1
|
He DY, Gao JW, Wang YR, Cao K, Cao YF, Li Y, Wang LY, Wang XC, Xu L, Sun C. Paludibacillus litoralis gen. nov., sp. nov.: a novel species of a novel genus in the family Paracoccaceae, isolated from the sediment of a tidal flat located in Zhoushan, China. Int J Syst Evol Microbiol 2025; 75. [PMID: 39869388 DOI: 10.1099/ijsem.0.006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20T, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20T and Pikeienuella piscinae RR4-56T, Coraliihabitans acroporae NNCM2T, Parvibaculum indicum P31T and Zhengella mangrovi X9-2-2T were 98.9, 91.7, 91.0 and 91.0%, respectively. Colonies of strain HZG-20T were 1.4 mm in diameter, milky white, round, smooth and convex after cultivating on marine agar at 30 °C for 48 h. Cells were catalase and oxidase-negative. Growth occurred at 15-37 ℃ (optimum, 28 ℃), pH 5.0-9.0 (optimum, pH 6.0-8.0) and with 0-8% (w/v) NaCl (optimum, 1-3%). It contained Menaquinone-8 (H2) as the sole respiratory quinone, and C16:0 (11.8-13.6%), C18:1 ω9c (6.8-13.3%) and C15:0 anteiso (10.9-27.7%) as the major cellular fatty acids. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid, one unidentified phosphoglycolipid, two unidentified glycolipids (GL1-GL2) and three unidentified lipids (L1-L3). The genome of strain HZG-20T was 3 835 886 bp in length, comprised 3746 protein-coding genes, with DNA G+C content of 67.1 mol%. The phylogenetic and phylogenomic trees indicated that strain HZG-20T formed an independent and stable clade with P. piscinae RR4-56T. However, the average nucleotide identity, digit DNA-DNA hybridization and average amino acid identity values between strain HZG-20T and P. piscinae RR4-56T, C. acroporae NNCM2T, P. indicum P31T and Z. mangrovi X9-2-2T were 81.6, 71.1, 68.7 and 69.5%; 23.0, 18.5, 17.9 and 17.5%; and 78.2, 56.8, 56.5 and 61.9%, respectively, together with distinct chemotaxonomic features, indicating strain HZG-20T should not be assigned to known genera. As a result, a novel species of a novel genus within the family Paracoccaceae, designated as Paludibacillus litoralis gen. nov., sp. nov., was proposed. The type strain is HZG-20T (MCCC 1K08468T=KCTC 82692T).
Collapse
Affiliation(s)
- Dong-Yan He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jia-Wei Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Yu-Ruo Wang
- Zhejiang Development & Planning Institute, Hangzhou 310012, PR China
| | - Ke Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yun-Fei Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Yang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lu-Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xing-Cheng Wang
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| |
Collapse
|
2
|
Ortiz-Severín J, Hodar C, Stuardo C, Aguado-Norese C, Maza F, González M, Cambiazo V. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. Biol Res 2024; 57:84. [PMID: 39523335 PMCID: PMC11552226 DOI: 10.1186/s40659-024-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Laboratorio de Bioinformática y Bioestadística del Genoma, INTA, Universidad de Chile, Santiago, Chile
| | - Camila Stuardo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Constanza Aguado-Norese
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile.
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
3
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
4
|
Cavazzoli S, Squartini A, Sinkkonen A, Romantschuk M, Rantalainen AL, Selonen V, Roslund MI. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiol Res 2023; 270:127343. [PMID: 36841130 DOI: 10.1016/j.micres.2023.127343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Soil quality and microbial diversity are essential to the health of ecosystems. However, it is unclear how the use of eco-friendly natural additives can improve the quality and microbial diversity of contaminated soils. Herein, we used high-throughput 16 S rDNA amplicon Illumina sequencing to evaluate the stimulation and development of microbial diversity and concomitant bioremediation in hydrocarbon (HC) and heavy metal (HM)-rich waste disposal site soil when treated with meat and bone meal (MBM), cyclodextrin (Cdx), and MBM and cyclodextrin mixture (Cdx MBM) over a period of 3 months. Results showed that natural additive treatments significantly increased the soil bacterial diversity (higher Shannon index, Simpson index and evenness) in a time-dependent manner, with Cdx eliciting the greatest enhancement. The two additives influenced the bacterial community succession patterns differently. MBM, while it enhanced the enrichment of specific genera Chitinophaga and Terrimonas, did not significantly alter the total bacterial community. In contrast, Cdx or Cdx MBM promoted a profound change of the bacteria community over time, with the enrichment of the genera Parvibaculum, Arenimonas and unclassified Actinobacteria. These results provide evidence on the involvement of the two natural additives in coupling HC and HM bioremediation and bacterial community perturbations, and thus illustrates their potential application in ecologically sound bioremediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Simone Cavazzoli
- Department of Civil, Environmental and Mechanical Engineering, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy; Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Natural Resources Institute Finland, Luke, Horticulture Technologies, Turku, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Ville Selonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Marja I Roslund
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
5
|
Pyke R, Fortin N, Wasserscheid J, Tremblay J, Schreiber L, Levesque MJ, Messina-Pacheco S, Whyte L, Wang F, Lee K, Cooper D, Greer CW. Biodegradation potential of residue generated during the in-situ burning of oil in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130439. [PMID: 36437193 DOI: 10.1016/j.jhazmat.2022.130439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The biodegradability of residues derived from in-situ burning, an oil spill response strategy which involves burning an oil slick on the sea surface, has not yet been fully studied. With a growing risk of oil spills, the fate of the persistent burn residue containing potentially toxic substances must be better understood. Microcosms were used to study the microbial community response and potential biodegradability of in-situ burn residues generated from Ultra Low Sulphur (ULS) marine diesel. Microcosm studies were conducted using residues originating from the burning of unweathered and weathered diesel, with the addition of a fertilizer and a dispersant. Burn residues were incubated for 6 weeks at 7 °C in natural seawater with continual agitation in the dark. Samples were subsequently sacrificed for chemistry as well as 16S rRNA gene amplicon and shotgun metagenomic sequencing. Chemistry analyses revealed a reduction in hydrocarbon concentrations. Medium chain-length n-alkanes (nC16-nC24) decreased by 8% in unweathered burn residue microcosms and up to 26% in weathered burn residue microcosms. A significant decrease in polycyclic aromatic hydrocarbon (PAH) concentrations was observed only for naphthalene, fluorene and their alkylated homologs, in the microcosms amended with residue produced from burning weathered diesel. Decreases of 2-24%, were identified depending on the compound. Microcosms amended with burn residues had distinct microbial communities marked by an increase in relative abundance of putative hydrocarbon degraders as well as an increase of known hydrocarbon-degradation genes. These novel results suggest that if in-situ burning is performed on ULS marine diesel, some of the indigenous bacteria would respond to the newly available carbon source and some of the residual compounds would be biodegraded. Future studies involving longer incubation periods could give a better understanding of the fate of burn residues by shedding light on the potential biodegradability of the more recalcitrant residual compounds.
Collapse
Affiliation(s)
- Ruby Pyke
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Jessica Wasserscheid
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Lars Schreiber
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | - Marie-Josee Levesque
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada
| | | | - Lyle Whyte
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada
| | - Feiyue Wang
- Centre for Earth Observation Science and Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - David Cooper
- SL Ross Environmental Research Ltd., Ottawa, ON, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, QC, Canada; National Research Council Canada, Energy, Mining and Environment Research Centre, Montréal, QC, Canada.
| |
Collapse
|
6
|
Wang H, Yun H, Ma X, Li M, Qi M, Wang L, Li Z, Gao S, Tao Y, Liang B, Wang A. Bioelectrochemical catabolism of triclocarban through the cascade acclimation of triclocarban-hydrolyzing and chloroanilines-oxidizing microbial communities. ENVIRONMENTAL RESEARCH 2022; 210:112880. [PMID: 35123970 DOI: 10.1016/j.envres.2022.112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated antimicrobial triclocarban (3,4,4'-trichlorocarbanilide, TCC) is an emerging refractory contaminant omnipresent in various environments. Preferential microbial hydrolysis of TCC to chloroanilines is essential for its efficient mineralization. However, the microbial mineralization of TCC in domestic wastewater is poorly understood. Here, the bioelectrochemical catabolism of TCC to chloroanilines (3,4-dichloroaniline and 4-chloroaniline) and then to CO2 was realized through the cascade acclimation of TCC-hydrolyzing and chloroanilines-oxidizing microbial communities. The biodegradation of chloroanilines was obviously enhanced in the bioelectrochemical reactors. Pseudomonas, Diaphorobacter, and Sphingomonas were the enriched TCC or chloroanilines degraders in the bioelectrochemical reactors. The addition of TCC enhanced the synergistic effect within functional microbial communities based on the feature of the phylogenetic ecological networks. This study provides a new idea for the targeted domestication and construction of functionally differentiated microbial communities to efficiently remove TCC from domestic wastewater through a green and low-carbon bioelectrochemical method.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
7
|
Arcos SC, Lira F, Robertson L, González MR, Carballeda-Sangiao N, Sánchez-Alonso I, Zamorano L, Careche M, Jiménez-Ruíz Y, Ramos R, Llorens C, González-Muñoz M, Oliver A, Martínez JL, Navas A. Metagenomics Analysis Reveals an Extraordinary Inner Bacterial Diversity in Anisakids (Nematoda: Anisakidae) L3 Larvae. Microorganisms 2021; 9:1088. [PMID: 34069371 PMCID: PMC8158776 DOI: 10.3390/microorganisms9051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
L3 larvae of anisakid nematodes are an important problem for the fisheries industry and pose a potential risk for human health by acting as infectious agents causing allergies and as potential vectors of pathogens and microrganisms. In spite of the close bacteria-nematode relationship very little is known of the anisakids microbiota. Fresh fish could be contaminated by bacteria vectored in the cuticle or in the intestine of anisakids when the L3 larvae migrate through the muscles. As a consequence, the bacterial inoculum will be spread, with potential effects on the quality of the fish, and possible clinical effects cannot be discarded. A total of 2,689,113 16S rRNA gene sequences from a total of 113 L3 individuals obtained from fish captured along the FAO 27 fishing area were studied. Bacteria were taxonomically characterized through 1803 representative operational taxonomic units (OTUs) sequences. Fourteen phyla, 31 classes, 52 orders, 129 families and 187 genera were unambiguously identified. We have found as part of microbiome an average of 123 OTUs per L3 individual. Diversity indices (Shannon and Simpson) indicate an extraordinary diversity of bacteria at an OTU level. There are clusters of anisakids individuals (samples) defined by the associated bacteria which, however, are not significantly related to fish hosts or anisakid taxa. This suggests that association or relationship among bacteria in anisakids, exists without the influence of fishes or nematodes. The lack of relationships with hosts of anisakids taxa has to be expressed by the association among bacterial OTUs or other taxonomical levels which range from OTUs to the phylum level. There are significant biological structural associations of microbiota in anisakid nematodes which manifest in clusters of bacteria ranging from phylum to genus level, which could also be an indicator of fish contamination or the geographic zone of fish capture. Actinobacteria, Aquificae, Firmicutes, and Proteobacteria are the phyla whose abundance value discriminate for defining such structures.
Collapse
Affiliation(s)
- Susana C. Arcos
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Felipe Lira
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Lee Robertson
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
- Departamento de Protección Vegetal, INIA, 28040 Madrid, Spain
| | - María Rosa González
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | | | - Isabel Sánchez-Alonso
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Laura Zamorano
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - Mercedes Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Yolanda Jiménez-Ruíz
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, University of Valencia, 46980 Valencia, Spain;
| | - Miguel González-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.C.-S.); (M.G.-M.)
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - José L. Martínez
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| |
Collapse
|
8
|
Multispecies Diesel Fuel Biodegradation and Niche Formation Are Ignited by Pioneer Hydrocarbon-Utilizing Proteobacteria in a Soil Bacterial Consortium. Appl Environ Microbiol 2020; 87:AEM.02268-20. [PMID: 33067200 DOI: 10.1128/aem.02268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
A soil bacterial consortium that was grown on diesel fuel and consisted of more than 10 members from different genera was maintained through repetitive subculturing and was utilized as a practical model to investigate a bacterial community that was continuously exposed to petroleum hydrocarbons. Through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification which supported the linkage of genomic data and functionality, two pioneering genera, Sphingobium and Pseudomonas, whose catabolic capabilities were differentiated, were found to be responsible for the creation of specialized ecological niches that were apparently occupied by other bacterial members for survival within the consortium. Coexisting genera Achromobacter and Cupriavidus maintained their existence in the consortium through metabolic dependencies by utilizing hydrocarbon biotransformation products of pioneer metabolism, which was confirmed through growth tests and identification of biotransformation products of the isolated strains. Pioneering Sphingobium and Pseudomonas spp. utilized relatively water-insoluble hydrocarbon parent compounds and facilitated the development of a consortium community structure that resulted in the creation of niches in response to diesel fuel exposure which were created through the production of more-water-soluble biotransformation products available to cocolonizers. That these and other organisms were still present in the consortium after multiple transfers spanning 15 years provided evidence for these ecological niches. Member survival through occupation of these niches led to robustness of each group within the multispecies bacterial community. Overall, these results contribute to our understanding of the complex ecological relationships that may evolve during prokaryotic hydrocarbon pollutant biodegradation.IMPORTANCE There are few metagenome studies that have explored soil consortia maintained on a complex hydrocarbon substrate after the community interrelationships were formed. A soil bacterial consortium maintained on diesel fuel was utilized as a practical model to investigate bacterial community relationships through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification, which supported the linkage of genomic data and functionality. Two pioneering genera were responsible for the biodegradation of aromatics and alkanes by initiating biotransformation and thereby created specialized niches that were populated by other members. A model that represents these relationships was constructed, which contributes to our understanding of the complex ecological relationships that evolve during prokaryotic hydrocarbon pollutant biodegradation.
Collapse
|
9
|
Analysis of the Microbiome (Bathing Biome) in Geothermal Waters from an Australian Balneotherapy Centre. WATER 2020. [DOI: 10.3390/w12061705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Balneotherapy is an ancient practice which remains commonplace throughout the world due to perceived health benefits that include relief of arthritis, fibromyalgia and relaxation. However, bathing environments are not sterile and natural spring waters may harbour natural microbial populations that include potential pathogens. We elucidated the microbial community from water taken from the borehole, pre-filter water (chlorinated, cold and post-bathing water) and post-filter water at a commercial Australian natural hot spring bathing facility. Thiobacillus, Sphingobium and Agrobacterium were the predominant genera in samples collected from the borehole. The predominant genera changed to Sphingobium, Parvibaculum and Achromobacter following chloride treatment and Azospira replaced the Achromobacter once the water reached ambient temperature and was stored ready to be used by bathers. The microbial community changed again following use by bathers, dominated by Pseudomonas, although Sphingobium persisted. No total or faecal coliforms were observed in any of the samples except for the post-bathing water; even there, their presence was at very low concentration (2.3 cfu/mL). These results confirm the lack of pathogens present in these hot spring waters but also suggests that good management of post-bathing water is required especially if the water is used for borehole water recharge.
Collapse
|
10
|
Wang Y, Ye X, Kong X, Xi Y, Du J, Zhu Y, Gao D, He J. Parvibaculum sedimenti sp. nov., A Novel Soil Bacterium Isolated from Sediment. Curr Microbiol 2020; 77:2056-2063. [PMID: 32382952 DOI: 10.1007/s00284-020-01996-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
A Gram-stain-negative, aerobic bacterium, designated HXT-9T, was isolated from a river sediment. Cells were rod-shaped and non-motile. Growth occurred at 10-42 ℃ (optimum 30 ℃), at pH 5.0-8.0 (optimum pH 7.0) and with NaCl concentrations of 0-2.5% (optimum 0.5%). Phylogenetic trees based on 16S rRNA gene sequences showed that strain HXT-9T belonged to the genus Parvibaculum, and showed highest similarities to P. lavamentivorans KCTC 22775T (96.1%), followed by P. hydrocarboniclasticum EPR 92T (94.8%) and P. indicum P31T (93.6%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain HXT-9T and P. lavamentivorans KCTC 22775T were 75.2% and 20.8%, respectively. The G + C content of strain HXT-9T genome was 62.1 mol%. The major fatty acids (> 10%) were summed feature 8 (C18:1ω7c and/or C18:1ω6c), C19:0 cyclo ω8c and C16:0 3-OH. The major respiratory quinone was ubiquinone 11 (Q-11). The major polar lipids were DPG (diphosphatidylglycerol), PG (phosphatidylglycerol), PME (phosphatidylmonomethylethanolamine), PE (phosphatidylethanolamine), PC (phosphatidylcholine) and AL (unidentified aminolipids). The phylogenetic analysis and physiological and biochemical data showed that strain HXT-9T represents a novel species in the genus Parvibaculum, for which the name P. sedimenti sp. nov. is proposed. The type strain is HXT-9T (= CCTCC AB 2019273T = KCTC 72547T).
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.,Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Xiaomei Ye
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China.
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Yonglan Xi
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Jing Du
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Yan Zhu
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Di Gao
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, People's Republic of China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
11
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
12
|
Enrichment and key features of a robust and consistent indigenous marine-cognate microbial consortium growing on oily bilge wastewaters. Biodegradation 2020; 31:91-108. [DOI: 10.1007/s10532-020-09896-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
|
13
|
Shin B, Bociu I, Kolton M, Huettel M, Kostka JE. Succession of microbial populations and nitrogen-fixation associated with the biodegradation of sediment-oil-agglomerates buried in a Florida sandy beach. Sci Rep 2019; 9:19401. [PMID: 31852991 PMCID: PMC6920467 DOI: 10.1038/s41598-019-55625-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Deepwater Horizon (DWH) oil spill contaminated coastlines from Louisiana to Florida, burying oil up to 70 cm depth in sandy beaches, posing a potential threat to environmental and human health. The dry and nutrient-poor beach sand presents a taxing environment for microbial growth, raising the question how the biodegradation of the buried oil would proceed. Here we report the results of an in-situ experiment that (i) characterized the dominant microbial communities contained in sediment oil agglomerates (SOAs) of DWH oil buried in a North Florida sandy beach, (ii) elucidated the long-term succession of the microbial populations that developed in the SOAs, and (iii) revealed the coupling of SOA degradation to nitrogen fixation. Orders of magnitude higher bacterial abundances in SOAs compared to surrounding sands distinguished SOAs as hotspots of microbial growth. Blooms of bacterial taxa with a demonstrated potential for hydrocarbon degradation (Gammaproteobacteria, Alphaproteobacteria, Actinobacteria) developed in the SOAs, initiating a succession of microbial populations that mirrored the evolution of the petroleum hydrocarbons. Growth of nitrogen-fixing prokaryotes or diazotrophs (Rhizobiales and Frankiales), reflected in increased abundances of nitrogenase genes (nifH), catalyzed biodegradation of the nitrogen-poor petroleum hydrocarbons, emphasizing nitrogen fixation as a central mechanism facilitating the recovery of sandy beaches after oil contamination.
Collapse
Affiliation(s)
- Boryoung Shin
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ioana Bociu
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Max Kolton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Markus Huettel
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. Proc Natl Acad Sci U S A 2019; 116:23100-23105. [PMID: 31659048 PMCID: PMC6859307 DOI: 10.1073/pnas.1904273116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cas9 proteins have revolutionized biotechnology by enabling flexible and facile targeted cleavage of nucleic acids. Nearly all of these proteins are active only at moderate, near-physiological temperatures. Through mini-metagenomic sequencing of hot spring samples from Yellowstone National Park, we discovered and characterized a novel hyperthermophilic Cas9 protein from an unculturable Ignavibacterium. This Cas9 protein, IgnaviCas9, expands the temperature range at which targeted nucleic acid cleavage is possible, thus speeding the development of new biotechnological techniques. We demonstrated one such application by using IgnaviCas9 to deplete undesired amplicons during the amplification step of library preparation in sequencing workflows. This Cas9 protein underscores the exciting applications that can be made possible by exploring nature’s diversity. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) systems have been effectively harnessed to engineer the genomes of organisms from across the tree of life. Nearly all currently characterized Cas9 proteins are derived from mesophilic bacteria, and canonical Cas9 systems are challenged by applications requiring enhanced stability or elevated temperatures. We discovered IgnaviCas9, a Cas9 protein from a hyperthermophilic Ignavibacterium identified through mini-metagenomic sequencing of samples from a hot spring. IgnaviCas9 is active at temperatures up to 100 °C in vitro, which enables DNA cleavage beyond the 44 °C limit of Streptococcus pyogenes Cas9 (SpyCas9) and the 70 °C limit of both Geobacillus stearothermophilus Cas9 (GeoCas9) and Geobacillus thermodenitrificans T12 Cas9 (ThermoCas9). As a potential application of this enzyme, we demonstrate that IgnaviCas9 can be used in bacterial RNA-seq library preparation to remove unwanted cDNA from 16s ribosomal rRNA without increasing the number of steps, thus underscoring the benefits provided by its exceptional thermostability in improving molecular biology and genomic workflows. IgnaviCas9 is an exciting addition to the CRISPR-Cas9 toolbox and expands its temperature range.
Collapse
|
15
|
Mao T, Wei Y, Zheng C, Cheng W, Zhang Z, Zhu Y, Wang R, Zeng Z. Antibacterial Cotton Fabrics Coated by Biodegradable Cationic Silicone Softeners. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Taoyan Mao
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| | - Yuan Wei
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| | - Cheng Zheng
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
- Guangzhou Vocational College of Science and Technology, Guangzhou Guangdong 510550 P. R. China
| | - Wenjing Cheng
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 P. R. China
| | - Zhenqiang Zhang
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| | - Yiting Zhu
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| | - Runhao Wang
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| | - Zhaowen Zeng
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 P. R. China
| |
Collapse
|
16
|
Rodriguez-Sanchez A, Leyva-Diaz JC, Gonzalez-Martinez A, Poyatos JM. Linkage of microbial kinetics and bacterial community structure of MBR and hybrid MBBR-MBR systems to treat salinity-amended urban wastewater. Biotechnol Prog 2017; 33:1483-1495. [DOI: 10.1002/btpr.2513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Alejandro Rodriguez-Sanchez
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| | - Juan Carlos Leyva-Diaz
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| | | | - Jose Manuel Poyatos
- Institute of Water Research; University of Granada; Granada 18071 Spain
- Department of Civil Engineering, School of Civil Engineering; University of Granada; Granada 18071 Spain
| |
Collapse
|
17
|
Koshlaf E, Shahsavari E, Aburto-Medina A, Taha M, Haleyur N, Makadia TH, Morrison PD, Ball AS. Bioremediation potential of diesel-contaminated Libyan soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:297-305. [PMID: 27479774 DOI: 10.1016/j.ecoenv.2016.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Department of Biology, Faculty of Science Algabal Algarbi University, Gharian, Libya
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Tanvi H Makadia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
18
|
Hong DK, Jang SH, Lee C. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Wang G, Tang M, Wu H, Dai S, Li T, Chen C, He H, Fan J, Xiang W, Li X. Pyruvatibacter mobilis gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122. Int J Syst Evol Microbiol 2016; 66:184-188. [DOI: 10.1099/ijsem.0.000692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Guanghua Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Mingxing Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hualian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shikun Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Tao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Chenghao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui He
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jiewei Fan
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Wenzhou Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|
20
|
Al-Jawasim M, Yu K, Park JW. Synergistic effect of crude oil plus dispersant on bacterial community in a louisiana salt marsh sediment. FEMS Microbiol Lett 2015; 362:fnv144. [DOI: 10.1093/femsle/fnv144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
|
21
|
Mishamandani S, Gutierrez T, Berry D, Aitken MD. Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 2015; 18:1817-33. [PMID: 26184578 DOI: 10.1111/1462-2920.12988] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/22/2023]
Abstract
Emerging evidence shows that hydrocarbonoclastic bacteria (HCB) may be commonly found associated with phytoplankton in the ocean, but the ecology of these bacteria and how they respond to crude oil remains poorly understood. Here, we used a natural diatom-bacterial assemblage to investigate the diversity and response of HCB associated with a cosmopolitan marine diatom, Skeletonema costatum, to crude oil. Pyrosequencing analysis and qPCR revealed a dramatic transition in the diatom-associated bacterial community, defined initially by a short-lived bloom of Methylophaga (putative oil degraders) that was subsequently succeeded by distinct groups of HCB (Marinobacter, Polycyclovorans, Arenibacter, Parvibaculum, Roseobacter clade), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential. Interestingly, these oil-enriched organisms contributed to the apparent and exclusive biodegradation of substituted and non-substituted polycyclic aromatic hydrocarbons (PAHs), thereby suggesting that the HCB community associated with the diatom is tuned to specializing in the degradation of PAHs. Furthermore, the formation of marine oil snow (MOS) in oil-amended incubations was consistent with its formation during the Deepwater Horizon oil spill. This work highlights the phycosphere of phytoplankton as an underexplored biotope in the ocean where HCB may contribute importantly to the biodegradation of hydrocarbon contaminants in marine surface waters.
Collapse
Affiliation(s)
- Sara Mishamandani
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tony Gutierrez
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.,School of Life Sciences, Heriot-Watt University, Edinburgh, UK
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Li C, Ren H, Yin E, Tang S, Li Y, Cao J. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9483-9493. [PMID: 25613804 DOI: 10.1007/s11356-015-4124-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ρ (NH3-N)) < 8 mg/L, ρ (TN) < 15 mg/L with long-term stability for the effluent, and both species and abundances of aromatics reduced greatly by UASBs according to GC-MS. Microbial community analysis by PCR-DGGE showed that Bacteroidetes and Alphaproteobacteria were the dominant communities in the bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China,
| | | | | | | | | | | |
Collapse
|
23
|
Takeuchi M, Yamagishi T, Kamagata Y, Oshima K, Hattori M, Katayama T, Hanada S, Tamaki H, Marumo K, Maeda H, Nedachi M, Iwasaki W, Suwa Y, Sakata S. Tepidicaulis marinus gen. nov., sp. nov., a marine bacterium that reduces nitrate to nitrous oxide under strictly microaerobic conditions. Int J Syst Evol Microbiol 2015; 65:1749-1754. [DOI: 10.1099/ijs.0.000167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A moderately thermophilic, aerobic, stalked bacterium (strain MA2T) was isolated from marine sediments in Kagoshima Bay, Japan. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MA2T was most closely related to the genera
Rhodobium
,
Parvibaculum
, and
Rhodoligotrophos
(92–93 % similarity) within the class
Alphaproteobacteria
. Strain MA2T was a Gram-stain-negative and stalked dimorphic bacteria. The temperature range for growth was 16–48 °C (optimum growth at 42 °C). This strain required yeast extract and NaCl (>1 %, w/v) for growth, tolerated up to 11 % (w/v) NaCl, and was capable of utilizing various carbon sources. The major cellular fatty acid and major respiratory quinone were C18 : 1ω7c and ubiquinone-10, respectively. The DNA G+C content was 60.7 mol%. Strain MA2T performed denitrification and produced N2O from nitrate under strictly microaerobic conditions. Strain MA2T possessed periplasmic nitrate reductase (Nap) genes but not membrane-bound nitrate reductase (Nar) genes. On the basis of this morphological, physiological, biochemical and genetic information a novel genus and species, Tepidicaulis marinus gen. nov., sp. nov., are proposed, with MA2T ( = NBRC 109643T = DSM 27167T) as the type strain of the species.
Collapse
Affiliation(s)
- Mio Takeuchi
- Institute for Geo-resources and Environments, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Takao Yamagishi
- Institute for Geo-resources and Environments, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kenshiro Oshima
- The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Masahira Hattori
- The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Taiki Katayama
- Institute for Geo-resources and Environments, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Satoshi Hanada
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsumi Marumo
- Institute of Geology and Geoinformation, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Hiroto Maeda
- Department of Physics and Astronomy Graduate School of Science and Engineering/Faculty of Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Munetomo Nedachi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Wataru Iwasaki
- The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Suwa
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Susumu Sakata
- Institute for Geo-resources and Environments, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| |
Collapse
|
24
|
Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7413-7424. [PMID: 24584641 DOI: 10.1007/s11356-014-2653-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Incomplete removal of sodium dodecyl sulfate (SDS) in wastewater treatment plants may result in SDS residues escaping and finding their way into receiving water bodies like rivers, lakes, and sea. Introduction of effective microorganisms into the aerobic treatment facilities can reduce unpleasant by-products and SDS residues. Selecting effective microorganisms for SDS treatment is a big challenge. Current study reports the isolation, identification, and in situ monitoring of an effective SDS-degrading isolate from detergent-polluted river waters. Screening was carried out by the conventional enrichment culture technique and the isolate was tentatively identified by using fatty acid methyl ester and 16S ribosomal RNA (rRNA) sequence analyses. Fatty acids produced by the isolate investigated were assumed as typical for the genus Comamonas. 16S rRNA sequence analysis also confirmed that the isolate had 95% homology with Delftia acidovorans known as Comamonas or Pseudomonas acidovorans previously. D. acidovorans exhibited optimum growth at SDS concentration of 1 g l(-1) but tolerated up to 10 g l(-1) SDS. 87% of 1.0 g l(-1) pure SDS was degraded after 11 days of incubation. The temporal succession of D. acidovorans in detergent-polluted river water was also monitored in situ by using Comamonas-specific fluorescein-labeled Cte probe. Being able to degrade SDS and populate in SDS-polluted surface waters, D. acidovorans isolates seem to be very helpful in elimination of SDS.
Collapse
Affiliation(s)
- Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | | |
Collapse
|
25
|
Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. THE ISME JOURNAL 2014; 8:344-58. [PMID: 24067257 PMCID: PMC3906822 DOI: 10.1038/ismej.2013.163] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/09/2022]
Abstract
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.
Collapse
Affiliation(s)
- Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Sylvie Sanschagrin
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Christine Maynard
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Marc St-Arnaud
- Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Weiss M, Kesberg AI, Labutti KM, Pitluck S, Bruce D, Hauser L, Copeland A, Woyke T, Lowry S, Lucas S, Land M, Goodwin L, Kjelleberg S, Cook AM, Buhmann M, Thomas T, Schleheck D. Permanent draft genome sequence of Comamonas testosteroni KF-1. Stand Genomic Sci 2013; 8:239-54. [PMID: 23991256 PMCID: PMC3746432 DOI: 10.4056/sigs.3847890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes.
Collapse
Affiliation(s)
- Michael Weiss
- Department of Biological Sciences, University of Konstanz, Germany ; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1. Appl Environ Microbiol 2012; 78:8254-63. [PMID: 23001656 DOI: 10.1128/aem.02412-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C(4)-SPC). Second, these SPCs are mineralized. 3-C(4)-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C(4)-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria.
Collapse
|
28
|
Rosario-Passapera R, Keddis R, Wong R, Lutz RA, Starovoytov V, Vetriani C. Parvibaculum hydrocarboniclasticum sp. nov., a mesophilic, alkane-oxidizing alphaproteobacterium isolated from a deep-sea hydrothermal vent on the East Pacific Rise. Int J Syst Evol Microbiol 2012; 62:2921-2926. [PMID: 22268074 DOI: 10.1099/ijs.0.039594-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, alkane-oxidizing bacterium, designated strain EPR92(T), was isolated from hydrothermal fluids that had been collected from a deep-sea vent on the East Pacific Rise (at 9° 50' N 104° 17' W). The cells of the novel strain were Gram-staining-negative rods that measured approximately 1.4 µm in length and 0.4 µm in width. Strain EPR92(T) grew at 20-40 °C (optimum 35 °C), with1.0-5.0% (w/v) NaCl (optimum 2.5%), and at pH 4.0-8.5 (optimum pH 7.5). The generation time under optimal conditions was 63 min. Strain EPR92(T) grew aerobically in artificial seawater minimal medium with n-alkanes as sole carbon and energy sources, and also in artificial seawater medium supplemented with peptone and yeast extract. The predominant fatty acids were C(18:1)ω7c, C(19:0) cyclo ω8c, 11-methyl C(18:1)ω7c and a putative C(12:0) aldehyde. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and four unidentified aminolipids. The major respiratory quinone was Q-10 and the genomic DNA G+C content was 60.7 mol%. Phylogenetic analyses of the 16S rRNA gene showed that strain EPR92(T) belongs in the class Alphaproteobacteria and the recognized species that were most closely related to the novel strain were identified as Parvibaculum indicum P-31(T) (98.7% sequence similarity) and Parvibaculum lavamentivorans DS-1(T) (95.8%). In DNA-DNA hybridizations, the level of DNA-DNA relatedness observed between strain EPR92(T) and P. indicum P-31(T) was 47.7%, indicating that the two strains do not belong to the same species. Based on the phylogenetic, physiological, chemotaxonomic and genetic evidence, strain EPR92(T) represents a novel species within the genus Parvibaculum, for which the name Parvibaculum hydrocarboniclasticum sp. nov. is proposed. The type strain is EPR92(T) ( = DSM 23209 = JCM 16666(T)).
Collapse
Affiliation(s)
| | - Ramaydalis Keddis
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.,Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ronald Wong
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Richard A Lutz
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.,Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Schleheck D, Weiss M, Pitluck S, Bruce D, Land ML, Han S, Saunders E, Tapia R, Detter C, Brettin T, Han J, Woyke T, Goodwin L, Pennacchio L, Nolan M, Cook AM, Kjelleberg S, Thomas T. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)). Stand Genomic Sci 2011; 5:298-310. [PMID: 22675581 PMCID: PMC3368416 DOI: 10.4056/sigs.2215005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvibaculum lavamentivorans DS-1(T) is the type species of the novel genus Parvibaculum in the novel family Rhodobiaceae (formerly Phyllobacteriaceae) of the order Rhizobiales of Alphaproteobacteria. Strain DS-1(T) is a non-pigmented, aerobic, heterotrophic bacterium and represents the first tier member of environmentally important bacterial communities that catalyze the complete degradation of synthetic laundry surfactants. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,914,745 bp long genome with its predicted 3,654 protein coding genes is the first completed genome sequence of the genus Parvibaculum, and the first genome sequence of a representative of the family Rhodobiaceae.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Michael Weiss
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Miriam L. Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shunsheng Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Elizabeth Saunders
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Thomas Brettin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Len Pennacchio
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alasdair M. Cook
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H, Imanaka T. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2011; 62:1945-1950. [PMID: 22003040 DOI: 10.1099/ijs.0.032953-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-spore-forming, non-motile, irregularly circular, aerobic/microaerobic appendaged bacterium (strain 120-1(T)) was isolated from Naga-ike, one of the freshwater lakes in the Skarvsnes ice-free area of Antarctica. Strain 120-1(T) grew between 5 and 35 °C, with optimum growth at 30 °C. The pH range for growth was between 6.0 and 9.0 (optimum of approximately pH 7.0). The range of NaCl concentration allowing growth of strain 120-1(T) was between 0 and 5.0%, with an optimum of 0.5-1.0%. Strain 120-1(T) was able to utilize organic compounds such as glucose, arabinose, gluconate, adipate and malate. Red colonies were formed on plate medium and the carotenoids were present in the cells. Ubiquinones Q-9 and Q-10 were the major respiratory quinones. The major cellular fatty acids were C(16:0), C(18:1)ω9c and C(18:1)ω7c. The G+C content of the genomic DNA was 61.1 mol%. Comparative analyses of 16S rRNA gene sequences and physiological characteristics of strain 120-1(T) indicate that strain 120-1(T) is a phylogenetically novel bacterium, and that it represents a novel species in a new genus, Rhodoligotrophos gen. nov., in the order Rhizobiales, family Rhodobiaceae. The name Rhodoligotrophos appendicifer gen. nov. sp. nov. is proposed as the type species of this new genus, with 120-1(T) ( = JCM 16873(T) = ATCC BAA-2115(T)) as the type strain.
Collapse
Affiliation(s)
- Wakao Fukuda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kozo Yamada
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yuki Miyoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirokazu Okuno
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
31
|
Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, Shams M, Abrouk D, Lavire C, Oger-Desfeux C, Hommais F, Guéguen L, Daubin V, Muller D, Nesme X. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 2011; 3:762-81. [PMID: 21795751 PMCID: PMC3163468 DOI: 10.1093/gbe/evr070] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species.
Collapse
Affiliation(s)
- Florent Lassalle
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire Ecologie Microbienne Lyon, UMR 5557, USC 1193, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiménez N, Viñas M, Guiu-Aragonés C, Bayona JM, Albaigés J, Solanas AM. Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 2011; 91:823-34. [DOI: 10.1007/s00253-011-3321-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 11/29/2022]
|
33
|
Lai Q, Wang L, Liu Y, Yuan J, Sun F, Shao Z. Parvibaculum indicum sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2011; 61:271-274. [DOI: 10.1099/ijs.0.021899-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain P31T, which was isolated from a polycyclic aromatic hydrocarbon (PAH)-degrading consortium enriched with deep-sea water of the Indian Ocean. The isolate was Gram-reaction-negative, rod-shaped, motile by means of a polar flagellum and incapable of reducing nitrate to nitrite. Growth was observed at 0.5–8 % NaCl and at 10–41 °C. Strain P31T was unable to degrade Tween 80 or gelatin. The major respiratory quinone was ubiquinone 11 (Q-11). The dominant fatty acids were C18 : 1
ω7c (39.79 %), 11-methyl C18 : 1
ω7c (17.84 %), C19 : 0 cyclo ω8c (12.05 %) and C18 : 0 (6.09 %). The G+C content of the chromosomal DNA was 62.1 mol%. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain P31T and Parvibaculum lavamentivorans DS-1T formed a distinct lineage in the family Phyllobacteriaceae; these two strains showed 95.7 % sequence similarity, while similarities between P31T and other members of the genus Parvibaculum were below 93 %. Based on the genotypic and phenotypic data, strain P31T represents a novel species of the genus Parvibaculum, for which the name Parvibaculum indicum sp. nov. is proposed. The type strain is P31T (=CCTCC AB 208230T =LMG 24712T =MCCC 1A01132T).
Collapse
Affiliation(s)
- Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Liping Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Yuhui Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Jun Yuan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Fengqin Sun
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| |
Collapse
|
34
|
|
35
|
Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D. Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 2010; 14:501-14. [PMID: 20835839 DOI: 10.1007/s00792-010-0327-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Prokaryotic diversities of 12 geothermal hot springs located in Northern, Central and Southern Tunisia were investigated by culture-based and molecular approaches. Enrichment cultures for both aerobic and anaerobic microorganisms were successfully obtained at temperatures ranging from 50 to 75°C. Fourteen strains including four novel species were cultivated and assigned to the phyla Firmicutes (9), Thermotogae (2), Betaproteobacteria (1), Synergistetes (1) and Bacteroidetes (1). Archaeal or universal oligonucleotide primer sets were used to generate 16S rRNA gene libraries. Representative groups included Proteobacteria, Firmicutes, Deinococcus-Thermus, Thermotogae, Synergistetes, Bacteroidetes, Aquificae, Chloroflexi, candidate division OP9 in addition to other yet unclassified strains. The archaeal library showed a low diversity of clone sequences belonging to the phyla Euryarchaeota and Crenarchaeota. Furthermore, we confirmed the occurrence of sulfate reducers and methanogens by amplification and sequencing of dissimilatory sulfite reductase (dsrAB) and methyl coenzyme M reductase α-subunit (mcrA) genes. Altogether, we discuss the diverse prokaryotic communities arising from the 12 geothermal hot springs studied and relate these findings to the physico-chemical features of the hot springs.
Collapse
Affiliation(s)
- Raja Sayeh
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, UBO-CNRS-IFREMER, Place Nicolas Copernic, 29280, Plouzané, France.
| | | | | | | | | | | |
Collapse
|
36
|
Chemical and microbial community analysis during aerobic biostimulation assays of non-sulfonated alkyl-benzene-contaminated groundwater. Appl Microbiol Biotechnol 2010; 88:985-95. [DOI: 10.1007/s00253-010-2816-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
37
|
Zhao JS, Deng Y, Manno D, Hawari J. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 2010; 5:e9109. [PMID: 20174598 PMCID: PMC2824531 DOI: 10.1371/journal.pone.0009109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Shewanella halifaxensis and Shewanella sediminis were among a few aquatic gamma-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and gamma-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other gamma-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and gamma-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biodegradation, Environmental
- Chromosome Mapping
- Cold Temperature
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- Evolution, Molecular
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Genome, Bacterial/genetics
- Genomics
- Marine Biology
- Molecular Structure
- Phylogeny
- Proteomics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Shewanella/classification
- Shewanella/genetics
- Shewanella/metabolism
- Species Specificity
- Triazines/chemistry
- Triazines/metabolism
Collapse
Affiliation(s)
- Jian-Shen Zhao
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| | - Yinghai Deng
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Dominic Manno
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jalal Hawari
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| |
Collapse
|
38
|
The missing link in linear alkylbenzenesulfonate surfactant degradation: 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl)butyrate by Comamonas testosteroni KF-1. Appl Environ Microbiol 2009; 76:196-202. [PMID: 19915037 DOI: 10.1128/aem.02181-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediate was identified as 4-sulfoacetophenone (SAP) (4-acetylbenzenesulfonate) by nuclear magnetic resonance (NMR). The other was 4-sulfophenol (SP). This information allowed us to postulate a degradation pathway that comprises the removal of an acetyl moiety from (derivatized) 3-C4-SPC, followed by a Baeyer-Villiger monooxygenation of SAP and subsequent ester cleavage to yield SP. Inducible NADPH-dependent SAP-oxygenase was detected in crude extracts of strain KF-1. The enzyme reaction involved transient formation of 4-sulfophenol acetate (SPAc), which was completely hydrolyzed to SP and acetate. SP was subject to NADH-dependent oxygenation in crude extract, and 4-sulfocatechol (SC) was subject to oxygenolytic ring cleavage. The first complete degradative pathway for an SPC can now be depicted with 3-C4-SPC: transport, ligation to a coenzyme A (CoA) ester, and manipulation to allow abstraction of acetyl-CoA to yield SAP, Baeyer-Villiger monooxygenation to SPAc, hydrolysis of the ester to acetate and SP, monooxygenation of SP to SC, the ortho ring-cleavage pathway with desulfonation, and sulfite oxidation.
Collapse
|
39
|
Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol 2009; 75:6937-40. [PMID: 19749073 DOI: 10.1128/aem.01742-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
16S rRNA gene libraries from the lithoautotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture described by Straub et al. (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl. Environ. Microbiol. 62:1458-1460, 1996) were dominated by a phylotype related (95% 16S rRNA gene homology) to the autotrophic Fe(II) oxidizer Sideroxydans lithotrophicus. The libraries also contained phylotypes related to known heterotrophic nitrate reducers Comamonas badia, Parvibaculum lavamentivorans, and Rhodanobacter thiooxidans. The three heterotrophs were isolated and found to be capable of only partial (12 to 24%) Fe(II) oxidation, suggesting that the Sideroxydans species has primary responsibility for Fe(II) oxidation in the enrichment culture.
Collapse
|
40
|
Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill. Appl Environ Microbiol 2009; 75:3407-18. [PMID: 19376924 PMCID: PMC2687268 DOI: 10.1128/aem.01776-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 03/26/2009] [Indexed: 11/20/2022] Open
Abstract
The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected areas with similar characteristics.
Collapse
MESH Headings
- Alkenes/metabolism
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodegradation, Environmental
- Biodiversity
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Geologic Sediments/microbiology
- Hydrocarbons, Aromatic/metabolism
- Mineral Oil
- Molecular Sequence Data
- Nucleic Acid Denaturation
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spain
- Water Pollution, Chemical
Collapse
|
41
|
Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 2009; 4:e5513. [PMID: 19436737 PMCID: PMC2677461 DOI: 10.1371/journal.pone.0005513] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/14/2009] [Indexed: 11/25/2022] Open
Abstract
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or 'suspended biofilms', by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10-400 microm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.
Collapse
Affiliation(s)
- David Schleheck
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Water and Waste Technology, School of Civil Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Janosch Klebensberger
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeremy S. Webb
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott A. Rice
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Van Houdt R, Monchy S, Leys N, Mergeay M. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie van Leeuwenhoek 2009; 96:205-26. [DOI: 10.1007/s10482-009-9345-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
43
|
Denger K, Mayer J, Hollemeyer K, Cook AM. Amphoteric surfactant N-oleoyl-N-methyltaurine utilized by Pseudomonas alcaligenes with excretion of N-methyltaurine. FEMS Microbiol Lett 2008; 288:112-7. [PMID: 18783436 DOI: 10.1111/j.1574-6968.2008.01341.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely.
Collapse
|
44
|
Peressutti SR, Olivera NL, Babay PA, Costagliola M, Alvarez HM. Degradation of linear alkylbenzene sulfonate by a bacterial consortium isolated from the aquatic environment of Argentina. J Appl Microbiol 2008; 105:476-84. [PMID: 18355233 DOI: 10.1111/j.1365-2672.2008.03771.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S R Peressutti
- Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
45
|
Sipilä TP, Keskinen AK, Åkerman ML, Fortelius C, Haahtela K, Yrjälä K. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME JOURNAL 2008; 2:968-81. [DOI: 10.1038/ismej.2008.50] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
George I, Eyers L, Stenuit B, Agathos SN. Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 2008; 35:225-36. [DOI: 10.1007/s10295-007-0289-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
47
|
Schleheck D, Knepper TP, Eichhorn P, Cook AM. Parvibaculum lavamentivorans DS-1T degrades centrally substituted congeners of commercial linear alkylbenzenesulfonate to sulfophenyl carboxylates and sulfophenyl dicarboxylates. Appl Environ Microbiol 2007; 73:4725-32. [PMID: 17557839 PMCID: PMC1951025 DOI: 10.1128/aem.00632-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commercial linear alkylbenzenesulfonate (LAS) contains 20 congeners of linear alkanes (C(10) to C(13)) substituted subterminally with the 4-sulfophenyl moiety in any position from lateral to central. Parvibaculum lavamentivorans DS-1(T) degrades each of eight laterally substituted congeners [e.g., 2-(4-sulfophenyl)decane (2-C10-LAS); herein, compounds are named systematically by chain length (e.g., C(10)) and by the position of the substituent on the chain (e.g., position 2)] to a major sulfophenyl carboxylate [SPC; here 3-(4-sulfophenyl)butyrate (3-C4-SPC)] and two minor products, namely, the alpha,beta-unsaturated SPC (SPC-2H, here 3-C4-SPC-2H) and the SPC+2C (here 5-C6-SPC) species (D. Schleheck, T. P. Knepper, K. Fischer, and A. M. Cook, Appl. Environ. Microbiol. 70:4053-4063). The degradation of centrally substituted congeners by strain DS-1 was examined in this work. 5-C10-LAS yielded not only the predicted 4-C8-SPC, 4-C8-SPC-2H, and 6-C10-SPC (about 70% of products) but also sulfophenyl dicarboxylates (SPdC), i.e., C6-, C8-, and C10-SPdC. These were identified by electrospray ionization-mass spectrometry (ESI-MS) after separation by high-pressure liquid chromatography (HPLC). ESI ion-trap MS and ESI-time of flight-MS were used to confirm the identities of key intermediates. Different mixtures of congeners obtained by separation of commercial LAS by HPLC were degraded, and the degradative products were compared. If a congener carried the sulfophenyl substituent on the 5, 6, or 7 position, SPdCs were formed as well as SPC, SPC-2H, and SPC+2C, whereas the substituent on the 2, 3, or 4 position yielded only SPC, SPC-2H, and SPC+2C. Some 50 products were generated from the 20 LAS congeners: 11 major SPCs, each with an SPC-2H and an SPC+2C (i.e., 33 SPC and SPC-2H species), and about 17 SPdC species. A large array of compounds, many in low quantities, is thus generated by P. lavamentivorans DS-1 during the degradation of commercial LAS.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biology, The University of Konstanz, Universitätsstr 10, Konstanz, Germany
| | | | | | | |
Collapse
|
48
|
Palacios L, Arahal DR, Reguera B, Marín I. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int J Syst Evol Microbiol 2006; 56:1991-1995. [PMID: 16902042 DOI: 10.1099/ijs.0.64238-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, non-symbiotic bacterium (AM1V30(T)) was isolated from the toxic dinoflagellate Alexandrium minutum AL1V. On the basis of 16S rRNA gene sequence similarity, strain AM1V30(T) was most closely related (97.4 % similarity) to the type strain of Hoeflea marina, which belongs to the family Phyllobacteriaceae within the order Rhizobiales of the class Alphaproteobacteria. A polyphasic approach was used to clarify the taxonomic position of strain AM1V30(T). During the course of this study, a second species was described by others as belonging to the genus Hoeflea, namely Hoeflea phototrophica; it showed a somewhat higher level of 16S rRNA gene sequence similarity with respect to strain AM1V30(T) (98.2 %) and was also taken into account. The fatty acid profiles, physiological and biochemical data and DNA G+C content (59.7 mol%) support the classification of strain AM1V30(T) as a member of the genus Hoeflea. The characteristics of the novel strain were sufficiently distinct to indicate that it represents a separate species. To confirm this conclusion, DNA-DNA hybridizations were performed: low values (between 15.8 and 29.8 %) were obtained in all cases. Thus, AM1V30(T) represents a novel species within the genus Hoeflea, for which the name Hoeflea alexandrii sp. nov. is proposed. Strain AM1V30(T) (=CECT 5682(T)=DSM 16655(T)) is the type strain.
Collapse
Affiliation(s)
- Lucía Palacios
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT) and Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot, València, Spain
| | - Beatriz Reguera
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, PO Box 1552, 36200 Vigo, Pontevedra, Spain
| | - Irma Marín
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
49
|
Khleifat KM. Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Bussmann I, Rahalkar M, Schink B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 2006; 56:331-44. [PMID: 16689866 DOI: 10.1111/j.1574-6941.2006.00076.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In such a gradient system, the fluxes of methane and oxygen are controlled by diffusion and consumption rates, and the rate-limiting substrate is maintained at a minimum concentration at the layer of consumption. Opposing gradients of methane and oxygen were mimicked in a specific cultivation set-up in which growth of methanotrophic bacteria occurred as a sharp band at either c. 5 or 20 mm below the air-exposed end. Two new strains of methanotrophic bacteria were isolated with this system. One isolate, strain LC 1, belonged to the Methylomonas genus (type I methantroph) and contained soluble methane mono-oxygenase. Another isolate, strain LC 2, was related to the Methylobacter group (type I methantroph), as determined by 16S rRNA gene and pmoA sequence similarities. However, the partial pmoA sequence was only 86% related to cultured Methylobacter species. This strain accumulated significant amounts of formaldehyde in conventional cultivation with methane and oxygen, which may explain why it is preferentially enriched in a gradient cultivation system.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- LS Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.
| | | | | |
Collapse
|