1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025; 16:3439-3464. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Ren L, Cao Q, Ye H, Dong Z, Zhang C, Yan F, Zhou Y, Zhou H, Zuo J, Wang W. The single degree of polymerization influences the efficacy of xylooligosaccharides in shaping microbial and metabolite profiles in chicken gut to combat avian pathogenic Escherichia coli. BMC Microbiol 2025; 25:227. [PMID: 40264018 PMCID: PMC12013008 DOI: 10.1186/s12866-025-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) threatens both poultry production and human health. Xylooligosaccharides (XOS) may suppress pathogenic bacteria through prebiotic actions. However, the influences of single degree of polymerization (DP) on the inhibition of APEC by XOS remain unknown. This study aimed to probe if XOS and their major monomers (xylobiose, xylotriose and xylotetraose) could differentially combat APEC via prebiotic actions using an in vitro fermentation model with chicken cecal microbiota. METHODS Microbiota were randomly divided into 7 groups (5 replicate tubes/group). Control group (CON) received no treatment; XOS group received commercial XOS mixtures; APEC group received APEC; XA, X2, X3 and X4 groups received APEC combined with commercial XOS mixtures, xylobiose, xylotriose and xylotetraose, respectively. RESULTS XOS and their major monomers mitigated APEC-induced decline (p < 0.05) in gut microbial α-diversity, with xylotetrose showing the least effect. Gut microbiota in XA, X2, X3 and X4 groups clustered together, with a relative separation observed in X4 group. XOS and their monomers elevated (p < 0.05) the abundances of Firmicutes, Bacteroidota and several probiotics (Lactobacillus, Bacteroides and Megamonas), but reduced (p < 0.05) the abundances of Proteobacteria and Escherichia-Shigella, with xylotetraose exhibiting the least efficacy. Besides, xylotriose and xylotetrose had an advantage over xylotetraose in promoting microbial production of short-chain fatty acids. Metabolomics analysis revealed that APEC challenge mainly downregulated (p < 0.05) several amino acids metabolism pathways of gut microbiota, while xylotriose had an inferiority to XOS in upregulating (p < 0.05) histidine metabolism pathway. Furthermore, microbial fermentation metabolites of all XOS monomers lowered (p < 0.05) certain virulence genes expression in APEC, with xylotriose being the most advantageous. CONCLUSIONS XOS and their major monomers differentially improved gut microbiota and metabolite profiles in chicken gut against APEC challenge. Overall, xylotriose exhibited the greatest inhibition against APEC abundance and virulence. Our findings underscore the role of single DP in influencing the prebiotic actions of XOS against APEC, providing a basis for the reasonable application of XOS in diets to combat bacterial challenge.
Collapse
Affiliation(s)
- Lulu Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huiyun Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Izquierdo M, O'Sullivan D, Uriot O, Brun M, Durif C, Denis S, Gallardo P, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S, Farfan MJ. Microbiota and metabolome dynamics induced by Shiga toxin-producing E. coli in an in vitro model of an infant's colon. MICROBIAL CELL (GRAZ, AUSTRIA) 2025; 12:76-92. [PMID: 40309356 PMCID: PMC12042126 DOI: 10.15698/mic2025.04.847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 05/02/2025]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major food-borne pathogen causing human diseases ranging from diarrhea to life-threatening complications, mainly in young children. Colonization, virulence, and interactions of STEC strains with human gut microbiota are pivotal during infection but remain poorly described, particularly in children, the most affected population. In this work, we evaluated changes in the microbiota and metabolome composition in the in vitro gut model: Toddler ARtificial COLon (T-ARCOL) infected with EHEC O157:H7 strain EDL 933. Stool samples collected from children with STEC-positive diarrhea and stool from the same children after recovery from the diarrheal episode (n=5) were used to inoculate the T-ARCOL model. STEC colonization was progressively reduced throughout fermentation in T-ARCOL with diarrhea or recovery fecal samples. Beta diversity showed that the diarrhea-associated microbiota was significantly distinct from the recovery microbiota and exhibited a lower α-diversity. In contrast to recovery conditions, diarrheal conditions were characterized by an increased abundance of potential pathobionts such as members of the Clostridiaceae family and higher acetate, succinate, and N-acetylneuraminic acid levels. Our results provide new evidence of the impact of EHEC in the microbiota and metabolome dynamics in an in vitro gut model that could be useful in understanding their physiopathology in this at-risk population, considering inter-individual variabilities in gut microbiota.
Collapse
Affiliation(s)
- Mariana Izquierdo
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
- Equal contribution as a first author
| | - Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Equal contribution as a first author
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sylvain Denis
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Pablo Gallardo
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Co-last authors
| | - Mauricio J. Farfan
- Departamento de Pediatría y Cirugía Infantil Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, 7500539 Santiago, Chile
- Co-last authors
| |
Collapse
|
5
|
Ling YT, Yao F, Li SJ, Cao CX, Chen ZW, Qiu M, Li BZ, Hu BW, Zhong SY, Hu GL, Li JH. Microbiota in patients with cefuroxime resistance and anal fistula revealed by 16S ribosomal DNA. World J Gastrointest Surg 2025; 17:100790. [PMID: 39872785 PMCID: PMC11757175 DOI: 10.4240/wjgs.v17.i1.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/27/2024] Open
Abstract
BACKGROUND Anal fistula is increasingly prevalent due to modern lifestyle factors, and surgery remains the primary treatment. However, the rising incidence of antibiotic resistance, particularly to cefuroxime, complicates perioperative management. The role of gut microbiota in influencing this resistance is not well understood. AIM To investigate the relationship between gut microbiota composition and cefuroxime resistance in anal fistula patients and to assess probiotic intervention impact. METHODS This study included 30 anal fistula patients categorized into cefuroxime-sensitive (Cefur-S) and cefuroxime-resistant (Cefur-NS) groups. Gut microbiota samples were collected during colonoscopy, and 16S ribosomal DNA sequencing was performed to analyze microbial diversity. Patients in the Cefur-NS group received a 7-day course of Clostridium butyricum tablets. Post-intervention, microbial composition and cefuroxime resistance were reassessed. RESULTS Alpha and beta diversity analyses showed no significant differences in microbial diversity between the Cefur-S and Cefur-NS groups. However, effect size analysis identified Roseburia and Butyricicoccus as dominant genera in the Cefur-S group, with higher butyrate production potentially protecting against cefuroxime resistance. Post-intervention, the Cefur-NS group showed a significant reduction in cefuroxime resistance, improved stool consistency, and reduced bowel movement frequency. CONCLUSION This study suggests that specific gut microbiota, particularly Butyricicoccus and Roseburia, may mitigate cefuroxime resistance in anal fistula patients by increasing butyrate production. Probiotic intervention targeting gut microbiota composition presents a promising strategy for reducing antibiotic resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Yi-Ting Ling
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Fei Yao
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Sen-Juan Li
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Chen-Xi Cao
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhen-Wei Chen
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Min Qiu
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Bu-Zhuo Li
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Bi-Wen Hu
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Shen-Yan Zhong
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Guang-Lei Hu
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Jia-Hua Li
- Department of Anorectal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
6
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
7
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Gallardo P, Izquierdo M, Viver T, Bustos-Caparros E, Piras D, Vidal RM, Harmsen HJ, Farfan MJ. A metagenomic approach to unveil the association between fecal gut microbiota and short-chain fatty acids in diarrhea caused by diarrheagenic Escherichia coli in children. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:116-127. [PMID: 38799407 PMCID: PMC11122282 DOI: 10.15698/mic2024.04.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 05/29/2024]
Abstract
Diarrheagenic Escherichia coli (DEC) is the main cause of diarrhea in children under five years old. The virulence of DEC is tightly regulated by environmental signals influenced by the gut microbiota and its metabolites. Short-chain fatty acids (SCFAs) are the main metabolic product of anaerobic fermentation in the gut, but their role in DEC diarrhea has not yet been established. In this study, we determine the levels of acetate, propionate, and butyrate in stool samples from children with diarrhea caused by DEC, and we identify bacteria from the fecal gut microbiota associated with the production of SCFAs. The microbiota and SCFAs levels in stool samples obtained from 40 children with diarrhea and 43 healthy children were determined by 16S rRNA gene sequencing and HPLC, respectively. Additionally, shotgun metagenomics was used to identify metagenome-assembled genomes (MAGs) in a subgroup of samples. The results showed significantly higher levels of all SCFAs tested in diarrheal samples than in healthy controls. The abundance of Streptococcus sp., Limosilactobacillus, Blautia, Escherichia, Bacteroides, Megamonas, and Roseburia was higher in the DEC group than in healthy individuals. Functional analysis of bacteria and their main metabolic pathways made it possible to identify species MAGs that could be responsible for the detected SCFAs levels in DEC-positive diarrhea. In conclusion, based on our results and published data, we suggest that SCFAs may be important in the crosstalk between the microbiota and DEC pathogens in the gut.
Collapse
Affiliation(s)
- Pablo Gallardo
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Departamento de Cirugía y Pediatría Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Izquierdo
- Departamento de Cirugía y Pediatría Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Esteban Bustos-Caparros
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Dana Piras
- Departamento de Cirugía y Pediatría Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hermie J.M. Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mauricio J. Farfan
- Departamento de Cirugía y Pediatría Oriente, CICA Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
10
|
Liu X, Tang H, Huang X, Xu M. Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion. Future Microbiol 2024; 19:73-84. [PMID: 38085176 DOI: 10.2217/fmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 02/15/2024] Open
Abstract
Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Hao Tang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
11
|
Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C, Yang B. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat Commun 2023; 14:7227. [PMID: 37945607 PMCID: PMC10636207 DOI: 10.1038/s41467-023-43149-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China.
| |
Collapse
|
12
|
Gunther NW, Nunez A, Bagi L, Abdul-Wakeel A, Ream A, Liu Y, Uhlich G. Butyrate decreases Campylobacter jejuni motility and biofilm partially through influence on LysR expression. Food Microbiol 2023; 115:104310. [PMID: 37567643 DOI: 10.1016/j.fm.2023.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 08/13/2023]
Abstract
The food pathogen Campylobacter jejuni both colonizes the lower intestines of poultry and infects the lower intestines of humans. The lower intestines of both poultry and humans are also home to a wide range of commensal organisms which compete with an organism like C. jejuni for space and resources. The commensal organisms are believed to protect humans against infection by pathogens of the digestive tract like C. jejuni. The short chain fatty acid (SCFA) butyrate is a metabolite commonly produced by commensal organisms within both the poultry and human digestive tract. We investigated the effect that physiologically relevant concentrations of butyrate have on C. jejuni under in vitro conditions. Butyrate at concentrations of 5 and 20 mM negatively impacted C. jejuni motility and biofilm formation. These two traits are believed important for C. jejuni's ability to infect the lower intestines of humans. Additionally, 20 mM butyrate concentrations were observed to influence the expression of a range of different Campylobacter proteins. Constitutive expression of one of these proteins, LysR, within a C. jejuni strain partially lessened the negative influence butyrate had on the bacteria's motility.
Collapse
Affiliation(s)
- Nereus W Gunther
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA.
| | - Alberto Nunez
- Emeritis, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| | - Lori Bagi
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| | - Aisha Abdul-Wakeel
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| | - Amy Ream
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| | - Gaylen Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, USA
| |
Collapse
|
13
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
14
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Serebrinsky-Duek K, Barra M, Danino T, Garrido D. Engineered Bacteria for Short-Chain-Fatty-Acid-Repressed Expression of Biotherapeutic Molecules. Microbiol Spectr 2023; 11:e0004923. [PMID: 36939337 PMCID: PMC10101121 DOI: 10.1128/spectrum.00049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Short-chain fatty acids (SCFA) such as propionate and butyrate are critical metabolites produced by the gut microbiota. Microbiome dysbiosis resulting in altered SCFA profiles is associated with certain diseases, including inflammatory bowel diseases (IBD), characterized by a reduction in butyrate concentration and active intestinal inflammation. There is an increasing interest in the use of engineered bacteria as diagnostic and therapeutic tools for gut diseases. In this study, we developed genetic circuits capable of sensing SCFA concentrations to build biosensors that express a response protein (superfolder green fluorescent protein [sfGFP]) in amounts inversely proportional to the SCFA concentration. We also built biotherapeutics expressing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) using the same logic. The propionate biotherapeutic expressed larger amounts of mouse GM-CSF in the absence of propionate. The butyrate biotherapeutics presented the expected behavior only at the beginning of the kinetics and an accelerated response in the absence of butyrate. Overall, these genetic systems may function as complementary diagnostic tools for measuring SCFAs and as delivery vehicles for biotherapeutic molecules. IMPORTANCE Short-chain fatty acids are key molecules produced by the gut microbiome. Their concentrations are altered in certain diseases. Here, we created molecular biosensors that quantify the absence of propionate and butyrate, using logic "NOT" gates and bacterial promoters. Finally, we show that these genetic systems could be useful for the delivery of therapeutic molecules in the gut, in the absence of these acids.
Collapse
Affiliation(s)
- Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Barra
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Melchior K, Salgaço MK, Sivieri K, Moreira CG. QseC sensor kinase modulates the human microbiota during enterohemorrhagic Escherichia coli O157:H7 infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Braz J Microbiol 2023; 54:1-14. [PMID: 36469301 PMCID: PMC9943815 DOI: 10.1007/s42770-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important gastrointestinal pathogen known for its ability to cause hemorrhagic colitis and induce hemolytic-uremic syndrome. The inner membrane QseC histidine kinase sensor has shown to be an important regulator of the locus of enterocyte effacement (LEE) island, where important EHEC key virulence genes are located. However, the QseC role during EHEC infection in human microbiota remains unknown. Herein, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), we investigated whether the QseC sensor has a role in human microbiota modulation by EHEC in a dynamic model. Our data demonstrated that the QseC sensor modulates human microbiota during EHEC infection, and its absence leads to an increase in Lactobacillaceae and Bifidobacterium genus predominance, although non-effect on Bacteroides genus by EHEC strains was observed. In co-culture, the Lactobacillus acidophilus has affected EHEC growth and impaired the EHEC growth under space-niche competition, although no growth difference was observed in the QseC sensor presence. Also, differences in EHEC growth were not detected in competition with Bacteroides thetaiotaomicron and EHEC strains did not affect B. thetaiotaomicron growth either. When investigating the mechanisms behind the SHIME results, we found that hcp-2 expression for the type 6 secretion system, known to be involved in bacterial competition, is under QseC sensor regulation beneath different environmental signals, such as glucose and butyrate. Our findings broaden the knowledge about the QseC sensor in modulating the human microbiota and its importance for EHEC pathogenesis.
Collapse
Affiliation(s)
- Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
17
|
Smith AD, Chen C, Cheung L, Dawson HD. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front Nutr 2023; 9:1057318. [PMID: 36704785 PMCID: PMC9871501 DOI: 10.3389/fnut.2022.1057318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.
Collapse
|
18
|
Vogt SL, Serapio-Palacios A, Woodward SE, Santos AS, de Vries SP, Daigneault MC, Brandmeier LV, Grant AJ, Maskell DJ, Allen-Vercoe E, Finlay BB. Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses. Gut Microbes 2023; 15:2190303. [PMID: 36951510 PMCID: PMC10038027 DOI: 10.1080/19490976.2023.2190303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.
Collapse
Affiliation(s)
- Stefanie L. Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew S. Santos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan P.W. de Vries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Michelle C. Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa V. Brandmeier
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Research Progress on Small Molecular Inhibitors of the Type 3 Secretion System. Molecules 2022; 27:molecules27238348. [PMID: 36500441 PMCID: PMC9740592 DOI: 10.3390/molecules27238348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The overuse of antibiotics has led to severe bacterial drug resistance. Blocking pathogen virulence devices is a highly effective approach to combating bacterial resistance worldwide. Type three secretion systems (T3SSs) are significant virulence factors in Gram-negative pathogens. Inhibition of these systems can effectively weaken infection whilst having no significant effect on bacterial growth. Therefore, T3SS inhibitors may be a powerful weapon against resistance in Gram-negative bacteria, and there has been increasing interest in the research and development of T3SS inhibitors. This review outlines several reported small-molecule inhibitors of the T3SS, covering those of synthetic and natural origin, including their sources, structures, and mechanisms of action.
Collapse
|
20
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Zhan Z, Tang H, Zhang Y, Huang X, Xu M. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front Microbiol 2022; 13:976406. [PMID: 36204607 PMCID: PMC9530198 DOI: 10.3389/fmicb.2022.976406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are a very important group of metabolites located in the gut that play a crucial role in the regulation of gut function and pathogen resistance. Since many enteric pathogens respond differently to various SCFAs, substantial efforts have been made to understand the regulatory effects of SCFA types on enteric pathogens. The application of protein post-translational modifications (PTMs) in bacterial research provides a new perspective for studying the regulation of enteric pathogens by different SCFAs. Existing evidence suggests that the SCFAs acetate, propionate, and butyrate influence bacterial processes by extensively promoting the acylation of key bacterial proteins. SCFAs can also prevent the invasion of pathogenic bacteria by regulating the barrier function and immune status of the host gut. In this review, we describe the mechanisms by which different SCFAs modulate the pathogenicity of enteric pathogens from multiple perspectives. We also explore some recent findings on how enteric pathogens counteract SCFA inhibition. Lastly, we discuss the prospects and limitations of applying SCFAs to control enteric pathogens.
Collapse
Affiliation(s)
- Ziyang Zhan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Tang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Xinxiang Huang,
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
- Min Xu,
| |
Collapse
|
22
|
Hamamura R, Yen H, Tobe T. SlyA regulates virulence gene expressions through activation of pchA regulatory gene in enterohemorrhagic Escherichia coli. Microbiol Immunol 2022; 66:501-509. [PMID: 36083830 DOI: 10.1111/1348-0421.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
SlyA is a DNA-binding protein that alters the nucleoid complex composed of histone-like nucleoid-structuring protein (H-NS) and activates gene expression. In enterohemorrhagic Escherichia coli (EHEC), the expression of virulence genes is repressed by H-NS but is upregulated in response to environmental factors by releasing a nucleoid complex. In this study, we examined the effect of slyA deletion mutation in EHEC and discovered that the production of LEE (locus of enterocyte effacement)-encoded EspB and Tir, as well as cell adherence ability, was reduced in the mutant compared to wild type. The promoter activity of the LEE1 operon, including the regulatory gene, ler, was reduced by slyA mutation, but tac promoter-controlled expression of pchA, which is a regulatory gene of LEE1, abolished the effect. The promoter activity of pchA was downregulated by the slyA mutation. Furthermore, the coding region was required for its regulation and was bound to SlyA, which indicates the direct regulation of pchA by SlyA. However, the slyA mutation did not affect the butyrate-induced increase in pchA promoter activity. Additionally, pchA promoter activity was increased via induction of lrp, a regulatory gene for butyrate response, in the slyA mutant and, conversely, by introducing high copies of slyA into the lrp mutant. These results indicate that SlyA is a positive regulator of pchA and is independent of the Lrp regulatory system. SlyA may be involved in virulence expression in EHEC, maintaining a certain level of expression in the absence of butyrate response. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riho Hamamura
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hilo Yen
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Tobe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
23
|
Brenner SR. Reader Response: Association of Fecal and Plasma Levels of Short-Chain Fatty Acids With Gut Microbiota and Clinical Severity in Patients With Parkinson Disease. Neurology 2022; 99:403. [PMID: 36038285 DOI: 10.1212/wnl.0000000000201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
25
|
Łoniewski I, Skonieczna-Żydecka K, Stachowska L, Fraszczyk-Tousty M, Tousty P, Łoniewska B. Breastfeeding Affects Concentration of Faecal Short Chain Fatty Acids During the First Year of Life: Results of the Systematic Review and Meta-Analysis. Front Nutr 2022; 9:939194. [PMID: 35898706 PMCID: PMC9310010 DOI: 10.3389/fnut.2022.939194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Short chain fatty acids (SCFAs) are important metabolites of the gut microbiota. It has been shown that the microbiota and its metabolic activity in children are highly influenced by the type of diet and age. Our aim was to analyse the concentration of fecal SCFAs over two years of life and to evaluate the influence of feeding method on the content of these compounds in feces. We searched PubMed/MEDLINE/Embase/Ebsco/Cinahl/Web of Science from the database inception to 02/23/2021 without language restriction for observational studies that included an analysis of the concentration of fecal SCFAs in healthy children up to 3 years of age. The primary outcome measures-mean concentrations-were calculated. We performed a random-effects meta-analysis of outcomes for which ≥2 studies provided data. A subgroup analysis was related to the type of feeding (breast milk vs. formula vs. mixed feeding) and the time of analysis (time after birth). The initial search yielded 536 hits. We reviewed 79 full-text articles and finally included 41 studies (n = 2,457 SCFA analyses) in the meta-analysis. We found that concentrations of propionate and butyrate differed significantly in breastfed infants with respect to time after birth. In infants artificially fed up to 1 month of age, the concentration of propionic acid, butyric acid, and all other SCFAs is higher, and acetic acid is lower. At 1–3 months of age, a higher concentration of only propionic acid was observed. At the age of 3–6 months, artificial feeding leads to a higher concentration of butyric acid and the sum of SCFAs. We concluded that the type of feeding influences the content of SCFAs in feces in the first months of life. However, there is a need for long-term evaluation of the impact of the observed differences on health later in life and for standardization of analytical methods and procedures for the study of SCFAs in young children. These data will be of great help to other researchers in analyzing the relationships between fecal SCFAs and various physiologic and pathologic conditions in early life and possibly their impact on health in adulthood.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- *Correspondence: Karolina Skonieczna-Żydecka
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Piotr Tousty
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
26
|
Walker AC, Bhargava R, Dove AS, Brust AS, Owji AA, Czyż DM. Bacteria-Derived Protein Aggregates Contribute to the Disruption of Host Proteostasis. Int J Mol Sci 2022; 23:4807. [PMID: 35563197 PMCID: PMC9103901 DOI: 10.3390/ijms23094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis-possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut-brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria's effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host-bacteria interactions in the context of protein conformational diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (A.C.W.); (R.B.); (A.S.D.); (A.S.B.); (A.A.O.)
| |
Collapse
|
27
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
28
|
Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, Liu H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:350-360. [PMID: 35510031 PMCID: PMC9040132 DOI: 10.1016/j.aninu.2021.11.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Gut inflammation is a challenging concern in humans and animals, which disturbs normal growth and leads to severe bowel diseases. Short chain fatty acids (SCFA) are the gut microbiota metabolites produced from fermentation of non-digestible carbohydrates, and have been reported to modulate gut inflammation. SCFA have been implicated as the potential therapeutic bioactive molecules for gut inflammatory diseases, and could be an alternative to antibiotic growth promoters (AGP). In this review, the existing knowledge about the types of SCFA, the related gut microbes producing SCFA, the roles of SCFA in maintaining gut homeostasis, and how SCFA modulate gut inflammation is summarized. The therapeutic application of SCFA in the treatment of inflammatory bowel disease (IBD) is also highlighted.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jawaria A. Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
29
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
30
|
uvrY deletion and acetate reduce gut colonization of Crohn's disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae. Infect Immun 2022; 90:e0066221. [PMID: 34978926 DOI: 10.1128/iai.00662-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.
Collapse
|
31
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
33
|
Machado MG, Sencio V, Trottein F. Short-Chain Fatty Acids as a Potential Treatment for Infections: a Closer Look at the Lungs. Infect Immun 2021; 89:e0018821. [PMID: 34097474 PMCID: PMC8370681 DOI: 10.1128/iai.00188-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by the gut microbiota via the fermentation of complex carbohydrates and fibers. Evidence suggests that SCFAs play a role in the control of infections through direct action both on microorganisms and on host signaling. This review summarizes the main microbicidal effects of SCFAs and discusses studies highlighting the effect of SCFAs in the virulence and viability of microorganisms. We also describe the diverse and complex modes of action of the SCFAs on the immune system in the face of infections with a specific focus on bacterial and viral respiratory infections. A growing body of evidence suggests that SCFAs protect against lung infections. Finally, we present potential strategies that may be leveraged to exploit the biological properties of SCFAs for increasing effectiveness and optimizing patient benefits.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
34
|
Liang Q, Vallance BA. What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Curr Opin Microbiol 2021; 63:76-82. [PMID: 34243134 DOI: 10.1016/j.mib.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Enteric bacterial infections impose a significant and global health burden on society, and their threat is increasing in concert with a rise in antibiotic resistance. There is thus a great need to quickly develop new antimicrobial treatments and interest is growing in targeting pathogen nutrition and metabolism. In this review, we highlight recent research on the metabolism of Citrobacter rodentium, a murine-specific relative of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). We focus on the mechanisms by which C. rodentium acquires nutrients as well as the distinct metabolic strategies that C. rodentium employs in varying spatiotemporal niches. We propose that identifying and targeting nutrients found essential for bacterial pathogenesis is an attractive anti-microbial approach in the new post-antibiotic era.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
An J, Zhao X, Wang Y, Noriega J, Gewirtz AT, Zou J. Western-style diet impedes colonization and clearance of Citrobacter rodentium. PLoS Pathog 2021; 17:e1009497. [PMID: 33819308 PMCID: PMC8049485 DOI: 10.1371/journal.ppat.1009497] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/15/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD's reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.
Collapse
Affiliation(s)
- Junqing An
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Xu Zhao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanling Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (ATG); (JZ)
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (ATG); (JZ)
| |
Collapse
|
37
|
Rauf A, Khalil AA, Rahman UU, Khalid A, Naz S, Shariati MA, Rebezov M, Urtecho EZ, de Albuquerque RDDG, Anwar S, Alamri A, Saini RK, Rengasamy KRR. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit Rev Food Sci Nutr 2021; 62:6034-6054. [PMID: 33703960 DOI: 10.1080/10408398.2021.1895064] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ubaid-Ur- Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saima Naz
- Deaprtment of Biotechnology, Woman University Mardan, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian
- Prokhorov General Physics Institute of the, Russian Academy of Science, Moscow, Russian
| | | | | | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | - Abdulwahab Alamri
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | | | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| |
Collapse
|
38
|
Yap YA, McLeod KH, McKenzie CI, Gavin PG, Davalos-Salas M, Richards JL, Moore RJ, Lockett TJ, Clarke JM, Eng VV, Pearson JS, Hamilton-Williams EE, Mackay CR, Mariño E. An acetate-yielding diet imprints an immune and anti-microbial programme against enteric infection. Clin Transl Immunology 2021; 10:e1233. [PMID: 33489123 PMCID: PMC7809703 DOI: 10.1002/cti2.1233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives During gastrointestinal infection, dysbiosis can result in decreased production of microbially derived short‐chain fatty acids (SCFAs). In response to the presence of intestinal pathogens, we examined whether an engineered acetate‐ or butyrate‐releasing diet can rectify the deficiency of SCFAs and lead to the resolution of enteric infection. Methods We tested whether a high acetate‐ or butyrate‐producing diet (HAMSA or HAMSB, respectively) condition Citrobacterrodentium infection in mice and assess its impact on host‐microbiota interactions. We analysed the adaptive and innate immune responses, changes in gut microbiome function, epithelial barrier function and the molecular mechanism via metabolite sensing G protein‐coupled receptor 43 (GPR43) and IL‐22 expression. Results HAMSA diet rectified the deficiency in acetate production and protected against enteric infection. Increased SCFAs affect the expression of pathogen virulence genes. HAMSA diet promoted compositional and functional changes in the gut microbiota during infection similar to healthy microbiota from non‐infected mice. Bacterial changes were evidenced by the production of proteins involved in acetate utilisation, starch and sugar degradation, amino acid biosynthesis, carbohydrate transport and metabolism. HAMSA diet also induced changes in host proteins critical in glycolysis, wound healing such as GPX1 and epithelial architecture such as EZR1 and PFN1. Dietary acetate assisted in rapid epithelial repair, as shown by increased colonic Muc‐2, Il‐22, and anti‐microbial peptides. We found that acetate increased numbers of colonic IL‐22 producing TCRαβ+CD8αβ+ and TCRγδ+CD8αα+ intraepithelial lymphocytes expressing GPR43. Conclusion HAMSA diet may be an effective therapeutic approach for fighting inflammation and enteric infections and offer a safe alternative that may impact on human health.
Collapse
Affiliation(s)
- Yu Anne Yap
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Keiran H McLeod
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Craig I McKenzie
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Patrick G Gavin
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Mercedes Davalos-Salas
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - James L Richards
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Robert J Moore
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,School of Science RMIT University Bundoora VIC Australia
| | | | | | - Vik Ven Eng
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia
| | - Jaclyn S Pearson
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia.,Department of Molecular and Translational Research Monash University Clayton, Melbourne VIC Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Charles R Mackay
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| |
Collapse
|
39
|
Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms 2020; 8:microorganisms8121886. [PMID: 33260665 PMCID: PMC7761281 DOI: 10.3390/microorganisms8121886] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
This review summarises the evidence for a link between the porcine intestinal microbiota and growth and feed efficiency (FE), and suggests microbiota-targeted strategies to improve productivity. However, there are challenges in identifying reliable microbial predictors of host phenotype; environmental factors impact the microbe–host interplay, sequential differences along the intestine result in segment-specific FE- and growth-associated taxa/functionality, and it is often difficult to distinguish cause and effect. However, bacterial taxa involved in nutrient processing and energy harvest, and those with anti-inflammatory effects, are consistently linked with improved productivity. In particular, evidence is emerging for an association of Treponema and methanogens such as Methanobrevibacter in the small and large intestines and Lactobacillus in the large intestine with a leaner phenotype and/or improved FE. Bacterial carbohydrate and/or lipid metabolism pathways are also generally enriched in the large intestine of leaner pigs and/or those with better growth/FE. Possible microbial signalling routes linked to superior growth and FE include increased intestinal propionate production and reduced inflammatory response. In summary, the bacterial taxa and/or metabolic pathways identified here could be used as biomarkers for FE/growth in pigs, the taxa exploited as probiotics or the taxa/functionality manipulated via dietary/breeding strategies in order to improve productivity in pigs.
Collapse
|
40
|
Monteiro R, Chafsey I, Ageorges V, Leroy S, Chambon C, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. The Secretome landscape of Escherichia coli O157:H7: Deciphering the cell-surface, outer membrane vesicle and extracellular subproteomes. J Proteomics 2020; 232:104025. [PMID: 33160105 DOI: 10.1016/j.jprot.2020.104025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Among diarrheagenic E. coli (DEC), enterohaemorrhagic E. coli (EHEC) are the most virulent anthropozoonotic agents. The ability of bacterial cells to functionally interact with their surrounding essentially relies on the secretion of different protein effectors. To experimentally determine the repertoire of extracytoproteins in E. coli O157:H7, a subproteomic analysis was performed not only considering the extracellular milieu but the cell surface and outer membrane vesicles. Following a secretome-based approach, the proteins trafficking from the interior to the exterior of the cell were depicted considering cognate protein transport systems and subcellular localisation. Label-free quantitative analysis of the proteosurfaceome, proteovesiculome and exoproteome from E. coli O157:H7 grown in three different nutrient media revealed differential protein expression profiles and allowed defining the core and variant subproteomes. Network analysis further revealed the higher abundance of some protein clusters in chemically defined medium over rich complex medium, especially related to some outer membrane proteins, ABC transport and Type III secretion systems. This first comprehensive study of the EHEC secretome unravels the profound influence of environmental conditions on the extracytoplasmic proteome, provides new insight in the physiology of E. coli O157:H7 and identifies potentially important molecular targets for the development of preventive strategies against EHEC/STEC. SIGNIFICANCE: Escherichia coli O157:H7 is responsible for severe diarrhoea especially in young children. Despite years of investigations, the global view of the extracytoplasmic proteins expressed in this microorganism was eluded. To provide the first comprehensive view of the secretome landscape of E. coli O157:H7, the exoproteome, proteosurfaceome and proteovesiculome were profiled using growth conditions most likely to induce changes in bacterial protein secretion. The profound influence of growth conditions on the extracytoplasmic proteome was unravelled and allowed identifying the core and variant subproteomes. Besides new insight in the physiology of enterohaemorrhagic E. coli, these proteins potentially constitute important molecular targets for the development of preventive strategies.
Collapse
Affiliation(s)
- Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France; GSK, Siena, Italy
| | - Ingrid Chafsey
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plate-Forme d'Exploration du Métabolisme, QuaPA, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France; INRAE, Plate-Forme d'Exploration du Métabolisme, QuaPA, F-63122 Saint-Genès Champanelle, France
| | - Valérie Livrelli
- Université Clermont-Auvergne, INSERM, INRAE, M2ISH, F-63000 Clermont-ferrand, France
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
41
|
Bai Y, Mansell TJ. Production and Sensing of Butyrate in a Probiotic Escherichia coli Strain. Int J Mol Sci 2020; 21:ijms21103615. [PMID: 32443851 PMCID: PMC7279287 DOI: 10.3390/ijms21103615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The short-chain fatty acid butyrate plays critical roles in human gut health, affecting immunomodulation, cell differentiation, and apoptosis, while also serving as the preferred carbon source for colon cells. In this work, we have engineered a model probiotic organism, Escherichia coli Nissle 1917 (EcN, serotype O6:K5:H1), to produce butyrate from genomic loci up to approximately 1 g/L (11 mM). Then, for real-time monitoring of butyrate production in cultures, we developed a high-throughput biosensor that responds to intracellular butyrate concentrations, with green fluorescent protein as the reporter. This work provides a foundation for studies of butyrate for therapeutic applications.
Collapse
|
42
|
Chen M, Fan B, Liu S, Imam KMSU, Xie Y, Wen B, Xin F. The in vitro Effect of Fibers With Different Degrees of Polymerization on Human Gut Bacteria. Front Microbiol 2020; 11:819. [PMID: 32477290 PMCID: PMC7242623 DOI: 10.3389/fmicb.2020.00819] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut bacteria contribute significantly to human health and several studies have evaluated the effects of dietary fibers on human gut bacterial ecology. However, the relationship between different degrees of fiber polymerization and human gut bacteria is unknown. Here, we analyzed three fiber substrates with different degrees of polymerization, namely carboxymethylcellulose, β-glucans, and galactooligosaccharides. To probe the in vitro influence of the degree of polymerization of the fiber on human gut bacteria, we measured the pH, air pressure, and short-chain fatty acid content of fecal fermentation supplemented with these fiber substrates, and sequenced the 16S ribosomal RNA genes of the microbial community in the fiber-treated fermentations. The butyric acid concentration was shown to decline with decreasing degree of polymerization of the fiber. Illumina Miseq sequencing indicated that the degree of polymerization might have an influence on human gut microbial diversity and abundance. Principal coordinate analysis unveiled a relationship between the degree of fiber polymerization and the gut bacterial community. Specific microbiota operational taxonomic units (OTUs) within the genera Escherichia-Shigella, Fusobacterium, and Dorea were proportional to the degree of fiber significantly, whereas OTUs within the genera Bifidobacterium, Streptococcus, and Lactobacillus were inversely correlated with the degree of polymerization. Correlation analysis between the fiber degree of polymerization and gut bacteria may demonstrate the effect of fibers on gut microbiota, and subsequently, on human health.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Xie
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Campylobacter jejuni BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization. Proc Natl Acad Sci U S A 2020; 117:11715-11726. [PMID: 32398371 DOI: 10.1073/pnas.1922719117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.
Collapse
|
44
|
Ormsby MJ, Johnson SA, Carpena N, Meikle LM, Goldstone RJ, McIntosh A, Wessel HM, Hulme HE, McConnachie CC, Connolly JPR, Roe AJ, Hasson C, Boyd J, Fitzgerald E, Gerasimidis K, Morrison D, Hold GL, Hansen R, Walker D, Smith DGE, Wall DM. Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Rep 2020; 30:2297-2305.e5. [PMID: 32075765 PMCID: PMC7034058 DOI: 10.1016/j.celrep.2020.01.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/09/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Propionic acid (PA) is a bacterium-derived intestinal antimicrobial and immune modulator used widely in food production and agriculture. Passage of Crohn's disease-associated adherent-invasive Escherichia coli (AIEC) through a murine model, in which intestinal PA levels are increased to mimic the human intestine, leads to the recovery of AIEC with significantly increased virulence. Similar phenotypic changes are observed outside the murine model when AIEC is grown in culture with PA as the sole carbon source; such PA exposure also results in AIEC that persists at 20-fold higher levels in vivo. RNA sequencing identifies an upregulation of genes involved in biofilm formation, stress response, metabolism, membrane integrity, and alternative carbon source utilization. PA exposure also increases virulence in a number of E. coli isolates from Crohn's disease patients. Removal of PA is sufficient to reverse these phenotypic changes. Our data indicate that exposure to PA results in AIEC resistance and increased virulence in its presence.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Síle A Johnson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Lynsey M Meikle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert J Goldstone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Anne McIntosh
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah M Wessel
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Heather E Hulme
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Ceilidh C McConnachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Conor Hasson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Joseph Boyd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Eamonn Fitzgerald
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
45
|
Lamas A, Regal P, Vázquez B, Cepeda A, Franco CM. Short Chain Fatty Acids Commonly Produced by Gut Microbiota Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression. Antibiotics (Basel) 2019; 8:E265. [PMID: 31847278 PMCID: PMC6963744 DOI: 10.3390/antibiotics8040265] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SCFAs) are commonly produced by healthy gut microbiota and they have a protective role against enteric pathogens. SCFAs also have direct antimicrobial activity against bacterial pathogens by diffusion across the bacterial membrane and reduction of intracellular pH. Due to this antimicrobial activity, SCFAs have promising applications in human health and food safety. In this study, the minimum inhibitory concentrations (MICs) of four SCFAs (acetic acid, butyric acid, propionic acid, and valeric acid) in Salmonella strains isolated from poultry were determined. The effect of subinhibitory concentrations of SCFAs in Salmonella biofilm formation, motility, and gene expression was also evaluated. Butyric acid, propionic acid, and valeric acid showed a MIC of 3750 µg/mL in all strains tested, while the MIC of acetic acid was between 1875 and 3750 µg/mL. Subinhibitory concentrations of SCFAs significantly (p < 0.05) reduced the motility of all Salmonella strains, especially in the presence of acetic acid. Biofilm formation was also significantly (p < 0.05) lower in the presence of SCFAs in some of the Salmonella strains. Salmonella strain. Salmonella Typhimurium T7 showed significant (p < 0.05) upregulation of important virulence genes, such as invA and hilA, especially in the presence of butyric acid. Therefore, SCFAs are promising substances for the inhibition of the growth of foodborne pathogens. However, it is important to avoid the use of subinhibitory concentrations that could increase the virulence of foodborne pathogen Salmonella.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (P.R.); (B.V.); (A.C.); (C.M.F.)
| | | | | | | | | |
Collapse
|
46
|
Pendergrass HA, May AE. Natural Product Type III Secretion System Inhibitors. Antibiotics (Basel) 2019; 8:antibiotics8040162. [PMID: 31554164 PMCID: PMC6963908 DOI: 10.3390/antibiotics8040162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Many known inhibitors of the bacterial type III secretion system (T3SS), a virulence factor used by pathogenic bacteria to infect host cells, are natural products. These compounds, produced by bacteria, fungi, and plants, may have developed as prophylactic treatments for potential attack by bacterial pathogens or as an attempt by symbiotic organisms to protect their hosts. Regardless, better understanding of the structures and mechanisms of action of these compounds may open opportunities for drug development against diseases caused by pathogens utilizing the T3SS. This review will cover selected known natural products of the T3SS and detail what is known of their origin and mechanism of action. These inhibitors highlight nature’s ability to modulate interactions between organisms at a cellular level.
Collapse
Affiliation(s)
- Heather A Pendergrass
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Aaron E May
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
47
|
|
48
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
49
|
Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev 2019; 83:e00007-19. [PMID: 31167904 PMCID: PMC6710460 DOI: 10.1128/mmbr.00007-19] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is critical in providing resistance against colonization by exogenous microorganisms. The mechanisms via which the gut microbiota provide colonization resistance (CR) have not been fully elucidated, but they include secretion of antimicrobial products, nutrient competition, support of gut barrier integrity, and bacteriophage deployment. However, bacterial enteric infections are an important cause of disease globally, indicating that microbiota-mediated CR can be disturbed and become ineffective. Changes in microbiota composition, and potential subsequent disruption of CR, can be caused by various drugs, such as antibiotics, proton pump inhibitors, antidiabetics, and antipsychotics, thereby providing opportunities for exogenous pathogens to colonize the gut and ultimately cause infection. In addition, the most prevalent bacterial enteropathogens, including Clostridioides difficile, Salmonella enterica serovar Typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, Campylobacter jejuni, Vibrio cholerae, Yersinia enterocolitica, and Listeria monocytogenes, can employ a wide array of mechanisms to overcome colonization resistance. This review aims to summarize current knowledge on how the gut microbiota can mediate colonization resistance against bacterial enteric infection and on how bacterial enteropathogens can overcome this resistance.
Collapse
Affiliation(s)
- Q R Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - R D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - B V H Hornung
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - W van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - V B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - E J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
- Netherlands Donor Feces Bank, Leiden, Netherlands
| |
Collapse
|
50
|
Mazzawi T, Hausken T, Hov JR, Valeur J, Sangnes DA, El-Salhy M, Gilja OH, Hatlebakk JG, Lied GA. Clinical response to fecal microbiota transplantation in patients with diarrhea-predominant irritable bowel syndrome is associated with normalization of fecal microbiota composition and short-chain fatty acid levels. Scand J Gastroenterol 2019; 54:690-699. [PMID: 31190584 DOI: 10.1080/00365521.2019.1624815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objectives: Irritable bowel syndrome (IBS) may be associated with disturbances in gut microbiota composition and functions. We recently performed a study of fecal microbiota transplantation (FMT) in diarrhea-predominant IBS (IBS-D) and found that IBS symptoms improved and the gut microbiota profile changed following FMT. We now aimed to explore the effects of FMT on the gut microenvironment in further detail by using 16S rRNA sequencing for more extended microbiota profiling and analyzing bacterial fermentation products (SCFAs: short chain fatty acids). Materials and methods: The study included 13 patients (four females and nine males) with IBS-D according to Rome III criteria and 13 healthy donors. Freshly donated feces were administered into duodenum via gastroscopy. The patients completed symptom and quality of life (QoL) questionnaires and delivered feces before and 1, 3, 12 and 20/28 weeks after FMT. Microbiota analysis was performed by sequencing 16S rRNA gene with Illumina Miseq technology. Fecal concentrations of SCFAs were analyzed by vacuum distillation followed by gas chromatography. Results: Several gut microbiota taxa and SCFAs were significantly different in the patients at baseline compared to their donors. These differences normalized by the third week following FMT in parallel with significant improvement in symptoms and QoL. Responders had different gut microbiota profile and SCFAs than nonresponders. Significant correlations were found between the gut microenvironment and IBS symptoms. No adverse effects were reported. Conclusions: FMT restores alterations of the gut microenvironment in IBS-D patients during the first 3 weeks and improves their symptoms for up to 28 weeks. ClinicalTrials.gov ID: NCT03333291.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Center for Nutrition, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | - Trygve Hausken
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Center for Nutrition, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | - Johannes R Hov
- Norwegian PSC Research Center and Section of Gastroenterology and Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital , Oslo , Norway
| | - Dag André Sangnes
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway
| | - Magdy El-Salhy
- Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Division of Gastroenterology, Department of Medicine, Stord Hospital, Helse-Fonna , Stord , Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Center for Nutrition, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Center for Nutrition, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | - Gülen Arslan Lied
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Norwegian Competence Center for Functional Gastrointestinal Disorders, Section of Gastroenterology, Department of Medicine, Haukeland University Hospital , Bergen , Norway.,Center for Nutrition, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| |
Collapse
|