1
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
2
|
Dos Santos Courrol D, Santos CM, Chura-Chambi RM, Morganti L, Avelar KES, de Moraes Maia F, Rodrigues-da-Silva RN, Wunder EA, Barbosa AS. Leptospira Leptolysin Contributes to Serum Resistance but Is Not Essential for Acute Infection. Mol Microbiol 2024; 122:720-729. [PMID: 39484742 DOI: 10.1111/mmi.15327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Previous in vitro works focusing on virulence determinants of the spirochete Leptospira implicated metalloproteinases as putative contributing factors to the pathogenicity of these bacteria. Those proteins have the capacity to degrade extracellular matrix components (ECM) and proteins of host's innate immunity, notably effectors of the complement system. In this study, we gained further knowledge on the role of leptolysin, one of the leptospiral-secreted metalloproteinases, previously described as having a broad substrate specificity. We demonstrated that a proportion of human patients with mild leptospirosis evaluated in the current study produced antibodies that recognize leptolysin, thus indicating that the protease is expressed during host infection. Using recombinant protein and a knockout mutant strain, Manilae leptolysin-, we determined that leptolysin contributes to Leptospira interrogans serum resistance in vitro, likely by proteolysis of complement molecules of the alternative, the classical, the lectin, and the terminal pathways. Furthermore, in a hamster model of infection, the mutant strain retained virulence; however, infected animals had lower bacterial loads in their kidneys. Further studies are necessary to better understand the role and potential redundancy of metalloproteinases on the pathogenicity of this important neglected disease.
Collapse
Affiliation(s)
- Daniella Dos Santos Courrol
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cassia Moreira Santos
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Laboratory of Bacterial Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP, São Paulo, Brazil
| | - Lígia Morganti
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP, São Paulo, Brazil
| | - Kátia Eliane Santos Avelar
- Laboratório de Referência Nacional para Leptospirose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda de Moraes Maia
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Elsio Augusto Wunder
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | | |
Collapse
|
3
|
Kharwadkar S, Weinstein P, Stanhope J. Drivers of human Leptospira infection in the Pacific Islands: A systematic review. Epidemiol Infect 2024; 152:e118. [PMID: 39377125 PMCID: PMC11474764 DOI: 10.1017/s0950268824001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024] Open
Abstract
Leptospirosis is a bacterial zoonosis that poses an increasing global public health risk. Pacific Island communities are highly vulnerable to leptospirosis outbreaks, yet the local drivers of infection remain poorly understood. We conducted a systematic review to identify the drivers of human Leptospira infection in the Pacific Islands. There were 42 included studies from which findings were synthesized descriptively. In tropical Pacific Islands, infections were a product of sociodemographic factors such as male gender/sex, age 20 to 60 years, Indigenous ethnicity, and poverty; lifestyle factors such as swimming, gardening, and open skin wounds; and environmental factors, including seasonality, heavy rainfall, and exposure to rodents, cattle, and pigs. Possible mitigation strategies in these islands include strengthening disease reporting standards at a regional level; improving water security, rodent control, and piggery management at a community level; and information campaigns to target individual-level drivers of infection. By contrast, in New Zealand, exposures were predominantly occupational, with infections occurring in meat and farm workers. Accordingly, interventions could include adjustments to occupational practices and promoting the uptake of animal vaccinations. Given the complexity of disease transmission and future challenges posed by climate change, further action is required for leptospirosis control in the Pacific Islands.
Collapse
Affiliation(s)
- Sahil Kharwadkar
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, Adelaide, Australia
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
5
|
Cressler CE, Metz DCG, Chang van Oordt DA, Graham AL. Immunological feedback loops generate parasite persistence thresholds that explain variation in infection duration. Proc Biol Sci 2024; 291:20240934. [PMID: 39317318 PMCID: PMC11421898 DOI: 10.1098/rspb.2024.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.
Collapse
Affiliation(s)
- Clayton E. Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C. G. Metz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Prager KC, Danil K, Wurster E, Colegrove KM, Galloway R, Kettler N, Mani R, McDonough RF, Sahl JW, Stone NE, Wagner DM, Lloyd-Smith JO. Detection of Leptospira kirschneri in a short-beaked common dolphin (Delphinus delphis delphis) stranded off the coast of southern California, USA. BMC Vet Res 2024; 20:266. [PMID: 38902706 PMCID: PMC11188202 DOI: 10.1186/s12917-024-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Pathogenic Leptospira species are globally important zoonotic pathogens capable of infecting a wide range of host species. In marine mammals, reports of Leptospira have predominantly been in pinnipeds, with isolated reports of infections in cetaceans. CASE PRESENTATION On 28 June 2021, a 150.5 cm long female, short-beaked common dolphin (Delphinus delphis delphis) stranded alive on the coast of southern California and subsequently died. Gross necropsy revealed multifocal cortical pallor within the reniculi of the kidney, and lymphoplasmacytic tubulointerstitial nephritis was observed histologically. Immunohistochemistry confirmed Leptospira infection, and PCR followed by lfb1 gene amplicon sequencing suggested that the infecting organism was L.kirschneri. Leptospira DNA capture and enrichment allowed for whole-genome sequencing to be conducted. Phylogenetic analyses confirmed the causative agent was a previously undescribed, divergent lineage of L.kirschneri. CONCLUSIONS We report the first detection of pathogenic Leptospira in a short-beaked common dolphin, and the first detection in any cetacean in the northeastern Pacific Ocean. Renal lesions were consistent with leptospirosis in other host species, including marine mammals, and were the most significant lesions detected overall, suggesting leptospirosis as the likely cause of death. We identified the cause of the infection as L.kirschneri, a species detected only once before in a marine mammal - a northern elephant seal (Mirounga angustirostris) of the northeastern Pacific. These findings raise questions about the mechanism of transmission, given the obligate marine lifestyle of cetaceans (in contrast to pinnipeds, which spend time on land) and the commonly accepted view that Leptospira are quickly killed by salt water. They also raise important questions regarding the source of infection, and whether it arose from transmission among marine mammals or from terrestrial-to-marine spillover. Moving forward, surveillance and sampling must be expanded to better understand the extent to which Leptospira infections occur in the marine ecosystem and possible epidemiological linkages between and among marine and terrestrial host species. Generating Leptospira genomes from different host species will yield crucial information about possible transmission links, and our study highlights the power of new techniques such as DNA enrichment to illuminate the complex ecology of this important zoonotic pathogen.
Collapse
Affiliation(s)
- K C Prager
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, 92037, USA
| | - Elyse Wurster
- Ocean Associates Inc. Under Contract to Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, 92037, USA
| | - Kathleen M Colegrove
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, 3300 Golf Rd, Brookfield, IL, 60513, USA
| | - Renee Galloway
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, 30333, USA
| | - Niesa Kettler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, 48825, USA
| | - Rinosh Mani
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, 48825, USA
| | - Ryelan F McDonough
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Lu X, Westman ME, Mizzi R, Griebsch C, Norris JM, Jenkins C, Ward MP. Are Pathogenic Leptospira Species Ubiquitous in Urban Recreational Parks in Sydney, Australia? Trop Med Infect Dis 2024; 9:128. [PMID: 38922040 PMCID: PMC11209362 DOI: 10.3390/tropicalmed9060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Leptospirosis is a zoonotic disease caused by the spirochete bacteria Leptospira spp. From December 2017 to December 2023, a total of 34 canine leptospirosis cases were reported in urban Sydney, Australia. During the same spatio-temporal frame, one locally acquired human case was also reported. As it was hypothesised that human residents and companion dogs might both be exposed to pathogenic Leptospira in community green spaces in Sydney, an environmental survey was conducted from December 2023 to January 2024 to detect the presence of pathogenic Leptospira DNA in multipurpose, recreational public parks in the council areas of the Inner West and City of Sydney, Australia. A total of 75 environmental samples were collected from 20 public parks that were easily accessible by human and canine visitors. Quantitative PCR (qPCR) testing targeting pathogenic and intermediate Leptospira spp. was performed, and differences in detection of Leptospira spp. between dog-allowed and dog-prohibited areas were statistically examined. The global Moran's Index was calculated to identify any spatial autocorrelation in the qPCR results. Pathogenic leptospires were detected in all 20 parks, either in water or soil samples (35/75 samples). Cycle threshold (Ct) values were slightly lower for water samples (Ct 28.52-39.10) compared to soil samples (Ct 33.78-39.77). The chi-squared test and Fisher's exact test results were statistically non-significant (p > 0.05 for both water and soil samples), and there was no spatial autocorrelation detected in the qPCR results (p > 0.05 for both sample types). Although further research is now required, our preliminary results indicate the presence of pathogenic Leptospira DNA and its potential ubiquity in recreational parks in Sydney.
Collapse
Affiliation(s)
- Xiao Lu
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (X.L.); (M.E.W.); (C.G.); (J.M.N.)
| | - Mark E. Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (X.L.); (M.E.W.); (C.G.); (J.M.N.)
- Elizabeth Macarthur Agricultural Institute (EMAI), Woodbridge Road, Menangle, NSW 2568, Australia; (R.M.); (C.J.)
| | - Rachel Mizzi
- Elizabeth Macarthur Agricultural Institute (EMAI), Woodbridge Road, Menangle, NSW 2568, Australia; (R.M.); (C.J.)
| | - Christine Griebsch
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (X.L.); (M.E.W.); (C.G.); (J.M.N.)
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (X.L.); (M.E.W.); (C.G.); (J.M.N.)
| | - Cheryl Jenkins
- Elizabeth Macarthur Agricultural Institute (EMAI), Woodbridge Road, Menangle, NSW 2568, Australia; (R.M.); (C.J.)
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (X.L.); (M.E.W.); (C.G.); (J.M.N.)
| |
Collapse
|
8
|
Thibeaux R, Genthon P, Govan R, Selmaoui-Folcher N, Tramier C, Kainiu M, Soupé-Gilbert ME, Wijesuriya K, Goarant C. Rainfall-driven resuspension of pathogenic Leptospira in a leptospirosis hotspot. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168700. [PMID: 37992819 DOI: 10.1016/j.scitotenv.2023.168700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a zoonosis caused by Leptospira bacteria present in the urine of mammals. Leptospira is able to survive in soils and can be resuspended during rain events. Here, we analyzed the pathogenic Leptospira concentration as a function of hydrological variables in a leptospirosis hot spot. A total of 226 samples were collected at the outlet of a 3 km2 watershed degraded by ungulate mammals (deer and feral pigs) and rats which are reservoirs for leptospirosis. Water samples collected at the beginning of a rain event following a dry period contained high concentrations of pathogenic Leptospira. The concentration was generally correlated with the water level and the suspended matter concentration (SMC) during the main flood event. A secondary peak of pathogenic Leptospira was sometimes detected after the main flood and in slightly turbid waters. Lastly, the pathogenic Leptospira concentration was extremely high at the end of a wet season. The pathogenic Leptospira concentrations could not be explained by a linear combination of hydrological variables (e.g. the rainfall, water level, SMC and soil moisture). However, nonlinear machine learning models of rainfall data only provided a fair fit to the observations and explained 75 % of the variance in the log10-transformed pathogenic Leptospira concentration. A comparison of identical machine learning models for the water level, SMC and pathogenic Leptospira concentration showed that the residual error in the Leptospira concentration was due to not only the small dataset but also the intrinsic characteristics of the signal. Our results support the hypothesis whereby pathogenic Leptospira survive at different depths in soils and superficial river sediments (depending on their water saturation) and are transferred to surface water during erosion. These results might help to refine leptospirosis warnings given to the local population. Future research should be focused on larger watersheds in more densely populated areas.
Collapse
Affiliation(s)
- R Thibeaux
- Institut Pasteur of New Caledonia, Nouméa, New Caledonia
| | - P Genthon
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Nouméa, New Caledonia.
| | - R Govan
- ISEA, University of New Caledonia, Nouméa, New Caledonia
| | | | - C Tramier
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Nouméa, New Caledonia; Northern Province, Koné, New Caledonia; Espace Dev, University of New Caledonia, Nouméa, New Caledonia
| | - M Kainiu
- Institut Pasteur of New Caledonia, Nouméa, New Caledonia
| | | | - K Wijesuriya
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Nouméa, New Caledonia
| | - C Goarant
- Institut Pasteur of New Caledonia, Nouméa, New Caledonia; The Pacific Community, Public Health Division, B.P. D5, 98848 Noumea, New Caledonia
| |
Collapse
|
9
|
Asoh T, Miyahara S, Villanueva SYAM, Kanemaru T, Takigawa T, Mori H, Gloriani NG, Yoshida SI, Saito M. Protective role of stratum corneum in percutaneous Leptospira infection in a hamster model. Microb Pathog 2023; 182:106243. [PMID: 37422175 DOI: 10.1016/j.micpath.2023.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Leptospira enters humans and animals through injured skin or mucous membranes by direct or indirect contact with urine excreted from infected reservoirs. Individuals with cut or scratched skin are at high risk of infection and are recommended to be protected from contact with Leptospira, but the risk of infection via skin without apparent wounds is unknown. We hypothesized that the stratum corneum of the epidermis might prevent percutaneous invasion of leptospires. We established a stratum corneum deficient model of hamsters using the tape stripping method. The mortality rate of hamsters lacking stratum corneum that were exposed to Leptospira was higher than that of controls with shaved skin, and was not significantly different from an epidermal wound group. These results indicated that the stratum corneum plays a critical role in protecting the host against leptospiral entry. We also examined the migration of leptospires through the monolayer of HaCaT cells (human keratinocyte cell line) using Transwell. The number of pathogenic leptospires penetrating the HaCaT cell monolayers was higher than that of non-pathogenic leptospires. Furthermore, scanning and transmission electron microscopic observations revealed that the bacteria penetrated the cell monolayers through both intracellular and intercellular routes. This suggested that pathogenic Leptospira can migrate easily through keratinocyte layers and is associated with virulence. Our study further highlights the importance of the stratum corneum as a critical barrier against the invasion of Leptospira found in contaminated soil and water. Hence, preventative measures against contact infection should be taken, even without visible skin wounds.
Collapse
Affiliation(s)
- Tatsuma Asoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan; Hamanomachi Hospital, Fukuoka City, Fukuoka, Japan
| | - Satoshi Miyahara
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan; Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan
| | - Sharon Yvette Angelina M Villanueva
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan; Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
| | - Takaaki Kanemaru
- Department of Morphology Core Unit, Kyushu University Hospital, Fukuoka City, Fukuoka, Japan
| | - Tomoya Takigawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan
| | - Hiroshi Mori
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan; Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan
| | - Nina G Gloriani
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines; Department of Pathology, St. Luke's Medical Center, Quezon City, Philippines
| | - Shin-Ichi Yoshida
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Mitsumasa Saito
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan; Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan.
| |
Collapse
|
10
|
Helman SK, Tokuyama AFN, Mummah RO, Stone NE, Gamble MW, Snedden CE, Borremans B, Gomez ACR, Cox C, Nussbaum J, Tweedt I, Haake DA, Galloway RL, Monzón J, Riley SPD, Sikich JA, Brown J, Friscia A, Sahl JW, Wagner DM, Lynch JW, Prager KC, Lloyd-Smith JO. Pathogenic Leptospira are widespread in the urban wildlife of southern California. Sci Rep 2023; 13:14368. [PMID: 37658075 PMCID: PMC10474285 DOI: 10.1038/s41598-023-40322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regarding Leptospira circulation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessed Leptospira prevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%). Leptospira phylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions of Leptospira into local marine and island ecosystems. Overall, we found evidence of widespread Leptospira exposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas.
Collapse
Affiliation(s)
- Sarah K Helman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA.
| | - Amanda F N Tokuyama
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Riley O Mummah
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Mason W Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Wildlife Health Ecology Research Organization, San Diego, CA, USA
| | - Ana C R Gomez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Caitlin Cox
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Julianne Nussbaum
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Isobel Tweedt
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - David A Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Javier Monzón
- Natural Science Division, Pepperdine University, Malibu, CA, USA
| | - Seth P D Riley
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, USA
| | - Jeff A Sikich
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, USA
| | - Justin Brown
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, USA
| | - Anthony Friscia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jessica W Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, USA
| | - Katherine C Prager
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Zhu W, Passalia FJ, Hamond C, Abe CM, Ko AI, Barbosa AS, Wunder EA. MPL36, a major plasminogen (PLG) receptor in pathogenic Leptospira, has an essential role during infection. PLoS Pathog 2023; 19:e1011313. [PMID: 37486929 PMCID: PMC10399853 DOI: 10.1371/journal.ppat.1011313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Leptospirosis, a zoonosis with worldwide distribution, is caused by pathogenic spirochetes belonging to the genus Leptospira. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in pathogen dissemination and virulence mechanisms. Here we characterized the leptospiral Membrane Protein L36 (MPL36), a rare lipoprotein A (RlpA) homolog with a C-terminal Sporulation related (SPOR) domain, as an important virulence factor in pathogenic Leptospira. Our results confirmed that MPL36 is surface exposed and expressed during infection. Using recombinant MPL36 (rMPL36) we also confirmed previous findings of its high plasminogen (PLG)-binding ability determined by lysine residues of the C-terminal region of the protein, with ability to convert bound-PLG to active plasmin. Using Koch's molecular postulates, we determined that a mutant of mpl36 has a reduced PLG-binding ability, leading to a decreased capacity to adhere and translocate MDCK cell monolayers. Using recombinant protein and mutant strains, we determined that the MPL36-bound plasmin (PLA) can degrade fibrinogen. Finally, our mpl36 mutant had a significant attenuated phenotype in the hamster model for acute leptospirosis. Our data indicates that MPL36 is the major PLG binding protein in pathogenic Leptospira, and crucial to the pathogen's ability to attach and interact with host tissues during infection. The MPL36 characterization contributes to the expanding field of bacterial pathogens that explore PLG for their virulence, advancing the goal to close the knowledge gap regarding leptospiral pathogenesis while offering a novel potential candidate to improve diagnostic and prevention of this important zoonotic neglected disease.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Felipe J. Passalia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo, Brazil
| | - Camila Hamond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Cecília M. Abe
- Laboratory of Bacteriology, Instituto Butantan, São Paulo, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| |
Collapse
|
12
|
Sokolova M, Marshall JC, Benschop J. Risk Factors for Hospitalisation amongst Leptospirosis Patients in New Zealand. Trop Med Infect Dis 2021; 6:tropicalmed6040188. [PMID: 34698310 PMCID: PMC8544690 DOI: 10.3390/tropicalmed6040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Leptospirosis is a neglected zoonotic disease that is widespread in tropical and subtropical regions such as Oceania, which includes New Zealand. The incidence rate of leptospirosis in New Zealand remains high in comparison to other high-income countries, with over half of the notified patients hospitalised, and the factors associated with hospitalisation are poorly understood. This study aimed to estimate the risk factors for hospitalisation amongst leptospirosis patients using passive surveillance data: notifications from 1 January 1999 to 31 December 2017 extracted from New Zealand’s notifiable disease database. There were 771 hospitalised and 673 non-hospitalised patients. Multivariable logistic regression was used to identify risk factors. The year of notification was significantly and positively associated with hospitalisation, with adjusted (adj.) OR 1.03 (95% CI:1.01–1.05). Occupation was significantly associated with hospitalisation, with the adjusted odds of hospitalisation amongst dairy farmers notified with leptospirosis at adj. OR 1.44 (95% CI: 1.02–2.02) times the adjusted odds of hospitalisation amongst farmers that worked with other livestock. Seropositivity for Leptospira interrogans Copenhageni (adj. OR 5.96, 95% CI: 1.68–21.17) and Pomona (adj. OR 1.14, 95% CI: 0.74–1.74)) was more likely to result in hospitalisation when compared to Leptospira borgpetersenii Ballum (baseline). Seropositivity for Leptospira borgpetersenii Hardjo (adj. OR 0.71, 95% CI: 0.49–1.01) and Tarassovi (adj. OR 0.39, 95% CI: 0.23–0.66) was less likely to result in hospitalisation when compared to Ballum (baseline). All the estimates were additionally adjusted for the effect of sex, age, ethnicity, reported occupational exposure, geographical location, reported season, and deprivation status Although passive surveillance data has limitations we have been able to identify that the New Zealand dairy farming population may benefit from a targeted awareness campaign.
Collapse
Affiliation(s)
- Maryna Sokolova
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North 4474, New Zealand
- Correspondence:
| | - Jonathan C. Marshall
- School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand;
| | - Jackie Benschop
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North 4474, New Zealand;
| |
Collapse
|
13
|
Wale N, Duffy MA. The Use and Underuse of Model Systems in Infectious Disease Ecology and Evolutionary Biology. Am Nat 2021; 198:69-92. [PMID: 34143716 DOI: 10.1086/714595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractEver since biologists began studying the ecology and evolution of infectious diseases (EEID), laboratory-based model systems have been important for developing and testing theory. Yet what EEID researchers mean by the term "model systems" and what they want from them is unclear. This uncertainty hinders our ability to maximally exploit these systems, identify knowledge gaps, and establish effective new model systems. Here, we borrow a definition of model systems from the biomolecular sciences to assess how EEID researchers are (and are not) using 10 key model systems. According to this definition, model systems in EEID are not being used to their fullest and, in fact, cannot even be considered model systems. Research using these systems consistently addresses only two of the three fundamental processes that underlie disease dynamics-transmission and disease, but not recovery. Furthermore, studies tend to focus on only a few scales of biological organization that matter for disease ecology and evolution. Moreover, the field lacks an infrastructure to perform comparative analyses. We aim to begin a discussion of what we want from model systems, which would further progress toward a thorough, holistic understanding of EEID.
Collapse
|
14
|
Faggion Vinholo T, Ribeiro GS, Silva NF, Cruz J, Reis MG, Ko AI, Costa F. Severe leptospirosis after rat bite: A case report. PLoS Negl Trop Dis 2020; 14:e0008257. [PMID: 32645040 PMCID: PMC7347098 DOI: 10.1371/journal.pntd.0008257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thais Faggion Vinholo
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States
| | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Nanci F. Silva
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Jaqueline Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Mitermayer G. Reis
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Federico Costa
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Lunn TJ, Restif O, Peel AJ, Munster VJ, de Wit E, Sokolow S, van Doremalen N, Hudson P, McCallum H. Dose-response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190016. [PMID: 31401955 PMCID: PMC6711301 DOI: 10.1098/rstb.2019.0016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 01/11/2023] Open
Abstract
Dose is the nexus between exposure and all upstream processes that determine pathogen pressure, and is thereby an important element underlying disease dynamics. Understanding the relationship between dose and disease is particularly important in the context of spillover, where nonlinearities in the dose-response could determine the likelihood of transmission. There is a need to explore dose-response models for directly transmitted and zoonotic pathogens, and how these interactions integrate within-host factors to consider, for example, heterogeneity in host susceptibility and dose-dependent antagonism. Here, we review the dose-response literature and discuss the unique role dose-response models have to play in understanding and predicting spillover events. We present a re-analysis of dose-response experiments for two important zoonotic pathogens (Middle East respiratory syndrome coronavirus and Nipah virus), to exemplify potential difficulties in differentiating between appropriate models with small exposure experiment datasets. We also discuss the data requirements needed for robust selection between dose-response models. We then suggest how these processes could be modelled to gain more realistic predictions of zoonotic transmission outcomes and highlight the exciting opportunities that could arise with increased collaboration between the virology and epidemiology disciplines. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Tamika J. Lunn
- Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, Queensland 4111, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Alison J. Peel
- Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, Queensland 4111, Australia
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA
| | - Sanna Sokolow
- Stanford Woods Institute for the Environment, Stanford University, Serra Mall, Stanford, CA 94305, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, USA
| | - Peter Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, PA 16801, USA
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
16
|
Becker DJ, Washburne AD, Faust CL, Pulliam JRC, Mordecai EA, Lloyd-Smith JO, Plowright RK. Dynamic and integrative approaches to understanding pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190014. [PMID: 31401959 PMCID: PMC6711302 DOI: 10.1098/rstb.2019.0014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Juliet R. C. Pulliam
- South African Centre for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | | | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|