillus rhamnosus GG, and various multi-strain probiotics. The underlying mechanism of the probiotics against rotavirus gastroenteric infections in children included immune enhancement and modulation of intestinal microbiota leading to shortening of diarrhoea. However, several clinical studies also found no significant difference in the probiotic group compared to the placebo group even though well-known strains were used, thus showing the importance of correct dosage, duration of treatment, quality of probiotics and the possible influence of other factors, such as the production process of probiotics and the influence of immunisation on the effect of probiotics. Therefore, more robust, well-designed clinical studies addressing all factors are warranted.
Collapse
Affiliation(s)
- Andrej Steyer
- National Laboratory of Health, Environment and Food, Division of Public Health Microbiology, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Dušanka Mičetić-Turk
- Department of Paediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Sabina Fijan
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
30
|
Ndwandwe D, Runeyi S, Mathebula L, Wiysonge C. Rotavirus vaccine clinical trials: a cross-sectional analysis of clinical trials registries. Trials 2022; 23:945. [PMCID: PMC9670083 DOI: 10.1186/s13063-022-06878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/29/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Rotavirus is a primary infectious virus causing childhood diarrhoea and is associated with significant mortality in children. Three African countries (Nigeria, the Democratic Republic of Congo, and Angola) are among the five countries that account for 50% of all diarrheal-related deaths worldwide. This indicates that much needs to be done to reduce this burden. The World Health Organization International Clinical Trial Registry Platform (WHO ICTRP) is a global repository for primary registries reporting on clinical trials. This study aimed to identify and describe planned, ongoing, and completed rotavirus vaccine trials conducted globally.
Methods
We searched WHO-ICTRP on 17 June 2021 and conducted a cross-sectional analysis of rotavirus studies listed in the database. Data extraction included trial location, participant age, source of the trial record, trial phase, sponsor, and availability of results. We used the Microsoft Excel 365 package to generate descriptive summary statistics.
Results
We identified 242 rotavirus vaccine trials registered from 2004 to 2020. Most of these trials were registered retrospectively, with only 26% of the rotavirus vaccine trials reporting the availability of results in their registries. Most of the trials are studying children aged less than 5 years. The recruitment status for these trials is currently shown in the WHO-ICTRP as “not recruiting” for 80.17% of trials, “recruiting” for 11.57% of trials recruiting, and unknown for 6.61% of trials. The continents in which these rotavirus vaccine trials have recruitment sites in Asia (41%) and North America (20%), with the maximum number of trials in the clinical trial registries coming from India (21%) and the USA (11%) with most being sponsored by the pharmaceutical industry. Our analysis shows that only 26% of the rotavirus vaccine trials report the availability of results in their registries.
Conclusions
Mapping rotavirus vaccine clinical trial activity using data from the WHO ICTRP beneficial provides valuable information on planned, ongoing, or completed trials for researchers, funders, and healthcare decision-makers. Despite the high rotavirus disease burden in low- and middle-income countries, including Africa, there is minimal clinical trial activity related to the condition on the continent. The clinical trial registries as a valuable tool to share interim results of the trials.
Collapse
|
31
|
Arasa J, López-Lacort M, Díez-Domingo J, Orrico-Sánchez A. Impact of rotavirus vaccination on seizure hospitalizations in children: A systematic review. Vaccine 2022; 40:6711-6721. [PMID: 36280558 DOI: 10.1016/j.vaccine.2022.09.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Previous studies found conflicting results about the effect of rotavirus (RV) vaccination on seizure hospitalizations in children younger than 5 years old. OBJECTIVES To evaluate the evidence of the impact of RV vaccination on the prevention of seizure hospitalizations in children. METHODS A systematic review was conducted in the electronic database MEDLINE of all observational studies in children younger than 5 years old published since 2006. Two reviewers performed title/abstract, full-text review, and data extraction. RESULTS Thirteen studies met eligibility criteria. Nine studies reported a significant reduction in seizure hospitalizations upon RV vaccine introduction, three studies reported an absence of significant impact, and one study reported a significant rise in seizure hospitalization after the introduction of RV vaccines. LIMITATIONS The great variability between study designs, case definitions and potential biases prevent quantifying the impact of RV vaccination against seizure hospitalizations. CONCLUSIONS RV vaccination might prevent seizure hospitalizations in children; however, robust, and well-designed studies are needed to better determine the strength of this association.
Collapse
Affiliation(s)
- Jorge Arasa
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Avda. Cataluña, 21, 46020 Valencia, Spain
| | - Mónica López-Lacort
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Avda. Cataluña, 21, 46020 Valencia, Spain
| | - Javier Díez-Domingo
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Avda. Cataluña, 21, 46020 Valencia, Spain; Universidad Católica de Valencia San Vicente Mártir, Carrer de Quevedo, 2, 46001 València, Spain
| | - Alejandro Orrico-Sánchez
- Vaccines Research Unit, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO-Public Health, Avda. Cataluña, 21, 46020 Valencia, Spain; Universidad Católica de Valencia San Vicente Mártir, Carrer de Quevedo, 2, 46001 València, Spain.
| |
Collapse
|
32
|
Saikia K, Saharia N, Singh CS, Borah PP, Namsa ND. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol 2022; 94:5149-5162. [PMID: 35882942 DOI: 10.1002/jmv.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/26/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
Infectious gastroenteritis is a common illness afflicting people worldwide. The two most common etiological agents of viral gastroenteritis, rotavirus and norovirus are known to recognize histo-blood group antigens (HBGAs) as attachment receptors. ABO, Lewis, and secretor HBGAs are distributed abundantly on mucosal epithelia, red blood cell membranes, and also secreted in biological fluids, such as saliva, intestinal content, milk, and blood. HBGAs are fucosylated glycans that have been implicated in the attachment of some enteric pathogens such as bacteria, parasites, and viruses. Single nucleotide polymorphisms in the genes encoding ABO (H), fucosyltransferase gene FUT2 (Secretor/Se), FUT3 (Lewis/Le) have been associated with changes in enzyme expression and HBGAs production. The highly polymorphic HBGAs among different populations and races influence genotype-specific susceptibility or resistance to enteric pathogens and its epidemiology, and vaccination seroconversion. Therefore, there is an urgent need to conduct population-based investigations to understand predisposition to enteric infections and gastrointestinal diseases. This review focuses on the relationship between HBGAs and predisposition to common human gastrointestinal illnesses caused by viral, bacterial, and parasitic agents.
Collapse
Affiliation(s)
- Kasturi Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Niruprabha Saharia
- Department of Paediatrics, Tezpur Medical College and Hospital, Bihaguri, Tezpur, Assam, India
| | - Chongtham S Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha P Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India.,Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India
| |
Collapse
|
33
|
Biolayer Interferometry Analysis for a Higher Throughput Quantification of In-Process Samples of a Rotavirus Vaccine. Vaccines (Basel) 2022; 10:vaccines10101585. [DOI: 10.3390/vaccines10101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Rotavirus A infection is a global leading cause of severe acute gastroenteritis associated with life-threatening diarrheal episodes in infants and young children. The disease burden is being reduced, namely due to a wider access to rotavirus vaccines. However, there is a demand to expand rotavirus vaccination programs, and to achieve this, it is critical to improve high-throughput in-process product quality control and vaccine manufacturing monitoring. Here, we present the development of an analytical method for the quantification of rotavirus particles contained in a licensed vaccine. The binding of rotavirus proteins to distinct glycoconjugate receptors and monoclonal antibodies was evaluated using biolayer interferometry analysis, applied on an Octet platform. The antibody strategy presented the best results with a linear response range within 2.5 × 107–1.0 × 108 particles·mL−1 and limits of detection and quantification of 2.5 × 106 and 7.5 × 106 particles·mL−1, respectively. Method suitability for the quantification of in-process samples was shown using samples from different manufacturing stages and their titers were comparable with the approved CCID(50) method. This cell-free method enables a fast and high-throughput analysis, compatible with time constraints during bioprocess development and it is suitable to be adapted to other viral particle-based drug products.
Collapse
|
34
|
Zeng Y, Song F, Luo G, Yang H, Li C, Liu W, Li T, Zhang S, Wang Y, Huang C, Ge S, Zhang J, Xia N. Generation and characterization of mouse monoclonal antibodies against the VP4 protein of group A human rotaviruses. Antiviral Res 2022; 207:105407. [PMID: 36152816 DOI: 10.1016/j.antiviral.2022.105407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.
Collapse
Affiliation(s)
- Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Feibo Song
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| |
Collapse
|
35
|
Abstract
The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
36
|
Amin AB, Lash TL, Tate JE, Waller LA, Wikswo ME, Parashar UD, Stewart LS, Chappell JD, Halasa NB, Williams JV, Michaels MG, Hickey RW, Klein EJ, Englund JA, Weinberg GA, Szilagyi PG, Staat MA, McNeal MM, Boom JA, Sahni LC, Selvarangan R, Harrison CJ, Moffatt ME, Schuster JE, Pahud BA, Weddle GM, Azimi PH, Johnston SH, Payne DC, Bowen MD, Lopman BA. Understanding Variation in Rotavirus Vaccine Effectiveness Estimates in the United States: The Role of Rotavirus Activity and Diagnostic Misclassification. Epidemiology 2022; 33:660-668. [PMID: 35583516 PMCID: PMC10100583 DOI: 10.1097/ede.0000000000001501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Estimates of rotavirus vaccine effectiveness (VE) in the United States appear higher in years with more rotavirus activity. We hypothesized rotavirus VE is constant over time but appears to vary as a function of temporal variation in local rotavirus cases and/or misclassified diagnoses. METHODS We analyzed 6 years of data from eight US surveillance sites on 8- to 59-month olds with acute gastroenteritis symptoms. Children's stool samples were tested via enzyme immunoassay (EIA); rotavirus-positive results were confirmed with molecular testing at the US Centers for Disease Control and Prevention. We defined rotavirus gastroenteritis cases by either positive on-site EIA results alone or positive EIA with Centers for Disease Control and Prevention confirmation. For each case definition, we estimated VE against any rotavirus gastroenteritis, moderate-to-severe disease, and hospitalization using two mixed-effect regression models: the first including year plus a year-vaccination interaction, and the second including the annual percent of rotavirus-positive tests plus a percent positive-vaccination interaction. We used multiple overimputation to bias-adjust for misclassification of cases defined by positive EIA alone. RESULTS Estimates of annual rotavirus VE against all outcomes fluctuated temporally, particularly when we defined cases by on-site EIA alone and used a year-vaccination interaction. Use of confirmatory testing to define cases reduced, but did not eliminate, fluctuations. Temporal fluctuations in VE estimates further attenuated when we used a percent positive-vaccination interaction. Fluctuations persisted until bias-adjustment for diagnostic misclassification. CONCLUSIONS Both controlling for time-varying rotavirus activity and bias-adjusting for diagnostic misclassification are critical for estimating the most valid annual rotavirus VE.
Collapse
Affiliation(s)
- Avnika B. Amin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Timothy L. Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Mary E. Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Umesh D. Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Laura S. Stewart
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - James D. Chappell
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - Natasha B. Halasa
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - John V. Williams
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Marian G. Michaels
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Robert W. Hickey
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Eileen J. Klein
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle Children’s Hospital and the University of Washington, Seattle, WA
| | - Janet A. Englund
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle Children’s Hospital and the University of Washington, Seattle, WA
| | | | - Peter G. Szilagyi
- University of Rochester School of Medicine and Dentistry, Rochester, NY
- University of California at Los Angeles, Los Angeles, CA
| | - Mary Allen Staat
- Department of Pediatrics, University of Cincinnati, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica M. McNeal
- Department of Pediatrics, University of Cincinnati, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Julie A. Boom
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Leila C. Sahni
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | | | | | | | | | | | | | - Parvin H. Azimi
- University of California—San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Samantha H. Johnston
- University of California—San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
- Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, CA
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michael D. Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Benjamin A. Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
37
|
Langel SN, Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, Dora EG, Kuehl PJ, Irshad H, Barrett EG, Werts A, Tucker SN. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci Transl Med 2022; 14:eabn6868. [PMID: 35511920 PMCID: PMC9097881 DOI: 10.1126/scitranslmed.abn6868] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally delivered adenovirus type 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here, we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a postvaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Orally or intranasally vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.
Collapse
Affiliation(s)
- Stephanie N. Langel
- Duke Center for Human Systems Immunology and Department of Surgery, Durham, NC 27710, USA
| | | | | | | | | | | | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | | | - Adam Werts
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | | |
Collapse
|
38
|
Jacobsen S, Niendorf S, Lorenz R, Bock CT, Mas Marques A. Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses 2022; 14:1670. [PMID: 36016292 PMCID: PMC9416126 DOI: 10.3390/v14081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Human group A rotaviruses (RVA) are important enteric pathogens, as they are a leading cause of acute gastroenteritis (AGE) in children worldwide. Since 2013, the German Standing Committee on vaccination recommended the routine rotavirus vaccination for infants in Germany. While vaccination has significantly decreased RVA cases and worldwide mortality, in some cases, infants can develop acute gastroenteritis as an adverse reaction after immunization with an attenuated live vaccine. Pediatricians, as well as clinicians and diagnostic laboratories, contacted the Consultant Laboratory for Rotaviruses and inquired whether cases of RVA-positive AGE after vaccination were associated with vaccine or with wild-type RVA strains. A testing algorithm based on distinguishing PCRs and confirmative sequencing was designed, tested, and applied. Diagnostic samples from 68 vaccinated children and six cases where horizontal transmission was suspected were investigated in this study. Using a combination of real-time PCR, fragment-length analysis of amplicons from multiplex PCRs and confirmative sequencing, vaccine-like virus was detected in 46 samples and wild-type RVA was detected in 6 samples. Three mixed infections of vaccine and wild-type RVA were detectable, no RVA genome was found in 19 samples. High viral loads (>1.0 × 107 copies/g stool) were measured in most RVA-positive samples. Furthermore, information on co-infections with other AGE pathogens in the vaccinated study population was of interest. A commercial multiplex PCR and in-house PCRs revealed three co-infections of vaccinated infants with bacteria (two samples with Clostridioides difficile and one sample with enteropathogenic E. coli) and six co-infections with norovirus in a subset of the samples. Human astrovirus was detected in one sample, with suspected horizontal transmission. The cases of suspected horizontal transmission of vaccine RVA strains could not be confirmed, as they either involved wild-type RVA or were RVA negative. This study shows that RVA-positive AGE after vaccination is not necessarily associated with the vaccine strain and provides a reliable workflow to distinguish RVA vaccine strains from wild-type strains.
Collapse
Affiliation(s)
- Sonja Jacobsen
- Unit Gastroenteritis and Hepatitis Viruses and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany; (S.J.); (S.N.); (R.L.); (C.-T.B.)
- Consultant Laboratory for Rotaviruses, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Sandra Niendorf
- Unit Gastroenteritis and Hepatitis Viruses and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany; (S.J.); (S.N.); (R.L.); (C.-T.B.)
- Consultant Laboratory for Rotaviruses, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Roswitha Lorenz
- Unit Gastroenteritis and Hepatitis Viruses and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany; (S.J.); (S.N.); (R.L.); (C.-T.B.)
- Consultant Laboratory for Rotaviruses, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - C.-Thomas Bock
- Unit Gastroenteritis and Hepatitis Viruses and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany; (S.J.); (S.N.); (R.L.); (C.-T.B.)
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstraße 27, 72074 Tuebingen, Germany
| | - Andreas Mas Marques
- Unit Gastroenteritis and Hepatitis Viruses and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany; (S.J.); (S.N.); (R.L.); (C.-T.B.)
- Consultant Laboratory for Rotaviruses, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| |
Collapse
|
39
|
McAdams D, Estrada M, Holland D, Singh J, Sawant N, Hickey JM, Kumar P, Plikaytis B, Joshi SB, Volkin DB, Sitrin R, Cryz S, White JA. Concordance of in vitro and in vivo measures of non-replicating rotavirus vaccine potency. Vaccine 2022; 40:5069-5078. [PMID: 35871866 PMCID: PMC9405915 DOI: 10.1016/j.vaccine.2022.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022]
Abstract
Rotavirus infections remain a leading cause of morbidity and mortality among infants residing in low- and middle-income countries. To address the large need for protection from this vaccine-preventable disease we are developing a trivalent subunit rotavirus vaccine which is currently being evaluated in a multinational Phase 3 clinical trial for prevention of serious rotavirus gastroenteritis. Currently, there are no universally accepted in vivo or in vitro models that allow for correlation of field efficacy to an immune response against serious rotavirus gastroenteritis. As a new generation of non-replicating rotavirus vaccines are developed the lack of an established model for evaluating vaccine efficacy becomes a critical issue related to how vaccine potency and stability can be assessed. Our previous publication described the development of an in vitro ELISA to quantify individual vaccine antigens adsorbed to an aluminum hydroxide adjuvant to address the gap in vaccine potency methods for this non-replicating rotavirus vaccine candidate. In the present study, we report on concordance between ELISA readouts and in vivo immunogenicity in a guinea pig model as it relates to vaccine dosing levels and sensitivity to thermal stress. We found correlation between in vitro ELISA values and neutralizing antibody responses engendered after animal immunization. Furthermore, this in vitro assay could be used to demonstrate the effect of thermal stress on vaccine potency, and such results could be correlated with physicochemical analysis of the recombinant protein antigens. This work demonstrates the suitability of the in vitro ELISA to measure vaccine potency and the correlation of these measurements to an immunologic outcome.
Collapse
Affiliation(s)
- David McAdams
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States
| | - Marcus Estrada
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | - David Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Jasneet Singh
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States
| | - Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Brian Plikaytis
- BioStat Consulting, LLC, 10429, Big Canoe, Jasper, GA 30143-5125, United States
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Robert Sitrin
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | - Stan Cryz
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | | |
Collapse
|
40
|
Yang L, Shi S, Na C, Li B, Zhao Z, Yang T, Yao Y. Rotavirus and Norovirus Infections in Children Under 5 Years Old with Acute Gastroenteritis in Southwestern China, 2018-2020. J Epidemiol Glob Health 2022; 12:292-303. [PMID: 35857268 PMCID: PMC9297278 DOI: 10.1007/s44197-022-00050-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Rotaviruses and noroviruses are important causes of acute gastroenteritis in children. While previous studies in China have mainly focused on rotavirus, we investigated the incidence of norovirus in addition to rotavirus in Southwestern China. METHODS From January 2018 to December 2020, cases of rotavirus or norovirus infections among children under five ages with acute gastroenteritis were evaluated retrospectively. RESULTS The detection rate of rotavirus was 24.5% (27,237/111,070) and norovirus was 26.1% (4649/17,797). Among 17,113 cases submitted for dual testing of both rotavirus and norovirus, mixed rotavirus/norovirus infections were detected in 5.0% (859/17,113) of cases. While there was no difference in norovirus incidence in outpatient compared to hospitalized cases, rotavirus was detected two times more in outpatients compared to hospitalized cases (26.6% vs.13.6%; P < 0.001). Both rotavirus and norovirus infections peaked in children aged 12-18 months seeking medical care with acute gastroenteritis (35.6% rotavirus cases; 8439/23,728 and 32.5% norovirus cases; 1660/5107). Rotavirus infections were frequent between December and March of each year while norovirus was detected earlier from October to December. Our results showed significant correlation between virus detection and environmental factors such as average monthly temperature but not relative humidity. In addition, we observed a reduction in the detection rates of rotavirus and norovirus at the beginning of the SARS-CoV-2 pandemic in 2020. CONCLUSION Our results indicate that rotavirus and norovirus are still important viral agents in pediatric acute gastroenteritis in Southwestern China.
Collapse
Affiliation(s)
- Longyu Yang
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Shulan Shi
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650228, People's Republic of China
| | - Chen Na
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, People's Republic of China
| | - Bai Li
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhimei Zhao
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Tao Yang
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, People's Republic of China.
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|
41
|
Impact of maternal and pre-existing antibodies on immunogenicity of inactivated rotavirus vaccines. Vaccine 2022; 40:3843-3850. [DOI: 10.1016/j.vaccine.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
|
42
|
Hallowell BD, Chavers T, Parashar U, Tate JE. Global Estimates of Rotavirus Hospitalizations Among Children Below 5 Years in 2019 and Current and Projected Impacts of Rotavirus Vaccination. J Pediatric Infect Dis Soc 2022; 11:149-158. [PMID: 34904636 PMCID: PMC11495151 DOI: 10.1093/jpids/piab114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rotavirus vaccine impact on rotavirus hospitalizations is not well documented globally. We performed a systematic review to estimate the number of rotavirus hospitalizations that (1) occur annually, (2) are currently prevented by rotavirus vaccines, and (3) could be prevented with improved vaccine coverage and universal vaccine introduction. METHODS We systematically reviewed articles indexed in the PubMed database published from January 1, 2000, to December 31, 2019. We included all primary peer-reviewed studies with rotavirus hospitalization rates for children below 5 years that reported data prior to vaccine introduction, utilized at least one continuous year of data collection, and collected hospitalization data after 2000 using active surveillance. We grouped pre-vaccine country estimates by childhood mortality strata and calculated the median rate among each group. We then assigned the mortality stratum-specific hospitalization rates to each country and calculated the number of rotavirus hospitalizations by country, mortality strata, and World Health Organization region. RESULTS Our search strategy identified 4590 manuscripts, of which 32 were included in the final dataset. In 2019, an estimated 1 760 113 (interquartile range [IQR]: 1 422 645-2 925 372) rotavirus hospitalizations occurred globally, with 524 871 (IQR: 415 987-814 835) prevented by rotavirus vaccination. With universal introduction of rotavirus vaccines and increased vaccine coverage, we estimate that an additional 751 609 (IQR: 607 671-1 318 807) rotavirus hospitalizations can be prevented annually. CONCLUSIONS This analysis highlights the continued burden of rotavirus hospitalizations among children below 5 years. A large, preventable proportion of this burden could be eliminated by expanding introductions to new countries and increasing rotavirus vaccine coverage to levels seen with other childhood vaccinations.
Collapse
Affiliation(s)
- Benjamin D. Hallowell
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
- Epidemic Intelligence Service, CDC
| | - Tyler Chavers
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Jacqueline E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| |
Collapse
|
43
|
Mwangi PN, Page NA, Seheri ML, Mphahlele MJ, Nadan S, Esona MD, Kumwenda B, Kamng'ona AW, Donato CM, Steele DA, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Evolutionary changes between pre- and post-vaccine South African group A G2P[4] rotavirus strains, 2003-2017. Microb Genom 2022; 8. [PMID: 35446251 PMCID: PMC9453071 DOI: 10.1099/mgen.0.000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.
Collapse
Affiliation(s)
- Peter N Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nicola A Page
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa.,Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - M Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.,Office of the Deputy Vice Chancellor for Research and Innovation, North-West University, Potchefstroom 2351, South Africa.,South African Medical Research Council, Pretoria 0001, South Africa
| | - Sandrama Nadan
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | - Mathew D Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Benjamin Kumwenda
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Arox W Kamng'ona
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Celeste M Donato
- Department of Medical Laboratory Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre3, Malawi.,Enteric Diseases Group, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Melboune 3052, Australia.,Department of Paediatrics, the University of Melbourne, Parkville 3010, Australia
| | - Duncan A Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Valantine N Ndze
- Faculty of Health Sciences, University of Buea, P.O Box 63 Buea, Cameroon
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O Box LG581, Legon, Ghana
| | - Khuzwayo C Jere
- Center for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L697BE, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
44
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
45
|
Shoja Z, Jalilvand S, Latifi T, Roohvand F. Rotavirus VP6: involvement in immunogenicity, adjuvant activity, and use as a vector for heterologous peptides, drug delivery, and production of nano-biomaterials. Arch Virol 2022; 167:1013-1023. [PMID: 35292854 PMCID: PMC8923333 DOI: 10.1007/s00705-022-05407-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
The first-generation, live attenuated rotavirus (RV) vaccines, such as RotaTeq and Rotarix, were successful in reducing the number of RV-induced acute gastroenteritis (AGE) and child deaths globally. However, the low efficacy of these first-generation oral vaccines, coupled with safety concerns, required development of improved RV vaccines. The highly conserved structural protein VP6 is highly immunogenic, and it can generate self-assembled nano-sized structures, including tubes and spheres (virus-like particles; VLPs). Amongst the RV proteins, only VP6 shows these features. Interestingly, VP6-assembled structures, in addition to being highly immunogenic, have several other useful characteristics that could allow them to be used as adjuvants, immunological carriers, and drug-delivery vehicles as well as acting a scaffold for production of valuable nano-biomaterials. This review provides an overview of the self-assembled nano-sized structures of VP6-tubes/VLPs and their various functions.
Collapse
Affiliation(s)
- Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Benedicto-Matambo P, Bines JE, Malamba-Banda C, Shawa IT, Barnes K, Kamng’ona AW, Hungerford D, Jambo KC, Iturriza-Gomara M, Cunliffe NA, Flanagan KL, Jere KC. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines (Basel) 2022; 10:418. [PMID: 35335050 PMCID: PMC8948921 DOI: 10.3390/vaccines10030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Chikondi Malamba-Banda
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Blantyre 312225, Malawi
| | - Isaac T. Shawa
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla Barnes
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Arox W. Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Profession, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Kondwani C. Jambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218 Geneva, Switzerland
| | - Nigel A. Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Katie L. Flanagan
- School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Khuzwayo C. Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
47
|
Cates J, Tate JE, Parashar U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 2022; 22:423-432. [PMID: 34482790 PMCID: PMC10839819 DOI: 10.1080/14712598.2021.1977279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rotavirus is the primary cause of severe acute gastroenteritis among children under the age of five globally, leading to 128,500 to 215,000 vaccine-preventable deaths annually. There are six licensed oral, live-attenuated rotavirus vaccines: four vaccines pre-qualified for global use by WHO, and two country-specific vaccines. Expansion of rotavirus vaccines into national immunization programs worldwide has led to a 59% decrease in rotavirus hospitalizations and 36% decrease in diarrhea deaths due to rotavirus in vaccine-introducing countries. AREAS COVERED This review describes the current rotavirus vaccines in use, global coverage, vaccine efficacy from clinical trials, and vaccine effectiveness and impact from post-licensure evaluations. Vaccine safety, particularly as it relates to the risk of intussusception, is also summarized. Additionally, an overview of candidate vaccines in the pipeline is provided. EXPERT OPINION Considerable evidence over the past decade has demonstrated high effectiveness (80-90%) of rotavirus vaccines at preventing severe rotavirus disease in high-income countries, although the effectiveness has been lower (40-70%) in low-to-middle-income countries. Surveillance and research should continue to explore modifiable factors that influence vaccine effectiveness, strengthen data to better evaluate newer rotavirus vaccines, and aid in the development of future vaccines that can overcome the limitations of current vaccines.
Collapse
Affiliation(s)
- Jordan Cates
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
48
|
T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review. Viruses 2022; 14:v14030459. [PMID: 35336866 PMCID: PMC8951614 DOI: 10.3390/v14030459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular immunity against rotavirus in children is incompletely understood. This review describes the current understanding of T-cell immunity to rotavirus in children. A systematic literature search was conducted in Embase, MEDLINE, Web of Science, and Global Health databases using a combination of “t-cell”, “rotavirus” and “child” keywords to extract data from relevant articles published from January 1973 to March 2020. Only seventeen articles were identified. Rotavirus-specific T-cell immunity in children develops and broadens reactivity with increasing age. Whilst occurring in close association with antibody responses, T-cell responses are more transient but can occur in absence of detectable antibody responses. Rotavirus-induced T-cell immunity is largely of the gut homing phenotype and predominantly involves Th1 and cytotoxic subsets that may be influenced by IL-10 Tregs. However, rotavirus-specific T-cell responses in children are generally of low frequencies in peripheral blood and are limited in comparison to other infecting pathogens and in adults. The available research reviewed here characterizes the T-cell immune response in children. There is a need for further research investigating the protective associations of rotavirus-specific T-cell responses against infection or vaccination and the standardization of rotavirus-specific T-cells assays in children.
Collapse
|
49
|
The Current Epidemiology of Rotavirus Infection in Children Less than 5 Years of Age after Introduction of RV Vaccine in India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in infants and young children worldwide. It is responsible for 40% of childhood hospitalization. It has been estimated that about 23% of diarrhoeal death occurs due to the rotavirus infection in India. To study the epidemiology of rotavirus infection in children less than 5 years of age at a tertiary care teaching hospital. A total of 240 stool samples were collected from children <5 years of age suffering from acute diarrhea at a tertiary health care referral hospital in Western Uttar Pradesh, India. Rotavirus antigen was detected in stool by Enzyme immunoassay (EIA) which utilizes monoclonal antibodies directed against VP6 antigen. Molecular genotyping was done by nested multiplex PCR. The rotavirus antigen positivity rate was found to be 14.58% in this study. There was male preponderance and the male: female ratio was 1.5:1. Rotavirus diarrhoea was reported predominantly (42.85 %) in the age group of 13 to 24 months. The most common circulating G/P genotype strain was G9P[4] accounting for 36% of cases. Rotavirus remains a major cause of diarrhoea in children <5 years of age in Uttar Pradesh. However, the positivity rate has decreased after introduction of rotavirus vaccine into the Universal immunization program (UIP) in UP.
Collapse
|
50
|
Afchangi A, Jalilvand S, Arashkia A, Latifi T, Farahmand M, Abolghasem Shirazi MM, Mousavi Nasab SD, Marashi SM, Roohvand F, Shoja Z. Co-administration of rotavirus nanospheres VP6 and NSP4 proteins enhanced the anti-NSP4 humoral responses in immunized mice. Microb Pathog 2022; 163:105405. [PMID: 35045328 DOI: 10.1016/j.micpath.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Inconveniences associated with the efficacy and safety of the World Health Organization (WHO) approved/prequalified live attenuated rotavirus (RV) vaccines, sounded for finding alternative non-replicating modals and proper RV antigens (Ags). Herein, we report the development of a RV candidate vaccine based on the combination of RV VP6 nanospheres (S) and NSP4112-175 proteins (VP6S + NSP4). Self-assembled VP6S protein was produced in insect cells. Analyses by western blotting and transmission electron microscopy (TEM) indicated expression of VP6 trimer structures with sizes of ≥140 kDa and presence of VP6S. Four group of mice were immunized (2-dose formulation) intra-peritoneally (IP) by either¨VP6S + NSP4¨ or each protein alone (VP6S or NSP4112-175) emulsified in aluminium hydroxide or control. Results indicated that VP6S + NSP4 formulation induced significant anti-VP6 IgG (P < 0.001) and IgA (P < 0.05) as well as anti-NSP4 IgG (P < 0.001) and enhancement of protective immunity. Analyses of anti-VP6S and anti-NSP4 IgG subclass (IgG1 and IgG2a) showed IgG1/IgG2a ≥6 and IgG1/IgG2a ≥3 ratios, respectively indicating Th2 polarization of immune responses. The combination of VP6S + NSP4 proteins emulsified in aluminum hydroxide adjuvant might present a dual universal, efficient and cost-effective candidate vaccine against RV infection.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Dawood Mousavi Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|