1
|
Bucher-Johannessen C, Senthakumaran T, Avershina E, Birkeland E, Hoff G, Bemanian V, Tunsjø H, Rounge TB. Species-level verification of Phascolarctobacterium association with colorectal cancer. mSystems 2024; 9:e0073424. [PMID: 39287376 PMCID: PMC11494908 DOI: 10.1128/msystems.00734-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
We have previously demonstrated an association between increased abundance of Phascolarctobacterium and colorectal cancer (CRC) and adenomas in two independent Norwegian cohorts. Here we seek to verify our previous findings using new cohorts and methods. In addition, we characterize lifestyle and sex specificity, the functional potential of the Phascolarctobacterium species, and their interaction with other microbial species. We analyze Phascolarctobacterium with 16S rRNA sequencing, shotgun metagenome sequencing, and species-specific qPCR, using 2350 samples from three Norwegian cohorts-CRCAhus, NORCCAP, and CRCbiome-and a large publicly available data set, curatedMetagenomicData. Using metagenome-assembled genomes from the CRCbiome study, we explore the genomic characteristics and functional potential of the Phascolarctobacterium pangenome. Three species of Phascolarctobacterium associated with adenoma/CRC were consistently detected by qPCR and sequencing. Positive associations with adenomas/CRC were verified for Phascolarctobacterium succinatutens and negative associations were shown for Phascolarctobacterium faecium and adenoma in curatedMetagenomicData. Men show a higher prevalence of P. succinatutens across cohorts. Co-occurrence among Phascolarctobacterium species was low (<6%). Each of the three species shows distinct microbial composition and forms distinct correlation networks with other bacterial taxa, although Dialister invisus was negatively correlated to all investigated Phascolarctobacterium species. Pangenome analyses showed P. succinatutens to be enriched for genes related to porphyrin metabolism and degradation of complex carbohydrates, whereas glycoside hydrolase enzyme 3 was specific to P. faecium.IMPORTANCEUntil now Phascolarctobacterium has been going under the radar as a CRC-associated genus despite having been noted, but overseen, as such for over a decade. We found not just one, but two species of Phascolarctobacterium to be associated with CRC-Phascolarctobacterium succinatutens was more abundant in adenoma/CRC, while Phascolarctobacterium faecium was less abundant in adenoma. Each of them represents distinct communities, constituted by specific microbial partners and metabolic capacities-and they rarely occur together in the same patients. We have verified that P. succinatutens is increased in adenoma and CRC and this species should be recognized among the most important CRC-associated bacteria.
Collapse
Affiliation(s)
- Cecilie Bucher-Johannessen
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Ekaterina Avershina
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Geir Hoff
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Telemark Hospital, Skien, Norway
| | - Vahid Bemanian
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Hege Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Man L, Soh PXY, McEnearney TE, Cain JA, Dale AL, Cordwell SJ. Multi-Omics of Campylobacter jejuni Growth in Chicken Exudate Reveals Molecular Remodelling Associated with Altered Virulence and Survival Phenotypes. Microorganisms 2024; 12:860. [PMID: 38792690 PMCID: PMC11123243 DOI: 10.3390/microorganisms12050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Campylobacter jejuni is the leading cause of foodborne human gastroenteritis in the developed world. Infections are largely acquired from poultry produced for human consumption and poor food handling is thus a major risk factor. Chicken exudate (CE) is a liquid produced from defrosted commercial chicken products that facilitates C. jejuni growth. We examined the response of C. jejuni to growth in CE using a multi-omics approach. Changes in the C. jejuni proteome were assessed by label-based liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We quantified 1328 and 1304 proteins, respectively, in experiments comparing 5% CE in Mueller-Hinton (MH) medium and 100% CE with MH-only controls. These proteins represent 81.8% and 80.3% of the predicted C. jejuni NCTC11168 proteome. Growth in CE induced profound remodelling of the proteome. These changes were typically conserved between 5% and 100% CE, with a greater magnitude of change observed in 100% CE. We confirmed that CE induced C. jejuni biofilm formation, as well as increasing motility and resistance against oxidative stress, consistent with changes to proteins representing those functions. Assessment of the C. jejuni metabolome showed CE also led to increased intracellular abundances of serine, proline, and lactate that were correlated with the elevated abundances of their respective transporters. Analysis of carbon source uptake showed prolonged culture supernatant retention of proline and succinate in CE-supplemented medium. Metabolomics data provided preliminary evidence for the uptake of chicken-meat-associated dipeptides. C. jejuni exposed to CE showed increased resistance to several antibiotics, including polymyxin B, consistent with changes to tripartite efflux system proteins and those involved in the synthesis of lipid A. The C. jejuni CE proteome was also characterised by very large increases in proteins associated with iron acquisition, while a decrease in proteins containing iron-sulphur clusters was also observed. Our data suggest CE is both oxygen- and iron-limiting and provide evidence of factors required for phenotypic remodelling to enable C. jejuni survival on poultry products.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pamela X. Y. Soh
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tess E. McEnearney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel A. Cain
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh L. Dale
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart J. Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Sharma A, Bansal S, Kumari N, Vashistt J, Shrivastava R. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm. Appl Microbiol Biotechnol 2023; 107:6029-6046. [PMID: 37542577 DOI: 10.1007/s00253-023-12705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
Biofilm formation by Mycobacterium fortuitum causes serious threats to human health due to its increased contribution to nosocomial infections. In this study, the first comprehensive global proteome analysis of M. fortuitum was reported under planktonic and biofilm growth states. A label-free Q Exactive Quadrupole-Orbitrap tandem mass spectrometry analysis was performed on the protein lysates. The differentially abundant proteins were functionally characterized and re-annotated using Blast2GO and CELLO2GO. Comparative analysis of the proteins among two growth states provided insights into the phenotypic switch, and fundamental pathways associated with pathobiology of M. fortuitum biofilm, such as lipid biosynthesis and quorum-sensing. Interaction network generated by the STRING database revealed associations between proteins that endure M. fortuitum during biofilm growth state. Hypothetical proteins were also studied to determine their functional alliance with the biofilm phenotype. CARD, VFDB, and PATRIC analysis further showed that the proteins upregulated in M. fortuitum biofilm exhibited antibiotic resistance, pathogenesis, and virulence. Heatmap and correlation analysis provided the biomarkers associated with the planktonic and biofilm growth of M. fortuitum. Proteome data was validated by qPCR analysis. Overall, the study provides insights into previously unexplored biochemical pathways that can be targeted by novel inhibitors, either for shortened treatment duration or for eliminating biofilm of M. fortuitum and related nontuberculous mycobacterial pathogens. KEY POINTS: • Proteomic analyses of M. fortuitum reveals novel biofilm markers. • Acetyl-CoA acetyltransferase acts as the phenotype transition switch. • The study offers drug targets to combat M. fortuitum biofilm infections.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India.
| |
Collapse
|
4
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. J Bacteriol 2023; 205:e0013823. [PMID: 37655912 PMCID: PMC10521354 DOI: 10.1128/jb.00138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as maintenance of the intestinal barrier, cell signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including its importance in alleviating infections caused by pathogens such as Clostridioides difficile. Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with changes in metabolic and regulatory genes, such as a putative carbon starvation protein, CstA. Collectively, these data suggest that butyrate may induce alternative C. difficile survival pathways, modifying its growth ability and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may modulate gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile. While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
Affiliation(s)
| | - Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Julian D. Coles
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sydney Nelson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - C. Alexis McCollum
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538596. [PMID: 37163089 PMCID: PMC10168334 DOI: 10.1101/2023.04.27.538596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Short chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as the intestinal barrier, signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including importance in combatting infections caused by pathogens such as Clostridioides difficile . Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with alternative metabolic and related C. difficile regulatory pathways, such as the carbon catabolite repressor, CcpA. Collectively, these data suggest that butyrate may signal alternative C. difficile metabolic pathways, thus modifying its growth and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may be important in alleviating gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile . While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
|
6
|
Ramić D, Jug B, Šimunović K, Tušek Žnidarič M, Kunej U, Toplak N, Kovač M, Fournier M, Jamnik P, Smole Možina S, Klančnik A. The Role of luxS in Campylobacter jejuni Beyond Intercellular Signaling. Microbiol Spectr 2023; 11:e0257222. [PMID: 36722966 PMCID: PMC10100756 DOI: 10.1128/spectrum.02572-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
The full role of the luxS gene in the biological processes, such as essential amino acid synthesis, nitrogen and pyruvate metabolism, and flagellar assembly, of Campylobacter jejuni has not been clearly described to date. Therefore, in this study, we used a comprehensive approach at the cellular and molecular levels, including transcriptomics and proteomics, to investigate the key role of the luxS gene and compared C. jejuni 11168ΔluxS (luxS mutant) and C. jejuni NCTC 11168 (wild type) strains. Transcriptomic analysis of the luxS mutant grown under optimal conditions revealed upregulation of luxS mutant metabolic pathways when normalized to wild type, including oxidative phosphorylation, carbon metabolism, citrate cycle, biosynthesis of secondary metabolites, and biosynthesis of various essential amino acids. Interestingly, induction of these metabolic pathways was also confirmed by proteomic analysis, indicating their important role in energy production and the growth of C. jejuni. In addition, genes important for the stress response of C. jejuni, including nutrient starvation and oxidative stress, were upregulated. This was also evident in the better survival of the luxS mutant under starvation conditions than the wild type. At the molecular level, we confirmed that metabolic pathways were upregulated under optimal conditions in the luxS mutant, including those important for the biosynthesis of several essential amino acids. This also modulated the utilization of various carbon and nitrogen sources, as determined by Biolog phenotype microarray analysis. In summary, transcriptomic and proteomic analysis revealed key biological differences in tricarboxylic acid (TCA) cycle, pyruvate, nitrogen, and thiamine metabolism as well as lipopolysaccharide biosynthesis in the luxS mutant. IMPORTANCE Campylobacter jejuni is the world's leading foodborne bacterial pathogen of gastrointestinal disease in humans. C. jejuni is a fastidious but widespread organism and the most frequently reported zoonotic pathogen in the European Union since 2005. This led us to believe that C. jejuni, which is highly sensitive to stress factors (starvation and oxygen concentration) and has a low growth rate, benefits significantly from the luxS gene. The role of this gene in the life cycle of C. jejuni is well known, and the expression of luxS regulates many phenotypes, including motility, biofilm formation, host colonization, virulence, autoagglutination, cellular adherence and invasion, oxidative stress, and chemotaxis. Surprisingly, this study confirmed for the first time that the deletion of the luxS gene strongly affects the central metabolic pathway of C. jejuni, which improves its survival, showing its role beyond the intercellular signaling system.
Collapse
Affiliation(s)
- Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and System Biology, National institute of Biology, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Marjorie Fournier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Genomic analysis of Paenibacillus sp. MDMC362 from the Merzouga desert leads to the identification of a potentially thermostable catalase. Antonie Van Leeuwenhoek 2023; 116:21-38. [PMID: 36383330 DOI: 10.1007/s10482-022-01793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Microorganisms in hot deserts face heat and other environmental conditions, such as desiccation, UV radiation, or low nutrient availability. Therefore, this hostile environment harbour microorganisms with acquired characteristics related to survival in their habitat, which can be exploited in biotechnology. In this work, the genome of Paenibacillus sp. MDMC362 isolated from the Merzouga desert in Morocco was sequenced to understand its survival strategy's genetic basis; and to evaluate the thermostability of a catalase extracted from genomic annotation files using molecular dynamics. Paenibacillus sp. MDMC362 genome was rich in genetic elements involved in the fight against different stresses, notably temperature stress, UV radiations, osmotic stress, carbon starvation, and oxidative stress. Indeed, we could identify genes of the operons groES-groEL and hrcA-grpE-dnaK and those involved in the different stages of sporulation, which can help the bacteria to survive the high temperatures imposed by a desertic environment. We also observed the genetic components of the UvrABC system and additional mechanisms involved in DNA repair, which help overcome UV radiation damage. Other genes have been identified in the genome, like those coding for ectoine and proline, that aids fight osmotic stress and desiccation. Catalase thermostability investigation using molecular dynamics showed that the protein reached stability and conserved its compactness at temperatures up to 373.15 K. These results suggest a potential thermostability of the enzyme. Since the studied protein is a core protein, thermostability could be conserved among Paenibacillus sp. MDMC362 closely related strains; however, bacteria from harsh environments may have a slight advantage regarding protein stability.
Collapse
|
8
|
Rhodes KA, Ma MC, Rendón MA, So M. Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library. PLoS Pathog 2022; 18:e1010497. [PMID: 35580146 PMCID: PMC9140248 DOI: 10.1371/journal.ppat.1010497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms used by human adapted commensal Neisseria to shape and maintain a niche in their host are poorly defined. These organisms are common members of the mucosal microbiota and share many putative host interaction factors with Neisseria meningitidis and Neisseria gonorrhoeae. Evaluating the role of these shared factors during host carriage may provide insight into bacterial mechanisms driving both commensalism and asymptomatic infection across the genus. We identified host interaction factors required for niche development and maintenance through in vivo screening of a transposon mutant library of Neisseria musculi, a commensal of wild-caught mice which persistently and asymptomatically colonizes the oral cavity and gut of CAST/EiJ and A/J mice. Approximately 500 candidate genes involved in long-term host interaction were identified. These included homologs of putative N. meningitidis and N. gonorrhoeae virulence factors which have been shown to modulate host interactions in vitro. Importantly, many candidate genes have no assigned function, illustrating how much remains to be learned about Neisseria persistence. Many genes of unknown function are conserved in human adapted Neisseria species; they are likely to provide a gateway for understanding the mechanisms allowing pathogenic and commensal Neisseria to establish and maintain a niche in their natural hosts. Validation of a subset of candidate genes confirmed a role for a polysaccharide capsule in N. musculi persistence but not colonization. Our findings highlight the potential utility of the Neisseria musculi-mouse model as a tool for studying the pathogenic Neisseria; our work represents a first step towards the identification of novel host interaction factors conserved across the genus. The Neisseria genus contains many genetically related commensals of animals and humans, and two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. The mechanisms allowing commensal Neisseria to maintain a niche in their host is little understood. To identify genes required for persistence, we screened a library of transposon mutants of Neisseria musculi, a commensal of wild-caught mice, in CAST/EiJ mice, which persistently and asymptomatically colonizes. Approximately 500 candidate host interaction genes were identified. A subset of these are homologs of N. meningitidis and N. gonorrhoeae genes known to modulate pathogen-host interactions in vitro. Many candidate genes have no known function, demonstrating how much remains to be learned about N. musculi niche maintenance. As many genes of unknown function are conserved in human adapted Neisseria, they provide a gateway for understanding Neisseria persistence mechanisms in general.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - María A. Rendón
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Magdalene So
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
9
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
10
|
Jiang ZM, Zhang BH, Sun HM, Zhang T, Yu LY, Zhang YQ. Properties of Modestobacter deserti sp. nov., a Kind of Novel Phosphate-Solubilizing Actinobacteria Inhabited in the Desert Biological Soil Crusts. Front Microbiol 2021; 12:742798. [PMID: 34803963 PMCID: PMC8602919 DOI: 10.3389/fmicb.2021.742798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Three Gram-stain-positive, aerobic, motile actinobacterial strains designated as CPCC 205119T, CPCC 205215, and CPCC 205251 were isolated from different biological soil crust samples collected from Tengger Desert, China. The 16S rRNA gene sequence comparison of these three strains showed they had almost identical 16S rRNA genes, which were closely related to members of the family Geodermatophilaceae, with the highest similarities of 96.3–97.3% to the species of Modestobacter. In the phylogenetic tree based on 16S rRNA gene sequences, these isolates clustered into a subclade next to the branch containing the species of Modestobacter lapidis and Modestobacter multiseptatus, within the lineage of the genus Modestobacter. The comparative genomic characteristics (values of ANI, dDDH, AAI, and POCP) and the phenotypic properties (morphological, physiological, and chemotaxonomic characteristics) of these isolates readily supported to affiliate them to the genus Modestobacter as a single separate species. For which, we proposed that the isolates CPCC 205119T, CPCC 205215, and CPCC 205251 represent a novel species of the genus Modestobacter as Modestobacter deserti sp. nov. CPCC 205119T (=I12A-02624=NBRC 113528T=KCTC 49201T) is the type strain. The genome of strain CPCC 205119T consisted of one chromosome (4,843,235bp) containing 4,424 coding genes, 48 tRNA genes, five rRNA genes, three other ncRNA genes, and 101 pseudogenes, with G+C content of 74.7%. The whole-genome sequences analysis indicated that this species contained alkaline phosphatase genes (phoA/phoD), phosphate transport-related genes (phoU, phnC, phnD, phnE, phoB, phoH, phoP, phoR, pitH, ppk, pstA, pstB, pstC, and pstS), trehalose-phosphate synthase gene (otsA), trehalose 6-phosphate phosphatase gene (otsB) and other encoding genes for the properties that help the microorganisms to adapt to harsh environmental conditions prevalent in deserts. Strains of this species could solubilize tricalcium phosphate [Ca3(PO4)2] and phytin, assimilate pyrophosphate, thiophosphate, dithiophosphate, phosphoenol pyruvate, 2-deoxy-d-glucose-6-phosphate, and cysteamine-S-phosphate.
Collapse
Affiliation(s)
- Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing-Huo Zhang
- College of Life Science, Jiujiang University, Jiujiang, China
| | - Hong-Min Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Kuncharoen N, Yuki M, Kudo T, Okuma M, Booncharoen A, Mhuantong W, Tanasupawat S. Comparative genomics and proposal of Streptomyces radicis sp. nov., an endophytic actinomycete from roots of plants in Thailand. Microbiol Res 2021; 254:126889. [PMID: 34689101 DOI: 10.1016/j.micres.2021.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Strains DS1-2T and AZ1-7, which were isolated from roots of plants, were taxonomically characterized based on polyphasic taxonomic and taxogenomic approaches. Both strains were Gram-stain-positive and filamentous bacteria which contained LL-diaminopimelic acid in cell-wall peptidoglycan and glucose and ribose in whole-cell hydrolysates. MK-9(H6), MK-10(H6), MK-9(H8), MK-10(H8) and MK-10(H4) were major menaquinones; iso-C16:0 and iso-C16:1G were predominant cellular fatty acids; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannoside presented as major phospholipids; and the DNA G+C contents of 73.2 mol%. Strains DS1-2T and AZ1-7 showed 97.6-98.0 % 16S rRNA gene sequence similarity, 81.0-82.0 % ANIb, 84.8-85.3 % ANIm and 22.0-23.1 % digital DDH to their related type strains: S. specialis GW41-1564T and S. hoynatensis S1412T. Comparative genomics results of these strains and their related type strains also revealed the differences and distributions of key genes associated with stress responses, environmental variables, plant interactions and bioactive metabolites. Based on the phenotypic, chemotaxonomic and genomic data, strains DS1-2T and AZ1-7 could be assigned to the novel species within the genus Streptomyces for which the name Streptomyces radicis sp. nov. is proposed. The type strain is DS1-2T (=JCM 32152T =KCTC 39738T =TISTR 2403T).
Collapse
Affiliation(s)
- Nattakorn Kuncharoen
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Okuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Auttaporn Booncharoen
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproducts Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Thomas CM, Taib N, Gribaldo S, Borrel G. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis. ISME COMMUNICATIONS 2021; 1:47. [PMID: 37938279 PMCID: PMC9723798 DOI: 10.1038/s43705-021-00050-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Other than the Methanobacteriales and Methanomassiliicoccales, the characteristics of archaea that inhabit the animal microbiome are largely unknown. Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated. To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis. We infer the loss of more than a thousand genes in M. blatticola, by far the largest genome reduction across all Methanosarcinales. These include numerous elements for sensing the environment and adapting to more stable gut conditions, as well as a significant remodeling of the cell surface components likely involved in host and gut microbiota interactions. Several of these modifications parallel those previously observed in phylogenetically distant archaea and bacteria from the animal microbiome, suggesting large-scale convergent mechanisms of adaptation to the gut. Strikingly, M. blatticola has lost almost all genes coding for the H4MPT methyl branch of the Wood-Ljungdahl pathway (to the exception of mer), a phenomenon never reported before in any member of Class I or Class II methanogens. The loss of this pathway illustrates one of the evolutionary processes that may have led to the emergence of methyl-reducing hydrogenotrophic methanogens, possibly linked to the colonization of organic-rich environments (including the animal gut) where both methyl compounds and hydrogen are abundant.
Collapse
Affiliation(s)
- Courtney M Thomas
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Najwa Taib
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Guillaume Borrel
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
Anti-biofilm potential of Lavandula preparations against Campylobacter jejuni. Appl Environ Microbiol 2021; 87:e0109921. [PMID: 34319799 DOI: 10.1128/aem.01099-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New approaches for the control of Campylobacter jejuni biofilms in the food industry are being studied intensively. Natural products are promising alternative antimicrobial substances to control biofilm production, with particular emphasis on plant extracts. Dried flowers of Lavandula angustifolia were used to produce LEO, LEF, and LEW. The chemical compositions determined for these Lavandula preparations included seven major compounds that were selected for further testing. These were tested against C. jejuni, for biofilm degradation and removal. Next-generation sequencing was used to study the molecular mechanisms underlying LEO actions against C. jejuni adhesion and motility. Analysis of LEO revealed 1,8-cineol, linalool and linalyl acetate as the main components. For LEF and LEW, the main components were phenolic acid glycosides, with flavonoids rarely present. The minimal inhibitory concentrations of the Lavandula preparations and pure compounds against C. jejuni ranged from 0.2 mg/mL to 1 mg/mL. LEO showed the strongest biofilm degradation. The reduction of C. jejuni adhesion was by ≥1 log10 CFU/mL, which satisfies European Food Safety Authority recommendations. Lavandula preparations reduced C. jejuni motility by almost 50%, which consequently can impact upon biofilm formation. These data are in line with the transcriptome analysis of C. jejuni, where LEO down-regulated genes important for biofilm formation. LEW also showed good antibacterial and anti-biofilm effects, particularly against adhesion and motility mechanisms. This defines an innovative approach using alternative strategies and novel targets to combat bacterial biofilm formation, and hence the potential to develop new effective agents with biofilm-degrading activities. Importance The Lavandula preparations used in this study are found to be effective against C. jejuni, a common foodborne pathogen. They show anti-biofilm properties at sub-inhibitory concentrations in terms of promoting biofilm degradation and inhibiting cell adhesion and motility, which are involved in the initial steps of biofilm formation. These results are confirmed by transcriptome analysis, which highlights the effect of Lavandula essential oil on C. jejuni biofilm properties. We show that the waste material from the hydrodistillation of Lavandula has particular anti-biofilm effects, suggesting that it may find reuse for industrial purposes. This study highlights the need for efforts directed towards such innovative approaches and alternative strategies against biofilm formation and maintenance by developing new naturally derived agents with anti-biofilm activities.
Collapse
|
14
|
Gasperotti A, Göing S, Fajardo-Ruiz E, Forné I, Jung K. Function and Regulation of the Pyruvate Transporter CstA in Escherichia coli. Int J Mol Sci 2020; 21:ijms21239068. [PMID: 33260635 PMCID: PMC7730263 DOI: 10.3390/ijms21239068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Pyruvate is a central metabolite that connects many metabolic pathways in living organisms. To meet the cellular pyruvate requirements, the enterobacterium Escherichia coli has at least three pyruvate uptake systems—the H+/pyruvate symporter BtsT, and two thus far less well-characterized transporters, YhjX and CstA. BtsT and CstA belong to the putative carbon starvation (CstA) family (transporter classification TC# 2.A.114). We have created an E. coli mutant that cannot grow on pyruvate as the sole carbon source and used it to characterize CstA as a pyruvate transporter. Transport studies in intact cells confirmed that CstA is a highly specific pyruvate transporter with moderate affinity and is energized by a proton gradient. When cells of a reporter strain were cultured in complex medium, cstA expression was maximal only in stationary phase. A DNA affinity-capture assay combined with mass spectrometry and an in-vivo reporter assay identified Fis as a repressor of cstA expression, in addition to the known activator cAMP-CRP. The functional characterization and regulation of this second pyruvate uptake system provides valuable information for understanding the complexity of pyruvate sensing and uptake in E. coli.
Collapse
Affiliation(s)
- Ana Gasperotti
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Stephanie Göing
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Elena Fajardo-Ruiz
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Kirsten Jung
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (A.G.); (S.G.); (E.F.-R.)
- Correspondence:
| |
Collapse
|
15
|
Transcriptomic Analysis of Staphylococcus xylosus in Solid Dairy Matrix Reveals an Aerobic Lifestyle Adapted to Rind. Microorganisms 2020; 8:microorganisms8111807. [PMID: 33212972 PMCID: PMC7698506 DOI: 10.3390/microorganisms8111807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.
Collapse
|
16
|
Heimesaat MM, Schmidt AM, Mousavi S, Escher U, Tegtmeyer N, Wessler S, Gadermaier G, Briza P, Hofreuter D, Bereswill S, Backert S. Peptidase PepP is a novel virulence factor of Campylobacter jejuni contributing to murine campylobacteriosis. Gut Microbes 2020; 12:1770017. [PMID: 32584649 PMCID: PMC7524167 DOI: 10.1080/19490976.2020.1770017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanisms of host-pathogen interactions resulting in immunopathological responses upon human Campylobacter jejuni infection are not completely understood, but the recent availability of murine infection models mimicking key features of campylobacteriosis helps solving this dilemma. During a screen for proteases expressed by C. jejuni, we identified a peptidase of the M24 family as a potential novel virulence factor, which was named PepP. The gene is strongly conserved in various Campylobacter species. A constructed deletion mutant ΔpepP of C. jejuni strain 81-176 grew as efficiently compared to isogenic wild-type (WT) or pepP complemented bacteria. To shed light on the potential role of this protease in mediating immunopathological responses in the mammalian host, we perorally challenged microbiota-depleted IL-10-/- mice with these strains. All strains stably colonized the murine gastrointestinal tract with comparably high loads. Remarkably, pepP deficiency was associated with less severe induced malaise, with less distinct apoptotic and innate immune cell responses, but also with more pronounced proliferative/regenerative epithelial cell responses in the large intestine at d6post-infection. Furthermore, pro-inflammatory mediators were lower in the colon, ileum, and mesenteric lymph nodes of mice that had been challenged with the ΔpepP mutant compared to the WT or pepP complemented strains. This also held true for extra-intestinal organs including liver, kidneys, and lungs, and, strikingly, to systemic compartments. Taken together, protease PepP is a novel virulence determinant involved in mediating campylobacteriosis. The finding that apoptosis in the colon is significantly diminished in mice infected with the pepP mutant highlights the epithelial layer as the first and main target of PepP in the intestine.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Silja Wessler
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment (Bfr), Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Liu SW, Ye JJ, Lu QP, Cheema MT, Abbas M, Huang DL, Sajid I, Sun CH. Motilibacter deserti sp. nov. and Motilibacter aurantiacus sp. nov., two novel actinobacteria isolated from soil of Cholistan Desert and emended description of the genus Motilibacter. Syst Appl Microbiol 2020; 43:126150. [PMID: 33099259 DOI: 10.1016/j.syapm.2020.126150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
Two novel actinobacterial strains, designated as E257T and K478T, were isolated from hyper-arid soil samples collected in Cholistan Desert, Pakistan. Comparative analysis of 16S rRNA genes showed that strains E257T and K478T were assigned to the genus Motilibacter, being their closest relative M. rhizosphaerae RS-16T with 97.3% and 96.7% similarities, respectively. The sequence similarity between strain E257T and K478T was 98.9%. Phylogenetic analysis based on 16S rRNA gene sequences and phylogenomic analysis based on multiple genes of conserved core proteins exhibited that these two strains belonged to the genus Motilibacter and formed a robust cluster separated from the two type species of the genus Motilibacter. Average Nucleotide Identity (ANI), Average Amino acid Identity (AAI), digital DNA-DNA hybridization (dDDH) values and Percentage of Conserved Proteins (POCP) calculated from the complete genome sequences indicated strains E257T and K478T were assigned into genus Motilibacter but clearly separated from each other and from the other species of the genus Motilibacter with values below the thresholds for species delineation. The two isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Motilibacter and also confirmed the differentiation from their closest species. The obtained results demonstrated that strains E257T and K478T represent two novel species of the genus Motilibacter, for which the names Motilibacter desertisp. nov. (type strain E257T = JCM 33651T = CGMCC 1.17159T) and Motilibacter aurantiacus sp. nov. (type strain K478T =JCM 33652T =CGMCC 1.17229T) are proposed.
Collapse
Affiliation(s)
- Shao-Wei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Jing Ye
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Qin-Pei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mohsin Tassawar Cheema
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Da-Lin Huang
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan.
| | - Cheng-Hang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Man L, Dale AL, Klare WP, Cain JA, Sumer-Bayraktar Z, Niewold P, Solis N, Cordwell SJ. Proteomics of Campylobacter jejuni Growth in Deoxycholate Reveals Cj0025c as a Cystine Transport Protein Required for Wild-type Human Infection Phenotypes. Mol Cell Proteomics 2020; 19:1263-1280. [PMID: 32376616 PMCID: PMC8015009 DOI: 10.1074/mcp.ra120.002029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (∼82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (Δcj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed Δcj0025c could use known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in Δcj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not Δcj0025c Provision of an alternate sulfur source (2 mm thiosulfate) restored Δcj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - William P Klare
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Paula Niewold
- Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Australia.
| |
Collapse
|
19
|
Golińska P, Świecimska M, Montero-Calasanz MDC, Yaramis A, Igual JM, Bull AT, Goodfellow M. Modestobacter altitudinis sp. nov., a novel actinobacterium isolated from Atacama Desert soil. Int J Syst Evol Microbiol 2020; 70:3513-3527. [PMID: 32374252 DOI: 10.1099/ijsem.0.004212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three presumptive Modestobacter strains isolated from a high altitude Atacama Desert soil were the subject of a polyphasic study. The isolates, strains 1G4T, 1G51 and 1G52, were found to have chemotaxonomic and morphological properties that were consistent with their assignment to the genus Modestobacter. They formed a well supported clade in Modestobacter 16S rRNA gene trees and were most closely related to the type strain of 'Modestobacter excelsi' (99.8-99.9% similarity). They were also closely related to the type strains of Modestobacter caceresii (99.6 % similarity), Modestobacter italicus (99.7-99.9% similarity), Modestobacter lacusdianchii (98.4-99.2% similarity), Modestobacter marinus (99.4-99.5% similarity) and Modestobacter roseus (99.3-99.5% similarity), but were distinguished from their closest relatives by a combination of phenotypic features. Average nucleotide identity and digital DNA:DNA hybridization similarities drawn from comparisons of draft genome sequences of isolate 1G4T and its closest phylogenetic neighbours mentioned above, were well below the threshold used to assign closely related strains to the same species. The close relationship between isolate 1G4T and the type strain of M. excelsi was showed in a phylogenomic tree containing representative strains of family Geodermatophilaceae. The draft genome sequence of isolate 1G4T (size 5.18 Kb) was shown to be rich in stress related genes providing further evidence that the abundance of Modestobacter propagules in Atacama Desert habitats reflects their adaptation to the harsh environmental conditions prevalent in this biome. In light of all of these data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter. The name proposed for this taxon is Modestobacter altitudinis sp. nov., with isolate 1G4T (=DSM 107534T=PCM 3003T) as the type strain.
Collapse
Affiliation(s)
- Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | | | - Adnan Yaramis
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jose M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
20
|
Zhang Q, Huang Q, Fang Q, Li H, Tang H, Zou G, Wang D, Li S, Bei W, Chen H, Li L, Zhou R. Identification of genes regulated by the two-component system response regulator NarP of Actinobacillus pleuropneumoniae via DNA-affinity-purified sequencing. Microbiol Res 2019; 230:126343. [PMID: 31539852 DOI: 10.1016/j.micres.2019.126343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
Abstract
Identifying the direct target genes of response regulators (RRs) of a bacterial two-component system (TCS) is critical to understand the roles of TCS in bacterial environmental adaption and pathogenesis. Actinobacillus pleuropneumoniae is an important respiratory bacterial pathogen that causes considerable economic losses to swine industry worldwide. The targets of A. pleuropneumoniae NarP (nitrate/nitrite RR), which is the cognate RR of the nitrate/nitrite sensor histidine kinase NarQ, are still unknown. In the present study, a DNA-affinity-purified sequencing (DAP-Seq) approach was established. The upstream regions of a total of 131 candidate genes from the genome of A. pleuropneumoniae were co-purified with the activated NarP protein. Electrophoretic mobility shift assay (EMSA) results confirmed the interactions of NarP with the promoter regions of five selected target genes, including dmsA, pgaA, ftpA, cstA and ushA. The EMSA-confirmed target genes were significantly up-regulated in the narP-deleted mutant in the presence of additional nitrate, whilst the transcriptional changes were restored in the complemented strain. The NarP binding motif in the upstream regions of the target genes dmsA and ftpA were further identified and confirmed by EMSA using the truncated binding motif. The NarP binding sites were present in a total of 25.2% of the DNA fragments captured by DAP-Seq. These results demonstrated that the established DAP-Seq method is effective for exploring the direct targets of RRs of bacterial TCSs and that the A. pleuropneumoniae NarP could be a repressor in response to nitrate.
Collapse
Affiliation(s)
- Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Siqi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China.
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
21
|
Zaikova E, Goerlitz DS, Tighe SW, Wagner NY, Bai Y, Hall BL, Bevilacqua JG, Weng MM, Samuels-Fair MD, Johnson SS. Antarctic Relic Microbial Mat Community Revealed by Metagenomics and Metatranscriptomics. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
23
|
Black EM, Just CL. The Genomic Potentials of NOB and Comammox Nitrospira in River Sediment Are Impacted by Native Freshwater Mussels. Front Microbiol 2018; 9:2061. [PMID: 30233538 PMCID: PMC6131200 DOI: 10.3389/fmicb.2018.02061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Freshwater mussel assemblages of the Upper Mississippi River (UMR) sequester tons of ammonia- and urea-based biodeposits each day and aerate sediment through burrowing activities, thus creating a unique niche for nitrogen (N) cycling microorganisms. This study explored how mussels impact the abundance of N-cycling species with an emphasis on Candidatus Nitrospira inopinata, the first microorganism known to completely oxidize ammonia (comammox) to nitrate. This study used metagenomic shotgun sequencing of genomic DNA to compare nitrogen cycling species in sediment under a well-established mussel assemblage and in nearby sediment without mussels. Metagenomic reads were aligned to the prokaryotic RefSeq non-redundant protein database using BLASTx, taxonomic binning was performed using the weighted lowest common ancestor algorithm, and protein-coding genes were categorized by metabolic function using the SEED subsystem. Linear discriminant analysis (LDA) effect sizes were used to determine which metagenomes and metabolic features explained the most differences between the mussel habitat sediment and sediment without mussels. Of the N-cycling species deemed differentially abundant, Nitrospira moscoviensis and “Candidatus Nitrospira inopinata” were responsible for creating a distinctive N-cycling microbiome in the mussel habitat sediment. Further investigation revealed that comammox Nitrospira had a large metabolic potential to degrade mussel biodeposits, as evidenced the top ten percent of protein-coding genes including the cytochrome c-type biogenesis protein required for hydroxylamine oxidation, ammonia monooxygenase, and urea decomposition SEED subsystems. Genetic marker analysis of these two Nitrospira taxons suggested that N. moscoviensis was most impacted by diverse carbon metabolic processes while “Candidatus Nitrospira inopinata” was most distinguished by multidrug efflux proteins (AcrB), NiFe hydrogenase (HypF) used in hydrogen oxidation and sulfur reduction coupled reactions, and a heme chaperone (CcmE). Furthermore, our research suggests that comammox and NOB Nitrospira likely coexisted by utilizing mixotrophic metabolisms. For example, “Candidatus Nitrospira inopinata” had the largest potentials for ammonia oxidation, nitrite reduction with NirK, and hydrogen oxidation, while NOB Nitrospira had the greatest potential for nitrite oxidation, and nitrate reduction possibly coupled with formate oxidation. Overall, our results suggest that this mussel habitat sediment harbors a niche for NOB and comammox Nitrospira, and ultimately impacts N-cycling in backwaters of the UMR.
Collapse
Affiliation(s)
- Ellen M Black
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States
| | - Craig L Just
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
24
|
mRNA-specific translation regulation by a ribosome-associated ncRNA in Haloferax volcanii. Sci Rep 2018; 8:12502. [PMID: 30131517 PMCID: PMC6104027 DOI: 10.1038/s41598-018-30332-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/20/2018] [Indexed: 12/02/2022] Open
Abstract
Regulation of gene expression at the translational level allows rapid adaptation of cellular proteomes to quickly changing environmental conditions and is thus central for prokaryotic organisms. Small non-coding RNAs (sRNAs) have been reported to effectively orchestrate translation control in bacteria and archaea mainly by targeting mRNAs by partial base complementarity. Here we report an unprecedented mechanism how sRNAs are capable of modulating protein biosynthesis in the halophilic archaeon Haloferax volcanii. By analyzing the ribosome-associated ncRNAs (rancRNAs) under different stress conditions we identified an intergenic sRNA, termed rancRNA_s194, that is primarily expressed during exponential growth under all tested conditions. By interaction with the ribosome rancRNA_s194 inhibits peptide bond formation and protein synthesis in vitro but appears to target a specific mRNA in vivo. The respective knock-out strain shows a reduced lag phase in media containing xylose as sole carbon source and outcompetes the wildtype cells under these conditions. Mass spectrometry, polysome profiling and mRNA binding competition experiments suggest that rancRNA_s194 prevents the cstA mRNA from being efficiently translated by H. volcanii ribosomes. These findings enlarge the regulatory repertoire of archaeal sRNAs in modulating post-transcriptional gene expression.
Collapse
|
25
|
Castro JF, Nouioui I, Sangal V, Choi S, Yang SJ, Kim BY, Trujillo ME, Riesco R, Montero-Calasanz MDC, Rahmani TPD, Bull AT, Sutcliffe IC, Asenjo JA, Andrews B, Goodfellow M. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int J Syst Evol Microbiol 2018; 68:2712-2721. [PMID: 29969090 DOI: 10.1099/ijsem.0.002828] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6T, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus. It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6T showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA-DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509T, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6T (NCIMB 15090T=NRRL B-65468T) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6T, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.
Collapse
Affiliation(s)
- Jean Franco Castro
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Vartul Sangal
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Seonbin Choi
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Seung-Jo Yang
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Byung-Yong Kim
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Martha E Trujillo
- 5Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Raul Riesco
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | | | - Tara P D Rahmani
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alan T Bull
- 6School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Iain C Sutcliffe
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Juan A Asenjo
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara Andrews
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
26
|
Cerletti M, Giménez MI, Tröetschel C, D' Alessandro C, Poetsch A, De Castro RE, Paggi RA. Proteomic Study of the Exponential-Stationary Growth Phase Transition in the Haloarchaea Natrialba magadii and Haloferax volcanii. Proteomics 2018; 18:e1800116. [PMID: 29888524 DOI: 10.1002/pmic.201800116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 11/12/2022]
Abstract
The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - María Ines Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | | | - Celeste D' Alessandro
- Laboratório de Patologia e Controle Microbiano de Insetos, ESALQ-USP, Piracicaba-SP, 13418-900, Brazil
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Rosana Ester De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| |
Collapse
|
27
|
Castro JF, Nouioui I, Sangal V, Trujillo ME, Montero-Calasanz MDC, Rahmani T, Bull AT, Asenjo JA, Andrews BA, Goodfellow M. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst Appl Microbiol 2018; 41:427-436. [PMID: 29789182 DOI: 10.1016/j.syapm.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/20/2023]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.
Collapse
Affiliation(s)
- Jean Franco Castro
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Tara Rahmani
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, United Kingdom
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
28
|
Hwang S, Choe D, Yoo M, Cho S, Kim SC, Cho S, Cho BK. Peptide Transporter CstA Imports Pyruvate in Escherichia coli K-12. J Bacteriol 2018; 200:e00771-17. [PMID: 29358499 PMCID: PMC5847655 DOI: 10.1128/jb.00771-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/17/2018] [Indexed: 12/01/2022] Open
Abstract
Pyruvate is an important intermediate of central carbon metabolism and connects a variety of metabolic pathways in Escherichia coli Although the intracellular pyruvate concentration is dynamically altered and tightly balanced during cell growth, the pyruvate transport system remains unclear. Here, we identified a pyruvate transporter in E. coli using high-throughput transposon sequencing. The transposon mutant library (a total of 5 × 105 mutants) was serially grown with a toxic pyruvate analog (3-fluoropyruvate [3FP]) to enrich for transposon mutants lacking pyruvate transport function. A total of 52 candidates were selected on the basis of a stringent enrichment level of transposon insertion frequency in response to 3FP treatment. Subsequently, their pyruvate transporter function was examined by conventional functional assays, such as those measuring growth inhibition by the toxic pyruvate analog and pyruvate uptake activity. The pyruvate transporter system comprises CstA and YbdD, which are known as a peptide transporter and a conserved protein, respectively, whose functions are associated with carbon starvation conditions. In addition to the presence of more than one endogenous pyruvate importer, it has been suggested that the E. coli genome encodes constitutive and inducible pyruvate transporters. Our results demonstrated that CstA and YbdD comprise the constitutive pyruvate transporter system in E. coli, which is consistent with the tentative genomic locus previously suggested and the functional relationship with the extracellular pyruvate sensing system. The identification of this pyruvate transporter system provides valuable genetic information for understanding the complex process of pyruvate metabolism in E. coliIMPORTANCE Pyruvate is an important metabolite as a central node in bacterial metabolism, and its intracellular levels are tightly regulated to maintain its functional roles in highly interconnected metabolic pathways. However, an understanding of the mechanism of how bacterial cells excrete and transport pyruvate remains elusive. Using high-throughput transposon sequencing followed by pyruvate uptake activity testing of the selected candidate genes, we found that a pyruvate transporter system comprising CstA and YbdD, currently annotated as a peptide transporter and a conserved protein, respectively, constitutively transports pyruvate. The identification of the physiological role of the pyruvate transporter system provides valuable genetic information for understanding the complex pyruvate metabolism in Escherichia coli.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minseob Yoo
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sanghyuk Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Intelligent Synthetic Biology Center, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
29
|
Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525. [PMID: 29323202 PMCID: PMC5765111 DOI: 10.1038/s41598-017-17392-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Vartul Sangal
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Martha E Trujillo
- Departamento de Microbiologia y Genetica, Lab 214, Universidad de Salamanca, Salamanca, Spain
| | | | - Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun, Turkey
| | - Darren Lee Smith
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kristi E Kim
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | - Paul Peluso
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | | |
Collapse
|
30
|
BtsT, a Novel and Specific Pyruvate/H + Symporter in Escherichia coli. J Bacteriol 2017; 200:JB.00599-17. [PMID: 29061664 DOI: 10.1128/jb.00599-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023] Open
Abstract
The peptide transporter carbon starvation (CstA) family (transporter classification [TC] 2.A.114) belongs to the second largest superfamily of secondary transporters, the amino acid/polyamine/organocation (APC) superfamily. No representative of the CstA family has previously been characterized either biochemically or structurally, but we have now identified the function of one of its members, the transport protein YjiY of Escherichia coli Expression of the yjiY gene is regulated by the LytS-like histidine kinase BtsS, a sensor of extracellular pyruvate, together with the LytTR-like response regulator BtsR. YjiY consists of 716 amino acids, which form 18 putative transmembrane helices. Transport studies with intact cells provided evidence that YjiY is a specific and high-affinity transporter for pyruvate (Km , 16 μM). Furthermore, reconstitution of the purified YjiY into proteoliposomes revealed that YjiY is a pyruvate/H+ symporter. It has long been assumed that E. coli possesses a transporter(s) for pyruvate, but the present study is the first to definitively identify such a protein. Based on its function, we propose to change the name of the uncharacterized gene yjiY to btsT for Brenztraubensäure (the German word for pyruvate) transporter.IMPORTANCE BtsT (formerly known as YjiY) is found in many commensal and pathogenic representatives of the Enterobacteriaceae This study for the first time characterizes a pyruvate transporter in E. coli, BtsT, as a specific pyruvate/H+ symporter. When nutrients are limiting, BtsT takes up pyruvate from the medium, thus enabling it to be used as a carbon source for the growth and survival of E. coli.
Collapse
|
31
|
Guccione EJ, Kendall JJ, Hitchcock A, Garg N, White MA, Mulholland F, Poole RK, Kelly DJ. Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability. Environ Microbiol 2017; 19:4326-4348. [PMID: 28892295 PMCID: PMC5656828 DOI: 10.1111/1462-2920.13930] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Campylobacter jejuni, the most frequent cause of food‐borne bacterial gastroenteritis worldwide, is a microaerophile that has to survive high environmental oxygen tensions, adapt to oxygen limitation in the intestine and resist host oxidative attack. Here, oxygen‐dependent changes in C. jejuni physiology were studied at constant growth rate using carbon (serine)‐limited continuous chemostat cultures. We show that a perceived aerobiosis scale can be calibrated by the acetate excretion flux, which becomes zero when metabolism is fully aerobic (100% aerobiosis). Transcriptome changes in a downshift experiment from 150% to 40% aerobiosis revealed many novel oxygen‐regulated genes and highlighted re‐modelling of the electron transport chains. A label‐free proteomic analysis showed that at 40% aerobiosis, many proteins involved in host colonisation (e.g., PorA, CadF, FlpA, CjkT) became more abundant. PorA abundance increased steeply below 100% aerobiosis. In contrast, several citric‐acid cycle enzymes, the peptide transporter CstA, PEB1 aspartate/glutamate transporter, LutABC lactate dehydrogenase and PutA proline dehydrogenase became more abundant with increasing aerobiosis. We also observed a co‐ordinated response of oxidative stress protection enzymes and Fe‐S cluster biogenesis proteins above 100% aerobiosis. Our approaches reveal key virulence factors that respond to restricted oxygen availability and specific transporters and catabolic pathways activated with increasing aerobiosis.
Collapse
Affiliation(s)
- Edward J Guccione
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John J Kendall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Michael A White
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
32
|
Iraola G, Pérez R, Betancor L, Marandino A, Morsella C, Méndez A, Paolicchi F, Piccirillo A, Tomás G, Velilla A, Calleros L. A novel real-time PCR assay for quantitative detection of Campylobacter fetus based on ribosomal sequences. BMC Vet Res 2016; 12:286. [PMID: 27978826 PMCID: PMC5159996 DOI: 10.1186/s12917-016-0913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background Campylobacter fetus is a pathogen of major concern for animal and human health. The species shows a great intraspecific variation, with three subspecies: C. fetus subsp. fetus, C. fetus subsp. venerealis, and C. fetus subsp. testudinum. Campylobacter fetus fetus affects a broad range of hosts and induces abortion in sheep and cows. Campylobacter fetus venerealis is restricted to cattle and causes the endemic disease bovine genital campylobacteriosis, which triggers reproductive problems and is responsible for major economic losses. Campylobacter fetus testudinum has been proposed recently based on genetically divergent strains isolated from reptiles and humans. Both C. fetus fetus and C. fetus testudinum are opportunistic pathogens for immune-compromised humans. Biochemical tests remain as the gold standard for identifying C. fetus but the fastidious growing requirements and the lack of reliability and reproducibility of some biochemical tests motivated the development of molecular diagnostic tools. These methods have been successfully tested on bovine isolates but fail to detect some genetically divergent strains isolated from other hosts. The aim of the present study was to develop a highly specific molecular assay to identify and quantify C. fetus strains. Results We developed a highly sensitive real-time PCR assay that targets a unique region of the 16S rRNA gene. This assay successfully detected all C. fetus strains, including those that were negative for the cstA gene-based assay used as a standard for molecular C. fetus identification. The assay showed high specificity and absence of cross-reactivity with other bacterial species. The analytical testing of the assay was determined using a standard curve. The assay demonstrated a wide dynamic range between 102 and 107 genome copies per reaction, and a good reproducibility with small intra- and inter-assay variability. Conclusions The possibility to characterize samples in a rapid, sensitive and reproducible way makes this assay a good option to establish a new standard in molecular identification and quantification of C. fetus species. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0913-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregorio Iraola
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay.,Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Betancor
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Claudia Morsella
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Alejandra Méndez
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Alessandra Piccirillo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Alejandra Velilla
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay.
| |
Collapse
|
33
|
Larsen N, Brøsted Werner B, Jespersen L. Transcriptional responses in Lactococcus lactis
subsp. cremoris
to the changes in oxygen and redox potential during milk acidification. Lett Appl Microbiol 2016; 63:117-23. [DOI: 10.1111/lam.12596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/17/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- N. Larsen
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| | - B. Brøsted Werner
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| | - L. Jespersen
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
34
|
Buyuktimkin B, Saier MH. Comparative analyses of transport proteins encoded within the genomes of Leptospira species. Microb Pathog 2016; 98:118-31. [PMID: 27296707 DOI: 10.1016/j.micpath.2016.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/08/2016] [Indexed: 02/02/2023]
Abstract
Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they all have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity arose in Leptospira correlating to progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles.
Collapse
Affiliation(s)
- Bora Buyuktimkin
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
35
|
Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils. Syst Appl Microbiol 2016; 39:243-251. [DOI: 10.1016/j.syapm.2016.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022]
|
36
|
Trigui H, Thibodeau A, Fravalo P, Letellier A, P Faucher S. Survival in water of Campylobacter jejuni strains isolated from the slaughterhouse. SPRINGERPLUS 2015; 4:799. [PMID: 26702388 PMCID: PMC4688295 DOI: 10.1186/s40064-015-1595-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/05/2015] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni cause gastroenteritis in humans. The main transmission vector is the consumption or handling of contaminated chicken meat, since chicken can be colonized asymptomatically by C. jejuni. However, water has been implicated as the transmission vector in a few outbreaks. One possibility is the contamination of water effluent by C. jejuni originating from chicken farm. The ability of C. jejuni to be transmitted by water would be closely associated to its ability to survive in water. Therefore, in this study, we have evaluated the ability of reference strains and chicken-isolated strains to survive in water. Defined water media were used, since the composition of tap water is variable. We showed that some isolates survive better than others in defined freshwater (Fraquil) and that the survival was affected by temperature and the concentration of NaCl. By comparing the ability of C. jejuni to survive in water with other phenotypic properties previously tested, we showed that the ability to survive in water was negatively correlated with autoagglutination. Our data showed that not all chicken isolates have the same ability to survive in water, which is probably due to difference in genetic content.
Collapse
Affiliation(s)
- Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Ann Letellier
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| |
Collapse
|
37
|
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 2015; 81:8265-76. [PMID: 26386059 DOI: 10.1128/aem.01659-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT). These SAGs are derived from members of deep-sea clades, including the Thaumarchaeota and SAR11 clade, and two are related to previously isolated piezophilic (high-pressure-adapted) microorganisms. In order to identify genes that might play a role in adaptation to deep-sea environments, comparative analyses were performed with genomes from closely related shallow-water microbes. The archaeal SAG possesses genes associated with mixotrophy, including lipoylation and the glycine cleavage pathway. The SAR11 SAG encodes glycolytic enzymes previously reported to be missing from this abundant and cosmopolitan group. The other SAGs, which are related to piezophilic isolates, possess genes that may supplement energy demands through the oxidation of hydrogen or the reduction of nitrous oxide. We found evidence for potential trench-specific gene distributions, as several SAG genes were observed only in a PRT metagenome and not in shallower deep-sea metagenomes. These results illustrate new ecotype features that might perform important roles in the adaptation of microorganisms to life in hadal environments.
Collapse
|
38
|
Buyuktimkin B, Saier MH. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species. Microb Pathog 2015; 88:52-64. [PMID: 26247102 DOI: 10.1016/j.micpath.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 11/17/2022]
Abstract
Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity was accompanied by progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles.
Collapse
Affiliation(s)
- Bora Buyuktimkin
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
39
|
Hofreuter D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 2014; 4:137. [PMID: 25325018 PMCID: PMC4178425 DOI: 10.3389/fcimb.2014.00137] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Abstract
During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology Hannover, Germany
| |
Collapse
|
40
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins 2014; 82:2797-811. [PMID: 25043943 DOI: 10.1002/prot.24643] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/07/2022]
Abstract
The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.
Collapse
Affiliation(s)
- Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | | | | | | | |
Collapse
|
42
|
Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 2014; 356:8-19. [PMID: 24888326 DOI: 10.1111/1574-6968.12488] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
43
|
Senan S, Prajapati JB, Joshi CG. Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains. Genome 2014; 57:185-92. [DOI: 10.1139/gen-2014-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Next generation sequencing technologies with advanced bioinformatic tools present a unique opportunity to compare genomes from diverse niches. The identification of niche-specific stress-responsive genes can help in characterizing robust strains for multiple applications. In this study, we attempted to compare the stress-responsive genes of a potential probiotic strain, Lactobacillus helveticus MTCC 5463, and a cheese starter strain, Lactobacillus helveticus DPC 4571, from a gut and dairy niche, respectively. Sequencing of MTCC 5463 was done using 454 GS FLX, and contigs were assembled using GS Assembler software. Genome analysis was done using BLAST hits and the prokaryotic annotation server RAST. The MTCC 5463 genome carried multiple orthologs of genes governing stress responses, whereas the DPC 4571 genome lacked in the number of major stress-response proteins. The absence of the bile salt hydrolase gene in DPC 4571 and its presence in MTCC 5463 clearly indicated niche adaptation. Further, MTCC 5463 carried higher copy numbers of genes contributing towards heat, cold, osmotic, and oxidative stress resistance as compared with DPC 4571. Through comparative genomics, we could thus identify stress-responsive gene sets required to adapt to gut and dairy niches.
Collapse
Affiliation(s)
- Suja Senan
- Department of Dairy Microbiology, Sheth MC College of Dairy Science, Anand Agricultural University, Anand 388110, India
| | - Jashbhai B. Prajapati
- Department of Dairy Microbiology, Sheth MC College of Dairy Science, Anand Agricultural University, Anand 388110, India
| | - Chaitanya G. Joshi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388110, India
| |
Collapse
|