1
|
Saha T, Arisoyin AE, Bollu B, Ashok T, Babu A, Issani A, Jhaveri S, Avanthika C. Enteric Fever: Diagnostic Challenges and the Importance of Early Intervention. Cureus 2023; 15:e41831. [PMID: 37575696 PMCID: PMC10423039 DOI: 10.7759/cureus.41831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Enteric fever is a systemic infection caused by highly virulent Salmonella enterica serovars: Typhi and Paratyphi. Diagnosis of enteric fever is challenging due to a wide variety of clinical features which overlap with other febrile illnesses. The current diagnostic methods are limited because of the suboptimal sensitivity of conventional tests like blood culture in detecting organisms and the invasive nature of bone marrow culture. It emphasizes the need to develop improved and more reliable diagnostic modalities. The rising rates of multidrug-resistant Salmonella strains call for an accurate understanding of the current management of the disease. Proper public health measures and large-scale immunization programs will help reduce the burden of the disease. A comprehensive surveillance system can help detect the chronic carrier state and is crucial in understanding antibiotic susceptibility patterns. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar till May 2022. The following search words and medical subject headings (MeSH) were used: "enteric fever," "Salmonella Typhi," "multidrug-resistant Salmonella," chronic carrier state," "Salmonella detection, "and "typhoid vaccine." We reviewed the literature on clinical features, pathophysiology, new diagnostic tests, and interventions to prevent the disease. This article explores enteric fever and its various clinical features and addresses the emerging threat of multidrug resistance. It focuses on novel methods for diagnosis and prevention strategies, including vaccines and the use of surveillance systems employed across different parts of the world.
Collapse
Affiliation(s)
- Tias Saha
- Internal Medicine, Samorita General Hospital, Faridpur, BGD
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | | | - Bhaswanth Bollu
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Tejaswini Ashok
- Internal Medicine, Jagadguru Sri Shivarathreeshwara Medical College, Mysore, IND
| | - Athira Babu
- Pediatrics, Saudi German Hospital, Dubai, ARE
| | - Ali Issani
- Emergency Medicine, Aga Khan University, Karachi, PAK
| | - Sharan Jhaveri
- Internal Medicine, Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| |
Collapse
|
2
|
Sabag-Daigle A, Boulanger EF, Thirugnanasambantham P, Law JD, Bogard AJ, Behrman EJ, Gopalan V, Ahmer BMM. Identification of Small-Molecule Inhibitors of the Salmonella FraB Deglycase Using a Live-Cell Assay. Microbiol Spectr 2023; 11:e0460622. [PMID: 36809033 PMCID: PMC10100877 DOI: 10.1128/spectrum.04606-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Nontyphoidal salmonellosis is one of the most significant foodborne diseases in the United States and globally. There are no vaccines available for human use to prevent this disease, and only broad-spectrum antibiotics are available to treat complicated cases of the disease. However, antibiotic resistance is on the rise and new therapeutics are needed. We previously identified the Salmonella fraB gene, that mutation of causes attenuation of fitness in the murine gastrointestinal tract. The FraB gene product is encoded in an operon responsible for the uptake and utilization of fructose-asparagine (F-Asn), an Amadori product found in several human foods. Mutations in fraB cause an accumulation of the FraB substrate, 6-phosphofructose-aspartate (6-P-F-Asp), which is toxic to Salmonella. The F-Asn catabolic pathway is found only in the nontyphoidal Salmonella serovars, a few Citrobacter and Klebsiella isolates, and a few species of Clostridium; it is not found in humans. Thus, targeting FraB with novel antimicrobials is expected to be Salmonella specific, leaving the normal microbiota largely intact and having no effect on the host. We performed high-throughput screening (HTS) to identify small-molecule inhibitors of FraB using growth-based assays comparing a wild-type Salmonella and a Δfra island mutant control. We screened 224,009 compounds in duplicate. After hit triage and validation, we found three compounds that inhibit Salmonella in an fra-dependent manner, with 50% inhibitory concentration (IC50) values ranging from 89 to 150 μM. Testing these compounds with recombinant FraB and synthetic 6-P-F-Asp confirmed that they are uncompetitive inhibitors of FraB with Ki' (inhibitor constant) values ranging from 26 to 116 μM. IMPORTANCE Nontyphoidal salmonellosis is a serious threat in the United States and globally. We have recently identified an enzyme, FraB, that when mutated renders Salmonella growth defective in vitro and unfit in mouse models of gastroenteritis. FraB is quite rare in bacteria and is not found in humans or other animals. Here, we have identified small-molecule inhibitors of FraB that inhibit the growth of Salmonella. These could provide the foundation for a therapeutic to reduce the duration and severity of Salmonella infections.
Collapse
Affiliation(s)
- Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Erin F. Boulanger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | | | - Jamison D. Law
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Alex J. Bogard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Edward J. Behrman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Jones E, Jin C, Stockdale L, Dold C, Pollard AJ, Hill J. A Salmonella Typhi Controlled Human Infection Study for Assessing Correlation between Bactericidal Antibodies and Protection against Infection Induced by Typhoid Vaccination. Microorganisms 2021; 9:microorganisms9071394. [PMID: 34203328 PMCID: PMC8304662 DOI: 10.3390/microorganisms9071394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vi-polysaccharide conjugate vaccines are efficacious against typhoid fever in children living in endemic settings, their recent deployment is a promising step in the control of typhoid fever. However, there is currently no accepted correlate of protection. IgG and IgA antibodies generated in response to Vi conjugate or Vi plain polysaccharide vaccination are important but there are no definitive protective titre thresholds. We adapted a luminescence-based serum bactericidal activity (SBA) for use with S. Typhi and assessed whether bactericidal antibodies induced by either Vi tetanus toxoid conjugate (Vi-TT) or Vi plain polysaccharide (Vi-PS) were associated with protection in a controlled human infection model of typhoid fever. Both Vi-PS and Vi-TT induced significant increase in SBA titre after 28 days (Vi-PS; p < 0.0001, Vi-TT; p = 0.003), however higher SBA titre at the point of challenge did not correlate with protection from infection or reduced symptom severity. We cannot eliminate the role of SBA as part of a multifactorial immune response which protects against infection, however, our results do not support a strong role for SBA as a mechanism of Vi vaccine mediated protection in the CHIM setting.
Collapse
|
4
|
Soulier A, Prevosto C, Chol M, Deban L, Cranenburgh RM. Engineering a Novel Bivalent Oral Vaccine against Enteric Fever. Int J Mol Sci 2021; 22:ijms22063287. [PMID: 33807097 PMCID: PMC8005139 DOI: 10.3390/ijms22063287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022] Open
Abstract
Enteric fever is a major global healthcare issue caused largely by Salmonella enterica serovars Typhi and Paratyphi A. The objective of this study was to develop a novel, bivalent oral vaccine capable of protecting against both serovars. Our approach centred on genetically engineering the attenuated S. Typhi ZH9 strain, which has an excellent safety record in clinical trials, to introduce two S. Paratyphi A immunogenic elements: flagellin H:a and lipopolysaccharide (LPS) O:2. We first replaced the native S. Typhi fliC gene encoding flagellin with the highly homologous fliC gene from S. Paratyphi A using Xer-cise technology. Next, we replaced the S. Typhi rfbE gene encoding tyvelose epimerase with a spacer sequence to enable the sustained expression of O:2 LPS and prevent its conversion to O:9 through tyvelose epimerase activity. The resulting new strain, ZH9PA, incorporated these two genetic changes and exhibited comparable growth kinetics to the parental ZH9 strain. A formulation containing both ZH9 and ZH9PA strains together constitutes a new bivalent vaccine candidate that targets both S. Typhi and S. Paratyphi A antigens to address a major global healthcare gap for enteric fever prophylaxis. This vaccine is now being tested in a Phase I clinical trial (NCT04349553).
Collapse
|
5
|
O'Reilly PJ, Pant D, Shakya M, Basnyat B, Pollard AJ. Progress in the overall understanding of typhoid fever: implications for vaccine development. Expert Rev Vaccines 2020; 19:367-382. [PMID: 32238006 DOI: 10.1080/14760584.2020.1750375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Typhoid fever continues to have a substantial impact on human health, especially in Asia and sub-Saharan Africa. Access to safe water, and adequate sanitation and hygiene remain the cornerstone of prevention, but these are not widely available in many impoverished settings. The emergence of antibiotic resistance affects typhoid treatment and adds urgency to typhoid control efforts. Vaccines provide opportunities to prevent and control typhoid fever in endemic settings. AREAS COVERED Literature search was performed looking for evidence concerning the global burden of typhoid and strategies for the prevention and treatment of typhoid fever. Cost of illness, available typhoid and paratyphoid vaccines and cost-effectiveness were also reviewed. The objective was to provide a critical overview of typhoid fever, in order to assess the current understanding and potential future directions for typhoid treatment and control. EXPERT COMMENTARY Our understanding of typhoid burden and methods of prevention has grown over recent years. However, typhoid fever still has a significant impact on health in low and middle-income countries. Introduction of typhoid conjugate vaccines to the immunization schedule is expected to make a major contribution to control of typhoid fever in endemic countries, although vaccination alone is unlikely to eliminate the disease.
Collapse
Affiliation(s)
- Peter J O'Reilly
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre , Oxford, UK
| | - Dikshya Pant
- Department of Paediatrics, Patan Academy of Health Sciences, Patan Hospital , Kathmandu, Nepal
| | - Mila Shakya
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences , Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences , Kathmandu, Nepal
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre , Oxford, UK
| |
Collapse
|
6
|
Thindwa D, Chipeta MG, Henrion MYR, Gordon MA. Distinct climate influences on the risk of typhoid compared to invasive non-typhoid Salmonella disease in Blantyre, Malawi. Sci Rep 2019; 9:20310. [PMID: 31889080 PMCID: PMC6937328 DOI: 10.1038/s41598-019-56688-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/04/2022] Open
Abstract
Invasive Salmonella diseases, both typhoid and invasive non-typhoidal Salmonella (iNTS), are seasonal bloodstream infections causing important morbidity and mortality globally in Africa. The reservoirs and transmission of both are not fully understood. We hypothesised that differences in the time-lagged relationships of rainfall or temperature with typhoid and iNTS incidence might infer differences in epidemiology. We assessed the dynamics of invasive Salmonella incidence over a 16-year period of surveillance, quantifying incidence peaks, seasonal variations, and nonlinear effects of rainfall and temperature exposures on the relative risks of typhoid and iNTS, using monthly lags. An increased relative risk of iNTS incidence was short-lasting but immediate after the onset of the rains, whereas that of typhoid was long-lasting but with a two months delayed start, implying a possible difference in transmission. The relative-risk function of temperature for typhoid was bimodal, with higher risk at both lower (with a 1 month lag) and higher (with a ≥4 months lag) temperatures, possibly reflecting the known patterns of short and long cycle typhoid transmission. In contrast, the relative-risk of iNTS was only increased at lower temperatures, suggesting distinct transmission mechanisms. Environmental and sanitation control strategies may be different for iNTS compared to typhoid disease.
Collapse
Affiliation(s)
- Deus Thindwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Michael G Chipeta
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Nuffield Department of Medicine, Big Data Institute, Oxford University, Oxford, United Kingdom
- Malawi College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marc Y R Henrion
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
7
|
Sengupta A, Wu J, Seffernick JT, Sabag-Daigle A, Thomsen N, Chen TH, Capua AD, Bell CE, Ahmer BMM, Lindert S, Wysocki VH, Gopalan V. Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a Salmonella deglycase. J Mol Biol 2019; 431:4497-4513. [PMID: 31493410 DOI: 10.1016/j.jmb.2019.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/18/2023]
Abstract
Salmonellais a foodborne pathogen that causes annually millions of cases of salmonellosis globally, yet Salmonella-specific antibacterials are not available. During inflammation, Salmonella utilizes the Amadori compound fructose-asparagine (F-Asn) as a nutrient through the successive action of three enzymes, including the terminal FraB deglycase. Salmonella mutants lacking FraB are highly attenuated in mouse models of inflammation due to the toxic build-up of the substrate 6-phosphofructose-aspartate (6-P-F-Asp). This toxicity makes Salmonella FraB an appealing drug target, but there is currently little experimental information about its catalytic mechanism. Therefore, we sought to test our postulated mechanism for the FraB-catalyzed deglycation of 6-P-F-Asp (via an enaminol intermediate) to glucose-6-phosphate and aspartate. A FraB homodimer model generated by RosettaCM was used to build substrate-docked structures that, coupled with sequence alignment of FraB homologs, helped map a putative active site. Five candidate active-site residues-including three expected to participate in substrate binding-were mutated individually and characterized. Native mass spectrometry and ion mobility were used to assess collision cross sections and confirm that the quaternary structure of the mutants mirrored the wild type, and that there are two active sites/homodimer. Our biochemical studies revealed that FraB Glu214Ala, Glu214Asp, and His230Ala were inactive in vitro, consistent with deprotonated-Glu214 and protonated-His230 serving as a general base and a general acid, respectively. Glu214Ala or His230Ala introduced into the Salmonella chromosome by CRISPR/Cas9-mediated genome editing abolished growth on F-Asn. Results from our computational and experimental approaches shed light on the catalytic mechanism of Salmonella FraB and of phosphosugar deglycases in general.
Collapse
Affiliation(s)
- Anindita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jikang Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Thomsen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Tien-Hao Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Angela Di Capua
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Al kraiem AA, Yang G, Al kraiem F, Chen T. Challenges associated with ceftriaxone resistance inSalmonella. FRONTIERS IN LIFE SCIENCE 2018. [DOI: 10.1080/21553769.2018.1491427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ayman Ahmad Al kraiem
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan People’s Republic of China
- Department of Biology, College of Science, Taibah University, Al Madinah Al Mounwwarah, Kingdom of Saudi Arabia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan People’s Republic of China
| | - Fahd Al kraiem
- Pilgrims City Hospital, Ministry of Health, Al Madinah Al Mounwwarah, Kingdom of Saudi Arabia
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Rodrigues KMDP, Moreira BM. Preventing diseases in round-the-world travelers: a contemporary challenge for travel medicine advice. Rev Soc Bras Med Trop 2018; 51:125-132. [PMID: 29768543 DOI: 10.1590/0037-8682-0418-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/27/2018] [Indexed: 11/22/2022] Open
Abstract
Providing advice for travelers embarking on long-term trips poses a challenge in travel medicine. A long duration of risk exposure is associated with underuse of protective measures and poor adherence to chemoprophylaxis, increasing the chances of acquiring infections. Recently, in our clinic, we observed an increase in the number of travelers undertaking round-the-world trips. These individuals are typically aged around 32 years and quit their jobs to embark on one-to-two-year journeys. Their destinations include countries in two or more continents, invariably Southeast Asia and Indonesia, and mostly involve land travel and visiting rural areas. Such trips involve flexible plans, increasing the challenge, especially with regard to malaria prophylaxis. Advising round-the-world travelers is time-consuming because of the amount of information that must be provided to the traveler. Advisors must develop strategies to commit the traveler to his/her own health, and verify their learnings on disease-prevention measures. Contacting the advisor after the appointment or during the trip can be helpful to clarify unclear instructions or diagnosis made and prescriptions given abroad. Infectious diseases are among the most frequent problems affecting travelers, many of which are preventable by vaccines, medicines, and precautionary measures. The dissemination of counterfeit medicines, particularly antibiotics and antimalarial medicines, emphasizes the need for travelers to carry medicines that they may possibly need on their trip. Additional advice on altitude, scuba diving, and other possible risks may also be given. Considering the difficulties in advising this group, we present a review of the main recommendations on advising these travelers.
Collapse
Affiliation(s)
- Karis Maria de Pinho Rodrigues
- Departamento de Medicina Preventiva, Centro de Informação em Saúde para Viajantes (Cives), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Beatriz Meurer Moreira
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
11
|
Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition. Infect Immun 2017; 85:IAI.01021-16. [PMID: 28167670 PMCID: PMC5364305 DOI: 10.1128/iai.01021-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains were engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonellagtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.
Collapse
|
12
|
Khan MI, Franco-Paredes C, Sahastrabuddhe S, Ochiai RL, Mogasale V, Gessner BD. Barriers to typhoid fever vaccine access in endemic countries. Res Rep Trop Med 2017; 8:37-44. [PMID: 30050343 PMCID: PMC6034652 DOI: 10.2147/rrtm.s97309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Typhoid vaccines have been available as a means of disease control and prevention since 1896; however, their use as a routine tool for disease prevention in endemic settings has been hampered because of: 1) insufficient data on disease burden particularly regarding the lack of health care access in the poorest communities affected by typhoid; 2) limitations of the typhoid vaccine, such as shorter duration of protection, moderate efficacy in young children, and no efficacy for infants; 3) inadequate evidence on potential economic benefits when used for a larger population; 4) neglect in favor of alternative interventions that require massive infrastructure; 5) no financial support or commitment regarding vaccine delivery cost; 6) ambivalence about whether to invest in water and sanitation hygiene versus the vaccine; and 7) clarity on global policy for country adoption. If current typhoid-protein conjugate vaccines live up to their promise of higher efficacy, longer duration of protection, and efficacy in young children, typhoid vaccine use will be a critical component of short- and medium-term disease control strategies. Typhoid control could be accelerated if the global framework includes plans for accelerated introduction of the conjugate typhoid vaccine in developing countries.
Collapse
Affiliation(s)
- M Imran Khan
- Center of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan,
| | - Carlos Franco-Paredes
- Hospital Infantil de México, Federico Gómez, México DF., Mexico.,Phoebe Putney Memorial Hospital, Albany, GA, USA
| | | | | | | | | |
Collapse
|
13
|
Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 2016; 16:258. [PMID: 27814687 PMCID: PMC5097395 DOI: 10.1186/s12866-016-0876-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Richard T. Moore
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Sathish Rajamani
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Rekha G. Panchal
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
14
|
Kanagavelu S, Flores C, Hagiwara S, Ruiz J, Hyun J, Cho EE, Sun F, Romero L, Shih DQ, Fukata M. TIR-Domain-Containing Adapter-Inducing Interferon- β (TRIF) Regulates CXCR5+ T helper Cells in the Intestine. ACTA ACUST UNITED AC 2016; 7. [PMID: 27853628 DOI: 10.4172/2155-9899.1000458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Establishing an effective humoral immunity is an important host defense mechanism in intestinal mucosa. T follicular helper (Tfh) cells are a spectrum of CXCR5 expressing T helper cells that induce antigen-specific B cell differentiation. Because the differentiation of T helper cells is largely regulated by innate immunity, we addressed whether TRIF signaling regulates Tfh cell differentiation and its ability to trigger humoral immune responses in the intestine. METHOD CD4+CXCR5+ T cells, B cells, and plasma cells in the Peyer's patches (PPs) of WT and TRIF-deficient (TrifLPS2) mice were analyzed by flow cytometry at the baseline, 9 days post primary infection, and 7 days post-secondary infection with Y. enterocolitica. Y. enterocolitica-specific CD4+CXCR5+ T cells were generated in vitro by co-culturing peritoneal macrophages with splenic naïve T cells in the presence of Y. enterocolitica lysate. WT and TrifLPS2 mice received CD4+CXCR5+ T cells isolated either from Y. enterocolitica-primed WT mice or generated in vitro. These mice were infected with Y. enterocolitica and followed up to 4 weeks. Y. enterocolitica-specific IgA and IgG were measured in stool and serum samples, respectively. RESULTS At baseline, CD4+CXCR5+ T cell proportion was higher but the proportion of B cells and plasma cells was lower in the PPs of TrifLPS2 mice compared to WT mice. After infection, the proportion of plasma cells also became higher in the PPs of TrifLPS2 mice compared to WT mice. Corresponding increase of Y. enterocolitica-specific stool IgA but not serum IgG was found in TrifLPS2 mice compared to WT mice. Both in vivo isolated and in vitro generated CD4+CXCR5+ T cells induced protective immunity against Y. enterocolitica infection. CONCLUSION Our results reveal a novel role of TRIF in the regulation of humoral immunity in the intestine that can be utilized as a basis for a unique vaccine strategy.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Division of Infectious Diseases and Immunology, Department of Biomedical Science, Medicine and Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shinichiro Hagiwara
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jose Ruiz
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jinhee Hyun
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ei E Cho
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Frank Sun
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Laura Romero
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
15
|
Verani JR, Toroitich S, Auko J, Kiplang'at S, Cosmas L, Audi A, Mogeni OD, Aol G, Oketch D, Odiembo H, Katieno J, Wamola N, Onyango CO, Juma BW, Fields BS, Bigogo G, Montgomery JM. Burden of Invasive Nontyphoidal Salmonella Disease in a Rural and Urban Site in Kenya, 2009-2014. Clin Infect Dis 2016; 61 Suppl 4:S302-9. [PMID: 26449945 DOI: 10.1093/cid/civ728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Invasive infections with nontyphoidal Salmonella (NTS) lead to bacteremia in children and adults and are an important cause of illness in Africa; however, few data on the burden of NTS bacteremia are available. We sought to determine the burden of invasive NTS disease in a rural and urban setting in Kenya. METHODS We conducted the study in a population-based surveillance platform in a rural setting in western Kenya (Lwak), and an informal urban settlement in Nairobi (Kibera) from 2009 to 2014. We obtained blood culture specimens from participants presenting with acute lower respiratory tract illness or acute febrile illness to a designated outpatient facility in each site, or any hospital admission for a potentially infectious cause (rural site only). Incidence was calculated using a defined catchment population and adjusting for specimen collection and healthcare-seeking practices. RESULTS A total of 12 683 and 9524 blood cultures were analyzed from Lwak and Kibera, respectively. Of these, 428 (3.4%) and 533 (5.6%) grew a pathogen; among those, 208 (48.6%) and 70 (13.1%) were positive for NTS in Lwak and Kibera, respectively. Overall, the adjusted incidence of invasive NTS disease was higher in Lwak (839.4 per 100,000 person-years of observation [PYO]) than in Kibera (202.5 per 100,000 PYO). The highest adjusted incidences were observed in children <5 years of age (Lwak 3914.3 per 100,000 PYO and Kibera 997.9 per 100,000 PYO). The highest adjusted annual incidence was 1927.3 per 100,000 PYO (in 2010) in Lwak and 220.5 per 100,000 PYO (in 2011) in Kibera; the lowest incidences were 303.3 and 62.5 per 100,000 PYO, respectively (in 2012). In both sites, invasive NTS disease incidence generally declined over the study period. CONCLUSIONS We observed an extremely high burden of invasive NTS disease in a rural area of Kenya and a lesser, but still substantial, burden in an urban slum. Although the incidences in both sites declined during the study period, invasive NTS infections remain an important cause of morbidity in these settings, particularly among children <5 years old.
Collapse
Affiliation(s)
| | | | | | | | - Leonard Cosmas
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Allan Audi
- Kenya Medical Research Institute, Nairobi
| | | | - George Aol
- Kenya Medical Research Institute, Nairobi
| | | | | | | | | | | | | | - Barry S Fields
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
16
|
Tennant SM, Toema D, Qamar F, Iqbal N, Boyd MA, Marshall JM, Blackwelder WC, Wu Y, Quadri F, Khan A, Aziz F, Ahmad K, Kalam A, Asif E, Qureshi S, Khan E, Zaidi AK, Levine MM. Detection of Typhoidal and Paratyphoidal Salmonella in Blood by Real-time Polymerase Chain Reaction. Clin Infect Dis 2016; 61 Suppl 4:S241-50. [PMID: 26449938 DOI: 10.1093/cid/civ726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The gold standard for diagnosis of enteric fever caused by Salmonella Typhi or Salmonella Paratyphi A or B is bone marrow culture. However, because bone marrow aspiration is highly invasive, many hospitals and large health centers perform blood culture instead. As blood culture has several limitations, there is a need for novel typhoid diagnostics with improved sensitivity and more rapid time to detection. METHODS We developed a clyA-based real-time polymerase chain reaction (qPCR) method to detect Salmonella Typhi and Salmonella Paratyphi A simultaneously in blood. The sensitivity and specificity of this probeset was first evaluated in vitro in the laboratory and then in a typhoid-endemic population, in Karachi, Pakistan, and in healthy US volunteers. RESULTS We optimized a DNA extraction and real-time PCR-based method that could reliably detect 1 colony-forming unit/mL of Salmonella Typhi. The probe set was able to detect clinical Salmonella Typhi and Salmonella Paratyphi A strains and also diarrheagenic Escherichia coli, but not invasive E. coli or other invasive bacteria. In the field, the clyA qPCR diagnostic was 40% as sensitive as blood culture. However, when qPCR-positive specimens were considered to be true positives, blood culture only exhibited 28.57% sensitivity. Specificity was ≥90% for all comparisons and in the healthy US volunteers. qPCR was significantly faster than blood culture in terms of detection of typhoid and paratyphoid. CONCLUSIONS Based on lessons learned, we recommend that future field trials of this and other novel diagnostics that detect typhoidal and nontyphoidal Salmonella employ multiple methodologies to define a "positive" sample.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore
| | - Deanna Toema
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore
| | | | - Najeeha Iqbal
- Department of Paediatrics and Child Health Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mary Adetinuke Boyd
- Center for Vaccine Development Department of Pediatrics, University of Maryland, Baltimore
| | - Joanna M Marshall
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore
| | - William C Blackwelder
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore
| | - Yukun Wu
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore
| | | | - Asia Khan
- Department of Paediatrics and Child Health
| | | | | | - Adil Kalam
- Department of Paediatrics and Child Health
| | | | | | - Erum Khan
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | | | - Myron M Levine
- Center for Vaccine Development Department of Medicine, University of Maryland, Baltimore Department of Pediatrics, University of Maryland, Baltimore
| |
Collapse
|
17
|
Sabag-Daigle A, Blunk HM, Sengupta A, Wu J, Bogard AJ, Ali MM, Stahl C, Wysocki VH, Gopalan V, Behrman EJ, Ahmer BMM. A metabolic intermediate of the fructose-asparagine utilization pathway inhibits growth of a Salmonella fraB mutant. Sci Rep 2016; 6:28117. [PMID: 27403719 PMCID: PMC4941530 DOI: 10.1038/srep28117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
Insertions in the Salmonella enterica fra locus, which encodes the fructose-asparagine (F-Asn) utilization pathway, are highly attenuated in mouse models of inflammation (>1000-fold competitive index). Here, we report that F-Asn is bacteriostatic to a fraB mutant (IC50 19 μM), but not to the wild-type or a fra island deletion mutant. We hypothesized that the presence of FraD kinase and absence of FraB deglycase causes build-up of a toxic metabolite: 6-phosphofructose-aspartate (6-P-F-Asp). We used biochemical assays to assess FraB and FraD activities, and mass spectrometry to confirm that the fraB mutant accumulates 6-P-F-Asp. These results, together with our finding that mutants lacking fraD or the fra island are not attenuated in mice, suggest that the extreme attenuation of a fraB mutant stems from 6-P-F-Asp toxicity. Salmonella FraB is therefore an excellent drug target, a prospect strengthened by the absence of the fra locus in most of the gut microbiota.
Collapse
Affiliation(s)
- Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Henry M Blunk
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Anindita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jikang Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Alexander J Bogard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed M Ali
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Christopher Stahl
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward J Behrman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Carreño JM, Perez-Shibayama C, Gil-Cruz C, Printz A, Pastelin R, Isibasi A, Chariatte D, Tanoue Y, Lopez-Macias C, Gander B, Ludewig B. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity. Vaccine 2016; 34:4263-4269. [PMID: 27372155 DOI: 10.1016/j.vaccine.2016.05.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/15/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrea Printz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rodolfo Pastelin
- Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F., Mexico
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry (UIMIQ), Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Dominic Chariatte
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Yutaka Tanoue
- Takeda Pharmaceutical Company, CMC Center, Osaka, Japan
| | - Constantino Lopez-Macias
- Medical Research Unit on Immunochemistry (UIMIQ), Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico.
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
19
|
Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infect Immun 2016; 84:2131-2140. [PMID: 27185789 DOI: 10.1128/iai.00250-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.
Collapse
|
20
|
Pigny F, Lassus A, Terrettaz J, Tranquart F, Corthésy B, Bioley G. Intranasal Vaccination WithSalmonella-Derived Serodominant Secreted Effector Protein B Associated With Gas-Filled Microbubbles Partially Protects Against Gut Infection in Mice. J Infect Dis 2016; 214:438-46. [DOI: 10.1093/infdis/jiw162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
|
21
|
Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal Salmonella disease, 2010(1). Emerg Infect Dis 2015; 21. [PMID: 25860298 PMCID: PMC4451910 DOI: 10.3201/eid2106.140999] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nontyphoidal Salmonella is a major cause of bloodstream infections worldwide, and HIV-infected persons and malaria-infected children are at increased risk for the disease. We conducted a systematic literature review to obtain age group-specific, population-based invasive nontyphoidal Salmonella (iNTS) incidence data. Data were categorized by HIV and malaria prevalence and then extrapolated by using 2010 population data. The case-fatality ratio (CFR) was determined by expert opinion consensus. We estimated that 3.4 (range 2.1-6.5) million cases of iNTS disease occur annually (overall incidence 49 cases [range 30-94] per 100,000 population). Africa, where infants, young children, and young adults are most affected, has the highest incidence (227 cases [range 152-341] per 100,000 population) and number of cases (1.9 [range 1.3-2.9] million cases). An iNTS CFR of 20% yielded 681,316 (range 415,164-1,301,520) deaths annually. iNTS disease is a major cause of illness and death globally, particularly in Africa. Improved understanding of the epidemiology of iNTS is needed.
Collapse
|
22
|
Imran Khan M, Freeman AJ, Gessner BD, Sahastrabuddhe S. The Need for an Information Communication and Advocacy Strategy to Guide a Research Agenda to Address Burden of Invasive Nontyphoidal Salmonella Infections in Africa. Clin Infect Dis 2015; 61 Suppl 4:S380-5. [PMID: 26449955 DOI: 10.1093/cid/civ769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Invasive nontyphoidal salmonellosis (iNTS) is often not recognized clinically, and prevention of iNTS is largely ignored by policy planners and decision makers. During 2010, an estimated 3.4 million cases and 681,316 deaths occurred worldwide due to iNTS, with the largest estimated disease burden in resource-limited areas of sub-Saharan Africa. These figures likely underestimate global burden for several reasons, further complicating efforts to raise awareness of iNTS. To increase disease recognition and facilitate development of interventions, a communication and advocacy plan should be developed and implemented by actors in different sectors of global health, including researchers and scientists, funders, vaccine manufacturers, civil society organizations, and government officials from highly affected countries.
Collapse
|
23
|
Abstract
Public health vaccination guidelines cannot be easily transferred to elite athletes. An enhanced benefit from preventing even mild diseases is obvious but stronger interference from otherwise minor side effects has to be considered as well. Thus, special vaccination guidelines for adult elite athletes are required. In most of them, protection should be strived for against tetanus, diphtheria, pertussis, influenza, hepatitis A, hepatitis B, measles, mumps and varicella. When living or traveling to endemic areas, the athletes should be immune against tick-borne encephalitis, yellow fever, Japanese encephalitis, poliomyelitis, typhoid fever, and meningococcal disease. Vaccination against pneumococci and Haemophilus influenzae type b is only relevant in athletes with certain underlying disorders. Rubella and papillomavirus vaccination might be considered after an individual risk–benefit analysis. Other vaccinations such as cholera, rabies, herpes zoster, and Bacille Calmette–Guérin (BCG) cannot be universally recommended for athletes at present. Only for a very few diseases, a determination of antibody titers is reasonable to avoid unnecessary vaccinations or to control efficacy of an individual’s vaccination (especially for measles, mumps, rubella, varicella, hepatitis B and, partly, hepatitis A). Vaccinations should be scheduled in a way that possible side effects are least likely to occur in periods of competition. Typically, vaccinations are well tolerated by elite athletes, and resulting antibody titers are not different from the general population. Side effects might be reduced by an optimal selection of vaccines and an appropriate technique of administration. Very few discipline-specific considerations apply to an athlete’s vaccination schedule mainly from the competition and training pattern as well as from the typical geographical distribution of competitive sites.
Collapse
Affiliation(s)
- Barbara C Gärtner
- Institute for Microbiology and Hygiene, Saarland University, Faculty of Medicine and Medical Center, Building 43, 66421, Homburg/Saar, Germany,
| | | |
Collapse
|
24
|
Abstract
Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures.
Collapse
Affiliation(s)
- John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Matthew L Mikoleit
- National Enteric Reference Laboratory Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service (NHLS), Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
25
|
Boyd MA, Tennant SM, Melendez JH, Toema D, Galen JE, Geddes CD, Levine MM. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood. J Appl Microbiol 2015; 118:1199-209. [PMID: 25630831 PMCID: PMC4418380 DOI: 10.1111/jam.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
AIMS Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. METHODS AND RESULTS We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer(®) CPT(™) Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. CONCLUSIONS Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). SIGNIFICANCE AND IMPACT OF THE STUDY Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood.
Collapse
Affiliation(s)
- M A Boyd
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, USA; Department of Pediatrics, University of Maryland Baltimore, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Watson CH. Evaluating typhoid vaccine effectiveness in travelers' vaccination. J Travel Med 2015; 22:76-7. [PMID: 25753021 DOI: 10.1111/jtm.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Conall H Watson
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
27
|
Patel RR, Liang SY, Koolwal P, Kuhlmann FM. Travel advice for the immunocompromised traveler: prophylaxis, vaccination, and other preventive measures. Ther Clin Risk Manag 2015; 11:217-28. [PMID: 25709464 PMCID: PMC4335606 DOI: 10.2147/tcrm.s52008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunocompromised patients are traveling at increasing rates. Physicians caring for these complex patients must be knowledgeable in pretravel consultation and recognize when referral to an infectious disease specialist is warranted. This article outlines disease prevention associated with international travel for adults with human immunodeficiency virus, asplenia, solid organ and hematopoietic transplantation, and other immunosuppressed states. While rates of infection may not differ significantly between healthy and immunocompromised travelers, the latter are at greater risk for severe disease. A thorough assessment of these risks can ensure safe and healthy travel. The travel practitioners' goal should be to provide comprehensive risk information and recommend appropriate vaccinations or prevention measures tailored to each patient's condition. In some instances, live vaccines and prophylactic medications may be contraindicated.
Collapse
Affiliation(s)
- Rupa R Patel
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen Y Liang
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Koolwal
- Division of Medical Education, Washington University School of Medicine, St Louis, MO, USA
| | | |
Collapse
|
28
|
Reynolds CJ, Jones C, Blohmke CJ, Darton TC, Goudet A, Sergeant R, Maillere B, Pollard AJ, Altmann DM, Boyton RJ. The serodominant secreted effector protein of Salmonella, SseB, is a strong CD4 antigen containing an immunodominant epitope presented by diverse HLA class II alleles. Immunology 2014; 143:438-46. [PMID: 24891088 PMCID: PMC4212957 DOI: 10.1111/imm.12327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/03/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022] Open
Abstract
Detailed characterization of the protective T-cell response in salmonellosis is a pressing unmet need in light of the global burden of human Salmonella infections and the likely contribution of CD4 T cells to immunity against this intracellular infection. In previous studies screening patient sera against antigen arrays, SseB was noteworthy as a serodominant target of adaptive immunity, inducing significantly raised antibody responses in HIV-seronegative compared with seropositive patients. SseB is a secreted protein, part of the Espa superfamily, localized to the bacterial surface and forming part of the translocon of the type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2. We demonstrate here that SseB is also a target of CD4 T-cell immunity, generating a substantial response after experimental infection in human volunteers, with around 0·1% of the peripheral repertoire responding to it. HLA-DR/peptide binding studies indicate that this protein encompasses a number of peptides with ability to bind to several different HLA-DR alleles. Of these, peptide 11 (p11) was shown in priming of both HLA-DR1 and HLA-DR4 transgenic mice to contain an immunodominant CD4 epitope. Analysis of responses in human donors showed immunity focused on p11 and another epitope in peptide 2. The high frequency of SseB-reactive CD4 T cells and the broad applicability to diverse HLA genotypes coupled with previous observations of serodominance and protective vaccination in mouse challenge experiments, make SseB a plausible candidate for next-generation Salmonella vaccines.
Collapse
Affiliation(s)
- Catherine J Reynolds
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Limpitikul W, Henpraserttae N, Saksawad R, Laoprasopwattana K. Typhoid outbreak in Songkhla, Thailand 2009-2011: clinical outcomes, susceptibility patterns, and reliability of serology tests. PLoS One 2014; 9:e111768. [PMID: 25375784 PMCID: PMC4222948 DOI: 10.1371/journal.pone.0111768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/30/2014] [Indexed: 12/04/2022] Open
Abstract
Objective To determine the clinical manifestations and outcomes, the reliability of Salmonella enterica serotype Typhi (S ser. Typhi) IgM and IgG rapid tests, and the susceptibility patterns and the response to treatment during the 2009–2011 typhoid outbreak in Songkhla province in Thailand. Method The medical records of children aged <15 years with S ser. Typhi bacteremia were analysed. The efficacy of the typhoid IgM and IgG rapid tests and susceptibility of the S ser. Typhi to the current main antibiotics used for typhoid (amoxicillin, ampicillin, cefotaxime, ceftriaxone, co-trimoxazole, and ciprofloxacin), were evaluated. Results S ser. Typhi bacteremia was found in 368 patients, and all isolated strains were susceptible to all 6 antimicrobials tested. Most of the patients were treated with ciprofloxacin for 7–14 days. The median time (IQR) of fever before treatment and duration of fever after treatment were 5 (4, 7) days and 4 (3, 5) days, respectively. Complications of ascites, lower respiratory symptoms, anemia (Hct <30%), and ileal perforation were found in 7, 7, 22, and 1 patients, respectively. None of the patients had recurrent infection or died. The sensitivities of the typhoid IgM and IgG tests were 58.3% and 25.6% respectively, and specificities were 74.1% and 50.5%, respectively. Conclusion Most of the patients were diagnosed at an early stage and treated with a good outcome. All S ser. Typhi strains were susceptible to standard first line antibiotic typhoid treatment. The typhoid IgM and IgG rapid tests had low sensitivity and moderate specificity.
Collapse
Affiliation(s)
| | - Narong Henpraserttae
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health in Songkhla, Songkhla, Thailand
| | - Rachanee Saksawad
- Department of Pediatrics, Hat Yai Education Center, Hat Yai Hospital, Hat Yai, Songkhla, Thailand
| | - Kamolwish Laoprasopwattana
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
30
|
Abstract
With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.
Collapse
|
31
|
Bumann D. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Front Immunol 2014; 5:381. [PMID: 25157252 PMCID: PMC4127814 DOI: 10.3389/fimmu.2014.00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
32
|
DasSarma P, Negi VD, Balakrishnan A, Karan R, Barnes S, Ekulona F, Chakravortty D, DasSarma S. Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria. Vaccine 2014; 32:4543-4549. [PMID: 24950351 PMCID: PMC4729386 DOI: 10.1016/j.vaccine.2014.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases.
Collapse
Affiliation(s)
- Priya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Vidya Devi Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ram Karan
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Susan Barnes
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Folasade Ekulona
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
33
|
Rasmussen SA, Watson AK, Kennedy ED, Broder KR, Jamieson DJ. Vaccines and pregnancy: past, present, and future. Semin Fetal Neonatal Med 2014; 19:161-9. [PMID: 24355683 DOI: 10.1016/j.siny.2013.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vaccination during pregnancy with certain vaccines can prevent morbidity and mortality in pregnant women and their infants. However, previous recommendations often focused on the potential risks of vaccines to the fetus when used during pregnancy. In recent years, additional data have become available on the absence of increased risks for adverse events associated with vaccines when administered during pregnancy and on their benefits to mothers and infants. Currently two vaccines - (i) inactivated influenza, and (ii) tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) - are recommended for use by all pregnant women by the United States Advisory Committee on Immunization Practices. Here we review the history of vaccination during pregnancy, the current status of recommendations for vaccination during pregnancy in the USA, and the potential for future advances in this area, including key barriers that must be overcome to accommodate these advances.
Collapse
Affiliation(s)
- Sonja A Rasmussen
- Influenza Coordination Unit, Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Erin D Kennedy
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen R Broder
- Immunization Safety Office, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Denise J Jamieson
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
34
|
Perez-Shibayama C, Gil-Cruz C, Pastelin-Palacios R, Cervantes-Barragan L, Hisaki E, Chai Q, Onder L, Scandella E, Regen T, Waisman A, Isibasi A, Lopez-Macias C, Ludewig B. IFN-γ-producing CD4+ T cells promote generation of protective germinal center-derived IgM+ B cell memory against Salmonella Typhi. THE JOURNAL OF IMMUNOLOGY 2014; 192:5192-200. [PMID: 24778443 DOI: 10.4049/jimmunol.1302526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abs play a significant role in protection against the intracellular bacterium Salmonella Typhi. In this article, we investigated how long-term protective IgM responses can be elicited by a S. Typhi outer-membrane protein C- and F-based subunit vaccine (porins). We found that repeated Ag exposure promoted a CD4(+) T cell-dependent germinal center reaction that generated mutated IgM-producing B cells and was accompanied by a strong expansion of IFN-γ-secreting T follicular helper cells. Genetic ablation of individual cytokine receptors revealed that both IFN-γ and IL-17 are required for optimal germinal center reactions and production of porin-specific memory IgM(+) B cells. However, more profound reduction of porin-specific IgM B cell responses in the absence of IFN-γR signaling indicated that this cytokine plays a dominant role. Importantly, mutated IgM mAbs against porins exhibited bactericidal capacity and efficiently augmented S. Typhi clearance. In conclusion, repeated vaccination with S. Typhi porins programs type I T follicular helper cell responses that contribute to the diversification of B cell memory and promote the generation of protective IgM Abs.
Collapse
Affiliation(s)
- Christian Perez-Shibayama
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland; Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Social Security Institute, Mexico City, C.P. 06020 Mexico
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland; Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Social Security Institute, Mexico City, C.P. 06020 Mexico
| | | | - Luisa Cervantes-Barragan
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland; Department of Pathology, Washington University School of Medicine, St. Louis, MO 63130; Department of Immunology, Washington University School of Medicine, St. Louis, MO 63130; and
| | - Emiliano Hisaki
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Social Security Institute, Mexico City, C.P. 06020 Mexico
| | - Qian Chai
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Elke Scandella
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Tommy Regen
- Institute for Molecular Medicine, University of Mainz, D-55131 Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University of Mainz, D-55131 Mainz, Germany
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Social Security Institute, Mexico City, C.P. 06020 Mexico
| | - Constantino Lopez-Macias
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI," Mexican Social Security Institute, Mexico City, C.P. 06020 Mexico
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland;
| |
Collapse
|
35
|
Sahastrabuddhe S, Carbis R, Wierzba TF, Ochiai RL. Increasing rates of Salmonella Paratyphi A and the current status of its vaccine development. Expert Rev Vaccines 2014; 12:1021-31. [PMID: 24053396 DOI: 10.1586/14760584.2013.825450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enteric fever caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi is still a major disease burden mainly in developing countries. Previously, S. Typhi was believed to be the major cause of enteric fever. The real situation is now becoming clear with reports emerging from many Asian countries of S. Paratyphi, mostly S. Paratyphi A, causing a substantial number of cases of enteric fever. Although there have been advances in the use of the currently available typhoid vaccines and in the development of newer typhoid vaccines, paratyphoid vaccine development is lagging behind. Since the disease caused by S. Typhi and S. Paratyphi are clinically indistinguishable and are commonly termed 'enteric' fever, it will be necessary to have a vaccine available against both S. Typhi and S. Paratyphi A as a bivalent 'enteric fever vaccine'.
Collapse
Affiliation(s)
- Sushant Sahastrabuddhe
- International Vaccine Institute, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul, 151-919, Korea
| | | | | | | |
Collapse
|
36
|
Serum bactericidal assays to evaluate typhoidal and nontyphoidal Salmonella vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:712-21. [PMID: 24623629 DOI: 10.1128/cvi.00115-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invasive Salmonella infections for which improved or new vaccines are being developed include enteric fever caused by Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B and sepsis and meningitis in young children in sub-Saharan Africa caused by nontyphoidal Salmonella (NTS) serovars, particularly S. enterica serovars Typhimurium and Enteritidis. Assays are needed to measure functional antibodies elicited by the new vaccines to assess their immunogenicities and potential protective capacities. We developed in vitro assays to quantify serum bactericidal antibody (SBA) activity induced by S. Typhi, S. Paratyphi A, S. Typhimurium, and S. Enteritidis vaccines in preclinical studies. Complement from various sources was tested in assays designed to measure antibody-dependent complement-mediated killing. Serum from rabbits 3 to 4 weeks of age provided the best complement source compared to serum from pigs, goats, horses, bovine calves, or rabbits 8 to 12 weeks of age. For S. Enteritidis, S. Typhimurium, and S. Typhi SBA assays to be effective, bacteria had to be harvested at log phase. In contrast, S. Paratyphi A was equally susceptible to killing whether it was grown to the stationary or log phase. The typhoidal serovars were more susceptible to complement-mediated killing than were the nontyphoidal serovars. Lastly, the SBA endpoint titers correlated with serum IgG anti-lipopolysaccharide (LPS) titers in mice immunized with mucosally administered S. Typhimurium, S. Enteritidis, and S. Paratyphi A but not S. Typhi live attenuated vaccines. The SBA assay described here is a useful tool for measuring functional antibodies elicited by Salmonella vaccine candidates.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Infection caused by ingestion of human-restricted Salmonella enterica serovars Typhi and Paratyphi predominantly affects the most impoverished sections of society. In this review, we describe recent advances made in estimating the burden of illness and the important role improved diagnostic tests may have in controlling infection and report the development of a new human challenge model of typhoid infection. RECENT FINDINGS Typhoid continues to be a major cause of morbidity, particularly in children and young adults in south east Asia, although accurate assessments are still hindered by the lack of reliable surveillance data. Recent reports of high rates of infection in Africa and the dominance of paratyphoid in several geographic areas are of particular concern. Diagnosis of enteric fever remains frustrated by the nonspecific clinical presentation of cases and the lack of test sensitivity. Methods to improve diagnostic accuracy are hindered by the incomplete understanding of immunobiological mechanisms of infection and lack of a suitable animal infection model. SUMMARY Enteric fever is a major global problem, the burden of which has only partially been recognized. Control strategies utilizing cheap accurate diagnostics and effective vaccines are urgently required, and their development should be accelerated by the use of a human challenge model.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Strains of Salmonella enterica subsp. enterica are amongst the most commonly identified invasive bacterial pathogens in resource-poor settings, and cause significant mortality, particularly in children. In this study we review recent progress in the development of vaccines against S. Typhi, S. Paratyphi and nontyphoidal Salmonella for children. RECENT FINDINGS Typhoid remains common and S. Paratyphi A is increasingly recognized as a cause of enteric fever in Asia. In rural Africa, nontyphoidal salmonellae are among the most common invasive bacterial infections, although S. Typhi predominates in some urban centres. Licensed vaccines against typhoid have moderate but useful efficacy but neither of the two available vaccines can be used in infants. Although Ty21a may afford some cross-protection against S. Paratyphi B, there are no vaccines that specifically target paratyphoid or any nontyphoidal Salmonella. Several live attenuated vaccines are under development and may offer some advantages over Ty21a. Vi-conjugate vaccines should offer children excellent protection from typhoid once licensed. SUMMARY There are few effective vaccines against Salmonella sp. and those that do exist target only one serovar, S. Typhi. Research is urgently needed to combat emerging agents of enteric fever such as S. Paratyphi A as well as nontyphoidal serovars, which commonly cause invasive disease in Africa.
Collapse
|
39
|
Moreno-Eutimio MA, Tenorio-Calvo A, Pastelin-Palacios R, Perez-Shibayama C, Gil-Cruz C, López-Santiago R, Baeza I, Fernández-Mora M, Bonifaz L, Isibasi A, Calva E, López-Macías C. Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties. Immunology 2013; 139:459-71. [PMID: 23432484 PMCID: PMC3719063 DOI: 10.1111/imm.12093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the causal agent of typhoid fever, a disease that primarily affects developing countries. Various antigens from this bacterium have been reported to be targets of the immune response. Recently, the S. Typhi genome has been shown to encode two porins--OmpS1 and OmpS2--which are expressed at low levels under in vitro culture conditions. In this study, we demonstrate that immunizing mice with either OmpS1 or OmpS2 induced production of specific, long-term antibody titres and conferred protection against S. Typhi challenge; in particular, OmpS1 was more immunogenic and conferred greater protective effects than OmpS2. We also found that OmpS1 is a Toll-like receptor 4 (TLR4) agonist, whereas OmpS2 is a TLR2 and TLR4 agonist. Both porins induced the production of tumour necrosis factor and interleukin-6, and OmpS2 was also able to induce interleukin-10 production. Furthermore, OmpS1 induced the over-expression of MHC II molecules in dendritic cells and OmpS2 induced the over-expression of CD40 molecules in macrophages and dendritic cells. Co-immunization of OmpS1 or OmpS2 with ovalbumin (OVA) increased anti-OVA antibody titres, the duration and isotype diversity of the OVA-specific antibody response, and the proliferation of T lymphocytes. These porins also had adjuvant effects on the antibody response when co-immunized with either the Vi capsular antigen from S. Typhi or inactivated 2009 pandemic influenza A(H1N1) virus [A(H1N1)pdm09]. Taken together, the data indicate that OmpS1 and OmpS2, despite being expressed at low levels under in vitro culture conditions, are potent protective immunogens with intrinsic adjuvant properties.
Collapse
Affiliation(s)
- Mario A Moreno-Eutimio
- Medical Research Unit on Immunochemistry, National Medical Centre Siglo XXI, Mexican Social Security Institute (IMSS), Specialties Hospital, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Low-income countries typically lag behind industrialised nations, where the introduction of new vaccines is commonly tailored to the pressures of the commercial market. Happily in recent years this paradigm has started to change with the introduction of a univalent meningococcal A conjugate vaccine that is specifically targeted for the prevention of epidemic meningitis in Africa. The declaration of the 2010s as a New Decade of Vaccines, together with Millennium Development Goals 4 and 5, provide a strong mandate for a new approach to the development of vaccines for low-income countries, so that there has never been a more exciting time to work in this field. This review considers the opportunities and challenges of developing these new vaccines in the context of innovations in vaccinology, the need to induce protective immunity in the populations at risk and the requirement for strong partnership between the countries that will use these vaccines and different elements of the vaccine industry.
Collapse
|
41
|
Simon R, Wang JY, Boyd MA, Tulapurkar ME, Ramachandran G, Tennant SM, Pasetti M, Galen JE, Levine MM. Sustained protection in mice immunized with fractional doses of Salmonella Enteritidis core and O polysaccharide-flagellin glycoconjugates. PLoS One 2013; 8:e64680. [PMID: 23741368 PMCID: PMC3669428 DOI: 10.1371/journal.pone.0064680] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/17/2013] [Indexed: 11/26/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars S. Enteritidis and S. Typhimurium are a major cause of invasive bacterial disease (e.g., bacteremia, meningitis) in infants and young children in sub-Saharan Africa and also occasionally cause invasive disease in highly susceptible hosts (young infants, the elderly, and immunocompromised subjects) in industrialized countries. No licensed vaccines exist against human NTS infections. NTS core and O polysaccharide (COPS) and FliC (Phase 1 flagellin subunits) each constitute protective antigens in murine models. S. Enteritidis COPS conjugated to FliC represents a promising vaccine approach that elicits binding and opsonophagocytic antibodies and protects mice against lethal challenge with virulent S. Enteritidis. We examined the protective efficacy of fractional dosages of S. Enteritidis COPS:FliC conjugate vaccines in mice, and also established that protection can be passively transferred to naïve mice by administering sera from mice immunized with conjugate. Mice were immunized with three doses of either 10 µg, 2.5 µg (full dose), 0.25 µg, or 0.025 µg S. Enteritidis COPS:FliC conjugate at 28 day intervals. Antibody titers to COPS and FliC measured by ELISA fell consonant with progressively smaller vaccine dosage levels; anti-FliC IgG responses remained robust at fractional dosages for which anti-COPS serum IgG titers were decreased. Nevertheless, >90% protection against intraperitoneal challenge was observed in mice immunized with fractional dosages of conjugate that elicited diminished titers to both FliC and COPS. Passive transfer of immune sera from mice immunized with the highest dose of COPS:FliC to naïve mice was also protective, demonstrating the role of antibodies in mediating protection. These results provide important insights regarding the potency of Salmonella glycoconjugate vaccines that use flagellin as a carrier protein.
Collapse
Affiliation(s)
- Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang Y, Wan C, Xu H, Wei H. Identification and characterization of OmpL as a potential vaccine candidate for immune-protection against salmonellosis in mice. Vaccine 2013; 31:2930-6. [PMID: 23643894 DOI: 10.1016/j.vaccine.2013.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/13/2023]
Abstract
Salmonella is gram-negative flagellated bacteria that can cause food and waterborne gastroenteritis and typhoid fever in humans. Despite the importance of Salmonella infections in human and animal health, the target antigens of Salmonella-specific immunity remain poorly defined, the effectiveness of the currently available vaccines is also limited. Outer membrane proteins (OMPs) of Salmonella have been considered possible candidates for conferring protection against salmonellosis. OMPs interface the cell with the environment, thus representing important potential vaccine candidate for pathogen infection. We showed that the outer membrane porin L (OmpL) is a transmembrane β barrel (TMBB) protein, which forms 12 transmembrane β-strands. OmpL of S. Typhimurium is highly immunogenic, OmpL could evoke humoral and cell-mediated immune responses, and confer 100% protection to immunized mice against challenge with very high doses of S. Typhimurium. Besides, very efficient clearance of bacteria from the reticuloendothelial systems of immunized mice was seen. The homology search further revealed that OmpL is widely distributed and conserved, homologous proteins were identified in S. Typhi and Paratyphi by RT-PCR and western blot. We also found that anti-rOmpL serum harber a high bactericidal activity for Salmonella serovars tested in this study. Therefore, OmpL provide a promising target for the development of a candidate vaccine against Salmonella infection.
Collapse
Affiliation(s)
- Youjun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | | | | | | |
Collapse
|