1
|
Schuh A, Gunz P, Villa C, Maureille B, Toussaint M, Abrams G, Hublin JJ, Freidline SE. Human midfacial growth pattern differs from that of Neanderthals and chimpanzees. J Hum Evol 2025; 202:103667. [PMID: 40132491 DOI: 10.1016/j.jhevol.2025.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Present-day humans have small and retracted midfaces, while Neanderthals possess large and forwardly projected midfaces. To understand the ontogenetic patterns underlying these characteristic morphologies, we compared maxillary growth and development from birth to adulthood in present-day humans (Homo sapiens; n = 128), Neanderthals (Homo neanderthalensis; n = 13), and chimpanzees (Pan troglodytes verus; n = 33) using macroscopic (i.e., geometric morphometrics) and microscopic (i.e., surface histology) approaches. Using geometric morphometrics to quantify macroscopic patterns of growth and development, we found that the midfaces of present-day humans are on average already smaller at birth than those of Neanderthals and grow more slowly after birth. In particular, we find an early cessation of growth around adolescence, which is unique to our species. Microscopically, this is reflected in reduced amounts of bone resorption, indicative of decreased cellular activities linked to bone development. Greater amounts of bone formation in the infraorbital and nasal regions and faster growth rates are responsible for the large Neanderthal midface. These results highlight the importance of postnatal ontogeny (especially in late stages) for explaining facial differences between Neanderthals and present-day humans, as well as part of the gracilization process characteristic of present-day humans.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Chiara Villa
- Department of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, DK-2100 Copenhagen, Denmark
| | - Bruno Maureille
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
| | - Michel Toussaint
- Association Wallonne d'Études Mégalithiques, 4000 Liège, Belgium; Department of Archaeology, Ghent University, 9000 Ghent, Belgium
| | - Grégory Abrams
- Department of Archaeology, Ghent University, 9000 Ghent, Belgium; Scladina Cave Archaeological Centre, Espace muséal d'Andenne, Rue Fond des Vaux 339D, 5300 Andenne, Belgium
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Sarah E Freidline
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Orlando, USA.
| |
Collapse
|
2
|
Olsen ST, White S. Facial morphologies of Middle Pleistocene Europe: Morphological mosaicism and the evolution of Homo neanderthalensis. J Hum Evol 2025; 201:103645. [PMID: 39999512 DOI: 10.1016/j.jhevol.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/11/2024] [Accepted: 12/24/2024] [Indexed: 02/27/2025]
Abstract
The phylogeny of the Middle Pleistocene hominins is a matter of intense scientific debate. Important phylogenetic and taxonomic uncertainties remain, not least due to conflicting results of phylogenetic analyses when methodologies or morphological focus differ. Geography has been proposed to play a key role in Middle Pleistocene hominin diversity, with a European group potentially ancestral to Neanderthals (Homo neanderthalensis) and an African group possibly ancestral to Homo sapiens, but the evidence is equivocal. In this study, we explore the connection between geography and facial morphology in Middle Pleistocene hominins with a particular emphasis on the potential Neanderthal affinities of the European group. Furthermore, to assess the impact of methodology on the results, we use a multimethod approach in which morphological affinities in both facial shape and discrete facial traits are assessed on a dataset consisting of 38 fossil and 20 recent hominin skulls divided into five groups (European and non-European Middle Pleistocene hominins, H. sapiens, H. neanderthalensis, and Homo erectus/Homo ergaster). Two main conclusions emerge from these analyses. First, methodological approach has a marked impact on the recorded pattern of morphological affinity, which may explain result discrepancies among previous studies. Second, this disparity may be caused by morphological mosaicism and polymorphism in the facial region of Middle Pleistocene hominins. The results provide some support for a closer connection between European Middle Pleistocene hominins and Neanderthals in terms of discrete facial traits, but not in overall facial shape, raising questions about the process of evolution of the Neanderthal facial phenotype. As a consequence of these results, we argue that greater attention needs to be paid to clarifying the broader evolutionary processes guiding hominin evolution during this period.
Collapse
Affiliation(s)
- Siri Topsø Olsen
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW, London, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Suzanna White
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW, London, UK; School of Biological Sciences, University of Reading, Whiteknights, RG6 6AH, Reading, UK
| |
Collapse
|
3
|
Bastir M, Sanz-Prieto D, Burgos MA, Pérez-Ramos A, Heuzé Y, Maréchal L, Evteev A, Toro-Ibacache V, Esteban-Ortega F. Beyond skeletal studies: A computational analysis of nasal airway function in climate adaptation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24932. [PMID: 38516761 DOI: 10.1002/ajpa.24932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Ecogeographic variation in human nasal anatomy has historically been analyzed on skeletal morphology and interpreted in the context of climatic adaptations to respiratory air-conditioning. Only a few studies have analyzed nasal soft tissue morphology, actively involved in air-conditioning physiology. MATERIALS AND METHODS We used in vivo computer tomographic scans of (N = 146) adult individuals from Cambodia, Chile, Russia, and Spain. We conducted (N = 438) airflow simulations during inspiration using computational fluid dynamics to analyze the air-conditioning capacities of the nasal soft tissue in the inflow, functional, and outflow tract, under three different environmental conditions: cold-dry; hot-dry; and hot-humid. We performed statistical comparisons between populations and sexes. RESULTS Subjects from hot-humid regions showed significantly lower air-conditioning capacities than subjects from colder regions in all the three conditions, specifically within the isthmus region in the inflow tract, and the anterior part of the internal functional tract. Posterior to the functional tract, no differences were detected. No differences between sexes were found in any of the tracts and under any of the conditions. DISCUSSION Our statistical analyses support models of climatic adaptations of anterior nasal soft tissue morphology that fit with, and complement, previous research on dry skulls. However, our results challenge a morpho-functional model that attributes air-conditioning capacities exclusively to the functional tract located within the nasal cavity. Instead, our findings support studies that have suggested that both, the external nose and the intra-facial soft tissue airways contribute to efficiently warming and humidifying air during inspiration. This supports functional interpretations in modern midfacial variation and evolution.
Collapse
Affiliation(s)
- Markus Bastir
- Paleoanthropology Group, Department of Paleobiology, National Museum of Natural Sciences-Spanish National Research Council, Madrid, Spain
| | - Daniel Sanz-Prieto
- Paleoanthropology Group, Department of Paleobiology, National Museum of Natural Sciences-Spanish National Research Council, Madrid, Spain
- Fluid Mechanics and Thermal Engineering Group, Department of Thermal and Fluid Engineering, Polytechnic University of Cartagena, Cartagena, Spain
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | - Manuel A Burgos
- Fluid Mechanics and Thermal Engineering Group, Department of Thermal and Fluid Engineering, Polytechnic University of Cartagena, Cartagena, Spain
| | - Alejandro Pérez-Ramos
- Paleobiology, Paleoclimatology, and Paleogeography Group, Department of Ecology and Geology, Faculty of Science, University of Málaga, Malaga, Spain
| | - Yann Heuzé
- CNRS, Ministère de la Culture, PACEA, Université de Bordeaux, Pessac, France
| | - Laura Maréchal
- CNRS, Ministère de la Culture, PACEA, Université de Bordeaux, Pessac, France
| | - Andrej Evteev
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Viviana Toro-Ibacache
- Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | | |
Collapse
|
4
|
Bicknell RDC, Schmidt M, Rahman IA, Edgecombe GD, Gutarra S, Daley AC, Melzer RR, Wroe S, Paterson JR. Raptorial appendages of the Cambrian apex predator Anomalocaris canadensis are built for soft prey and speed. Proc Biol Sci 2023; 290:20230638. [PMID: 37403497 PMCID: PMC10320336 DOI: 10.1098/rspb.2023.0638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
The stem-group euarthropod Anomalocaris canadensis is one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability of A. canadensis to use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse an A. canadensis feeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest that A. canadensis was an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle of A. canadensis and that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels.
Collapse
Affiliation(s)
- Russell D. C. Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale 2351, Australia
- Division of Paleontology, American Museum of Natural History, New York, NY 10027, USA
| | - Michel Schmidt
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, North Cuihu Road 2, Kunming 650091, People's Republic of China
| | - Imran A. Rahman
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Oxford University Museum of Natural History, Oxford OX1 3PW, UK
| | | | - Susana Gutarra
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Allison C. Daley
- Institute of Earth Sciences, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Roland R. Melzer
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Faculty of Biology, Biocenter, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale 2351, Australia
- Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale 2351, Australia
| |
Collapse
|
5
|
Buzi C, Profico A, Liang C, Khonsari RH, O'Higgins P, Moazen M, Harvati K. Icex: Advances in the automatic extraction and volume calculation of cranial cavities. J Anat 2023; 242:1172-1183. [PMID: 36774197 PMCID: PMC10184549 DOI: 10.1111/joa.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/13/2023] Open
Abstract
The use of non-destructive approaches for digital acquisition (e.g. computerised tomography-CT) allows detailed qualitative and quantitative study of internal structures of skeletal material. Here, we present a new R-based software tool, Icex, applicable to the study of the sizes and shapes of skeletal cavities and fossae in 3D digital images. Traditional methods of volume extraction involve the manual labelling (i.e. segmentation) of the areas of interest on each section of the image stack. This is time-consuming, error-prone and challenging to apply to complex cavities. Icex facilitates rapid quantification of such structures. We describe and detail its application to the isolation and calculation of volumes of various cranial cavities. The R tool is used here to automatically extract the orbital volumes, the paranasal sinuses, the nasal cavity and the upper oral volumes, based on the coordinates of 18 cranial anatomical points used to define their limits, from 3D cranial surface meshes obtained by segmenting CT scans. Icex includes an algorithm (Icv) for the calculation of volumes by defining a 3D convex hull of the extracted cavity. We demonstrate the use of Icex on an ontogenetic sample (0-19 years) of modern humans and on the fossil hominin crania Kabwe (Broken Hill) 1, Gibraltar (Forbes' Quarry) and Guattari 1. We also test the tool on three species of non-human primates. In the modern human subsample, Icex allowed us to perform a preliminary analysis on the absolute and relative expansion of cranial sinuses and pneumatisations during growth. The performance of Icex, applied to diverse crania, shows the potential for an extensive evaluation of the developmental and/or evolutionary significance of hollow cranial structures. Furthermore, being open source, Icex is a fully customisable tool, easily applicable to other taxa and skeletal regions.
Collapse
Affiliation(s)
- Costantino Buzi
- DFG Centre of Advanced Studies ‘Words, Bones, Genes, Tools’Eberhard Karls University of TübingenTübingenGermany
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES‐CERCA)TarragonaSpain
- Departament d'Història i Història de l'ArtUniversitat Rovira i VirgiliTarragonaSpain
| | | | - Ce Liang
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Roman H. Khonsari
- Department of Mechanical EngineeringUniversity College LondonLondonUK
- Department of Maxillo‐Facial Surgery and Plastic SurgeryNecker – Enfants Malades University Hospital, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Paul O'Higgins
- Department of Archaeology and Hull York Medical SchoolUniversity of YorkYorkUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Katerina Harvati
- DFG Centre of Advanced Studies ‘Words, Bones, Genes, Tools’Eberhard Karls University of TübingenTübingenGermany
- Paleoanthropology, Senckenberg Centre for Human Evolution and PalaeoenvironmentInstitute for Archaeological Sciences, Eberhard Karls University of TübingenTübingenGermany
| |
Collapse
|
6
|
Pomeroy E. Review: The different adaptive trajectories in Neanderthals and Homo sapiens and their implications for contemporary human physiological variation. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111420. [PMID: 37001690 DOI: 10.1016/j.cbpa.2023.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Neanderthals are our one of our closest evolutionary cousins, but while they evolved in Eurasia, we (anatomically modern humans, AMH) originated in Africa. This contrasting evolutionary history has led to morphological and genetic distinctions between our species. Neanderthals are characterised by a relatively stocky build, high body mass, proportionally wide bodies and shorter limbs, a bell-shaped ribcage with a wide pelvis, and a long, low cranial vault compared with AMH. Classic readings of Neanderthal morphology link many of these traits to cold climate adaptations, however these interpretations have been questioned and alternative hypotheses including behavioural factors, dietary adaptations, locomotor specialisations, evolutionary history and neutral evolutionary processes have been invoked. Compared with AMH, Neanderthals may have been adapted for strength and power rather than endurance and may have consumed a diet high in animal products. However, reviewing these hypotheses highlights a number of limitations in our understanding of contemporary human physiology and metabolism, including the relationship between climate and morphology in AMH and Neanderthals, physiological limits on protein consumption, and the relationship between gut morphology and diet. As various relevant factors are clearly linked (e.g. diet, behaviour, metabolism, morphology, activity), ultimately a more integrated approach may be needed to fully understand Neanderthal biology. Variation among contemporary AMHs may offer, with caveats, a useful model for understanding the evolution of both Neanderthal and modern human characteristics, which in turn may further deepen our understanding of variability within and between contemporary humans. Neanderthals; Anatomically modern humans; morphology; climate adaptation; power adaptations; metabolism; diet; physiology; endurance running.
Collapse
|
7
|
Key A, Ashton N. Hominins likely occupied northern Europe before one million years ago. Evol Anthropol 2023; 32:10-25. [PMID: 36383204 DOI: 10.1002/evan.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022]
Abstract
Our understanding of when hominins first reached northern Europe is dependent on a fragmented archaeological and fossil record known from as early as marine isotope stage (MIS) 21 or 25 (c. 840 or 950 thousand years ago [Ka]). This contrasts sharply with southern Europe, where hominin occupation is evidenced from MIS 37 to 45 (c. 1.22 or 1.39 million years ago [Ma]). Northern Europe, however, exhibits climatic, geological, demographic, and historical disadvantages when it comes to preserving fossil and archaeological evidence of early hominin habitation. It is argued here that perceived differences in first occupation timings between the two European regions needs to be revised in light of these factors. To enhance this understanding, optimal linear estimation models are run using data from the current fossil and artefact record. Results suggest northern Europe to have first been occupied as early as 1.16 Ma, or as late as 913 Ka. These timings could represent minimum date expectations and be extended through future archaeological and fossil discoveries.
Collapse
Affiliation(s)
- Alastair Key
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Nick Ashton
- British Museum, Department of Britain, Europe and Prehistory, London, UK
| |
Collapse
|
8
|
Maréchal L, Dumoncel J, Santos F, Astudillo Encina W, Evteev A, Prevost A, Toro-Ibacache V, Venter RG, Heuzé Y. New insights into the variability of upper airway morphology in modern humans. J Anat 2022; 242:781-795. [PMID: 36585765 PMCID: PMC10093156 DOI: 10.1111/joa.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023] Open
Abstract
The biological adaptation of the human lineage to its environment is a recurring question in paleoanthropology. Particularly, how eco-geographic factors (e.g., environmental temperature and humidity) have shaped upper airway morphology in hominins have been subject to continuing debate. Nasal shape is the result of many intertwined factors that include, but are not limited to, genetic drift, sexual selection, or adaptation to climate. A quantification of nasal airway (NA) morphological variation in modern human populations is crucial to better understand these multiple factors. In the present research, we study 195 in vivo CT scans of adult individuals collected in five different geographic areas (Chile, France, Cambodia, Russia, and South Africa). After segmentation of the nasal airway, we reconstruct 3D meshes that are analyzed with a landmark-free geometric morphometrics method based on surface deformation. Our results highlight subtle but statistically significant morphological differences between our five samples. The two morphologically closest groups are France and Russia, whose NAs are longer and narrower, with an important protrusion of the supero-anterior part. The Cambodian sample is the most morphologically distinct and clustered sample, with a mean NA that is wider and shorter. On the contrary, the Chilean sample form the most scattered cluster with the greatest intra-population variation. The South African sample is morphologically close to the Cambodian sample, but also partially overlaps the French and Russian variation. Interestingly, we record no correlation between NA volume and geographic groups, which raises the question of climate-related metabolic demands for oxygen consumption. The other factors of variation (sex and age) have no influence on the NA shape in our samples. However, NA volume varies significantly according both to sex and age: it is higher in males than in females and tends to increase with age. In contrast, we observe no effect of temperature or humidity on NA volume. Finally, we highlight the important influence of asymmetries related to nasal septum deviations in NA shape variation.
Collapse
Affiliation(s)
- Laura Maréchal
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | - Jean Dumoncel
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | - Frédéric Santos
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | | | - Andrej Evteev
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Alice Prevost
- Plastic and Maxillo-facial Surgery Department, University Hospital Center of Toulouse, Toulouse, France
| | - Viviana Toro-Ibacache
- Centro de Análisis Cuantitativo en Antropología Dental, Universidad de Chile, Santiago, Chile
| | - Rudolph G Venter
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Yann Heuzé
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| |
Collapse
|
9
|
Bicknell RDC, Simone Y, van der Meijden A, Wroe S, Edgecombe GD, Paterson JR. Biomechanical analyses of pterygotid sea scorpion chelicerae uncover predatory specialisation within eurypterids. PeerJ 2022; 10:e14515. [PMID: 36523454 PMCID: PMC9745958 DOI: 10.7717/peerj.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Eurypterids (sea scorpions) are extinct aquatic chelicerates. Within this group, members of Pterygotidae represent some of the largest known marine arthropods. Representatives of this family all have hypertrophied, anteriorly-directed chelicerae and are commonly considered Silurian and Devonian apex predators. Despite a long history of research interest in these appendages, pterygotids have been subject to limited biomechanical investigation. Here, we present finite element analysis (FEA) models of four different pterygotid chelicerae-those of Acutiramus bohemicus, Erettopterus bilobus, Jaekelopterus rhenaniae, and Pterygotus anglicus-informed through muscle data and finite element models (FEMs) of chelae from 16 extant scorpion taxa. We find that Er. bilobus and Pt. anglicus have comparable stress patterns to modern scorpions, suggesting a generalised diet that probably included other eurypterids and, in the Devonian species, armoured fishes, as indicated by co-occurring fauna. Acutiramus bohemicus is markedly different, with the stress being concentrated in the proximal free ramus and the serrated denticles. This indicates a morphology better suited for targeting softer prey. Jaekelopterus rhenaniae exhibits much lower stress across the entire model. This, combined with an extremely large body size, suggests that the species likely fed on larger and harder prey, including heavily armoured fishes. The range of cheliceral morphologies and stress patterns within Pterygotidae demonstrate that members of this family had variable diets, with only the most derived species likely to feed on armoured prey, such as placoderms. Indeed, increased sizes of these forms throughout the mid-Palaeozoic may represent an 'arms race' between eurypterids and armoured fishes, with Devonian pterygotids adapting to the rapid diversification of placoderms.
Collapse
Affiliation(s)
- Russell D. C. Bicknell
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
- Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, Vila do Conde, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, Vila do Conde, Portugal
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
- Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
10
|
Pagano AS, Smith CM, Balzeau A, Márquez S, Laitman JT. Nasopharyngeal morphology contributes to understanding the "muddle in the middle" of the Pleistocene hominin fossil record. Anat Rec (Hoboken) 2022; 305:2038-2064. [PMID: 35394685 DOI: 10.1002/ar.24913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022]
Abstract
The late archeologist Glynn Isaac first applied the term "muddle in the middle" to a poorly understood period in the Middle Pleistocene human fossil record. This study uses the nasopharyngeal boundaries as a source of traits that may inform this unclear period of human evolution. The nasopharynx lies at the nexus of several vital physiological systems, yet relatively little is known about its importance in human evolution. We analyzed a geographically diverse contemporary Homo sapiens growth series (n = 180 adults, 237 nonadults), Homo neanderthalensis (La Chapelle aux Saints 1, La Ferrassie 1, Forbes Quarry 1, Monte Circeo 1, and Saccopastore 1), mid-Pleistocene Homo (Atapuerca 5, Kabwe 1, Petralona 1, and Steinheim 1), and two Homo erectus sensu lato (KNM-ER 3733 and Sangiran 17). Methods include traditional (Analysis 1) and 3D geometric morphometric analysis (Analysis 2). H. erectus exhibited tall, narrow nasopharyngeal shape, a robust, ancestral morphology. Kabwe 1 and Petralona 1 plotted among H. sapiens in Analysis 2, exhibiting relatively shorter and vertical cartilaginous Eustachian tubes and vertical medial pterygoid plates. Atapuerca 5 and Steinheim 1 exhibited horizontal vomeral orientation similar to H. neanderthalensis, indicating greater relative soft palate length and anteroposterior nasopharynx expansion. They may exhibit synapomorphies with H. neanderthalensis, supporting the accretionary hypothesis. Species-level differences were found among H. sapiens and H. neanderthalensis, including relatively longer dilator tubae muscles and extreme facial airorhynchy among Neanderthals. Furthermore, H. neanderthalensis were autapomorphic in exhibiting horizontal pterygoid plate orientation similar to human infants, suggesting that they may have had inferiorly low placement of the torus tubarius and Eustachian tube orifice on the lateral nasopharyngeal wall in life. This study supports use of osseous nasopharyngeal boundaries both for morphological characters and understanding evolution of otitis media susceptibility in living humans.
Collapse
Affiliation(s)
- Anthony S Pagano
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Christopher M Smith
- Department of Anthropology, CUNY Graduate Center, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA.,Center for Anatomy and Functional Morphology, Icahn School of Medicine, New York, New York, USA
| | - Antoine Balzeau
- Department de Homme et environnement, Musée de l'Homme-Palais de Chaillot, Paris, France
| | - Samuel Márquez
- Departments of Cell Biology and Otolaryngology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey T Laitman
- Department of Anthropology, CUNY Graduate Center, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA.,Center for Anatomy and Functional Morphology, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Shah R, Frank-Ito DO. The role of normal nasal morphological variations from race and gender differences on respiratory physiology. Respir Physiol Neurobiol 2022; 297:103823. [PMID: 34883314 PMCID: PMC9258636 DOI: 10.1016/j.resp.2021.103823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022]
Abstract
This study identifies anatomical and airflow-induced relationships based on nasal morphological variations due to inter- and intra-racial differences and gender. Subject-specific nasal airway reconstruction was created from computed tomography images in 16 subjects: 4 subjects from each ethnic group (Black, East Asian, Caucasian, and Latino) comprising of 2 males and 2 females. Volume, surface area and nasal index were calculated, as well as airflow rate and nasal resistance after computational fluid dynamics simulations in the nasal airway. Results showed that nasal airspace surface area (p = 0.0499) and volume (p = 0.0281) were significantly greater in males than in females. Nasal volume was greatest in East Asians (Median = 20.38cm3, Interquartile Range [IQR] = 4.58 cm3), Latinos had the greatest surface area (Median = 219.70cm2, IQR = 29.56cm2). On average, East Asian and Black females had larger nasal index than their male counterparts. Caucasians had the highest median nasal resistance (0.050 Pa.s/mL, IQR = 0.025 Pa.s/mL). Results indicate that there exist anatomical variabilities based on race and gender. However, these variabilities may not significantly influence nasal function.
Collapse
Affiliation(s)
- Reanna Shah
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA
| | - Dennis Onyeka Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA; Computational Biology & Bioinformatics PhD Program, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Unique foot posture in Neanderthals reflects their body mass and high mechanical stress. J Hum Evol 2021; 161:103093. [PMID: 34749003 DOI: 10.1016/j.jhevol.2021.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022]
Abstract
Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.
Collapse
|
13
|
Bastir M, Sanz-Prieto D, Burgos M. Three-dimensional form and function of the nasal cavity and nasopharynx in humans and chimpanzees. Anat Rec (Hoboken) 2021; 305:1962-1973. [PMID: 34636487 DOI: 10.1002/ar.24790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/08/2022]
Abstract
The facial differences between recent Pan troglodytes and Homo sapiens can be used as a proxy for the reduction of facial prognathism that happened during evolutionary transition between Australopithecines and early Homo. The projecting nasal morphology of Homo has been considered both a passive consequence of anatomical reorganization related to brain and integrated craniofacial evolution as well as an adaptation related to air-conditioning during physiological and behavioral shifts in human evolution. Yet, previous research suggested impaired air-conditioning in Homo challenging respiratory adaptations based on computational fluid dynamics (CFD) and airflow simulations. Here we improved CFD model at the inflow region and also carried out three-dimensional (3D) geometric morphometrics to address the hypothesis of impaired air-conditioning in humans and species differences in airway shape. With the new CFD model we simulated pressure, velocity, and temperature changes in airflow of six adult humans and six chimpanzees and analyzed 164 semi-landmarks of 10 humans and 10 chimpanzees for 3D size and shape comparisons. Our finding shows significantly different internal 3D nasal airways. Also, species means of pressure, velocity, and temperature differed statistically significantly. However, form-related differences in temperature exchanges seem subtle and may question adaptive disadvantages. We rather support a hypothesis of craniofacial changes in the Australopithecus-Homo transition that are related to brain evolution and craniofacial integration with facial and nasal modifications that contribute to maintain respiratory adaptations related to air conditioning.
Collapse
Affiliation(s)
- Markus Bastir
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Daniel Sanz-Prieto
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Departamento de Ingeniería Térmica y Fluidos, Universidad de Cartagena, Cartagena, Spain
| | - Manuel Burgos
- Departamento de Ingeniería Térmica y Fluidos, Universidad de Cartagena, Cartagena, Spain
| |
Collapse
|
14
|
Butaric LN, Nicholas CL, Kravchuk K, Maddux SD. Ontogenetic variation in human nasal morphology. Anat Rec (Hoboken) 2021; 305:1910-1937. [PMID: 34549897 DOI: 10.1002/ar.24760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 11/10/2022]
Abstract
Internal nasal cavity morphology has long been thought to reflect respiratory pressures related to heating and humidifying inspired air. Yet, despite the widely recognized importance of ontogeny in understanding climatic and thermoregulatory adaptations, most research on nasal variation in modern and fossil humans focuses on static adult morphology. This study utilizes cross-sectional CT data of three morphologically distinct samples (African, European, Arctic) spanning from infancy to adulthood (total n = 321). Eighteen landmarks capturing external and internal regions of the face and nose were subjected to generalized Procrustes and form-space principal component analyses (separately conducted on global and individual samples) to ascertain when adult-specific nasal morphology emerges during ontogeny. Across the global sample, PC1 (67.18% of the variation) tracks age-related size changes regardless of ancestry, while PC2 (6.86%) differentiates between the ancestral groups irrespective of age. Growth curves tracking morphological changes by age-in-years indicate comparable growth trajectories across all three samples, with the majority of nasal size and shape established early in ontogeny (<5 years of age). Sex-based trends are also evident, with females exhibiting a more truncated growth period than males, particularly for nasal height dimensions. Differences are also evident between the anterior and posterior nose, with the height and breadth dimensions of the anterior nasal aperture and nasal cavity showing differential ontogenetic patterns compared to the choanae. Cumulatively, these results suggest that multiple selective pressures influence human nasal morphology through ontogenetic processes, including metabolic demands for sufficient oxygen intake and climatic demands for adequate intranasal air conditioning.
Collapse
Affiliation(s)
- Lauren N Butaric
- Department of Anatomy, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| | - Christina L Nicholas
- Department of Orthodontics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Katherine Kravchuk
- Department of Anatomy, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| | - Scott D Maddux
- Center for Anatomical Sciences, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
15
|
Yen A, Wu HJ, Chen PY, Yu HT, Juang JY. Egg Incubation Mechanics of Giant Birds. BIOLOGY 2021; 10:biology10080738. [PMID: 34439970 PMCID: PMC8389601 DOI: 10.3390/biology10080738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Finite element analysis (FEA) was used to conduct mechanical analyses on eggshells of giant birds, and relate this to the evolution and reproductive behavior of avian species. We aim to (1) investigate mechanical characteristics of eggshell structures of various ratite species, enabling comparisons between species with or without reversed sexual size dimorphism (RSSD); (2) quantify the safety margin provided by RSSD; (3) determine whether the Williams' egg can have been incubated by an extinct giant bird Genyornis newtoni; (4) determine the theoretical maximum body mass for contact incubation. We use a dimensionless number C to quantify relative shell stiffness with respect to the egg size, allowing for comparison across wide body masses. We find that RSSD in moas significantly increases the safety margin of contact incubation by the lighter males. However, their safety margins are still smaller than those of the moa species without RSSD. Two different strategies were adopted by giant birds-one is RSSD and thinner shells, represented by some moa species; the other is no RSSD and regular shells, represented by the giant elephant bird. Finally, we predicted that the upper limit of body mass for contact incubation was 2000 kg.
Collapse
Affiliation(s)
- An Yen
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan; (A.Y.); (H.-J.W.); (P.-Y.C.)
| | - Hsiao-Jou Wu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan; (A.Y.); (H.-J.W.); (P.-Y.C.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Pin-Yi Chen
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan; (A.Y.); (H.-J.W.); (P.-Y.C.)
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hon-Tsen Yu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Degree Program of Genome and Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Yang Juang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan; (A.Y.); (H.-J.W.); (P.-Y.C.)
- Correspondence:
| |
Collapse
|
16
|
Godinho RM, Gonçalves C. Testing the reliability of CT scan-based dental wear magnitude scoring. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:521-527. [PMID: 34297351 DOI: 10.1002/ajpa.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Digital models are now frequently used in biological anthropology (bioanthropology) research. Despite several studies validating this type of research, none has examined if the assessment of dental wear magnitude based on Computerized Tomography (CT) scans is reliable. Thus, this study aims to fill this gap and assess if dental wear magnitude scoring based on CT scans provides results consistent with scoring based on direct observation of the physical specimens. MATERIALS AND METHODS Dental wear magnitude from 412 teeth of 35 mandibles originating from the Portuguese Muge and Sado Mesolithic shell-middens was scored. The mandibles were also CT scanned and visualized using 3D Slicer. CT scan-based scoring of dental wear magnitude was then undertaken. Two scoring rounds were undertaken for each observation method (totaling four scoring rounds) and an intra-observer error test was performed. The averaged results of the two observation methods were compared via boxplots with paired cases. RESULTS Intra-observer error was negligible and non-significant. Scoring results are comparable between the two observation methods. Notwithstanding, some differences were found, in which CT scan assessment generally overestimates dental wear when compared to direct observation. DISCUSSION Our results generally validate the use of CT scans in studies of dental wear magnitude. Notwithstanding several caveats relating to CT scanning and visualization limitations should be considered to avoid over or under-estimation of dental wear.
Collapse
Affiliation(s)
- Ricardo Miguel Godinho
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), Faculdade das Ciências Humanas e Sociais, Universidade do Algarve, Campus Gambelas, Faro, Portugal
| | - Célia Gonçalves
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), Faculdade das Ciências Humanas e Sociais, Universidade do Algarve, Campus Gambelas, Faro, Portugal
| |
Collapse
|
17
|
Stansfield E, Mitteroecker P, Vasilyev SY, Vasilyev S, Butaric LN. Respiratory adaptation to climate in modern humans and Upper Palaeolithic individuals from Sungir and Mladeč. Sci Rep 2021; 11:7997. [PMID: 33846400 PMCID: PMC8042039 DOI: 10.1038/s41598-021-86830-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
As our human ancestors migrated into Eurasia, they faced a considerably harsher climate, but the extent to which human cranial morphology has adapted to this climate is still debated. In particular, it remains unclear when such facial adaptations arose in human populations. Here, we explore climate-associated features of face shape in a worldwide modern human sample using 3D geometric morphometrics and a novel application of reduced rank regression. Based on these data, we assess climate adaptations in two crucial Upper Palaeolithic human fossils, Sungir and Mladeč, associated with a boreal-to-temperate climate. We found several aspects of facial shape, especially the relative dimensions of the external nose, internal nose and maxillary sinuses, that are strongly associated with temperature and humidity, even after accounting for autocorrelation due to geographical proximity of populations. For these features, both fossils revealed adaptations to a dry environment, with Sungir being strongly associated with cold temperatures and Mladeč with warm-to-hot temperatures. These results suggest relatively quick adaptative rates of facial morphology in Upper Palaeolithic Europe.
Collapse
Affiliation(s)
- Ekaterina Stansfield
- Unit of Theoretical Biology, Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Philipp Mitteroecker
- Unit of Theoretical Biology, Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Sergey Y Vasilyev
- Moscow State University of Medicine and Dentistry, Moscow, Russian Federation
| | - Sergey Vasilyev
- Institute of Anthropology and Ethnography, Moscow, Russian Federation
| | - Lauren N Butaric
- Department of Anatomy, College of Osteopathic Medicine, Des Moines University, Des Moines, USA
| |
Collapse
|
18
|
Ocobock C, Lacy S, Niclou A. Between a rock and a cold place: Neanderthal biocultural cold adaptations. Evol Anthropol 2021; 30:262-279. [PMID: 33797824 DOI: 10.1002/evan.21894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
A large body of work focuses on the unique aspects of Neanderthal anatomy, inferred physiology, and behavior to test the assumption that Neanderthals were hyper-adapted to living in cold environments. This research has expanded over the years to include previously unexplored and potentially adaptive features such as brown adipose tissue and fire-usage. Here we review the current state of knowledge of Neanderthal cold adaptations along morphological, physiological, and behavioral lines. While highlighting foundational as well as recent work, we also emphasize key areas for future research. Despite thriving in a variety of climates, it is well-accepted that Neanderthals appear to be the most cold-adapted of known fossil hominin groups; however, there are still many unknowns. There is a great deal yet to be uncovered about the nature and manifestation of Neanderthal adaptation and how the synergy of biology and culture helped buffer them against extreme and variable environments.
Collapse
Affiliation(s)
- Cara Ocobock
- Department of Anthropology, University of Notre Dame, South Bend, Indiana, USA.,Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, South Bend, Indiana, USA
| | - Sarah Lacy
- Department of Anthropology, California State University Dominguez Hills, Carson, California, USA
| | - Alexandra Niclou
- Department of Anthropology, University of Notre Dame, South Bend, Indiana, USA
| |
Collapse
|
19
|
Broyde S, Dempsey M, Wang L, Cox PG, Fagan M, Bates KT. Evolutionary biomechanics: hard tissues and soft evidence? Proc Biol Sci 2021; 288:20202809. [PMID: 33593183 PMCID: PMC7935025 DOI: 10.1098/rspb.2020.2809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Biomechanical modelling is a powerful tool for quantifying the evolution of functional performance in extinct animals to understand key anatomical innovations and selective pressures driving major evolutionary radiations. However, the fossil record is composed predominantly of hard parts, forcing palaeontologists to reconstruct soft tissue properties in such models. Rarely are these reconstruction approaches validated on extant animals, despite soft tissue properties being highly determinant of functional performance. The extent to which soft tissue reconstructions and biomechanical models accurately predict quantitative or even qualitative patterns in macroevolutionary studies is therefore unknown. Here, we modelled the masticatory system in extant rodents to objectively test the ability of current muscle reconstruction methods to correctly identify quantitative and qualitative differences between macroevolutionary morphotypes. Baseline models generated using measured soft tissue properties yielded differences in muscle proportions, bite force, and bone stress expected between extant sciuromorph, myomorph, and hystricomorph rodents. However, predictions from models generated using reconstruction methods typically used in fossil studies varied widely from high levels of quantitative accuracy to a failure to correctly capture even relative differences between macroevolutionary morphotypes. Our novel experiment emphasizes that correctly reconstructing even qualitative differences between taxa in a macroevolutionary radiation is challenging using current methods. Future studies of fossil taxa should incorporate systematic assessments of reconstruction error into their hypothesis testing and, moreover, seek to expand primary datasets on muscle properties in extant taxa to better inform soft tissue reconstructions in macroevolutionary studies.
Collapse
Affiliation(s)
- Sarah Broyde
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Matthew Dempsey
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Linjie Wang
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Philip G. Cox
- Department of Archaeology, University of York, PalaeoHub, Wentworth Way, Heslington, York YO10 5DD, UK
- Hull York Medical School, University of York, PalaeoHub, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Michael Fagan
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Karl T. Bates
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
20
|
Fung S, Lee J, Yong R, Ranjitkar S, Kaidonis J, Pilbrow V, Panagiotopoulou O, Fiorenza L. A functional analysis of Carabelli trait in Australian aboriginal dentition. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:375-383. [PMID: 32779189 DOI: 10.1002/ajpa.24120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Carabelli is a nonmetric dental trait variably expressed as a small pit to a prominent cusp in the maxillary molars of modern humans. Investigations on the occurrence and expression rates of this trait have been conducted extensively, tracing its origin to genetic sources. However, there remains a lack of understanding about its potential role in chewing. In this study, we examine molar macrowear with the aim of reconstructing Carabelli trait occlusal dynamics occurring during chewing. METHODS We have examined 96 deciduous and permanent maxillary molars of children and young adults from Yuendumu, an Australian Aboriginal population that was at an early stage of transition from a nomadic and hunter-gatherer way of life to a more settled existence. We apply a well-established method, called Occlusal Fingerprint Analysis, which is a digital approach for analyzing dental macrowear allowing the reconstruction of jaw movements required to produce wear pattern specific to each tooth. RESULTS Carabelli trait slightly enlarges the surface functional area, especially in those molars where this feature is expressed in its cuspal form and it is closer to the occlusal plane. Moreover, the highly steep contact planes would also indicate that Carabelli wear areas contribute to increasing the shearing abilities of the occluded teeth, which are particularly important when processing fibrous and tough foods. CONCLUSIONS The macrowear analysis suggests that Carabelli trait in the Aboriginal people from Yuendumu slightly enhanced occlusion and probably played some functional role during mastication. Future biomechanical and microwear analyses could provide additional information on the mechanical adaptation of Carabelli trait in modern human dentition.
Collapse
Affiliation(s)
- Sarah Fung
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jinyoung Lee
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Robin Yong
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarbin Ranjitkar
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - John Kaidonis
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - Varsha Pilbrow
- Australian Institute of Archaeology, La Trobe University, Melbourne, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Luca Fiorenza
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Earth Sciences, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
21
|
Mori F, Kaneko A, Matsuzawa T, Nishimura T. Computational fluid dynamics simulation wall model predicting air temperature of the nasal passage for nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:839-845. [PMID: 33438763 DOI: 10.1002/ajpa.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Nasal passages adjust the temperature of inhaled air to reach the required body temperature for the lungs. The nasal regions of primates including humans are believed to have experienced anatomical modifications that are adaptive to effective conditioning of the atmospheric air in the habitat for a given species. Measurements of the nasal temperature are required to understand the air-conditioning performance for a given species. Unfortunately, repeated direct measurements within the nasal passage have been technically precluded in most nonhuman primates. MATERIALS AND METHODS Computational fluid dynamics (CFD) simulation is a potential approach for examining the temperature profile in the nasal passage without any direct measurements. The CFD simulation model mainly comprises a computational model to simulate physiological mechanisms and a wall model to simulate the nasal passage's anatomical and physical properties. We used a computational model developed for humans and examined corrections for the developed wall model based on human properties for predicting its performance in Japanese macaques. RESULTS This study confirmed that the epithelium layer thickness of the wall model affects the accuracy of the predictions for macaques. A convenient correction of the thickness based on body mass allows us to simulate the actual air temperature profile in macaques' nasal passage. DISCUSSION The CFD simulations of the wall model corrected with body mass can be applied to other nonhuman primates and mammals. This convenient corrective approach allows us to examine the functional contributions of a specific morphology to the air-conditioning performance without any direct measurements to improve our understanding of primates' functional morphology and physical adaptations to the temperature environment in their habitat.
Collapse
Affiliation(s)
- Futoshi Mori
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Akihisa Kaneko
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Teruo Matsuzawa
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | | |
Collapse
|
22
|
Mondanaro A, Melchionna M, Di Febbraro M, Castiglione S, Holden PB, Edwards NR, Carotenuto F, Maiorano L, Modafferi M, Serio C, Diniz-Filho JAF, Rangel T, Rook L, O'Higgins P, Spikins P, Profico A, Raia P. A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History. iScience 2020; 23:101693. [PMID: 33163945 PMCID: PMC7607486 DOI: 10.1016/j.isci.2020.101693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Homo sapiens is the only species alive able to take advantage of its cognitive abilities to inhabit almost all environments on Earth. Humans are able to culturally construct, rather than biologically inherit, their occupied climatic niche to a degree unparalleled within the animal kingdom. Precisely, when hominins acquired such an ability remains unknown, and scholars disagree on the extent to which our ancestors shared this same ability. Here, we settle this issue using fine-grained paleoclimatic data, extensive archaeological data, and phylogenetic comparative methods. Our results indicate that whereas early hominins were forced to live under physiologically suitable climatic conditions, with the emergence of H. heidelbergensis, the Homo climatic niche expanded beyond its natural limits, despite progressive harshening in global climates. This indicates that technological innovations providing effective exploitation of cold and seasonal habitats predated the emergence of Homo sapiens. Homo sapiens oversteps our ecological niche limits by means of culture The origin of Homo niche-construction ability is unknown We found Homo species other than H. sapiens were able to construct their own niche
Collapse
Affiliation(s)
- Alessandro Mondanaro
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy.,Department of Earth Science. University of Florence, Florence 50121, Italy
| | - Marina Melchionna
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Mirko Di Febbraro
- Department of Bioscience and Territory. University of Molise, Pesche, Isernia 86090, Italy
| | - Silvia Castiglione
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Philip B Holden
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6BJ, UK
| | - Neil R Edwards
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6BJ, UK
| | - Francesco Carotenuto
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies Charles Darwin, University of Rome La Sapienza, Rome 00185, Italy
| | - Maria Modafferi
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Carmela Serio
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Josè A F Diniz-Filho
- Department of Ecology, ICB, Universidade Federal de Goiás, Goiânia 74968-755, Brasil
| | - Thiago Rangel
- Department of Ecology, ICB, Universidade Federal de Goiás, Goiânia 74968-755, Brasil
| | - Lorenzo Rook
- Department of Earth Science. University of Florence, Florence 50121, Italy
| | - Paul O'Higgins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Penny Spikins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Antonio Profico
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Pasquale Raia
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| |
Collapse
|
23
|
Bastir M, Megía I, Torres-Tamayo N, García-Martínez D, Piqueras FM, Burgos M. Three-dimensional analysis of sexual dimorphism in the soft tissue morphology of the upper airways in a human population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:65-75. [PMID: 31837016 DOI: 10.1002/ajpa.23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Several studies have analyzed the sexual dimorphism of the skeletal cranial airways. This study aimed to quantify the three-dimensional (3D) morphology of the soft tissues of the upper airways in a human population. We addressed hypotheses about morphological features related to respiratory and energetic aspects of nasal sexual dimorphism. METHODS We reconstructed 3D models of 41 male and female soft tissue nasal airways from computed tomography data. We measured 280 landmarks and semilandmarks for 3D-geometric morphometric analyses to test for differences in size and 3D morphology of different functional compartments of the soft tissue airways. RESULTS We found statistical evidence for sexual dimorphism: Males were larger than females. 3D features indicated taller and wider inflow tracts, taller outflow tracts and slightly taller internal airways in males. These characteristics are compatible with greater airflow in males. DISCUSSION The differences in 3D nasal airway morphology are compatible with the respiratory-energetics hypothesis according to which males differ from females because of greater energetic demands. Accordingly, structures related to inflow and outflow of air show stronger signals than structures relevant for air-conditioning.
Collapse
Affiliation(s)
- Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Irene Megía
- Departamento de Prehistoria y Arqueología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nicole Torres-Tamayo
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Francisco M Piqueras
- Servicio de Otorrinolaringología, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Burgos
- Universidad Politécnica de Cartagena, Departamento de Ingeniería Térmica y de Fluidos, Cartagena, Spain
| |
Collapse
|
24
|
Stein MD, Hand SJ, Archer M, Wroe S, Wilson LAB. Quantitatively assessing mekosuchine crocodile locomotion by geometric morphometric and finite element analysis of the forelimb. PeerJ 2020; 8:e9349. [PMID: 32587803 PMCID: PMC7301899 DOI: 10.7717/peerj.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/22/2020] [Indexed: 01/26/2023] Open
Abstract
Morphological shifts observed in the fossil record of a lineage potentially indicate concomitant shifts in ecology of that lineage. Mekosuchine crocodiles of Cenozoic Australia display departures from the typical eusuchian body-plan both in the cranium and postcranium. Previous qualitative studies have suggested that these crocodiles had a more terrestrial habitus than extant crocodylians, yet the capacity of mekosuchine locomotion remains to be tested. Limb bone shape, such as diaphyseal cross-section and curvature, has been related to habitual use and locomotory function across a wide variety of taxa. Available specimens of mekosuchine limbs, primarily humeri, are distinctly columnar compared with those of extant crocodylians. Here we apply a quantitative approach to biomechanics in mekosuchine taxa using both geomorphic morphometric and finite element methods to measure bone shape and estimate locomotory stresses in a comparative context. Our results show mekosuchines appear to diverge from extant semi-aquatic saltwater and freshwater crocodiles in cross-sectional geometry of the diaphysis and generate different structural stresses between models that simulate sprawling and high-walk gaits. The extant crocodylians display generally rounded cross-sectional diaphyseal outlines, which may provide preliminary indication of resistance to torsional loads that predominate during sprawling gait, whereas mekosuchine humeri appear to vary between a series of elliptical outlines. Mekosuchine structural stresses are comparatively lower than those of the extant crocodylians and reduce under high-walk gait in some instances. This appears to be a function of bending moments induced by differing configurations of diaphyseal curvature. Additionally, the neutral axis of structural stresses is differently oriented in mekosuchines. This suggests a shift in the focus of biomechanical optimisation, from torsional to axial loadings. Our results lend quantitative support to the terrestrial habitus hypothesis in so far as they suggest that mekosuchine humeri occupied a different morphospace than that associated with the semi-aquatic habit. The exact adaptational trajectory of mekosuchines, however, remains to be fully quantified. Novel forms appear to emerge among mekosuchines during the late Cenozoic. Their adaptational function is considered here; possible applications include navigation of uneven terrain and burrowing.
Collapse
Affiliation(s)
- Michael D Stein
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanne J Hand
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Archer
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory, School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia
| | - Laura A B Wilson
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Parr WCH, Burnard JL, Wilson PJ, Mobbs RJ. 3D printed anatomical (bio)models in spine surgery: clinical benefits and value to health care providers. JOURNAL OF SPINE SURGERY 2019; 5:549-560. [PMID: 32043006 DOI: 10.21037/jss.2019.12.07] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of three-dimensional printing (3DP) for clinical purposes have grown rapidly over the past decade. Recent advances include the fabrication of patient specific instrumentation, such as drill and cutting guides, patient specific/custom long term implants and 3DP of cellular scaffolds. Spine surgery in particular has seen enthusiastic early adoption of these applications. 3DP as a manufacturing method can be used to mass produce objects of the same design, but can also be used as a cost-effective method for manufacturing unique one-off objects, such as patient specific models and devices. Perhaps the first, and currently most widespread, application of 3DP for producing patient specific devices is the production of patient specific anatomical models, often termed biomodels. The present manuscript focuses on the current state of the art in anatomical (bio)models as used in spinal clinical practice. The biomodels shown and discussed include: translucent and coloured models to aid in identification of extent and margins of pathologies such as bone tumours; dynamic models for implant trial implantation and pre-operative sizing; models that can be disassembled to simulate surgical resection of diseased tissue and subsequent reconstruction. Biomodels can reduce risk to the patient by decreasing surgery time, reducing the probability of the surgical team encountering unexpected anatomy or relative positioning of structures and/or devices, and better pre-operative planning of the surgical workflow including ordered preparation of the necessary instrumentation for multi-step and revision procedures. Conversely, risks can be increased if biomodels are not accurate representations of the anatomy, which can occur if MRI/CT scan data is simply converted into 3DP format without interpretation of what the scan represents in terms of patient anatomy. A review and analysis of the cost-benefits of biomodels shows that biomodels can potentially reduce cost to health care providers if operating room time is reduced by 14 minutes or more.
Collapse
Affiliation(s)
- William C H Parr
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia.,3DMorphic Pty Ltd, Sydney, Australia.,NeuroSpine Surgery Research Group (NSURG), Sydney, Australia
| | - Joshua L Burnard
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia.,NeuroSpine Surgery Research Group (NSURG), Sydney, Australia
| | - Peter John Wilson
- Department of Neurosurgery, Prince of Wales Private, Sydney, Australia
| | - Ralph J Mobbs
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia.,NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Department of Neurosurgery, Prince of Wales Private, Sydney, Australia
| |
Collapse
|
26
|
Krueger KL, Willman JC, Matthews GJ, Hublin JJ, Pérez-Pérez A. Anterior tooth-use behaviors among early modern humans and Neandertals. PLoS One 2019; 14:e0224573. [PMID: 31774826 PMCID: PMC6880970 DOI: 10.1371/journal.pone.0224573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/10/2019] [Indexed: 01/18/2023] Open
Abstract
Early modern humans (EMH) are often touted as behaviorally advanced to Neandertals, with more sophisticated technologies, expanded resource exploitation, and more complex clothing production. However, recent analyses have indicated that Neandertals were more nuanced in their behavioral adaptations, with the production of the Châtelperronian technocomplex, the processing and cooking of plant foods, and differences in behavioral adaptations according to habitat. This study adds to this debate by addressing the behavioral strategies of EMH (n = 30) within the context of non-dietary anterior tooth-use behaviors to glean possible differences between them and their Neandertal (n = 45) counterparts. High-resolution casts of permanent anterior teeth were used to collect microwear textures of fossil and comparative bioarchaeological samples using a Sensofar white-light confocal profiler with a 100x objective lens. Labial surfaces were scanned, totaling a work envelope of 204 x 276 μm for each individual. The microwear textures were examined for post-mortem damage and uploaded to SSFA software packages for surface characterization. Statistical analyses were performed to examine differences in central tendencies and distributions of anisotropy and textural fill volume variables among the EMH sample itself by habitat, location, and time interval, and between the EMH and Neandertal samples by habitat and location. Descriptive statistics for the EMH sample were compared to seven bioarchaeological samples (n = 156) that utilized different tooth-use behaviors to better elucidate specific activities that may have been performed by EMH. Results show no significant differences between the means within the EMH sample by habitat, location, or time interval. Furthermore, there are no significant differences found here between EMH and Neandertals. Comparisons to the bioarchaeological samples suggest both fossil groups participated in clamping and grasping activities. These results indicate that EMH and Neandertals were similar in their non-dietary anterior tooth-use behaviors and provide additional evidence for overlapping behavioral strategies employed by these two hominins.
Collapse
Affiliation(s)
- Kristin L. Krueger
- Department of Anthropology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - John C. Willman
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain
- Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Gregory J. Matthews
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Klinkhamer AJ, Woodley N, Neenan JM, Parr WCH, Clausen P, Sánchez-Villagra MR, Sansalone G, Lister AM, Wroe S. Head to head: the case for fighting behaviour in Megaloceros giganteus using finite-element analysis. Proc Biol Sci 2019; 286:20191873. [PMID: 31594504 DOI: 10.1098/rspb.2019.1873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The largest antlers of any known deer species belonged to the extinct giant deer Megaloceros giganteus. It has been argued that their antlers were too large for use in fighting, instead being used only in ritualized displays to attract mates. Here, we used finite-element analysis to test whether the antlers of M. giganteus could have withstood forces generated during fighting. We compared the mechanical performance of antlers in M. giganteus with three extant deer species: red deer (Cervus elaphus), fallow deer (Dama dama) and elk (Alces alces). Von Mises stress results suggest that M. giganteus was capable of withstanding some fighting loads, provided that their antlers interlocked proximally, and that their antlers were best adapted for withstanding loads from twisting rather than pushing actions, as are other deer with palmate antlers. We conclude that fighting in M. giganteus was probably more constrained and predictable than in extant deer.
Collapse
Affiliation(s)
- Ada J Klinkhamer
- Function, Evolution and Anatomy Research Laboratory, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Nicholas Woodley
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - James M Neenan
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - William C H Parr
- Surgical and Orthopaedic Research Laboratories, School of Clinical Sciences, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Philip Clausen
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Marcelo R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich, Karl Schmid Strasse 4, 8006 Zurich, Switzerland
| | - Gabriele Sansalone
- Function, Evolution and Anatomy Research Laboratory, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Adrian M Lister
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
28
|
Mitchell DR. The anatomy of a crushing bite: The specialised cranial mechanics of a giant extinct kangaroo. PLoS One 2019; 14:e0221287. [PMID: 31509570 PMCID: PMC6738596 DOI: 10.1371/journal.pone.0221287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022] Open
Abstract
The Sthenurinae were a diverse subfamily of short-faced kangaroos that arose in the Miocene and diversified during the Pliocene and Pleistocene. Many species possessed skull morphologies that were relatively structurally reinforced with bone, suggesting that they were adapted to incorporate particularly resistant foods into their diets. However, the functional roles of many unique, robust features of the sthenurine cranium are not yet clearly defined. Here, the finite element method is applied to conduct a comprehensive analysis of unilateral biting along the cheek tooth battery of a well-represented sthenurine, Simosthenurus occidentalis. The results are compared with those of an extant species considered to be of most similar ecology and cranial proportions to this species, the koala (Phascolarctos cinereus). The simulations reveal that the cranium of S. occidentalis could produce and withstand comparatively high forces during unilateral biting. Its greatly expanded zygomatic arches potentially housed enlarged zygomaticomandibularis muscles, shown here to reduce the risk of dislocation of the temporomandibular joint during biting with the rear of a broad, extensive cheek tooth row. This may also be a function of the zygomaticomandibularis in the giant panda (Ailuropoda melanoleuca), another species known to exhibit an enlarged zygomatic arch and hypertrophy of this muscle. Furthermore, the expanded frontal plates of the S. occidentalis cranium form broad arches of bone with the braincase and deepened maxillae that each extend from the anterior tooth rows to their opposing jaw joints. These arches are demonstrated here to be a key feature in resisting high torsional forces during unilateral premolar biting on large, resistant food items. This supports the notion that S. occidentalis fed thick, lignified vegetation directly to the cheek teeth in a similar manner to that described for the giant panda when crushing mature bamboo culms.
Collapse
Affiliation(s)
- D. Rex Mitchell
- Zoology Division, School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shultz DR, Montrey M, Shultz TR. Comparing fitness and drift explanations of Neanderthal replacement. Proc Biol Sci 2019; 286:20190907. [PMID: 31185865 DOI: 10.1098/rspb.2019.0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is a general consensus among archaeologists that replacement of Neanderthals by anatomically modern humans in Europe occurred around 40-35 ka. However, the causal mechanism for this replacement continues to be debated. Proposed models have featured either fitness advantages in favour of anatomically modern humans or invoked neutral drift under various preconditions. Searching for specific fitness advantages in the archaeological record has proven difficult, as these may be obscured, absent or subject to interpretation. To bridge this gap, we rigorously compare the system-level properties of fitness- and drift-based explanations of Neanderthal replacement. Our stochastic simulations and analytical predictions show that, although both fitness and drift can produce replacement, they present important differences in (i) required initial conditions, (ii) reliability, (iii) time to replacement, and (iv) path to replacement (population histories). These results present useful opportunities for comparison with archaeological and genetic data. We find greater agreement between the available empirical evidence and the system-level properties of replacement by differential fitness, rather than by neutral drift.
Collapse
Affiliation(s)
- Daniel R Shultz
- 1 Department of Anthropology, McGill University , Montreal, Quebec , Canada.,2 Department of History, McGill University , Montreal, Quebec , Canada
| | - Marcel Montrey
- 3 Department of Psychology, McGill University , Montreal, Quebec , Canada
| | - Thomas R Shultz
- 3 Department of Psychology, McGill University , Montreal, Quebec , Canada.,4 School of Computer Science, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
30
|
Li Y, Zhao W, Li D, Tao X, Xiong Z, Liu J, Zhang W, Ji A, Tang K, Liu F, Li C. EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population. Hum Genet 2019; 138:681-689. [PMID: 31025105 DOI: 10.1007/s00439-019-02023-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/20/2019] [Indexed: 12/19/2022]
Abstract
In human society, the facial surface is visible and recognizable based on the facial shape variation which represents a set of highly polygenic and correlated complex traits. Understanding the genetic basis underlying facial shape traits has important implications in population genetics, developmental biology, and forensic science. A number of single nucleotide polymorphisms (SNPs) are associated with human facial shape variation, mostly in European populations. To bridge the gap between European and Asian populations in term of the genetic basis of facial shape variation, we examined the effect of these SNPs in a European-Asian admixed Eurasian population which included a total of 612 individuals. The coordinates of 17 facial landmarks were derived from high resolution 3dMD facial images, and 136 Euclidean distances between all pairs of landmarks were quantitatively derived. DNA samples were genotyped using the Illumina Infinium Global Screening Array and imputed using the 1000 Genomes reference panel. Genetic association between 125 previously reported facial shape-associated SNPs and 136 facial shape phenotypes was tested using linear regression. As a result, a total of eight SNPs from different loci demonstrated significant association with one or more facial shape traits after adjusting for multiple testing (significance threshold p < 1.28 × 10-3), together explaining up to 6.47% of sex-, age-, and BMI-adjusted facial phenotype variance. These included EDAR rs3827760, LYPLAL1 rs5781117, PRDM16 rs4648379, PAX3 rs7559271, DKK1 rs1194708, TNFSF12 rs80067372, CACNA2D3 rs56063440, and SUPT3H rs227833. Notably, the EDAR rs3827760 and LYPLAL1 rs5781117 SNPs displayed significant association with eight and seven facial phenotypes, respectively (2.39 × 10-5 < p < 1.28 × 10-3). The majority of these SNPs showed a distinct allele frequency between European and East Asian reference panels from the 1000 Genomes Project. These results showed the details of above eight genes influence facial shape variation in a Eurasian population.
Collapse
Affiliation(s)
- Yi Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhao
- Key Laboratory of Forensic Genetics, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, China
| | - Dan Li
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianming Tao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziyi Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Forensic Genetics, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, China
| | - Wei Zhang
- Key Laboratory of Forensic Genetics, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, China
| | - Anquan Ji
- Key Laboratory of Forensic Genetics, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, China
| | - Kun Tang
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Caixia Li
- Key Laboratory of Forensic Genetics, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing, China.
| |
Collapse
|
31
|
Tsang LR, Wilson LAB, Ledogar J, Wroe S, Attard M, Sansalone G. Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry. Sci Rep 2019; 9:7076. [PMID: 31068662 PMCID: PMC6506530 DOI: 10.1038/s41598-019-43654-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
Most birds of prey (raptors), rely heavily on their talons for capturing prey. However, the relationship between talon shape and the ability to take prey is poorly understood. In this study we investigate whether raptor talons have evolved primarily in response to adaptive pressures exerted by different dietary demands, or if talon morphology is largely constrained by allometric or phylogenetic factors. We focus on the hallux talon and include 21 species in total varying greatly in body mass and feeding ecology, ranging from active predation on relatively large prey to obligate scavenging. To quantify the variation in talon shape and biomechanical performance within a phylogenetic framework, we combined three dimensional (3D) geometric morphometrics, finite element modelling and phylogenetic comparative methods. Our results indicate that relative prey size plays a key role in shaping the raptorial talon. Species that hunt larger prey are characterised by both distinct talon shape and mechanical performance when compared to species that predate smaller prey, even when accounting for phylogeny. In contrast to previous results of skull-based analysis, allometry had no significant effect. In conclusion, we found that raptor talon evolution has been strongly influenced by relative prey size, but not allometry and, that talon shape and mechanical performance are good indicators of feeding ecology.
Collapse
Affiliation(s)
- Leah R Tsang
- Ornithology Collection, Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales, 2010, Australia.,Function, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2351, Australia
| | - Laura A B Wilson
- Palaeontology, Geobiology & Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences. University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin Ledogar
- Function, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2351, Australia.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2351, Australia
| | - Marie Attard
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Gabriele Sansalone
- Function, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
32
|
Marks TN, Maddux SD, Butaric LN, Franciscus RG. Climatic adaptation in human inferior nasal turbinate morphology: Evidence from Arctic and equatorial populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:498-512. [PMID: 30993687 DOI: 10.1002/ajpa.23840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The nasal turbinates directly influence the overall size, shape, and surface area of the nasal passages, and thus contribute to intranasal heat and moisture exchange. However, unlike the encapsulating walls of the nasal cavity, ecogeographic variation in nasal turbinate morphology among humans has not yet been established. Here we investigate variation in inferior nasal turbinate morphology in two populations from climatically extreme environments. MATERIALS AND METHODS Twenty-three linear measurements of the inferior turbinate, nasal cavity walls, and airway passages were collected from CT scans of indigenous modern human crania from Equatorial Africa (n = 35) and the Arctic Circle (n = 35). MANOVA and ANCOVA were employed to test for predicted regional and sex differences in morphology between the samples. RESULTS Significant morphological differences were identified between the two regional samples, with no evidence of significant sexual dimorphism or region-sex interaction effect. Individuals from the Arctic Circle possessed superoinferiorly and mediolaterally larger inferior turbinates compared to Equatorial Africans. In conjunction with the surrounding nasal cavity walls, these differences in turbinate morphology produced airway dimensions that were both consistent with functional expectations and more regionally distinct than either skeletal component independently. CONCLUSION This study documents the existence of ecogeographic variation in human nasal turbinate morphology reflecting climate-mediated evolutionary demands on intranasal heat and moisture exchange. Humans adapted to cold-dry environments exhibit turbinate morphologies that enhance contact between respired air and nasal mucosa to facilitate respiratory air conditioning. Conversely, humans adapted to hot-humid environments exhibit turbinate morphologies that minimize air-to-mucosa contact, likely to minimize airflow resistance and/or facilitate expiratory heat-shedding.
Collapse
Affiliation(s)
- Tarah N Marks
- Department of Anthropology, University of Iowa, Iowa City, Iowa
| | - Scott D Maddux
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | | | | |
Collapse
|
33
|
The evolutionary history of the human face. Nat Ecol Evol 2019; 3:726-736. [DOI: 10.1038/s41559-019-0865-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022]
|
34
|
Bastir M. Big Choanae, Larger Face: Scaling Patterns Between Cranial Airways in Modern Humans and African Apes and Their Significance in Middle and Late Pleistocene Hominin Facial Evolution. ACTA ACUST UNITED AC 2019. [DOI: 10.3166/bmsap-2019-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to understand the ontogenetic and allometric relationships in scaling between the anterior and posterior openings of the cranial airways and facial size, in order to shed light on the mechanisms that might underlie the evolution of a large face and large airways in Middle Pleistocene hominins and Neandertals. Sizes were calculated from 3D landmarks measured on the facial skeleton and airway structures of 403 skulls from two ontogenetic series of H. sapiens and P. troglodytes, an adult sample of gorillas and 11 Middle Pleistocene hominins and Neandertals. RMA regression models were used to compare the patterns in scaling between the anterior and posterior airways in relation to overall facial size. Our results show that the size of the anterior airways correlates more positively with facial size than the size of the posterior airways. This ontogenetic mechanism could explain the large faces and noses in the Neandertal lineage despite the adverse effects of such a phenotype for respiratory air-conditioning in cold climates. A large facial size could be a developmentally constrained consequence of generating airways large enough to provide the necessary oxygen for high energy demand in this large-brained and heavy-bodied hominin lineage.
Collapse
|
35
|
Choy WJ, Parr WCH, Phan K, Walsh WR, Mobbs RJ. 3-dimensional printing for anterior cervical surgery: a review. JOURNAL OF SPINE SURGERY (HONG KONG) 2018; 4:757-769. [PMID: 30714008 PMCID: PMC6330582 DOI: 10.21037/jss.2018.12.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023]
Abstract
Age-related degenerative changes and non-spondylotic pathologies of the cervical spine such as trauma and tumor can lead to compression of neurological structures and result in substantial alteration of the structural anatomy. The end-goal of surgical intervention is to decompress the neural structures which can be achieved via an anterior or a posterior approach, and stabilization of segments to restore stability and alignment. Three-dimensional printing (3DP or Additive Manufacturing) has been applied to the field of medicine, in particular orthopedics and neurosurgery. Coupled with advances of medical imaging such as computed tomography (CT) scans and magnetic resonance imaging (MRI), accurate 3D models of patient anatomy can be produced, and patient-specific implants (PSIs) for complex anatomical reconstruction have all been applied with positive outcomes. 3D printed implants have been applied in particular to the cervical spine predominantly due to the complex and relatively small osteological anatomy and the proximity of important neurovascular structures to the surgical sites. The purpose of this review is to evaluate the current application of 3DP for cervical spinal implants. This includes a review on the available literature on 3D printed PSIs and current available 3D printed "off-the-shelf" (OTS) implants (3D-OTS). Suitable materials for 3DP of spinal implants and the future prospect of cervical implants will be discussed. The review will be concluded with a suggested guide for carrying future studies to evaluate the efficacy and safety of 3DP for cervical spinal implants.
Collapse
Affiliation(s)
- Wen Jie Choy
- University of New South Wales Sydney, Sydney, Australia
- NeuroSpine Surgery Research Group, Sydney, Australia
- Surgical Orthopedics Research Lab, Prince of Wales Randwick, Sydney, Australia
| | - William C. H. Parr
- University of New South Wales Sydney, Sydney, Australia
- NeuroSpine Surgery Research Group, Sydney, Australia
- Surgical Orthopedics Research Lab, Prince of Wales Randwick, Sydney, Australia
- 3D Morphic Sydney, Sydney, Australia
| | - Kevin Phan
- University of New South Wales Sydney, Sydney, Australia
- NeuroSpine Surgery Research Group, Sydney, Australia
- Surgical Orthopedics Research Lab, Prince of Wales Randwick, Sydney, Australia
- Department of Neurosurgery, Prince of Wales Private, Sydney, Australia
| | - William R. Walsh
- University of New South Wales Sydney, Sydney, Australia
- NeuroSpine Surgery Research Group, Sydney, Australia
- Surgical Orthopedics Research Lab, Prince of Wales Randwick, Sydney, Australia
| | - Ralph J. Mobbs
- University of New South Wales Sydney, Sydney, Australia
- NeuroSpine Surgery Research Group, Sydney, Australia
- Surgical Orthopedics Research Lab, Prince of Wales Randwick, Sydney, Australia
- Department of Neurosurgery, Prince of Wales Private, Sydney, Australia
| |
Collapse
|
36
|
Bicknell RDC, Ledogar JA, Wroe S, Gutzler BC, Watson WH, Paterson JR. Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proc Biol Sci 2018; 285:rspb.2018.1935. [PMID: 30355715 DOI: 10.1098/rspb.2018.1935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
The biology of the American horseshoe crab, Limulus polyphemus, is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. Limulus polyphemus is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially Sidneyia inexpectans from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of S. inexpectans show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods. Here, we use advanced computational techniques, specifically a unique application of 3D finite-element analysis (FEA), to model the feeding mechanics of L. polyphemus and S. inexpectans: the first such analyses of a modern horseshoe crab and a fossil arthropod. Results show that mechanical performance of the feeding appendages in both arthropods is remarkably similar, suggesting that S. inexpectans had similar shell-crushing capabilities to L. polyphemus This biomechanical solution to processing shelly food therefore has a history extending over 500 Myr, arising soon after the first shell-bearing animals. Arrival of durophagous predators during the early phase of animal evolution undoubtedly fuelled the Cambrian 'arms race' that involved a rapid increase in diversity, disparity and abundance of biomineralized prey species.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia .,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Justin A Ledogar
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.,Department of Evolutionary Biology, Duke University, Durham, NC 27708, USA
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Benjamin C Gutzler
- Department of Biological Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Winsor H Watson
- Department of Biological Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - John R Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
37
|
Stelzer S, Neubauer S, Hublin JJ, Spoor F, Gunz P. Morphological trends in arcade shape and size in Middle Pleistocene Homo. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:70-91. [PMID: 30351445 DOI: 10.1002/ajpa.23721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Middle Pleistocene fossil hominins, often summarized as Homo heidelbergensis sensu lato, are difficult to interpret due to a fragmentary fossil record and ambiguous combinations of primitive and derived characters. Here, we focus on one aspect of facial shape and analyze shape variation of the dental arcades of these fossils together with other Homo individuals. MATERIALS AND METHODS Three-dimensional landmark data were collected on computed tomographic scans and surface scans of Middle Pleistocene fossil hominins (n = 8), Homo erectus s.l. (n = 4), Homo antecessor (n = 1), Homo neanderthalensis (n = 13), recent (n = 52) and fossil (n = 19) Homo sapiens. To increase sample size, we used multiple multivariate regression to reconstruct complementary arches for isolated mandibles, and explored size and shape differences among maxillary arcades. RESULTS The shape of the dental arcade in H. erectus s.l. and H. antecessor differs markedly from both Neanderthals and H. sapiens. The latter two show subtle but consistent differences in arcade length and width. Shape variation among Middle Pleistocene fossil hominins does not exceed the amount of variation of other species, but includes individuals with more primitive and more derived morphology, all more similar to Neanderthals and H. sapiens than to H. erectus s.l. DISCUSSION Although our results cannot reject the hypothesis that the Middle Pleistocene fossil hominins belong to a single species, their shape variation comprises a more primitive morph that represents a likely candidate for the shape of the last common ancestor of Neanderthals and H. sapiens, and a more derived morph resembling Neanderthals. The arcade shape difference between Neanderthals and H. sapiens might be related to different ways to withstand mechanical stress.
Collapse
Affiliation(s)
- Stefanie Stelzer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fred Spoor
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Earth Sciences, The Natural History Museum, London, United Kingdom.,Department of Anthropology, University College London (UCL), London, United Kingdom
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|