1
|
Jin L, Su Z, Huang S, Tan Y, Mrema IG, Chen Y. Expression and significance of histone methyltransferase SET domain containing 2 with histone H3 lysine 36 trimethylation in mouse hepatic oval cells differentiated into bile duct epithelial cells in vitro. Mol Med Rep 2023; 27:69. [PMID: 36799151 PMCID: PMC9942252 DOI: 10.3892/mmr.2023.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
The present study aimed to identify the function and expression of trimethylated protein histone H3 lysine 36 (H3K36)me3 and the upstream specific enzyme histone methyltransferase SET domain containing 2 (SETD2), during the differentiation of hepatic oval cells (HOCs) into cholangiocytes in mice following partial liver resection and fed with 2‑acetamidofluorene. HOCs were isolated from Kunming male mice fed with 2‑acetamidofluorene for 10 days. Their liver tissues were then isolated following partial liver resection and another week of 2‑acetamidofluorene treatment. HOCs were collected following a two‑step enzyme digestion procedure involving protease E and collagenase 4. The target cells were cultured in DMEM/F12 supplemented with 10 µg/ml EGF, 5 µg/ml stem cell growth factor and 5 µg/ml leukemia inhibitory factor. Target cells using the markers OV‑6, CK‑19, SETD2, H3K36me3, were detected with flow cytometry and immunofluorescence microscopy; reverse transcription‑quantitative PCR and western blotting were used to quantify the protein levels of SETD2 and H3K36me3. The retrieved primary hepatocytes developed into cholangiocytes with increasing CK‑19 and decreasing OV‑6 expression in each subsequent passage, whereas the SETD2 and H3K36me3 levels gradually increased, suggesting the possible involvement of both of these factors in differentiation.
Collapse
Affiliation(s)
- Liquan Jin
- First Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Ziting Su
- First Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Shan Huang
- First Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Yunbo Tan
- First Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Isack George Mrema
- Clinical Medical College, Dali University, Dali, Yunnan 671000, P.R. China
| | - Yiming Chen
- First Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China,Correspondence to: Dr Yiming Chen, First Department of General Surgery, The First Affiliated Hospital of Dali University, 32 Carlsberg Avenue, Dali, Yunnan 671000, P.R. China, E-mail:
| |
Collapse
|
2
|
Clerbaux LA, Manco R, Van Hul N, Bouzin C, Sciarra A, Sempoux C, Theise ND, Leclercq IA. Invasive Ductular Reaction Operates Hepatobiliary Junctions upon Hepatocellular Injury in Rodents and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1569-1581. [PMID: 31108103 DOI: 10.1016/j.ajpath.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Manco
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Caroline Bouzin
- Imaging Platform, Institute of clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amedeo Sciarra
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
3
|
Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell Immunol 2018; 326:52-59. [PMID: 28860007 DOI: 10.1016/j.cellimm.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
|
4
|
Tan EK, Shuh M, Francois-Vaughan H, Sanders JA, Cohen AJ. Negligible Oval Cell Proliferation Following Ischemia-Reperfusion Injury With and Without Partial Hepatectomy. Ochsner J 2017; 17:31-37. [PMID: 28331445 PMCID: PMC5349633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Hepatic oval cells proliferate to replace hepatocytes and restore liver function when hepatocyte proliferation is compromised or inadequate. Exposure to chemical carcinogens, severe liver steatosis, and partial hepatectomy has been used in animal models to demonstrate the role of oval cells in liver regeneration. Ischemia-reperfusion injury (IRI) causes hepatocellular damage and death in the absence of confounding chemical toxicity; however, oval cell induction by IRI has not been demonstrated in vivo. We examine oval cell induction following partial IRI. METHODS Wistar rats were subjected to 2 IRI protocols: 70% warm liver ischemia for 30 minutes followed by reperfusion or 70% warm liver ischemia for 30 minutes with partial hepatectomy of the nonischemic lobes followed by reperfusion. Liver injury was monitored by serum alanine aminotransferase (ALT) at 1 day and 7 days of reperfusion. Oval cell proliferation was monitored by indirect immunofluorescence staining using the surface markers BD.2 and Thy-1. Cellular proliferation was quantified by 5-ethynyl-2'-deoxyuridine (EdU) incorporation in vivo. RESULTS Serum ALT elevation was only observed at the 1-day time point in the IRI with partial hepatectomy model. Oval cell marker expression was restricted to the biliary structures in both the ischemic and the nonischemic control lobes. Oval cell induction, measured by changes in the frequency of BD.2 and Thy-1 expression and EdU incorporation, was not significantly altered by IRI. CONCLUSION In both mild and moderate IRI models, we did not find evidence of oval cell induction or proliferation. EdU staining was restricted to hepatocytes, suggesting that liver regeneration following IRI is mediated by hepatocyte proliferation.
Collapse
Affiliation(s)
- Ek Khoon Tan
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
- Department of General Surgery, Singapore General Hospital, Singapore
| | - Maureen Shuh
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | | | - Jennifer A. Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University, Providence, RI
| | - Ari J. Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
5
|
Alison MR, Lin WR. Diverse routes to liver regeneration. J Pathol 2016; 238:371-374. [PMID: 26510495 DOI: 10.1002/path.4667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
The liver's ability to regenerate is indisputable; for example, after a two-thirds partial hepatectomy in rats all residual hepatocytes can divide, questioning the need for a specific stem cell population. On the other hand, there is a potential stem cell compartment in the canals of Hering, giving rise to ductular reactions composed of hepatic progenitor cells (HPCs) when the liver's ability to regenerate is hindered by replicative senescence, but the functional relevance of this response has been questioned. Several papers have now clarified regenerative mechanisms operative in the mouse liver, suggesting that the liver is possibly unrivalled in its versatility to replace lost tissue. Under homeostatic conditions a perivenous population of clonogenic hepatocytes operates, whereas during chronic damage a minor population of periportal clonogenic hepatocytes come to the fore, while the ability of HPCs to completely replace the liver parenchyma has now been shown.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, London, UK
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Alison MR, Lin WR. Regenerative medicine: Hepatic progenitor cells up their game in the therapeutic stakes. Nat Rev Gastroenterol Hepatol 2015; 12:610-611. [PMID: 26441248 DOI: 10.1038/nrgastro.2015.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bipotential hepatic progenitor cells (HPCs) are recognized as making modest contributions to hepatocyte regeneration, though never credited with major liver repopulation. A new study in mice demonstrates HPCs can make a massive contribution to hepatocyte replacement, suggesting HPCs have the potential to be an effective cell therapy for liver failure.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Tumour Biology, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
8
|
Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39:673-85. [PMID: 24528093 DOI: 10.1111/apt.12645] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/24/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND As morbidity and mortality from liver disease continues to rise, new strategies are necessary. Liver transplantation is not only an expensive resource committing the patient to lifelong immunosuppression but also suitable donor organs are in short supply. Against this background, autologous stem cell therapy has emerged as a potential treatment option. AIM To evaluate if it is possible to make a judgement on the safety, feasibility and effect of autologous stem cell therapy for patients with liver disease. METHODS MEDLINE and EMBASE were searched up until July 2013 to identify studies where autologous stem cell therapy was administered to patients with liver disease. RESULTS Of 1668 studies identified, 33 were eligible for inclusion evaluating a median sample size of 10 patients for a median follow-up of 6 months. Although there was marked heterogeneity between studies with regards to type, dose and route of delivery of stem cell, the treatment was shown to be safe and feasible largely when a peripheral route of administration was used. Of the studies which also looked at biochemical outcome, statistically significant improvement in liver function tests was seen in 16 studies post-treatment. CONCLUSION Although autologous stem cell therapy is a much needed possibility in the treatment of liver disease, further robust clinical trials and collaborative protocols are required.
Collapse
Affiliation(s)
- J K Moore
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
9
|
Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury. PLoS One 2013; 8:e77732. [PMID: 24204940 PMCID: PMC3799633 DOI: 10.1371/journal.pone.0077732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/08/2013] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia, while causing neuronal injury, can activate innate neuroprotective mechanisms, minimizing neuronal death. In this report, we demonstrate that experimental cerebral ischemia/reperfusion injury in the mouse causes upregulation of the secretory protein trefoil factor 3 (TFF3) in the hepatocyte in association with an increase in serum TFF3. Partial hepatectomy (~60% liver resection) immediately following cerebral injury significantly lowered the serum level of TFF3, suggesting a contribution of the liver to the elevation of serum TFF3. Compared to wild-type mice, TFF3-/- mice exhibited a significantly higher activity of caspase 3 and level of cell death in the ischemic cerebral lesion, a larger fraction of cerebral infarcts, and a smaller fraction of the injured cerebral hemisphere, accompanied by severer forelimb motor deficits. Intravenous administration of recombinant TFF3 reversed changes in cerebral injury and forelimb motor function due to TFF3 deficiency. These observations suggest an endocrine neuroprotective mechanism involving TFF3 from the liver in experimental cerebral ischemia/reperfusion injury.
Collapse
|
10
|
Liu SQ, Tefft BJ, Roberts DT, Zhang LQ, Ren Y, Li YC, Huang Y, Zhang D, Phillips HR, Wu YH. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol 2012; 303:H1446-58. [DOI: 10.1152/ajpheart.00362.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myocardial ischemia (MI) activates innate cardioprotective mechanisms, enhancing cardiomyocyte tolerance to ischemia. Here, we report a MI-activated liver-dependent mechanism for myocardial protection. In response to MI in the mouse, hepatocytes exhibited 6- to 19-fold upregulation of genes encoding secretory proteins, including α-1-acid glycoprotein (AGP)2, bone morphogenetic protein-binding endothelial regulator (BMPER), chemokine (C-X-C motif) ligand 13, fibroblast growth factor (FGF)21, neuregulin (NRG)4, proteoglycan 4, and trefoil factor (TFF)3. Five of these proteins, including AGP2, BMPER, FGF21, NRG4, and TFF3, were identified as cardioprotective proteins since administration of each protein significantly reduced the fraction of myocardial infarcts (37 ± 9%, 34 ± 7%, 32 ± 8%, 39 ± 6%, and 31 ± 7%, respectively, vs. 48 ± 7% for PBS at 24 h post-MI). The serum level of the five proteins elevated significantly in association with protein upregulation in hepatocytes post-MI. Suppression of a cardioprotective protein by small interfering (si)RNA-mediated gene silencing resulted in a significant increase in the fraction of myocardial infarcts, and suppression of all five cardioprotective proteins with siRNAs further intensified myocardial infarction. While administration of a single cardioprotective protein mitigated myocardial infarction, administration of all five proteins furthered the beneficial effect, reducing myocardial infarct fractions from PBS control values from 46 ± 6% (5 days), 41 ± 5% (10 days), and 34 ± 4% (30 days) to 35 ± 5%, 28 ± 5%, and 24 ± 4%, respectively. These observations suggest that the liver contributes to cardioprotection in MI by upregulating and releasing protective secretory proteins. These proteins may be used for the development of cardioprotective agents.
Collapse
Affiliation(s)
- Shu Q. Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Brandon J. Tefft
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Derek T. Roberts
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Li-Qun Zhang
- Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Yupeng Ren
- Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois; and
| | - Yong Huang
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois; and
| | - Di Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Harry R. Phillips
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Yu H. Wu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| |
Collapse
|
11
|
Dodd DE, Pluta LJ, Sochaski MA, Wall HG, Thomas RS. Subchronic hepatotoxicity evaluation of hydrazobenzene in Fischer 344 rats. Int J Toxicol 2012; 31:564-71. [PMID: 23134713 DOI: 10.1177/1091581812465322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Male F344 rats were exposed to hydrazobenzene (HZB) by dietary feed at concentrations of 0, 5, 20, 80, 200, or 300 ppm for 5 days, 2 weeks, 4 weeks, or 13 weeks duration. End points evaluated included clinical observations, body weights, liver weights, serum chemistry, blood HZB, gross pathology, and liver histopathology. There were no HZB exposure-related clinical signs of toxicity. During study weeks 8 through 13, body weight means in rats of the 300 ppm group were 6% lower compared to control rat means. Serum alkaline phosphatase concentrations were decreased in rats of the 300 ppm group at all time points. Relative (to body weight) liver weight increases were observed in rats of the 200 and 300 ppm groups following 5 days (300 ppm only), 2 weeks, 4 weeks, and 13 weeks of exposure. Following 13 weeks of exposure, microscopic findings in the liver were observed only in rats of the 200 and 300 ppm groups and consisted of hypertrophy, macrovesiculation, eosinophilic granular cytoplasm, and bile duct duplication. Blood HZB concentrations ranged from 0.002 to 0.006 µg/mL in rats of the 200 or 300 ppm groups. A no observed effect level of 80 ppm (4.80 mg/kg per d) was selected based on the observation of microscopic hepatocyte alterations at ≥200 ppm HZB.
Collapse
Affiliation(s)
- Darol E Dodd
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
12
|
Schievenbusch S, Sauer E, Curth HM, Schulte S, Demir M, Toex U, Goeser T, Nierhoff D. Neighbor of Punc E 11: Expression Pattern of the New Hepatic Stem/Progenitor Cell Marker During Murine Liver Development. Stem Cells Dev 2012; 21:2656-66. [DOI: 10.1089/scd.2011.0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Elisabeth Sauer
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Harald-Morten Curth
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Sigrid Schulte
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Ulrich Toex
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
|
14
|
Abstract
Liver progenitor cells are activated in most human liver diseases. The dynamics, and therefore subpopulations, of progenitor cells are, however, different in acute versus chronic hepatocytic diseases and in biliary diseases. The role of Wnt and Notch signaling pathways in activation and differentiation of human hepatic progenitor cells holds great promise because they can be manipulated by drugs. Hepatocytic differentiation requires inhibition of Notch (numb switched on), whereas cholangiocytic differentiation requires Notch activation. In this way, the patients' own regenerative response could be supported, which could eventually even avoid the need for transplantation in several patients.
Collapse
|
15
|
Gennero L, Roos MA, Sperber K, Denysenko T, Bernabei P, Calisti GF, Papotti M, Cappia S, Pagni R, Aimo G, Mengozzi G, Cavallo G, Reguzzi S, Pescarmona GP, Ponzetto A. Pluripotent plasticity of stem cells and liver repopulation. Cell Biochem Funct 2010; 28:178-89. [PMID: 20232487 DOI: 10.1002/cbf.1630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra-hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self-repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio-artificial liver-assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver.
Collapse
Affiliation(s)
- Luisa Gennero
- Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pritchard MT, Nagy LE. Hepatic fibrosis is enhanced and accompanied by robust oval cell activation after chronic carbon tetrachloride administration to Egr-1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2743-52. [PMID: 20395449 DOI: 10.2353/ajpath.2010.091186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The transcription factor early growth response (Egr)-1 regulates the expression of genes required for execution of the wound healing response. Multiple cycles of injury, coupled to incomplete wound healing, lead to fibrosis. Therefore, we hypothesized that Egr-1 is required for the development of hepatic fibrosis. To test this hypothesis, we exposed wild-type and egr-1(-/-) mice to acute or chronic carbon tetrachloride (CCl(4)). Acute CCl(4) exposure established a profibrotic milieu in the liver, including activation of hepatic stellate cells as well as expression of type 1 collagen genes and tissue inhibitor of matrix metalloproteinase 1 in both wild-type and egr-1(-/-) mice. This response was exacerbated in egr-1(-/-) mice. After chronic CCl(4) exposure, hepatic fibrosis was established in both genotypes; however, the fibrotic response was profoundly worsened in Egr-1-deficient mice. Importantly, enhanced fibrosis in egr-1(-/-) mice was accompanied by a robust activation of the oval cell response, suggesting more severe liver injury and/or reduced hepatocyte proliferation when compared with wild-type mice. Hepatic expression of genes indicative of oval cell activation, as well as the number of cells expressing A6, a mouse oval cell marker, was greater in egr-1(-/-) mice. Taken together, these data reveal novel roles for Egr-1 as a negative regulator of both CCl(4)-induced hepatic fibrosis and the oval cell response.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pathobiology-NE40, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
17
|
Dollé L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA, Geerts A. The quest for liver progenitor cells: a practical point of view. J Hepatol 2010; 52:117-29. [PMID: 19913937 DOI: 10.1016/j.jhep.2009.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chronic liver diseases can lead to hepatic dysfunction with organ failure. At present, orthotopic liver transplantation represents the benchmark therapy of terminal liver disease. However this practice is limited by shortage of donor grafts, the need for lifelong immunosuppression and very demanding state-of-the-art surgery. For this reason, new therapies have been developed to restore liver function, primarily in the form of hepatocyte transplantation and artificial liver support devices. While already offered in very specialized centers, both of these modalities still remain experimental. Recently, liver progenitor cells have shown great promise for cell therapy, and consequently they have attracted a lot of attention as an alternative or supportive tool for liver transplantation. These liver progenitor cells are quiescent in the healthy liver and become activated in certain liver diseases in which the regenerative capacity of mature hepatocytes and/or cholangiocytes is impaired. Although reports describing liver progenitor cells are numerous, they have not led to a consensus on the identity of the liver progenitor cell. In this review, we will discuss some of the characteristics of these cells and the different ways that have been used to obtain these from rodents. We will also highlight the challenges that researchers are facing in their quest to identify and use liver progenitor cells.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Cell Biology, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
The role of stem cells in liver repair and fibrosis. Int J Biochem Cell Biol 2009; 43:222-9. [PMID: 19914396 DOI: 10.1016/j.biocel.2009.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/20/2009] [Accepted: 11/06/2009] [Indexed: 11/21/2022]
Abstract
In response to liver injury or loss of liver mass, proliferation of mature liver cells is the first-line defense to restore liver homeostasis. In the setting of chronic liver disease, however, the ability of hepatocytes and cholangiocytes to proliferate is blocked and small bipotential progenitor cells are activated. Recent studies have established the role of these facultative progenitor cells in injury repair and fibrosis in patients with chronic liver disease and in experimental models. Several signaling pathways linking progenitor cell activation and fibrosis have been identified, and there is increasing evidence that cross-talk (both physical and via soluble factors) between progenitor cells and myofibroblasts is essential for both fibrosis and parenchymal regeneration. Even more exciting are new data examining the cellular components of the progenitor cell niche, demonstrating that both resident liver cells and circulating cells from the bone marrow can function as stem cells, suggesting that there is a surprising degree of phenotypic plasticity such that progenitor cells can contribute to the myofibroblast population and vice versa. We highlight here recent findings from the literature demonstrating the cellular and functional complexity of the progenitor cell niche, and emphasize some of the important questions that remain to drive future research.
Collapse
|
19
|
Lin Y, Yan L, Cheng N. Application of bone marrow cells: A novel therapy for bile leak? Med Hypotheses 2009; 73:374-6. [DOI: 10.1016/j.mehy.2009.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/28/2022]
|
20
|
Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y. Bone morphogenetic protein-4 induced rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 2009; 220:72-81. [PMID: 19229878 DOI: 10.1002/jcp.21731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic progenitor cells are local stem cells in the liver and they can be differentiated into either hepatocytes or cholangiocytes depending on different stimulations. These stimulations include extracellular growth factors and intracellular transcription factors. Bone morphogenetic protein 4 (BMP4) is a member of transforming growth factor beta (TGF-beta) superfamily and was first identified as growth factor to induce ectopic bone formation from skeletal muscle. Role of BMP4 in the liver is still unclear especially its role in hepatic progenitor cells (HPCs) differentiation. BMP4 was used to stimulate rat HPCs (WB-F344 cells) and differentiation of WB-F344 cells was investigated by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Both adenovirus delivered BMP4 and recombinant BMP4 were able to induce expression of hepatocyte markers such as albumin, TAT-1, and G6Pase but not cholangiocyte markers such as beta4-integrin and CK19. BMP4 induced differentiation of WB-F344 cells toward hepatocytes was mediated by increase in phosphorylation of Smad1 and ERK1/2. Moreover, BMP4 also stimulated expression of transcription factor--C/EBP-alpha, which involved in differentiation of WB-F344 cells toward hepatocytes. BMP4 is able to stimulate WB-F344 cells differentiation toward hepatocyte lineage.
Collapse
Affiliation(s)
- Jianghong Fan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217:282-98. [PMID: 18991329 DOI: 10.1002/path.2453] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St Bartholomew's Hospital and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
22
|
Denham M, Conley B, Olsson F, Cole TJ, Mollard R. Stem cells: an overview. ACTA ACUST UNITED AC 2008; Chapter 23:Unit 23.1. [PMID: 18228471 DOI: 10.1002/0471143030.cb2301s28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stem cells are specialized cells that possess a capacity to undergo self-renewal while at the same time having the ability to give rise to at least one or more differentiated or mature cell type. They therefore represent a fundamental cornerstone during the life of all vertebrates, playing central roles in the production of new and replacement cells for tissues during development and homeostasis, including repair following disease or injury. This unit is a review of stem cells, their roles in development, and their potentials as therapeutic agents.
Collapse
|
23
|
Kubota K, Soeda J, Misawa R, Mihara M, Miwa S, Ise H, Takahashi M, Miyagawa S. Bone marrow-derived cells fuse with hepatic oval cells but are not involved in hepatic tumorigenesis in the choline-deficient ethionine-supplemented diet rat model. Carcinogenesis 2008; 29:448-54. [DOI: 10.1093/carcin/bgm279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Knight B, Lim R, Yeoh GC, Olynyk JK. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol 2007; 47:826-33. [PMID: 17923165 DOI: 10.1016/j.jhep.2007.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 06/13/2007] [Accepted: 06/26/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIMS Several previous studies have suggested that interferon gamma (IFNgamma) may play a key role during hepatic progenitor cell (HPC) mediated liver regeneration. However to date, no studies have directly tested the ability of IFNgamma to mediate the HPC response in an in vivo model. METHODS/RESULTS Administration of IFNgamma to mice receiving a choline deficient, ethionine (CDE) supplemented diet to induce chronic injury resulted in an augmented HPC response. This was accompanied by increased inflammation, altered cytokine expression and hepatic fibrosis. Serum alanine aminotransferase activity, hepatocyte apoptosis and Bak staining were significantly increased in IFNgamma-treated, CDE-fed mice, demonstrating that liver damage was exacerbated in these animals. Administration of IFNgamma to control diet fed mice did not induce liver damage, however it did stimulate hepatic inflammation. CONCLUSIONS Our results suggest that IFNgamma increases the HPC response to injury by stimulating hepatic inflammation and aggravating liver damage. This is accompanied by an increase in hepatic fibrogenesis, supporting previous reports which suggest that the HPC response may drive fibrogenesis during chronic liver injury.
Collapse
Affiliation(s)
- Belinda Knight
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital Campus, PO Box 480, Fremantle 6959, WA, Australia
| | | | | | | |
Collapse
|
25
|
Aydin IT, Tokcaer Z, Dalgic A, Konu O, Akcali KC. Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration. J Gastroenterol Hepatol 2007; 22:2181-8. [PMID: 18031378 DOI: 10.1111/j.1440-1746.2006.04731.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIM The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. METHODS Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. RESULTS The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. CONCLUSION The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration.
Collapse
Affiliation(s)
- Iraz T Aydin
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
26
|
Alison MR, Choong C, Lim S. Application of liver stem cells for cell therapy. Semin Cell Dev Biol 2007; 18:819-26. [PMID: 17997335 DOI: 10.1016/j.semcdb.2007.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 02/06/2023]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, ICMS, 4 Newark Street, London E1 2AT, UK.
| | | | | |
Collapse
|
27
|
Abstract
Numerous studies point to the fact that liver tumors are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the intestinal mucosa and epidermis, in which a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, as these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumors, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, though it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover the existence of bipotential hepatic progenitor cells (HPCs), along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Irrespective of which target cell is involved, cell proliferation at the time of carcinogen exposure is pivotal for "fixation" of the genotoxic injury into a heritable form. Taking this view, any proliferative cell in the liver can be susceptible to neoplastic transformation. Thus, hepatocytes are implicated in many instances of HCC, direct injury to the biliary epithelium implicates cholangiocytes in some cases of CC, whereas HPC/oval cell activation accompanies very many instances of liver damage irrespective of etiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that HPC proliferation may be merely a bystander effect of this toxicity. An indepth discussion of causes of cancer in the liver are beyond the scope of this review, but infectious agents (e.g., hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus [HBV]), but in also causing chronic inflammation (hepatitis C virus [HCV] and HBV). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors, and DNA-damaging agents (reactive oxygen and nitrogen species produced to fight infection), will lead to permanent genetic changes in proliferating cells. The upregulation of the transcription factor nuclear factor kappaB (NF-kappaB) in transformed hepatocytes, through the paracrine action of tumor necrosis factor-alpha from neighboring endothelia and inflammatory cells, may be critical for tumor progression given the mitogenic and anti-apoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
|
28
|
Alison MR. Liver stem cells: implications for hepatocarcinogenesis. STEM CELL REVIEWS 2007. [PMID: 17142862 DOI: 10.1385/scr: 1: 3: 253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies point to the fact that liver tumors are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the intestinal mucosa and epidermis, in which a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, as these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumors, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, though it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover the existence of bipotential hepatic progenitor cells (HPCs), along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Irrespective of which target cell is involved, cell proliferation at the time of carcinogen exposure is pivotal for "fixation" of the genotoxic injury into a heritable form. Taking this view, any proliferative cell in the liver can be susceptible to neoplastic transformation. Thus, hepatocytes are implicated in many instances of HCC, direct injury to the biliary epithelium implicates cholangiocytes in some cases of CC, whereas HPC/oval cell activation accompanies very many instances of liver damage irrespective of etiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that HPC proliferation may be merely a bystander effect of this toxicity. An indepth discussion of causes of cancer in the liver are beyond the scope of this review, but infectious agents (e.g., hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus [HBV]), but in also causing chronic inflammation (hepatitis C virus [HCV] and HBV). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors, and DNA-damaging agents (reactive oxygen and nitrogen species produced to fight infection), will lead to permanent genetic changes in proliferating cells. The upregulation of the transcription factor nuclear factor kappaB (NF-kappaB) in transformed hepatocytes, through the paracrine action of tumor necrosis factor-alpha from neighboring endothelia and inflammatory cells, may be critical for tumor progression given the mitogenic and anti-apoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
|
29
|
Knight B, Akhurst B, Matthews VB, Ruddell RG, Ramm GA, Abraham LJ, Olynyk JK, Yeoh GC. Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. J Hepatol 2007; 46:134-41. [PMID: 17112626 DOI: 10.1016/j.jhep.2006.08.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/24/2006] [Accepted: 08/21/2006] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIMS Liver regeneration following chronic injury is associated with inflammation, the proliferation of liver progenitor (oval) cells and fibrosis. Previous studies identified interferon-gamma as a key mediator of oval cell proliferation. Interferon-gamma is known to regulate Th1 cell activities during immune challenge. Therefore, we hypothesised that progenitor cell-mediated regeneration is associated with a Th1 immune response. METHODS C57Bl/6 (normal Th1 response) and BALB/c mice (deficient in Th1 signalling) were placed on a carcinogenic diet to induce liver injury, progenitor cell proliferation and fibrosis. RESULTS Serum transaminases and mortality were elevated in BALB/c mice fed the diet. Proliferation of liver progenitor cells was significantly attenuated in BALB/c animals. The pattern of cytokine expression and inflammation differed between strains. Liver fibrosis and hepatic stellate cell activation were significantly inhibited in BALB/c mice compared to C57Bl/6. In addition, interferon-gamma knockout mice also showed reduced fibrosis compared to wild type. These findings are in contrast to published results, in which interferon-gamma is shown to be anti-fibrogenic. CONCLUSIONS Our data demonstrate that the hepatic progenitor cell response to a CDE diet is inhibited in mice lacking Th1 immune signalling and further show that this inhibition is associated with reduced liver fibrosis.
Collapse
Affiliation(s)
- Belinda Knight
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Alma Rd., Fremantle, WA 6101, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Knight B, Matthews VB, Olynyk JK, Yeoh GC. Jekyll and Hyde: evolving perspectives on the function and potential of the adult liver progenitor (oval) cell. Bioessays 2006; 27:1192-202. [PMID: 16237666 DOI: 10.1002/bies.20311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The liver progenitor cell (LPC) has enormous potential for use in cell therapy to treat liver disease. Since liver regenerates readily from pre-existing hepatocytes, a role for LPCs and, indeed, their existence have been questioned. Research during the last decade has established that LPCs are an important alternative source of cells for liver regeneration. Their utility for cell therapy lies in their ability to generate both hepatocytes and cholangiocytes. However, they are observed in liver diseases that often lead to cancer and there is experimental evidence that implicates LPCs as the source of tumours. This article provides a brief history of the studies that established the functional importance of LPCs in liver disease. It focuses on mouse models that have led to the identification of factors that regulate LPC growth and differentiation and discusses LPCs derived from different sources. Recent promising results from both in vitro and vivo studies suggest that LPCs could be useful for cell therapy. In the context of liver disease, LPCs may indeed be the cell of the future and understandably "our favourite cell".
Collapse
Affiliation(s)
- Belinda Knight
- School of Medicine and Pharmacology, University of Western Australia
| | | | | | | |
Collapse
|
31
|
Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol 2006; 291:G45-54. [PMID: 16769813 DOI: 10.1152/ajpgi.00465.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic progenitor cells play a major role in regenerating diseased liver. In rodents, progenitors forming hepatocytes or cholangiocytes are identified by the stem cell marker Thy-1. The aim of this study was to ascertain whether progenitor cells expressing Thy-1 could be identified in human fetal liver. Midtrimester human fetal liver was immunostained for Thy-1, cytokeratins 18 and 19, vimentin, CD34, CD45, and fibrinogen. Thy-1+ and Thy-1+CD34+ populations were purified using fluorescence-activated cell sorting (FACS). Immunofluorescence and mRNA expression were used to examine the bipotential nature of purified stem cells. We found that Thy-1+ cells were concentrated in portal tracts but were also scattered in parenchyma. In FACS-prepared cells, 0.18-3.08% (median 0.65%, n = 14) of cells were Thy-1+. Immunophenotyping revealed that some Thy-1+ cells coexpressed cytokeratins 18 and 19, others, fibrinogen and cytokeratin 19. RT-PCR demonstrated that Thy-1+ cells expressed mRNA for Thy-1, cytokeratin 18, and cytokeratin 19, and Thy-1+CD34+ cells expressed mRNA for alpha-fetoprotein, transferrin, and hepatocyte nuclear factor-4alpha. Thy-1+ cells were identified in fetal liver. These cells expressed several lineage markers, including coexpression of biliary and hepatocellular proteins and mRNA. These data suggest that Thy-1 is a marker of liver stem cells in human fetal liver.
Collapse
Affiliation(s)
- Neil M Masson
- Tissue Injury and Repair Group, Department of Clinical and Surgical Sciences (Surgery), University of Edinburgh Medical School, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Baccarani U, Adani GL, Sainz M, Donini A, Risaliti A, Bresadola F. Human hepatocyte transplantation for acute liver failure: state of the art and analysis of cell sources. Transplant Proc 2006; 37:2702-4. [PMID: 16182789 DOI: 10.1016/j.transproceed.2005.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Liver transplantation is the only treatment available for acute liver failure. However, mortality rates remain high because of the shortage of donor organs. Indeed up to 20% of patients with acute liver failure may survive without transplantation. In the last two decades, research has focused on the development of alternative or supportive measures to deal with acute liver failure; one of the most studied is hepatocyte transplantation, because it is thought that the function of the liver can only be replaced with a biological substrate characterized by functioning liver cells. Hepatocyte transplantation has been successful in many animal models of acute liver failure, although only several clinical attempts have been made in humans with encouraging but not yet convincing results, mainly because of the lack of a reliable source of live liver cells. Allogenic and xenogenic fresh or cryopreserved hepatocytes have been tested. Recent research has focused on fetal hepatocytes and progenitor liver cells of both hepatic and bone marrow origin. The ability to preserve and bank human hepatocytes would allow pooling of cells from multiple donors to increase the numbers for transplantation. The development of a reliable and large-scale available source of live liver cells would probably have a major impact on the introduction of hepatocyte transplantation in clinical practice.
Collapse
Affiliation(s)
- U Baccarani
- Department of Surgery and Transplantation, University Hospital Udine, Udine, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Alison MR, Lovell MJ. Liver cancer: the role of stem cells. Cell Prolif 2005; 38:407-21. [PMID: 16300653 PMCID: PMC6496116 DOI: 10.1111/j.1365-2184.2005.00354.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 07/28/2005] [Indexed: 01/12/2023] Open
Abstract
Studies of aggregation chimaeras and X-linked polymorphisms strongly suggest that liver tumours are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the gut mucosa and epidermis, where a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, since these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumours, hepatocellular carcinoma and cholangiocarcinoma, is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, although it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover, the existence of bipotential hepatic progenitor cells, along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Cell proliferation at the time of carcinogen exposure is pivotal for 'fixing' any genotoxic injury into a heritable form, thus any proliferative cell in the liver can be susceptible to neoplastic transformation. Hepatocytes are implicated in many instances of hepatocellular carcinoma, direct injury to the biliary epithelium implicates cholangiocytes in some cases of cholangiocarcinoma, while hepatic progenitor cell/oval cell activation accompanies many instances of liver damage irrespective of aetiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that hepatic progenitor cell proliferation may be merely a bystander effect of this toxicity. An in-depth discussion of causes of cancer in the liver is beyond the scope of this review, but infectious agents (e.g. hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus), but also in causing chronic inflammation (hepatitis C and B viruses). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors and DNA-damaging agents (reactive oxygen and nitrogen species--produced to fight infection), will lead to permanent genetic changes in proliferating cells. Up-regulation of the transcription factor NF-kappaB in transformed hepatocytes, through the paracrine action of TNF-alpha from neighbouring endothelia and inflammatory cells, may be critical for tumour progression given the mitogenic and antiapoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
Affiliation(s)
- M R Alison
- Cancer Research UK and Queen Mary University of London, London, UK.
| | | |
Collapse
|
34
|
Knight B, Matthews VB, Akhurst B, Croager EJ, Klinken E, Abraham LJ, Olynyk JK, Yeoh G. Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver progenitor (oval) cell response to chronic liver injury. Immunol Cell Biol 2005; 83:364-74. [PMID: 16033531 DOI: 10.1111/j.1440-1711.2005.01346.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oval cells are facultative liver progenitor cells, which are invoked during chronic liver injury in order to replenish damaged hepatocytes and bile duct cells. Previous studies have observed inflammation and cytokine production in the liver during chronic injury. Further, it has been proposed that inflammatory growth factors may mediate the proliferation of oval cells during disease progression. We have undertaken a detailed examination of inflammation and cytokine production during a time course of liver injury and repair, invoked by feeding mice a choline-deficient, ethionine-supplemented (CDE) diet. We show that immediately following initial liver injury, B220-expressing leucocytes transiently infiltrate the liver. This inflammatory response occurred immediately before oval cell numbers began to expand in the liver, suggesting that the two events may be linked. Two waves of liver cytokine production were observed during the CDE time course. The first occurred shortly following commencement of the diet, suggesting that it may represent a hepatic acute phase response. However, examination of acute phase marker expression in CDE-fed mice did not support this hypothesis. The second wave of cytokine expression correlated with the expansion of oval cell numbers in the liver, suggesting that these factors may mediate oval cell proliferation. No inflammatory signalling was detected following withdrawal of the injury stimulus. In summary, our results document a close correlation between inflammation, cytokine production and the expansion of oval cells in the liver during experimental chronic injury.
Collapse
Affiliation(s)
- Belinda Knight
- School of Biomedical and Chemical Sciences, University of Western Australia, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee FY, Kast-Woelbern HR, Chang J, Luo G, Jones SA, Fishbein MC, Edwards PA. Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem 2005; 280:31792-800. [PMID: 16012168 DOI: 10.1074/jbc.m503182200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Matthews VB, Knight B, Tirnitz-Parker JEE, Boon J, Olynyk JK, Yeoh GCT. Oncostatin M induces an acute phase response but does not modulate the growth or maturation-status of liver progenitor (oval) cells in culture. Exp Cell Res 2005; 306:252-63. [PMID: 15878349 DOI: 10.1016/j.yexcr.2005.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Revised: 01/20/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022]
Abstract
Following acute injury, the liver regenerates through hepatocyte division. If this pathway is impaired, liver repair depends on the recruitment of adult liver progenitor (oval) cells. Mice fed a choline deficient, ethionine supplemented (CDE) diet possess substantial numbers of oval cells, which can be isolated, or examined in vivo. Oncostatin M (OSM) has been shown to induce maturation of murine fetal hepatoblasts into hepatocytes. We recently confirmed this in human fetal liver cultures. Here, we show that liver OSM expression increases in mice fed a CDE diet and CDE-derived oval cell isolates express OSM and its receptor (OSMR). Oval cell lines (PIL cells), as well as primary oval cell cultures, displayed STAT-3 phosphorylation following OSM stimulation. OSM had no effect on the growth of primary oval cells, but it was pro-apoptotic to PIL cells, suggesting that the two cell models are not directly comparable. Expression of PCNA and cyclin D1 was not affected by OSM treatment. No evidence was obtained to suggest an effect on oval cell maturation with OSM treatment. However, decreased albumin production, accompanied by increased expression of haptoglobin and fibrinogen, suggests that OSM induced an acute phase reaction in cultured oval cells.
Collapse
Affiliation(s)
- Vance B Matthews
- UWA Centre for Medical Research, Western Australian Institute for Medical Research, University of Western Australia, Crawley 6009, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Knight B, Yeoh GC. TNF/LT? double knockout mice display abnormal inflammatory and regenerative responses to acute and chronic liver injury. Cell Tissue Res 2004; 319:61-70. [PMID: 15592751 DOI: 10.1007/s00441-004-1003-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 08/18/2004] [Indexed: 02/03/2023]
Abstract
Following acute liver injury, hepatocytes divide to facilitate regeneration. However, during chronic injury, hepatocyte proliferation is typically blocked and repair is mediated through liver progenitor (oval) cells. Signalling of the p55 tumour necrosis factor (TNF) receptor is central to these processes. Two ligands for p55 are known: TNF and lymphotoxin-alpha (LTalpha). However, one study suggests that another exists that mediates liver injury following viral challenge. We have therefore investigated whether ligands other than TNF and LTalpha are required for liver regeneration following either acute or chronic injury. Wild-type and double TNF/LTalpha knockout (TNF-/-LTalpha-/-) mice were subjected to either partial hepatectomy (PHx) or a choline-deficient ethionine-supplemented (CDE) diet. Proliferating hepatocytes, oval cells and inflammatory cells were identified and quantified in liver sections by immunohistochemistry. Liver inflammatory cells were characterised by cell surface antigen expression. Liver damage and mortality were monitored. Both hepatocyte and oval cell proliferation was reduced in TNF-/-LTalpha-/- mice. Lymphocyte clusters were evident in all TNF-/-LTalpha-/- livers and were heterogeneous, comprising B and T lymphocytes. PHx evoked liver inflammation in TNF-/-LTalpha-/- but not wild-type mice, whereas no difference was apparent between genotypes in CDE experiments. Thus, TNF/LTalpha signalling mediates liver regeneration involving both hepatocytes and progenitor cells. The hyper-inflammatory response following PHx in TNF-/-LTalpha-/- animals, which is absent following CDE-induced injury, demonstrates that the two forms of liver injury evoke discrete inflammatory responses and provides a model in which such differences can be examined further.
Collapse
Affiliation(s)
- Belinda Knight
- Department of Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA, 6009, Australia.
| | | |
Collapse
|
38
|
Selden C, Chalmers SA, Jones C, Standish R, Quaglia A, Rolando N, Burroughs AK, Rolles K, Dhillon A, Hodgson HJF. Epithelial colonies cultured from human explanted liver in subacute hepatic failure exhibit hepatocyte, biliary epithelial, and stem cell phenotypic markers. ACTA ACUST UNITED AC 2004; 21:624-31. [PMID: 14595121 DOI: 10.1634/stemcells.21-6-624] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The liver in subacute hepatic failure may become enriched for hepatic progenitor cells. Liver tissue from such a patient was collagenase digested and, from the nonparenchymal cell fraction, epithelioid colonies were developed. Albumin and alpha-1-antitrypsin (AAT) were secreted for greater than 120 days from these colonies. Reverse transcription-polymerase chain reaction showed expression of markers of both hepatocyte and biliary epithelial phenotypes (cytokeratins 7, 18, and 19, albumin and AAT, hepatocyte growth factor receptor, transforming growth factor beta receptor type II, gamma-glutamyl transpeptidase, biliary glycoprotein). The cell cycle regulator p21 was also expressed. The POU domain transcription factor octamer-binding protein 4 was present in these cells, but not in RNA or cDNA prepared from adult human liver. These markers were maintained even after 165 days culture. Proliferating epithelial-like cells with combined hepatocyte- and biliary-epithelial-specific functional markers and a stem cell marker can be isolated from the nonparenchymal fraction of liver cells in subacute hepatic failure.
Collapse
Affiliation(s)
- Clare Selden
- Centre for Hepatology, Department of Medicine, Royal Free and University College Medical School, Hampstead, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Qin AL, Zhou XQ, Zhang W, Yu H, Xie Q. Characterization and enrichment of hepatic progenitor cells in adult rat liver. World J Gastroenterol 2004; 10:1480-6. [PMID: 15133858 PMCID: PMC4656289 DOI: 10.3748/wjg.v10.i10.1480] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To detect the markers of oval cells in adult rat liver and to enrich them for further analysis of characterization in vitro.
METHODS: Rat model for hepatic oval cell proliferation was established with 2-acetylaminofluorene and two third partial hepatectomy (2-AAF/PH). Paraffin embedded rat liver sections from model (11 d after hepatectomy) and control groups were stained with HE and OV6, cytokeratin19 (CK19), albumin, alpha fetoprotein (AFP), connexin43, and c-kit antibodies by immunohistochemistry. Oval cell proliferation was measured with BrdU incorporation test. C-kit positive oval cells were enriched by using magnetic activated cell sorting (MACS) .The sorted oval cells were cultured in a low density to observe colony formation and to examine their characterization in vitro by immunocytochemistry and RT-PCR.
RESULTS: A 2-AAF/PH model was successfully established to activate the oval cell compartment in rat liver. BrdU incorporation test of oval cell was positive. The hepatic oval cells coexpressed oval cell specific marker OV6, hepatocyte-marker albumin and cholangiocyte-marker CK19. They also expressed AFP and connexin 43. C-kit, one hematopoietic stem cell receptor, was expressed in hepatic oval cells at high levels. By using c-kit antibody in conjunction with MACS, we developed a rapid oval cell isolation protocol. The sorted cells formed colony when cultured in vitro. Cells in the colony expressed albumin or CK19 or coexpressed both and BrdU incorporation test was positive. RT-PCR on colony showed expression of albumin and CK19 gene.
CONCLUSION: Hepatic oval cells in the 2-AAF/PH model had the properties of hepatic stem/progenitor cells. Using MACS, we established a method to isolate oval cells. The sorted hepatic oval cells can form colony in vitro which expresses different combinations of phenotypic markers and genes from both hepatocytes and cholangiocyte lineage.
Collapse
Affiliation(s)
- Ai-Lan Qin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai 200025, China.
| | | | | | | | | |
Collapse
|
40
|
Alison MR, Vig P, Russo F, Bigger BW, Amofah E, Themis M, Forbes S. Hepatic stem cells: from inside and outside the liver? Cell Prolif 2004; 37:1-21. [PMID: 14871234 PMCID: PMC6495919 DOI: 10.1111/j.1365-2184.2004.00297.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Accepted: 12/01/2003] [Indexed: 12/21/2022] Open
Abstract
The liver is normally proliferatively quiescent, but hepatocyte loss through partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response from all cell types in the liver to perfectly restore liver mass. Moreover, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes in foetal and adult liver can clonally expand, suggesting that hepatoblasts/hepatocytes are themselves the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential transit amplifying cells (oval cells), that can ultimately differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells may contribute to the albeit low renewal rate of hepatocytes, but can make a more significant contribution to regeneration under a very strong positive selection pressure. In such instances, cell fusion rather than transdifferentiation appears to be the underlying mechanism by which the haematopoietic genome becomes reprogrammed.
Collapse
Affiliation(s)
- M R Alison
- Department of Histopathology, Imperial College, London, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 2004; 71:6754-65. [PMID: 14638761 PMCID: PMC308949 DOI: 10.1128/iai.71.12.6754-6765.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. Escape of the bacterium from the phagosome to the cytosol is mediated by the bacterial pore-forming protein listeriolysin O (LLO). LLO has multiple mechanisms that optimize activity in the phagosome and minimize activity in the host cytosol. Mutants that fail to compartmentalize LLO activity are cytotoxic and have reduced virulence. We sought to determine why cytotoxic bacteria have attenuated virulence in the mouse model of listeriosis. In this study, we constructed a series of strains with mutations in LLO and with various degrees of cytotoxicity. We found that the more cytotoxic the strain in cell culture, the less virulent it was in mice. Induction of neutropenia increased the relative virulence of the cytotoxic strains 100-fold in the spleen and 10-fold in the liver. The virulence defect was partially restored in neutropenic mice by adding gentamicin, an antibiotic that kills extracellular bacteria. Additionally, L. monocytogenes grew more slowly in extracellular fluid (mouse serum) than within tissue culture cells. We concluded that L. monocytogenes controls the cytolytic activity of LLO to maintain its nutritionally rich intracellular niche and avoid extracellular defenses of the host.
Collapse
Affiliation(s)
- Ian J Glomski
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
42
|
|
43
|
Abstract
Strategies for cell replacement therapy have been guided by the success in the hematopoietic stem cell field. In this review, we discuss the basis of this success and examine whether this stem cell transplant model can be replicated in other systems where stem cell therapy is being evaluated. We conclude that identifying the most primitive stem cell and using it for transplant therapy may not be appropriate in all systems. We suggest alternative strategies such as progenitor cell replacement, inductive factors, bioengineering organs, in utero transplants, or any approach that takes advantage of the unique properties of the tissue and the stem cell type which, are more likely to provide effective functional replacement.
Collapse
Affiliation(s)
- Jingli Cai
- Laboratory of Neurosciences, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
44
|
Braun KM, Thompson AW, Sandgren EP. Hepatic microenvironment affects oval cell localization in albumin-urokinase-type plasminogen activator transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:195-202. [PMID: 12507902 PMCID: PMC1851108 DOI: 10.1016/s0002-9440(10)63810-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mice carrying an albumin-urokinase type plasminogen activator transgene (AL-uPA) develop liver disease secondary to uPA expression in hepatocytes. Transgene-expressing parenchyma is replaced gradually by clones of cells that have deleted transgene DNA and therefore are not subject to uPA-mediated damage. Diseased liver displays several abnormalities, including hepatocyte vacuolation and changes in nonparenchymal tissue. The latter includes increases in laminin protein within parenchyma and the appearance of cytokeratin 19-positive bile ductule-like cells (oval cells) both in portal regions and extending into the hepatic parenchyma. In this study, we subjected AL-uPA mice to two-thirds partial hepatectomy to identify the response of these livers to additional growth stimulation. We observed several changes in hepatic morphology. First, the oval cells increased in number and often formed ductules in the parenchyma. Second, this cellular change was accompanied by a further increase in laminin associated with single or clusters of oval cells. Third, desmin-positive Ito cells increased in number and maintained close association with oval cells. Fourth, these changes were localized precisely to uPA-expressing areas of liver. Regenerating clones of uPA-deficient cells appeared to be unaffected both by stromal and cellular alterations. Thus, additional growth stimulation of diseased uPA-expressing liver induces an oval cell-like response, as observed in other models of severe hepatic injury, but the localization of this response seems to be highly regulated by the hepatic microenvironment.
Collapse
Affiliation(s)
- Kristin M Braun
- School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
45
|
Lowes KN, Croager EJ, Olynyk JK, Abraham LJ, Yeoh GCT. Oval cell-mediated liver regeneration: Role of cytokines and growth factors. J Gastroenterol Hepatol 2003; 18:4-12. [PMID: 12519217 DOI: 10.1046/j.1440-1746.2003.02906.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In experimental models, which induce liver damage and simultaneously block hepatocyte proliferation, the recruitment of a hepatic progenitor cell population comprised of oval cells is invariably observed. There is a substantial body of evidence to suggest that oval cells are involved in liver regeneration, as they differentiate into hepatocytes and biliary cells. Recently, bone marrow cells were shown to be a source of a stem cells with the capacity to repopulate the liver. Presently, the relationship between bone marrow cells and oval cells is unclear. Investigations will be greatly assisted by the availability of in vitro models based on a knowledge of cytokines that affect oval cells. While the cytokines, which regulate the different hematopoietic lineages, are well characterized, there is relatively little information regarding those that influence oval cells. This review outlines recent developments in the field of oval cell research and focuses on cytokines and growth factors that have been implicated in regulating oval cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kym N Lowes
- Western Australian Institute for Medical Research, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Australia
| | | | | | | | | |
Collapse
|
46
|
Bisgaard HC, Holmskov U, Santoni-Rugiu E, Nagy P, Nielsen O, Ott P, Hage E, Dalhoff K, Rasmussen LJ, Tygstrup N. Heterogeneity of ductular reactions in adult rat and human liver revealed by novel expression of deleted in malignant brain tumor 1. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1187-98. [PMID: 12368192 PMCID: PMC1867299 DOI: 10.1016/s0002-9440(10)64395-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regenerative capacity of mammalian adult liver reflects the ability of a number of cell populations within the hepatic lineage to take action. Limited information is available regarding factors and mechanisms that determine the specific lineage level at which liver cells contribute to liver repair as well as the fate of their progeny in the hostile environment created by liver injury. In the present study, we attempted to identify novel molecules preferentially involved in liver regeneration by recruitment of transit-amplifying, ductular (oval) cell populations. With a subtractive cDNA library screening approach, we identified 48 enriched, nonredundant gene products associated with liver injury and oval cell proliferation in the adult rat liver. Of these, only two, namely alpha-fetoprotein and a novel transcript with high homology to human DMBT1 (deleted in malignant brain tumor 1), were specifically associated with the emergence of ductular (oval) cell populations in injured liver. Subsequent cloning and characterization of the rat DMBT1 homologue revealed a highly inducible expression in ductular reactions composed of transit-amplifying ductular (oval) cells, but not in ductular reactions after ligation of the common bile duct. In human liver diseases, DMBT1 was expressed in ductular reactions after infection with hepatitis B and acetaminophen intoxication, but not in primary biliary cirrhosis, primary sclerosing cholangitis, and obstruction of the large bile duct. The expression heterogeneity in ductular reactions and multiple functions of DMBT1 homologues point to intriguing roles in regulating not only tissue repair but also fate decision and differentiation paths of specific cell populations in the hepatic lineage.
Collapse
Affiliation(s)
- Hanne Cathrine Bisgaard
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Grisham JW, Coleman WB. Molecular regulation of hepatocyte generation in adult animals. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1107-10. [PMID: 12368183 PMCID: PMC1867302 DOI: 10.1016/s0002-9440(10)64386-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joe W Grisham
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
48
|
Szabó E, Lódi C, Korpos E, Batmunkh E, Rottenberger Z, Deák F, Kiss I, Tokés AM, Lotz G, László V, Kiss A, Schaff Z, Nagy P. Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins. Mol Biol Evol 2002; 26:554-60. [PMID: 17513098 DOI: 10.1016/j.matbio.2007.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 03/28/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023] Open
Abstract
Annexin A13 (ANXA13) is believed to be the original founder gene of the 12-member vertebrate annexin A family, and it has acquired an intestine-specific expression associated with a highly differentiated intracellular transport function. Molecular characterization of this subfamily in a range of vertebrate species was undertaken to assess coding region conservation, gene organization, chromosomal linkage, and phylogenetic relationships relevant to its progenitor role in the structure-function evolution of the annexin gene superfamily. Protein diagnostic features peculiar to this subfamily include an alternate isoform containing a KGD motif, an elevated basic amino acid content with polyhistidine expansion in the 5'-translated region, and the conservation of 15% core tetrad residues specific to annexin A13 members. The 12 coding exons comprising the 58-kb human ANXA13 gene were deduced from BAC clone sequencing, whereas internal repetitive elements and neighboring genes in chromosome 8q24.12 were identified by contig analysis of the draft sequence from the human genome project. A unique exon splicing pattern in the annexin A13 gene was corroborated by coanalysis of mouse, rat, zebrafish, and pufferfish genomic DNA and determined to be the most distinct of all vertebrate annexins. The putative promoter region was identified by phylogenetic footprinting of potential binding sites for intestine-specific transcription factors. Mouse annexin A13 cDNA was used to map the gene to an orthologous linkage group in mouse chromosome 15 (between Sdc2 and Myc by backcross analysis), and the zebrafish cDNA permitted its localization to linkage group 24. Comparative analysis of annexin A13 from nine species traced this gene's speciation history and assessed coding region variation, whereas phylogenetic analysis showed it to be the deepest-branching vertebrate annexin, and computational analysis estimated the gene age and divergence rate. The unique, conserved aspects of annexin A13 primary structure, gene organization, and genetic maps identify it as the probable common ancestor of all vertebrate annexins, beginning with the sequential duplication to annexins A7 and A11 approximately 700 MYA, before the emergence of chordates.
Collapse
Affiliation(s)
- Erzsébet Szabó
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The liver in an adult healthy body maintains a balance between cell gain and cell loss. Though normally proliferatively quiescent, hepatocyte loss such as that caused by partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response to restore liver mass. This restoration of moderate cell loss and 'wear and tear' renewal is largely achieved by hepatocyte self-replication. Furthermore, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes can undergo significant clonal expansion, suggesting that hepatocytes themselves are the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential so-called oval cells within the lobules that can differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells can contribute to the albeit low renewal rate of hepatocytes, make a more significant contribution to regeneration, and even completely restore normal function in a murine model of hereditary tyrosinaemia. How these three stem cell populations integrate together to achieve a homeostatic balance is not known. This review focuses on two major aspects of liver stem cell biology: firstly, the identity of the liver stem cells, and secondly, their potential value in the treatment of major liver disease.
Collapse
Affiliation(s)
- Stuart Forbes
- Department of Hepatology, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
50
|
Abstract
The liver, like most organs in an adult healthy body, maintains a perfect balance between cell gain and cell loss. Though normally proliferatively quiescent, simple hepatocyte loss such as that caused by partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response to restore liver mass. This restoration of moderate cell loss and 'wear and tear' renewal is largely achieved by hepatocyte self-replication. Furthermore, cell transplant models have shown that hepatocytes can undergo significant clonal expansion. Such observations indicate that hepatocytes are the functional stem cells of the liver. More severe liver injury activates a facultative stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of biliary epithelia within the lobules before these cells differentiate into hepatocytes. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells can contribute to the albeit low renewal rate of hepatocytes, make a more significant contribution to regeneration, and even completely restore normal function in a murine model of hereditary tyrosinaemia. How these three stem cell populations integrate to achieve a homeostatic balance is not understood. This review focuses on three aspects of liver stem cell biology: 1) the hepatic stem cell candidates; 2) models of cell transplantation into the liver; and 3) the therapeutic potential of hepatic stem cells.
Collapse
Affiliation(s)
- M R Alison
- Department of Histopathology and Hepatology, Imperial College School of Medicine, London and Histopathology Unit, Imperial Cancer Research Fund, London, UK.
| | | | | |
Collapse
|