1
|
Forsberg Z, Tuveng TR, Eijsink VGH. A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. FEBS J 2025; 292:75-93. [PMID: 39190632 PMCID: PMC11705215 DOI: 10.1111/febs.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
2
|
Kumar A, Singh A, Sharma VK, Goel A, Kumar A. The upsurge of lytic polysaccharide monooxygenases in biomass deconstruction: characteristic functions and sustainable applications. FEBS J 2024; 291:5081-5101. [PMID: 38291603 DOI: 10.1111/febs.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O2 or H2O2 in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families. Until now, multiple LPMOs from AA9 and AA10 families, mostly from microbial sources, have been investigated; the exact mechanism and structure-function are elusive to date, and recently discovered AA families of LPMOs are just scratched. This review highlights the origin and discovery of the enzyme, nomenclature, three-dimensional protein structure, substrate specificity, copper-dependent reaction mechanism, and different techniques used to determine the product formation through analytical and biochemical methods. Moreover, the diverse functions of proteins in various biological activities such as plant-pathogen/pest interactions, cell wall remodeling, antibiotic sensitivity of biofilms, and production of nanocellulose along with certain obstacles in deconstructing the complex polysaccharides have also been summarized, while highlighting the innovative and creative ways to overcome the limitations of LPMOs in hydrolyzing the biomass.
Collapse
Affiliation(s)
- Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Aishwarya Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vijay Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Akshita Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Truong NH, Le TTH, Nguyen HD, Nguyen HT, Dao TK, Tran TMN, Tran HL, Nguyen DT, Nguyen TQ, Phan THT, Do TH, Phan NH, Ngo TCN, Vu VV. Sequence and structure analyses of lytic polysaccharide monooxygenases mined from metagenomic DNA of humus samples around white-rot fungi in Cuc Phuong tropical forest, Vietnam. PeerJ 2024; 12:e17553. [PMID: 38938609 PMCID: PMC11210479 DOI: 10.7717/peerj.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.
Collapse
Affiliation(s)
- Nam-Hai Truong
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Thu-Hong Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hong-Duong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | | | - Trong-Khoa Dao
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Minh-Nguyet Tran
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Hanoi, Vietnam
| | - Huyen-Linh Tran
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dinh-Trong Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Quy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Hong-Thao Phan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi-Huyen Do
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Ngoc-Han Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Thi-Cam-Nhung Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Van-Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| |
Collapse
|
4
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
5
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
6
|
Brown AH, Walsh TR. Elucidating Polymorph-Selective Bioadsorption on Chitin Surfaces. ACS Biomater Sci Eng 2019; 5:594-602. [DOI: 10.1021/acsbiomaterials.8b01260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aaron H. Brown
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
7
|
Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Chem Rev 2018; 118:2593-2635. [PMID: 29155571 PMCID: PMC5982588 DOI: 10.1021/acs.chemrev.7b00421] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M. Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thijs Kaper
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Netherlands, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Bradley Kelemen
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| |
Collapse
|
8
|
Vogt S, Kelkenberg M, Nöll T, Steinhoff B, Schönherr H, Merzendorfer H, Nöll G. Rapid determination of binding parameters of chitin binding domains using chitin-coated quartz crystal microbalance sensor chips. Analyst 2018; 143:5255-5263. [DOI: 10.1039/c8an01453a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chitin present in fungal cell walls has been considered as a diagnostic polymer for the detection of fungal infections.
Collapse
Affiliation(s)
- Stephan Vogt
- Organic Chemistry
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Marco Kelkenberg
- Molecular Biology
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Tanja Nöll
- Organic Chemistry
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Benedikt Steinhoff
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Hans Merzendorfer
- Molecular Biology
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| | - Gilbert Nöll
- Organic Chemistry
- Department of Chemistry and Biology
- University of Siegen
- 57076 Siegen
- Germany
| |
Collapse
|
9
|
Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism. AMB Express 2017; 7:170. [PMID: 28884316 PMCID: PMC5589716 DOI: 10.1186/s13568-017-0470-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can oxidize recalcitrant polysaccharides and boost the conversion of the second most abundant polysaccharide chitin by chitinase. In this study, we aimed to achieve the efficient extracellular production of Serratia marcescens LPMO CBP21 and Aeromonas veronii B565 chitinase Chi92 by Escherichia coli. Twelve signal peptides reported with high secretion efficiency were screened to assess the extracellular production efficiency of CBP21 and Chi92, with glycine used as a medium supplement. The results showed that PelB was the most productive signal peptide for the extracellular production of CBP21 and Chi92 in E. coli. Furthermore, CBP21 facilitated the degradation of the three chitin substrates (colloidal chitin, β-chitin, and α-chitin) by Chi92. This study will be valuable for the industrial production and application of the two enzymes for chitin degradation.
Collapse
|
10
|
Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017; 81:81/3/e00015-17. [PMID: 28659491 DOI: 10.1128/mmbr.00015-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
Collapse
|
11
|
Elucidating biochemical features and biological roles of Streptomyces proteins recognizing crystalline chitin- and cellulose-types and their soluble derivatives. Carbohydr Res 2017; 448:220-226. [PMID: 28712648 DOI: 10.1016/j.carres.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pioneering biochemical, immunological, physiological and microscopic studies in combination with gene cloning allowed uncovering previously unknown genes encoding proteins of streptomycetes to target crystalline chitin and cellulose as well as their soluble degradation-compounds via binding protein dependent transporters. Complementary analyses provoked an understanding of novel regulators governing transcription of selected genes. These discoveries induced detecting close and distant homologues of former orphan proteins encoded by genes from different bacteria. Grounded on structure-function-relationships, several researchers identified a few of these proteins as novel members of the growing family for lytic polysaccharides monooxygenases. Exemplary, the ecological significance of the characterized proteins including their role to promote interactions among organisms is outlined and discussed.
Collapse
|
12
|
Dong Z, Zhang W, Zhang Y, Zhang X, Zhao P, Xia Q. Identification and Characterization of Novel Chitin-Binding Proteins from the Larval Cuticle of Silkworm, Bombyx mori. J Proteome Res 2016; 15:1435-45. [DOI: 10.1021/acs.jproteome.5b00943] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Weiwei Zhang
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory
of Silkworm Genome Biology, ‡Chongqing Engineering and Technology
Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
13
|
Yu H, Xu J, Liu Q, Liu TX, Wang D. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling. Sci Rep 2015; 5:11088. [PMID: 26057202 PMCID: PMC4460901 DOI: 10.1038/srep11088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/14/2015] [Indexed: 01/04/2023] Open
Abstract
Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling.
Collapse
Affiliation(s)
- Huan Yu
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jian Xu
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tong-Xian Liu
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dun Wang
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
Nakagawa YS, Kudo M, Loose JSM, Ishikawa T, Totani K, Eijsink VGH, Vaaje-Kolstad G. A small lytic polysaccharide monooxygenase fromStreptomyces griseustargeting α- and β-chitin. FEBS J 2015; 282:1065-79. [DOI: 10.1111/febs.13203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Yuko S. Nakagawa
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Madoka Kudo
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Jennifer S. M. Loose
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Takahiro Ishikawa
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Kazuhide Totani
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Vincent G. H. Eijsink
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
15
|
Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A 2014; 111:8446-51. [PMID: 24912171 DOI: 10.1073/pnas.1402771111] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.
Collapse
|
16
|
Mandal SM, Porto WF, Dey P, Maiti MK, Ghosh AK, Franco OL. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Biochimie 2013; 95:1939-48. [PMID: 23835303 DOI: 10.1016/j.biochi.2013.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/28/2013] [Indexed: 02/08/2023]
Abstract
Phytopathogens cause economic losses in agribusiness. Plant-derived compounds have been proposed to overcome this problem, including the antimicrobial peptides (AMPs). This paper reports the identification of Ps-AFP1, a novel AMP isolated from the Pisum sativum radicle. Ps-AFP1 was purified and evaluated against phytopathogenic fungi, showing clear effectiveness. In silico analyses were performed, suggesting an unusual fold and disulfide bond pattern. A novel fold and a novel AMP class were here proposed, the αβ-trumpet fold and αβ-trumpet peptides, respectively. The name αβ-trumpet was created due to the peptide's fold, which resembles the musical instrument. The Ps-AFP1 mechanism of action was also proposed. Microscopic analyses revealed that Ps-AFP1 could affect the fungus during the hyphal elongation from spore germination. Furthermore, confocal microscopy performed with Ps-AFP1 labeled with FITC shows that the peptide was localized at high concentration along the fungal cell surface. Due to low cellular disruption rates, it seems that the main target is the fungal cell wall. The binding thermogram and isothermal titration, molecular dynamics and docking analyses were also performed, showing that Ps-AFP1 could bind to chitin producing a stable complex. Data here reported provided novel structural-functional insights into the αβ-trumpet peptide fold.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | | | | | | | |
Collapse
|
17
|
Sehar U, Mehmood MA, Nawaz S, Nadeem S, Hussain K, Sohail I, Tabassum MR, Gill SS, Saqib A. Three dimensional (3D) structure prediction and substrate-protein interaction study of the chitin binding protein CBP24 from B. thuringiensis. Bioinformation 2013; 9:725-9. [PMID: 23976829 PMCID: PMC3746096 DOI: 10.6026/97320630009725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/03/2022] Open
Abstract
Bacillus thuringiensis is an insecticidal bacterium whose chitinolytic system has been exploited to improve insect resistance in crops. In the present study, we studied the CBP24 from B. thuringiensis using homology modeling and molecular docking. The primary and secondary structure analyses showed CBP24 is a positively charged protein and contains single domain that belongs to family CBM33. The 3D model after refinement was used to explore the chitin binding characteristics of CBP24 using AUTODOCK. The docking analyses have shown that the surface exposed hydrophilic amino acid residues Thr-103, Lys-112 and Ser-162 interact with substrate through H-bonding. While, the amino acids resides Glu-39, Tyr-46, Ser-104 and Asn-109 were shown to have polar interactions with the substrate. The binding energy values evaluation of docking depicts a stable intermolecular conformation of the docked complex. The functional characterization of the CBP24 will elucidate the substrate-interaction pathway of the protein in specific and the carbohydrate binding proteins in general leading towards the exploration and exploitation of the prokaryotic substrate utilization pathways.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Salman Nawaz
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shahid Nadeem
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Khadim Hussain
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Iqra Sohail
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Muhammad Rizwan Tabassum
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Saba Shahid Gill
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| | - Anam Saqib
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Ovchinnikova ES, Krom BP, Harapanahalli AK, Busscher HJ, van der Mei HC. Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4823-4829. [PMID: 23509956 DOI: 10.1021/la400554g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Candida albicans and Pseudomonas aeruginosa are able to form pathogenic polymicrobial communities. P. aeruginosa colonizes and kills hyphae but is unable to attach to yeast. It is unknown why the interaction of P. aeruginosa is different with yeast than with hyphae. Here we aim to evaluate the role of P. aeruginosa chitin-binding protein (CbpD) in its physical interaction with C. albicans hyphae or yeast, based on surface thermodynamic and atomic force microscopic analyses. A P. aeruginosa mutant lacking CbpD was unable to express strong adhesion forces with hyphae (-2.9 nN) as compared with the parent strain P. aeruginosa PAO1 (-4.8 nN) and showed less adhesion to hyphae. Also blocking of CbpD using N-acetyl-glucosamine yielded a lower adhesion force (-4.3 nN) with hyphae. Strong adhesion forces were restored after complementing the expression of CbpD in P. aeruginosa PAO1 ΔcbpD yielding an adhesion force of -5.1 nN. These observations were confirmed with microscopic evaluation of adhesion tests. Regardless of the absence or presence of CbpD on the bacterial cell surfaces, or their blocking, P. aeruginosa experienced favorable thermodynamic conditions for adhesion with hyphae, which were absent with yeast. In addition, adhesion forces with yeast were less than 0.5 nN in all cases. Concluding, CbpD in P. aeruginosa is responsible for strong physical interactions with C. albicans hyphae. The development of this interaction requires time due to the fact that CbpDs have to invade the outermost mannoprotein layer on the hyphal cell surfaces. In order to do this, thermodynamic conditions at the outermost cell surfaces have to be favorable.
Collapse
Affiliation(s)
- Ekaterina S Ovchinnikova
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH. The chitinolytic machinery ofSerratia marcescens- a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 2013; 280:3028-49. [DOI: 10.1111/febs.12181] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Svein J. Horn
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Morten Sørlie
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| |
Collapse
|
20
|
Manjeet K, Purushotham P, Neeraja C, Podile AR. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiol Res 2013; 168:461-8. [PMID: 23480960 DOI: 10.1016/j.micres.2013.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/22/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
Abstract
Glycosyl hydrolase (GH) family 18 chitinases (Chi) and family 33 chitin binding proteins (CBPs) from Bacillus thuringiensis serovar kurstaki (BtChi and BtCBP), B. licheniformis DSM13 (BliChi and BliCBP) and Serratia proteamaculans 568 (SpChiB and SpCBP21) were used to study the efficiency and synergistic action of BtChi, BliChi and SpChiB individually with BtCBP, BliCBP or SpCBP21. Chitinase assay revealed that only BtChi and SpChiB showed synergism in hydrolysis of chitin, while there was no increase in products generated by BliChi, in the presence of the three above mentioned CBPs. This suggests that some (specific) CBPs are able to exert a synergistic effect on (specific) chitinases. A mutant of BliChi, designated as BliGH, was constructed by deleting the C-terminal fibronectin III (FnIII) and carbohydrate binding module 5 (CBM5) to assess the contribution of FnIII and CBM5 domains in the synergistic interactions of GH18 chitinases with CBPs. Chitinase assay with BliGH revealed that the accessory domains play a major role in making BliChi an efficient enzyme. We studied binding of BtCBP and BliCBP to α- and β-chitin. The BtCBP, BliCBP or SpCBP21 did not act synergistically with chitinases in hydrolysis of the chitin, interspersed with other polymers, present in fungal cell walls.
Collapse
Affiliation(s)
- Kaur Manjeet
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
21
|
Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, Scocchi M, Stensvåg K. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region. PLoS One 2013; 8:e53326. [PMID: 23326415 PMCID: PMC3543460 DOI: 10.1371/journal.pone.0053326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2) terminus of the peptide and the fragment arasin 1(1-23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23) were shown to be non-toxic to human red blood cells and arasin 1(1-23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1-23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.
Collapse
Affiliation(s)
| | - Hans-Matti Blencke
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tor Haug
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | | | - Olaf B. Styrvold
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Klara Stensvåg
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
22
|
Porto WF, Souza VA, Nolasco DO, Franco OL. In silico identification of novel hevein-like peptide precursors. Peptides 2012; 38:127-36. [PMID: 22981805 DOI: 10.1016/j.peptides.2012.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/10/2023]
Abstract
Lectins are proteins with ability to bind reversibly and non-enzymatically to a specific carbohydrate. They are involved in numerous biological processes and show enormous biotechnological potential. Among plant lectins, the hevein domain is extremely common, being observed in several kinds of lectins. Moreover, this domain is also observed in an important class of antimicrobial peptides named hevein-like peptides. Due to higher cysteine residues conservation, hevein-like peptides could be mined among the sequence databases. By using the pattern CX(4,5)CC[GS]X(2)GXCGX[GST]X(2,3)[FWY]C[GS]X[AGS] novel hevein-like peptide precursors were found from three different plants: Oryza sativa, Vitis vinifera and Selaginella moellendorffii. In addition, an hevein-like peptide precursor from the phytopathogenic fungus Phaeosphaeria nodorum was also identified. The molecular models indicate that they have the same scaffold as others, composed of an antiparallel β-sheet and short helices. Nonetheless, the fungal hevein-like peptide probably has a different disulfide bond pattern. Despite this difference, the complexes between peptide and N,N,N-triacetylglucosamine are stable, according to molecular dynamics simulations. This is the first report of an hevein-like peptide from an organism outside the plant kingdom. The exact role of an hevein-like peptide in the fungal biology must be clarified, while in plants they are clearly involved in plant defense. In summary, data here reported clear shows that an in silico strategy could lead to the identification of novel hevein-like peptides that could be used as biotechnological tools in the fields of health and agribusiness.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | |
Collapse
|
23
|
Purushotham P, Arun PVPS, Prakash JSS, Podile AR. Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568. PLoS One 2012; 7:e36714. [PMID: 22590591 PMCID: PMC3348882 DOI: 10.1371/journal.pone.0036714] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/12/2012] [Indexed: 12/02/2022] Open
Abstract
Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues.
Collapse
Affiliation(s)
- Pallinti Purushotham
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - P. V. Parvati Sai Arun
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
24
|
Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VG. Characterization of the Chitinolytic Machinery of Enterococcus faecalis V583 and High-Resolution Structure of Its Oxidative CBM33 Enzyme. J Mol Biol 2012; 416:239-54. [DOI: 10.1016/j.jmb.2011.12.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
25
|
Mehmood MA, Xiao X, Hafeez FY, Gai Y, Wang F. Molecular characterization of the modular chitin binding protein Cbp50 from Bacillus thuringiensis serovar konkukian. Antonie van Leeuwenhoek 2011; 100:445-53. [PMID: 21647612 DOI: 10.1007/s10482-011-9601-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/27/2011] [Indexed: 11/29/2022]
Abstract
Bacillus thuringiensis is an insecticidal bacterium whose chitinolytic system may be exploited to improve the insecticidal system of Bt-crops. A nucleotide fragment of 1368 bp from B. thuringiensis serovar konkukian S4, containing the complete coding sequence of the chitin binding protein Cbp50, was cloned and sequenced. Analyses have shown the protein to contain a modular structure consisting of an N-terminal CBM33 domain, two copies of a fibronectin-like domain and a C-terminal chitin binding domain classified as CBM5. The Cbp50 protein was heterologously expressed in Escherichia coli, purified and assessed for chitin binding activity. A deletion mutant (CBD-N; containing only the N-terminal CBM33 domain) of Cbp50 was produced to determine the role of C-terminal domains in the binding activity of the protein. The full-length Cbp50 was shown to bind β-chitin most efficiently followed by α-chitin, colloidal chitin and cellulose. The polysaccharide binding activity of CBD-N was drastically decreased. The data demonstrate that both the N-terminal and C-terminal domains of Cbp50 are essential for the efficient binding of chitin. The purified Cbp50 showed antifungal activity against the phytopathogenic fungus Fusarium oxysporum and the opportunistic human pathogen Aspergillus niger. This is the first report of a modular chitin binding protein in bacteria.
Collapse
|
26
|
Liu X, Ma X, Lei C, Xiao Y, Zhang Z, Sun X. Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis. Arch Virol 2011; 156:1707-15. [PMID: 21643992 DOI: 10.1007/s00705-011-1039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
To initiate an efficient primary infection, it is important for baculovirus virions to penetrate through the peritrophic membrane (PM) of the host insect. It is frequently reported that enhancins of baculoviruses significantly enhance viral infection by degrading the various protein components of PMs. However, not all baculoviruses encode enhancins. GP37s of baculoviruses share high amino acid identity with fusolins, synergistic factors found in entomopoxviruses. In this study, a truncated Cydia pomonella granulovirus GP37 was expressed in Escherichia coli. The expressed GP37 effectively bound to chitin, and binding occurred predominantly within 3 h. GP37 altered the protein profiles of Spodoptera exigua PMs, from which a 50-kDa protein was dissociated. Droplet-feeding bioassays indicated that GP37 significantly enhanced the infectivity of nucleopolyhedroviruses (NPVs) and the lethality of Bacillus thuringiensis (Bt) in S. exigua larvae. This is the first demonstration of the enhancement of NPVs and Bt infection by a baculovirus GP37.
Collapse
Affiliation(s)
- Xiangyang Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
27
|
A selective assay to detect chitin and biologically active nano-machineries for chitin-biosynthesis with their intrinsic chitin-synthase molecules. Int J Mol Sci 2010; 11:3122-37. [PMID: 20957083 PMCID: PMC2956084 DOI: 10.3390/ijms11093122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/14/2010] [Accepted: 08/26/2010] [Indexed: 11/17/2022] Open
Abstract
A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis) has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein), has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.
Collapse
|
28
|
Khoushab F, Yamabhai M. Chitin research revisited. Mar Drugs 2010; 8:1988-2012. [PMID: 20714419 PMCID: PMC2920538 DOI: 10.3390/md8071988] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 05/24/2010] [Accepted: 05/08/2010] [Indexed: 12/22/2022] Open
Abstract
Two centuries after the discovery of chitin, it is widely accepted that this biopolymer is an important biomaterial in many aspects. Numerous studies on chitin have focused on its biomedical applications. In this review, various aspects of chitin research including sources, structure, biosynthesis, chitinolytic enzyme, chitin binding protein, genetic engineering approach to produce chitin, chitin and evolution, and a wide range of applications in bio- and nanotechnology will be dealt with.
Collapse
Affiliation(s)
- Feisal Khoushab
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; E-Mail:
| | - Montarop Yamabhai
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; E-Mail:
| |
Collapse
|
29
|
Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology ofStreptomyces. FEMS Microbiol Rev 2010; 34:171-98. [DOI: 10.1111/j.1574-6976.2009.00206.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Vaaje-Kolstad G, Bunaes AC, Mathiesen G, Eijsink VGH. The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of alpha- and beta-chitin. FEBS J 2009; 276:2402-15. [PMID: 19348025 DOI: 10.1111/j.1742-4658.2009.06972.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has recently been shown that the Gram-negative bacterium Serratia marcescens produces an accessory nonhydrolytic chitin-binding protein that acts in synergy with chitinases. This provided the first example of the production of dedicated helper proteins for the turnover of recalcitrant polysaccharides. Chitin-binding proteins belong to family 33 of the carbohydrate-binding modules, and genes putatively encoding these proteins occur in many microorganisms. To obtain an impression of the functional conservation of these proteins, we studied the chitinolytic system of the Gram-positive Lactococcus lactis ssp. lactis IL1403. The genome of this lactic acid bacterium harbours a simple chitinolytic machinery, consisting of one family 18 chitinase (named LlChi18A), one family 33 chitin-binding protein (named LlCBP33A) and one family 20 N-acetylhexosaminidase. We cloned, overexpressed and characterized LlChi18A and LlCBP33A. Sequence alignments and structural modelling indicated that LlChi18A has a shallow substrate-binding groove characteristic of nonprocessive endochitinases. Enzymology showed that LlChi18A was able to hydrolyse both chitin oligomers and artificial substrates, with no sign of processivity. Although the chitin-binding protein from S. marcescens only bound to beta-chitin, LlCBP33A was found to bind to both alpha- and beta-chitin. LlCBP33A increased the hydrolytic efficiency of LlChi18A to both alpha- and beta-chitin. These results show the general importance of chitin-binding proteins in chitin turnover, and provide the first example of a family 33 chitin-binding protein that increases chitinase efficiency towards alpha-chitin.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|
31
|
Moser F, Irwin D, Chen S, Wilson DB. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 2008; 100:1066-77. [PMID: 18553392 DOI: 10.1002/bit.21856] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
E7, a single domain Family 33 cellulose binding module (CBM) protein, and E8, a non-catalytic, three-domain protein consisting of a Family 33 CBM, a FNIII domain, followed by a Family 2 CBM, were cloned, expressed, purified, and characterized. Western blots showed that E7 and E8 were induced and secreted when Thermobifida fusca was grown on cellobiose, Solka floc, switchgrass, or alfalfa as well as on beta-1,3 linked glucose molecules such as laminaribiose or pachyman. E8 bound well to alpha- and beta-chitin and bacterial microcrystalline cellulose (BMCC) at all pHs tested. E7 bound strongly to beta-chitin, less well to alpha-chitin and more weakly to BMCC than E8. Filter paper binding assays showed that E7 was 28% bound, E8 was 39% bound, a purified CBM2 binding domain from Cel6B was 88% bound, and only 5% of the Cel5A catalytic domain was bound. A C-terminal 6xHis tag influenced binding of both E7 and E8 to these substrates. Filter paper activity assays showed enhanced activity of T. fusca cellulases when E7 or E8 was present. This effect was observed at very low concentrations of cellulases or at very long times into the reaction and was mainly independent of the type of cellulase and the number of cellulases in the mixture. E8, and to a lesser extent E7, significantly enhanced the activity of Serratia marscescens Chitinase C on beta-chitin.
Collapse
MESH Headings
- Actinomycetales/enzymology
- Actinomycetales/genetics
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cellobiose/metabolism
- Cellulases/chemistry
- Cellulases/genetics
- Cellulases/isolation & purification
- Cellulases/metabolism
- Cellulose/chemistry
- Chitin/chemistry
- Chitin/metabolism
- Chitinases/metabolism
- Cloning, Molecular
- Culture Media
- Disaccharides/metabolism
- Genes, Bacterial
- Glucans/metabolism
- Hydrogen-Ion Concentration
- Kinetics
- Medicago sativa/metabolism
- Molecular Sequence Data
- Panicum/metabolism
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Sequence Alignment
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
Collapse
Affiliation(s)
- Felix Moser
- Department of Molecular Biology and Genetics, Cornell University, 458 Biotechnology Building, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
32
|
Characteristics of the surface-located carbohydrate-binding protein CbpC from Streptomyces coelicolor A3(2). Arch Microbiol 2008; 190:119-27. [DOI: 10.1007/s00203-008-0373-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/26/2022]
|
33
|
Siemieniewicz KW, Kajla MK, Schrempf H. Elucidating the Biosynthesis of Chitin Filaments and their Configuration with Specific Proteins and Electron Microscopy. Macromol Biosci 2007; 7:40-7. [PMID: 17238229 DOI: 10.1002/mabi.200600180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To deepen the knowledge of chitin synthesis, a yeast mutant has been used as a model. Purified chitin synthase I-containing vesicles (chitosomes) with a diameter of 85 to 120 nm are identified by electron microscopy to eject tiny fibers upon addition of UDP-N-acetylglucosamine. The filigree of extruded filaments fused gradually into a large three-dimensional network, which is degradable by a chitinase. The network is targeted and restructured by the Streptomyces chitin-binding protein CHB1, which has a very high affinity only for alpha-chitin. Within the chitosomes, filaments are found to be highly condensed within consecutive oval fibroids, which are specifically targeted by the alpha-chitin-binding protein. The presented data give new insights to the generation of chitin filaments with an antiparallel (alpha) configuration. [image: see text]
Collapse
|
34
|
Santhosh S, Mathew PT. Preparation and properties of glucosamine and carboxymethylchitin from shrimp shell. J Appl Polym Sci 2007. [DOI: 10.1002/app.27083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Mukherjee G, Sen SK. Purification, Characterization, and Antifungal Activity of Chitinase from Streptomyces venezuelae P10. Curr Microbiol 2006; 53:265-9. [PMID: 16972135 DOI: 10.1007/s00284-005-0412-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Streptomyces venezuelae P(10) could produce extracellular chitinase in a medium containing 0.6% colloidal chitin that was fermented for 96 hours at 30 degrees C. The enzyme was purified to apparent homogeneity with 80% saturation of ammonium sulfate as shown by chitin affinity chromatography and DEAE-cellulose anion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the enzyme showed a molecular weight of 66 kDa. The chitinase was characterized, and antifungal activity was observed against phytopathogens. Also, the first 15 N-terminal amino-acid residues of the chitinase were determined. The chitin hydrolysed products were N-acetylglucosamine and N, N'-diacetylchitobiose.
Collapse
Affiliation(s)
- G Mukherjee
- Division of Microbiology, School of Life Sciences, Visva-Bharati (Central University), Santiniketan, 731235, India
| | | |
Collapse
|
36
|
Wang D, Zhang CX. HearSNPV orf83 encodes a late, nonstructural protein with an active chitin-binding domain. Virus Res 2005; 117:237-43. [PMID: 16313991 DOI: 10.1016/j.virusres.2005.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/15/2022]
Abstract
The ORF83 (ha83) of Helicoverpa armigera nucleopolyhedrovirus (HearSNPV) was characterized during the present study. Sequence analysis and chitin-binding assay revealed that Ha83 contained an active chitin-binding domain. Northern blot and Western blot analyses demonstrated that ha83 was expressed as a late gene and encoded a nonstructural protein of HearSNPV. Ha83 gene was transcribed beginning at 12h post-infection in infected Helicoverpa zea cells (HzAM1). Western blot analysis using a rabbit derived polyclonal antibody showed the product of ha83 in infected cells was a 20 kDa protein, in tune with the theoretical size of 18.8 kDa. The protein was first detected in the cytoplasm of infected HzAM1 cells at 12h p.i., and was transported later into the nucleus during infection.
Collapse
Affiliation(s)
- Dun Wang
- Institute of Applied Entomology, Zhejiang University, Kaixuan Road 268#, Hangzhou 310029, PR China
| | | |
Collapse
|
37
|
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. J Biol Chem 2005; 280:28492-7. [PMID: 15929981 DOI: 10.1074/jbc.m504468200] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-negative soil bacterium Serratia marcescens uses three different family 18 chitinases to degrade chitin, an abundant insoluble carbohydrate polymer composed of beta(1,4)-linked units of N-acetylglucosamine. We show that efficient chitin degradation additionally depends on the action of a small non-catalytic protein, CBP21, which binds to the insoluble crystalline substrate, leading to structural changes in the substrate and increased substrate accessibility. CBP21 strongly promoted hydrolysis of crystalline beta-chitin by chitinases A and C, while it was essential for full degradation by chitinase B. CBP21 variants with single mutations on the largely polar binding surface lost their ability to promote chitin degradation, while retaining considerable affinity for the polymer. Thus, binding alone is not sufficient for CBP21 functionality, which seems to depend on specific, mostly polar interactions between the protein and crystalline chitin. This is the first time a secreted binding protein is shown to assist in the enzymatic degradation of an insoluble carbohydrate via non-hydrolytic disruption of the substrate. Interestingly, homologues of CBP21 occur in most chitin-degrading microorganisms, suggesting a general mechanism by which chitin-binding proteins enhance chitinolytic activity. Homologues also occur in chitinase-containing insect viruses, whose infectiousness is known to depend on chitinase efficiency.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, 1432 As, Norway
| | | | | | | | | |
Collapse
|
38
|
Vaaje-Kolstad G, Houston DR, Riemen AHK, Eijsink VGH, van Aalten DMF. Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21. J Biol Chem 2005; 280:11313-9. [PMID: 15590674 DOI: 10.1074/jbc.m407175200] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitin proteins are commonly found in bacteria that utilize chitin as a source of energy. CBP21 is a chitin-binding protein from Serratia marcescens, a Gram-negative soil bacterium capable of efficient chitin degradation. When grown on chitin, S. marcescens secretes large amounts of CBP21, along with chitin-degrading enzymes. In an attempt to understand the molecular mechanism of CBP21 action, we have determined its crystal structure at 1.55 angstroms resolution. This is the first structure to be solved of a family 33 carbohydrate-binding module. The structure reveals a "budded" fibronectin type III fold consisting of two beta-sheets, arranged as a beta-sheet sandwich, with a 65-residue "bud" consisting of three short helices, located between beta-strands 1 and 2. Remarkably, conserved aromatic residues that have been suggested previously to play a role in chitin binding were mainly found in the interior of the protein, seemingly incapable of interacting with chitin, whereas the structure revealed a surface patch of highly conserved, mainly hydrophilic residues. The roles of six of these conserved surface-exposed residues (Tyr-54, Glu-55, Glu-60, His-114, Asp-182, and Asn-185) were probed by site-directed mutagenesis and subsequent binding studies. All single point mutations lowered the affinity of CBP21 for beta-chitin, as shown by 3-8-fold increases in the apparent binding constant. Thus, binding of CBP21 to chitin seems to be mediated primarily by conserved, solvent-exposed, polar side chains.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology, and Food Science, Postbox 5003, Agricultural University of Norway, N-1432 As, Norway
| | | | | | | | | |
Collapse
|
39
|
Li Z, Li C, Yang K, Wang L, Yin C, Gong Y, Pang Y. Characterization of a chitin-binding protein GP37 of Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Res 2003; 96:113-22. [PMID: 12951271 DOI: 10.1016/s0168-1702(03)00179-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The GP37 amino acid sequence of Spodoptera litura multicapsid nucleopolyhedrovirus (SpltMNPV) was compared with other baculovirus GP37, entomopoxvirus fusolin, the enhancing factor of Pseudaletia separata entomopoxvirus, and Alteromonas sp. chitin-binding protein 1. In these proteins, five 'conserved regions' previously reported constitute a chitin-binding domain. SpltMNPV GP37 effectively bound to purified crab shell chitin and the dissociation constant (Kd) for binding was 0.28 microM. Immunofluorescence analysis indicated that SpltMNPV GP37 was located in both cytoplasm and nucleus. Immunoblot analysis revealed that this protein was present in the envelopes of both occlusion body-derived virus and budded virus. Further analysis suggested that GP37 may bind to the chitin component of the peritrophic membrane of S. litura larvae.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory for Biocontrol and Institute of Entomology, Zhongshan University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Chu HH, Hoang V, Hofemeister J, Schrempf H. A Bacillus amyloliquefaciens ChbB protein binds beta- and alpha-chitin and has homologues in related strains. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1793-1803. [PMID: 11429457 DOI: 10.1099/00221287-147-7-1793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A small (19.8 kDa) protein was identified in Bacillus amyloliquefaciens ALKO 2718 cultures during growth in the presence of yeast extract and chitin, but not with glucose. The protein targets beta-chitin best, then alpha-chitin, but barely any other polysaccharide. This described chitin-binding protein (ChbB) is the first of its type from a Bacillus strain and cross-reacts with antibodies raised against the Streptomyces alpha-chitin-binding protein CHB1. Using reverse genetics, the chromosomal chbB gene of strain ALKO 2718 was identified, cloned and sequenced. ChbB shares several motifs with the alpha-chitin-binding proteins CHB1 and CHB2 of Streptomyces and CBP21 of Serratia marcescens predominantly targeting beta-chitin. Synthesis was repressed by glucose and the presence of cre boxes suggests catabolite control. Using PCR, Southern hybridization and anti-ChbB antibodies, the presence of a chbB gene, as well as of a ChbB protein homologue, was ascertained in several tested B. amyloliquefaciens strains, but not in Bacillus subtilis 168. Contrary to B. subtilis 168, all B. amyloliquefaciens strains secreted varying amounts of enzymic activity, degrading carboxymethyl chitin coupled with Remazol brilliant violet.
Collapse
Affiliation(s)
- Hoang Ha Chu
- FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany2
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Abteilung Molekulare Genetik, Corrensstraße 3, 06466 Gatersleben, Germany1
| | - Viet Hoang
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Abteilung Molekulare Genetik, Corrensstraße 3, 06466 Gatersleben, Germany1
| | - Jürgen Hofemeister
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Abteilung Molekulare Genetik, Corrensstraße 3, 06466 Gatersleben, Germany1
| | - Hildgund Schrempf
- FB Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, 49069 Osnabrück, Germany2
| |
Collapse
|
41
|
Affiliation(s)
- C P Selitrennikoff
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, and MycoLogics, Inc., Denver Colorado 80262, USA.
| |
Collapse
|
42
|
Campos-Olivas R, Hörr I, Bormann C, Jung G, Gronenborn AM. Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TÜ901 1 1Edited by M. F. Summers. J Mol Biol 2001; 308:765-82. [PMID: 11350173 DOI: 10.1006/jmbi.2001.4622] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AFP1 is a recently discovered anti-fungal, chitin-binding protein from Streptomyces tendae Tü901. Mature AFP1 comprises 86 residues and exhibits limited sequence similarity to the cellulose-binding domains of bacterial cellulases and xylanases. No similarity to the Cys and Gly-rich domains of plant chitin-binding proteins (e.g. agglutinins, lectins, hevein) is observed. AFP1 is the first chitin-binding protein from a bacterium for which anti-fungal activity was shown. Here, we report the three-dimensional solution structure of AFP1, determined by nuclear magnetic resonance spectroscopy. The protein contains two antiparallel beta-sheets (five and four beta-strands each), that pack against each other in a parallel beta-sandwich. This type of architecture is conserved in the functionally related family II of cellulose-binding domains, albeit with different connectivity. A similar fold is also observed in other unrelated proteins (spore coat protein from Myxococcus xanthus, beta-B2 and gamma-B crystallins from Bos taurus, canavalin from Jack bean). AFP1 is therefore classified as a new member of the betagamma-crystallin superfamily. The dynamics of the protein was characterized by NMR using amide 15N relaxation and solvent exchange data. We demonstrate that the protein exhibits an axially symmetric (oblate-like) rotational diffusion tensor whose principal axis coincides to within 15 degrees with that of the inertial tensor. After completion of the present structure of AFP1, an identical fold was reported for a Streptomyces killer toxin-like protein. Based on sequence comparisons and clustering of conserved residues on the protein surface for different cellulose and chitin-binding proteins, we postulate a putative sugar-binding site for AFP1. The inability of the protein to bind short chitin fragments suggests that certain particular architectural features of the solid chitin surface are crucial for the interaction.
Collapse
Affiliation(s)
- R Campos-Olivas
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Chamoy L, Nicolai M, Ravaux J, Quennedey B, Gaill F, Delachambre J. A novel chitin-binding protein from the vestimentiferan Riftia pachyptila interacts specifically with beta-chitin. Cloning, expression, and characterization. J Biol Chem 2001; 276:8051-8. [PMID: 11113138 DOI: 10.1074/jbc.m009244200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA from Riftia pachyptila was cloned. It encodes a novel 21.3-kDa protein from the worm protective tube, named RCBP (for Riftia chitin-binding protein). On the basis of partial tube-peptide sequences previously obtained, experiments using reverse transcriptase-mediated polymerase chain reaction and rapid amplification of cDNA ends led to the complete cDNA sequence. Analysis of its deduced amino acid sequence shows the presence of two chitin-binding domains. These domains are closely related to type 2 chitin-binding domains that are restricted to the animal kingdom. We showed by affinity assay and immunogold labeling that RCBP is the first protein so far known that binds specifically beta-chitin and that is unable to bind the most common alpha-form found in chitin secreting animals. The RCBP mRNA was found to be present in specific epidermal cells from the worm body wall, but never in the chitin-secreting gland cells. This unexpected result clearly indicates that this tube protein is synthesized in specialized areas of the outer epithelium and that at least two different tissues are involved in this exoskeleton synthesis.
Collapse
Affiliation(s)
- L Chamoy
- Unité Mixte de Recherche CNRS 5548, Développement-Communication Chimique, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
44
|
Saito A, Miyashita K, Biukovic G, Schrempf H. Characteristics of a Streptomyces coelicolor A3(2) extracellular protein targeting chitin and chitosan. Appl Environ Microbiol 2001; 67:1268-73. [PMID: 11229920 PMCID: PMC92723 DOI: 10.1128/aem.67.3.1268-1273.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upstream of the Streptomyces coelicolor A3(2) chitinase G gene, a small gene (named chb3) is located whose deduced product shares 37% identical amino acids with the previously described CHB1 protein from Streptomyces olivaceoviridis. The chb3 gene and its upstream region were cloned in a multicopy vector and transformed into the plasmid-free Streptomyces lividans TK21 strain. The CHB3 protein (14.9 kDa) was secreted by the S. lividans TK21 transformant during growth in the presence of glucose, N-acetylglucosamine, yeast extract, and chitin. The protein was purified to homogeneity using anionic exchange, hydrophobic interaction chromatographies, and gel filtration. In contrast to CHB1, CHB3 targets alpha-chitin, beta-chitin, and chitosan at pH 6.0 but does so relatively loosely. The ecological implications of the divergence of substrate specificity of various types of chitin-binding proteins are described.
Collapse
Affiliation(s)
- A Saito
- FB Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
45
|
Vetrivel KS, Pandian SK, Chaudhary U, Dharmalingam K. Purification, cloning, and DNA sequence analysis of a chitinase from an overproducing mutant of Streptomyces peucetius defective in daunorubicin biosynthesis. Can J Microbiol 2001. [DOI: 10.1139/w00-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using λ DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a λ DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.Key words: chitinase, chitinase purification, Streptomyces peucetius, daunorubicin, chiC.
Collapse
|
46
|
Abstract
During growth in the presence of chitin-containing substrates, many Streptomyces strains have been shown to secrete formerly unknown, small chitin-binding proteins (CHBs) which lack enzymatic activity, specifically target and invade, like a glue, alpha-chitin, but not beta-chitin or other polysaccharides. CHBs were purified, and their N-terminal amino acids were determined. Deduced oligonucleotides were used to identify the corresponding genes, which were then sequenced. The deduced CHB1 and CHB2 proteins contain 201 and 200 amino acids, respectively, 77.7% of which are identical. Several motifs, including the relative location and spacing of four tryptophan residues, are conserved in CHB1 and CHB2. The affinity of CHB1 to crab shell chitin is two times higher than that of CHB2. Comparative studies of various generated mutant CHB1 proteins led to the conclusion that mainly one of the exposed tryptophan residues directly contributed to the interaction with chitin. Using CHB doupled with FITC (fluoresceine isothiocyanate), a highly specific and rapid assay was developed to visualize the location of crystalline alpha-chitin within native samples by fluorescence or confocal laser microscopy. In contrast, the N-terminal domain (12 kDa) of the S. olivaceoviridis exochitinase can be used to detect alpha- and beta-chitin. The structural parameters inducing the recognition and possible loosening of alpha-chitin or of alpha- and beta-chitin are at present being investigated.
Collapse
|
47
|
Brandhorst T, Klein B. Cell wall biogenesis of Blastomyces dermatitidis. Evidence for a novel mechanism of cell surface localization of a virulence-associated adhesin via extracellular release and reassociation with cell wall chitin. J Biol Chem 2000; 275:7925-34. [PMID: 10713109 DOI: 10.1074/jbc.275.11.7925] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic yeast of Blastomyces dermatitidis express a surface protein adhesin, WI-1. Due to the crucial role of WI-1 in adherence and disease pathogenesis, we investigated how the protein localizes to the surface of B. dermatitidis. WI-1 released extracellularly by wild-type yeast coated the surfaces of co-cultured knockout yeast within 3 h of incubation, implying that secreted WI-1 provides a pathway for loading the protein onto the yeast cell wall. In radioligand binding assays, purified WI-1 bound saturably, specifically, and with high affinity (K(d) = 8.3 x 10(-9)) to the cell surface of knockout yeast devoid of WI-1. WI-1 added exogenously, in vitro, to knockout yeast was indistinguishable from native cell surface WI-1 by fluorescence staining and restored adhesivity to the knockout yeast in macrophage binding and phagocytosis assays. Analysis of interactions between WI-1 and elements of the yeast cell wall identified chitin as the anchor point for WI-1. This interaction was shown to hinge on the 24-amino acid tandem repeat sequence of WI-1. Efforts to extract surface WI-1 from the yeast demonstrated that it is fastened to the wall by non-covalent interactions and covalent links between cysteine residues. We conclude that the yeast cell surface adhesin WI-1 localizes to the cell wall, in part, through extracellular release followed by high affinity binding back onto exposed chitin fibrils. These findings point to a novel pathway of cell wall biogenesis in yeast and an unanticipated role for chitin in anchoring and displaying a surface adhesin and virulence determinant.
Collapse
Affiliation(s)
- T Brandhorst
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology, and the Comprehensive Cancer Center, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | |
Collapse
|
48
|
Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL. A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 2000; 66:664-70. [PMID: 10653733 PMCID: PMC91878 DOI: 10.1128/aem.66.2.664-670.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a beta-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85 degrees C and pH 6.0 and was extremely thermostable at 70 degrees C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable beta-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.
Collapse
Affiliation(s)
- A Sunna
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | |
Collapse
|
49
|
Saito A, Fujii T, Yoneyama T, Redenbach M, Ohno T, Watanabe T, Miyashita K. High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 1999; 63:710-8. [PMID: 10361684 DOI: 10.1271/bbb.63.710] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Six different genes for chitinase from ordered cosmids of the chromosome of Streptomyces coelicolor A3(2) were identified by hybridization, using the chitinase genes from other Streptomyces spp. as probes, and cloned. The genes were sequenced and analyzed. The genes, together with an additional chitinase gene obtained from the data bank, can be classified into either family 18 or family 19 of the glycosyl hydrolase classification. The five chitinases that fall into family 18 show diversity in their multiple domain structures as well as in the amino acid sequences of their catalytic domains. The remaining two chitinases are members of family 19 chitinases, since their C-terminus shares more than 70% identity with the catalytic domain of ChiC of Streptomyces griseus, the sole gene for family 19 chitinase so far found in an organism other than higher plants.
Collapse
Affiliation(s)
- A Saito
- National Institute of Agro-Environmental Sciences, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|