1
|
Li H, Hong L, Szymczak W, Orner E, Garber AI, Cooper VS, Chen W, De A, Tang JX, Mani S. Protocol for isolating single species of bacteria with swarming ability from human feces. STAR Protoc 2024; 5:102961. [PMID: 38573864 PMCID: PMC10999858 DOI: 10.1016/j.xpro.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Understanding the specific movements of bacteria isolated from human feces can serve as a novel diagnostic and therapeutic tool for inflammatory bowel disease. Here, we present a protocol for a microbial swarming assay and to isolate the bacteria responsible for swarming activity. We describe steps for identifying bacteria using MALDI-TOF mass spectrometry and whole-genome sequencing. We then detail procedures for validating findings by observing the same swarming phenotype upon reperforming the swarming assay. For complete details on the use and execution of this protocol, please refer to De et al.1.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lilli Hong
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wendy Szymczak
- Montefiore Medical Center, Bronx, NY 10467, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erika Orner
- Montefiore Medical Center, Bronx, NY 10467, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Center for Evolutionary Biology and Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Weijie Chen
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Arpan De
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jay X Tang
- Brown University, Physics Department, Providence, RI 02912, USA
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Wallace M, Cummings, Jr. DA, Roberts AG, Puri AW. A widespread methylotroph acyl-homoserine lactone synthase produces a new quorum sensing signal that regulates swarming in Methylobacterium fujisawaense. mBio 2024; 15:e0199923. [PMID: 38085021 PMCID: PMC10790750 DOI: 10.1128/mbio.01999-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacteria known as pink-pigmented facultative methylotrophs colonize many diverse environments on earth, play an important role in the carbon cycle, and in some cases promote plant growth. However, little is known about how these organisms interact with each other and their environment. In this work, we identify one of the chemical signals commonly used by these bacteria and discover that this signal controls swarming motility in the pink-pigmented facultative methylotroph Methylobacterium fujisawaense DSM5686. This work provides new molecular details about interactions between these important bacteria and will help scientists predict these interactions and the group behaviors they regulate from genomic sequencing information.
Collapse
Affiliation(s)
- Mike Wallace
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Dale A. Cummings, Jr.
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Andrew G. Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, Rajashekara G. Role of Stress-Induced Proteins RpoS and YicC in the Persistence of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:109-118. [PMID: 36394339 DOI: 10.1094/mpmi-07-22-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the functional role of bacterial genes in the persistence of Salmonella in plant organs can facilitate the development of agricultural practices to mitigate food safety risks associated with the consumption of fresh produce contaminated with Salmonella spp. Our study showed that Salmonella enterica subsp. enterica serotype Typhimurium (strain MDD14) persisted less in inoculated tomato plants than other Salmonella Typhimurium strains tested (JSG210, JSG626, JSG634, JSG637, JSG3444, and EV030415; P < 0.01). In-vitro assays performed in limited-nutrient conditions (growth rate, biofilm production, and motility) were inconclusive in explaining the in-planta phenotype observed with MDD14. Whole-genome sequencing combined with non-synonymous single nucleotide variations analysis was performed to identify genomic differences between MDD14 and the other Salmonella Typhimurium strains. The genome of MDD14 contained a truncated version (123 bp N-terminal) of yicC and a mutated version of rpoS (two non-synonymous substitutions, i.e., G66E and R82C), which are two stress-induced proteins involved in iron acquisition, environmental sensing, and cell envelope integrity. The rpoS and yicC genes were deleted in Salmonella Typhimurium JSG210 with the Lambda Red recombining system. Both mutants had limited persistence in tomato plant organs, similar to that of MDD14. In conclusion, we demonstrated that YicC and RpoS are involved in the persistence of Salmonella in tomato plants in greenhouse conditions and, thus, could represent potential targets to mitigate persistence of Salmonella spp. in planta. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Claudio Vrisman
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| |
Collapse
|
4
|
Lovelace AH, Chen HC, Lee S, Soufi Z, Bota P, Preston GM, Kvitko BH. RpoS contributes in a host-dependent manner to Salmonella colonization of the leaf apoplast during plant disease. Front Microbiol 2022; 13:999183. [PMID: 36425046 PMCID: PMC9679226 DOI: 10.3389/fmicb.2022.999183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2023] Open
Abstract
Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana. Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS-dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS-mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen.
Collapse
Affiliation(s)
- Amelia H. Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Sangwook Lee
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
De A, Chen W, Li H, Wright JR, Lamendella R, Lukin DJ, Szymczak WA, Sun K, Kelly L, Ghosh S, Kearns DB, He Z, Jobin C, Luo X, Byju A, Chatterjee S, San Yeoh B, Vijay-Kumar M, Tang JX, Prajapati M, Bartnikas TB, Mani S. Bacterial Swarmers Enriched During Intestinal Stress Ameliorate Damage. Gastroenterology 2021; 161:211-224. [PMID: 33741315 PMCID: PMC8601393 DOI: 10.1053/j.gastro.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.
Collapse
Affiliation(s)
- Arpan De
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Weijie Chen
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Physics, Brown University, Providence, Rhode Island
| | - Hao Li
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Dana J Lukin
- Jill Roberts Center for Inflammatory Bowel Disease, New York, New York
| | - Wendy A Szymczak
- Department of Pathology, Montefiore Medical Center, Bronx, New York
| | - Katherine Sun
- Department of Pathology, New York University Langone Health, New York, New York
| | - Libusha Kelly
- Department of Systems & Computational Biology, and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Subho Ghosh
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel B Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Zhen He
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Xiaoping Luo
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Arjun Byju
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shirshendu Chatterjee
- Department of Mathematics, The City University of New York, City College & Graduate Center, New York, New York
| | - Beng San Yeoh
- The University of Toledo-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- The University of Toledo-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio
| | - Jay X Tang
- Department of Physics, Brown University, Providence, Rhode Island
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
6
|
Byju AS, Patel D, Chen W, Mani S. Assessing Swarming of Aerobic Bacteria from Human Fecal Matter. Bio Protoc 2021; 11:e4008. [PMID: 34124308 DOI: 10.21769/bioprotoc.4008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022] Open
Abstract
Swarming - swift movement across a surface via flagella propulsion - is a unique property of many bacteria. The role of swarming, particularly among bacterial populations of the human gut microbiome, is not yet fully understood; although, it is becoming an area of increased scientific and clinical inquiry. To further characterize bacterial swarming in human health, an effective assay for swarming that utilizes complex material, such as fecal matter, is necessary. Until now, the vast majority of swarming assays have only been able to accommodate bacteria grown in culture, most often Pseudomonas. These assays tend to use a standard lysogenic broth (LB) agar medium; however, the reagents involved have not been tailored to the inoculation of complex material. In this paper, we offer a specialized protocol for eliciting the swarming of bacteria from frozen human fecal samples. We describe the simple, yet reproducible steps required to perform the assay, identifying an ideal volume of 7.5 μl for inoculation of material, as well as an ideal agar concentration of 0.4%. This protocol typically allows researchers to identify swarming within 24 h after incubation in a standard incubator.
Collapse
Affiliation(s)
- Arjun S Byju
- Department of Medicine, Genetics, and Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Deeti Patel
- Department of Medicine, Genetics, and Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine, Genetics, and Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Sridhar Mani
- Department of Medicine, Genetics, and Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
7
|
Johnson N, Litt PK, Kniel KE, Bais H. Evasion of Plant Innate Defense Response by Salmonella on Lettuce. Front Microbiol 2020; 11:500. [PMID: 32318033 PMCID: PMC7147383 DOI: 10.3389/fmicb.2020.00500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
To establish host association, the innate immune system, which is one of the first lines of defense against infectious disease, must be circumvented. Plants encounter enteric foodborne bacterial pathogens under both pre- and post-harvest conditions. Human enteric foodborne pathogens can use plants as temporary hosts. This unique interaction may result in recalls and illness outbreaks associated with raw agricultural commodities. The purpose of this study was to determine if Salmonella enterica Typhimurium applied to lettuce leaves can suppress the innate stomatal defense in lettuce and utilization of UD1022 as a biocontrol against this ingression. Lettuce leaves were spot inoculated with S. Typhimurium wild type and its mutants. Bacterial culture and confocal microscopy analysis of stomatal apertures were used to support findings of differences in S. Typhimurium mutants compared to wild type. The persistence and internalization of these strains on lettuce was compared over a 7-day trial. S. Typhimurium may bypass the innate stomatal closure defense response in lettuce. Interestingly, a few key T3SS components in S. Typhimurium were involved in overriding stomatal defense response in lettuce for ingression. We also show that the T3SS in S. Typhimurium plays a critical role in persistence of S. Typhimurium in planta. Salmonella populations were significantly reduced in all UD1022 groups by day 7 with the exception of fliB and invA mutants. Salmonella internalization was not detected in plants after UD1022 treatment and had significantly higher stomatal closure rates (aperture width = 2.34 μm) by day 1 compared to controls (8.5 μm). S. Typhimurium SPI1 and SPI2 mutants showed inability to reopen stomates in lettuce suggesting the involvement of key T3SS components in suppression of innate response in plants. These findings impact issues of contamination related to plant performance and innate defense responses for plants.
Collapse
Affiliation(s)
- Nicholas Johnson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Pushpinder K. Litt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Harsh Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
8
|
Chen J, Wang Y. Genetic determinants of Salmonella enterica critical for attachment and biofilm formation. Int J Food Microbiol 2020; 320:108524. [PMID: 32000116 DOI: 10.1016/j.ijfoodmicro.2020.108524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Salmonella is a bacterial pathogen frequently involved in human gastrointestinal infections including those associated with low-moisture foods such as dehydrated food powders/spices, vegetable seeds, and tree nuts. The survival/persistence of Salmonella on low moisture foods and in dry environments is enhanced by its ability in developing biofilms. This study was undertaken to identify the genetic determinants critical for Salmonella attachment and biofilm formation. E. coli SM10 lambda pir, with a kanamycin resistant marker on mini-Tn10 (mini-Tn10:lacZ:kanr), an ampicillin resistant marker on the mini-Tn10-bearing suicidal plasmid pLBT and a streptomycin sensitive marker on the SM10 chromosome, was used as a donor (ampr, kanr, streps), and three Salmonella strains (amps, kans, strepr) were used as recipients in a transposon mutagenesis study. The donor and each recipient were co-incubated overnight on tryptic soy agar at 37 °C, and mutant colonies (amps, kanr, strepr) were subsequently selected. A single-banded degenerate PCR product, amplified from each mutant genome using oligonucleotide primers derived from the end of min-Tn10 and restriction enzyme EcoR I- or Pst I-recognizing sequence, were analyzed using the Sanger sequencing technology. Acquired DNA sequences were compared to those deposited in the Genbank using BLAST search. Cells of Salmonella mutants accumulated either significantly more or less (P < 0.05) biofilms than their parent cells on polystyrene surface. Sequence analysis of degenerate PCR products revealed that the mini-Tn10 from pLBT had inserted into the cdg, trx, fadI or rxt on Salmonella chromosomes. Results of the research will likely help strategize future antimicrobial intervention for control of pathogen attachment and biofilm formation.
Collapse
Affiliation(s)
- Jinru Chen
- Department of Food Science and Technology, The University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA.
| | - Yin Wang
- Department of Food Science and Technology, The University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| |
Collapse
|
9
|
Karmakar K, Nair AV, Chandrasekharan G, Garai P, Nath U, Nataraj KN, N B P, Chakravortty D. Rhizospheric life of Salmonella requires flagella-driven motility and EPS-mediated attachment to organic matter and enables cross-kingdom invasion. FEMS Microbiol Ecol 2019; 95:fiz107. [PMID: 31271416 DOI: 10.1093/femsec/fiz107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/03/2019] [Indexed: 09/19/2023] Open
Abstract
Salmonella is an established pathogen of the members of the kingdom Animalia. Reports indicate that the association of Salmonella with fresh, edible plant products occurs at the pre-harvest state, i.e. in the field. In this study, we follow the interaction of Salmonella Typhimurium with the model plant Arabidopsis thaliana to understand the process of migration in soil. Plant factors like root exudates serve as chemo-attractants. Our ex situ experiments allowed us to track Salmonella from its free-living state to the endophytic state. We found that genes encoding two-component systems and proteins producing extracellular polymeric substances are essential for Salmonella to adhere to the soil and roots. To understand the trans-kingdom flow of Salmonella, we fed the contaminated plants to mice and observed that it invades and colonizes liver and spleen. To complete the disease cycle, we re-established the infection in plant by mixing the potting mixture with the fecal matter collected from the diseased animals. Our experiments revealed a cross-kingdom invasion by the pathogen via passage through a murine intermediate, a mechanism for its persistence in the soil and invasion in a non-canonical host. These results form a basis to break the life-cycle of Salmonella before it reaches its animal host and thus reduce Salmonella contamination of food products.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Giridhar Chandrasekharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Department of Microbiology, St. Joseph's College Autonomous, Bangalore, India
| | - Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Karaba N Nataraj
- Department of Crop Physiology, University of Agricultural Science, Bangalore, India
| | - Prakash N B
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Malov VA, Maleyev VV, Parkhomenko YG, Tsvetkova NA, Smetanina SV, Gorobchenko AN, Belugin VN. The problem of diagnosis of generalized and focal forms of salmonellosis. TERAPEVT ARKH 2018; 90:90-97. [PMID: 30701821 DOI: 10.26442/terarkh2018901190-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The article describes the clinical observation with an unfavorable outcome of the generalized form of salmonella infection caused by Salmonella typhimurium group B in a woman of 60 years without immunodeficiency, complicated by the development of multiple abscesses of the lower parts of abdominal cavity, probably of appendicular origin. In a short literary review, the pathogenetic mechanisms that contribute to the formation of generalized and extraintestinal forms of salmonella infection are discussed.
Collapse
Affiliation(s)
- V A Malov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Maleyev
- Central Research Institute of Epidemiology, Federal Supervision Service for Consumer Rights Protection and People's Welfare, Moscow, Russia
| | - Y G Parkhomenko
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - N A Tsvetkova
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - S V Smetanina
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - A N Gorobchenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V N Belugin
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| |
Collapse
|
11
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
12
|
Alverdy JC, Luo JN. The Influence of Host Stress on the Mechanism of Infection: Lost Microbiomes, Emergent Pathobiomes, and the Role of Interkingdom Signaling. Front Microbiol 2017; 8:322. [PMID: 28303126 PMCID: PMC5332386 DOI: 10.3389/fmicb.2017.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
Mammals constantly face stressful situations, be it extended periods of starvation, sleep deprivation from fear of predation, changing environmental conditions, or loss of habitat. Today, mammals are increasingly exposed to xenobiotics such as pesticides, pollutants, and antibiotics. Crowding conditions such as those created for the purposes of meat production from animals or those imposed upon humans living in urban environments or during world travel create new levels of physiologic stress. As such, human progress has led to an unprecedented exposure of both animals and humans to accidental pathogens (i.e., those that have not co-evolved with their hosts). Strikingly missing in models of infection pathogenesis are the various elements of these conditions, in particular host physiologic stress. The compensatory factors released in the gut during host stress have profound and direct effects on the metabolism and virulence of the colonizing microbiota and the emerging pathobiota. Here, we address unanswered questions to highlight the relevance and importance of incorporating host stress to the field of microbial pathogenesis.
Collapse
Affiliation(s)
- John C Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - James N Luo
- Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| |
Collapse
|
13
|
Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing. Appl Environ Microbiol 2017; 83:AEM.03028-16. [PMID: 28039131 DOI: 10.1128/aem.03028-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism.IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions.
Collapse
|
14
|
Irazoki O, Aranda J, Zimmermann T, Campoy S, Barbé J. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming. Front Microbiol 2016; 7:1560. [PMID: 27766091 PMCID: PMC5052270 DOI: 10.3389/fmicb.2016.01560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.
Collapse
Affiliation(s)
- Oihane Irazoki
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Jesús Aranda
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Timo Zimmermann
- Advanced Light Microscopy Unit, Center for Genomic Regulation Barcelona, Spain
| | - Susana Campoy
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Jordi Barbé
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica. PLoS One 2016; 11:e0146685. [PMID: 26784887 PMCID: PMC4718596 DOI: 10.1371/journal.pone.0146685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023] Open
Abstract
Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.
Collapse
|
16
|
Abstract
Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. Antibiotic resistance is a major health threat. We show a novel mechanism for the local spread of antibiotic resistance. This involves interactions between different bacteria: one species provides an enzyme that detoxifies the antibiotic (a sessile cargo bacterium carrying a resistance gene), while the other (Paenibacillus vortex) moves itself and transports the cargo. P. vortex used a bet-hedging strategy, colonizing new environments alone when the cargo added no benefit, but cooperating when the cargo was needed. This work is of interest in an evolutionary context and sheds light on fundamental questions, such as how environmental antibiotic resistance may lead to clinical resistance and also microbial social organization, as well as the costs, benefits, and risks of dispersal in the environment.
Collapse
|
17
|
Schleker S, Kshirsagar M, Klein-Seetharaman J. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions. Front Microbiol 2015; 6:45. [PMID: 25674082 PMCID: PMC4309195 DOI: 10.3389/fmicb.2015.00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is the most frequent foodborne disease worldwide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs) between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.
Collapse
Affiliation(s)
- Sylvia Schleker
- Klein-Seetharaman Laboratory, Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick , Coventry, UK ; Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn , Bonn, Germany
| | - Meghana Kshirsagar
- Language Technologies Institute, School of Computer Science, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Judith Klein-Seetharaman
- Klein-Seetharaman Laboratory, Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick , Coventry, UK
| |
Collapse
|
18
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
19
|
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 2014; 7:496-516. [PMID: 25351039 PMCID: PMC4265070 DOI: 10.1111/1751-7915.12186] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.
Collapse
Affiliation(s)
- Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of TechnologyHaifa, 32000, Israel
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
20
|
García AV, Hirt H. Salmonella enterica induces and subverts the plant immune system. Front Microbiol 2014; 5:141. [PMID: 24772109 PMCID: PMC3983520 DOI: 10.3389/fmicb.2014.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/19/2014] [Indexed: 11/13/2022] Open
Abstract
Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity.
Collapse
Affiliation(s)
- Ana V García
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne Evry, France
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne Evry, France ; Center for Desert Agriculture, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Tambalo DD, Vanderlinde EM, Robinson S, Halmillawewa A, Hynes MF, Yost CK. Legume seed exudates and Physcomitrella patens extracts influence swarming behavior in Rhizobium leguminosarum. Can J Microbiol 2014; 60:15-24. [PMID: 24392922 DOI: 10.1139/cjm-2013-0723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plants are known to secrete chemical compounds that can change the behavior of rhizosphere-inhabiting bacteria. We investigated the effects of extracts from legume host plants on the swarming behavior of Rhizobium leguminosarum bv. viciae. We also investigated the effects on swarming when Rhizobium is exposed to extracts from an ancestor to vascular plants, the model bryophyte Physcomitrella patens. Lentil and faba bean seed exudates enhanced and inhibited swarming motility, respectively, whereas pea seed exudates had no observable effect on swarming. Swarming was also enhanced by the moss extracts. Exposure to lentil seed exudates and the moss extract increased flaA expression 2-fold, while faba bean seed exudates exposure decreased expression 3-fold, suggesting that the swarming effect could, in part, be due to regulation of flagellin gene expression. However, the exudates and extracts did not significantly affect flaA gene expression in planktonic motile cells, indicating that the response to flagellar regulation is specific to a physiology unique to the swarming cell. Transmission electron microscopy demonstrated that addition of the lentil seed exudate and the moss extract results in earlier differentiation into swarmer cells, which could contribute to the development of a larger swarming surface area. To gain further mechanistic insight into the effect of the moss extract on swarming, a moss strigolactone-deficient mutant (Ppccd8Δ) was tested. A reduction in the promotive effect was observed, suggesting that the plant hormone strigolactone may be a signalling molecule activating swarming motility in R. leguminosarum.
Collapse
Affiliation(s)
- Dinah D Tambalo
- a Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Hernández-Reyes C, Schikora A. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol Lett 2013; 343:1-7. [PMID: 23488473 DOI: 10.1111/1574-6968.12127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
Infections with non-typhoidal Salmonella strains are constant and are a non-negligible threat to the human population. In the last two decades, salmonellosis outbreaks have increasingly been associated with infected fruits and vegetables. For a long time, Salmonellae were assumed to survive on plants after a more or less accidental infection. However, this notion has recently been challenged. Studies on the infection mechanism in vegetal hosts, as well as on plant immune systems, revealed an active infection process resembling in certain features the infection in animals. On one hand, Salmonella requires the type III secretion systems to effectively infect plants and to suppress their resistance mechanisms. On the other hand, plants recognize these bacteria and react to the infection with an induced defense mechanism similar to the reaction to other plant pathogens. In this review, we present the newest reports on the interaction between Salmonellae and plants. We discuss the possible ways used by these bacteria to infect plants as well as the plant responses to the infection. The recent findings indicate that plants play a central role in the dissemination of Salmonella within the ecosystem.
Collapse
Affiliation(s)
- Casandra Hernández-Reyes
- Institute for Phytopathology and Applied Zoology (IPAZ), Research Center for BioSystems, Land Use and Nutrition, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
23
|
Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. PHYTOPATHOLOGY 2013; 103:316-325. [PMID: 23506360 DOI: 10.1094/phyto-11-12-0295-rvw] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increase in the incidence of gastroenteritis outbreaks linked to the consumption of foods of plant origin has ignited public concern and scientific interest in understanding interactions of human enteric pathogens with plants. Enteric disease caused by nontyphoidal Salmonella is a major public health burden, with the number of cases of illness linked to fresh produce, spices, and nuts surpassing those linked to foods of animal origin. Mounting evidence supports the hypothesis that colonization of plants is an important part of the life cycle of this human pathogen. Although plant responses to human pathogens are distinct from the more specific responses to phytopathogens, plants appear to recognize Salmonella, likely by detecting conserved microbial patterns, which subsequently activates basal defenses. Numerous Salmonella genes have been identified as playing a role in its colonization of plant surfaces and tissues, and in its various interactions with other members of the phyto-microbial community. Importantly, Salmonella utilizes diverse and overlapping strategies to interact with plants and their microflora, and to successfully colonize its vertebrate hosts. This review provides insight into the complex behavior of Salmonella on plants and the apparent remarkable adaptation of this human pathogen to a potentially secondary host.
Collapse
|
24
|
Schikora M, Neupane B, Madhogaria S, Koch W, Cremers D, Hirt H, Kogel KH, Schikora A. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium. BMC Bioinformatics 2012; 13:171. [PMID: 22812426 PMCID: PMC3519609 DOI: 10.1186/1471-2105-13-171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. RESULTS The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. CONCLUSION This report presents an automatic pixel-based classification method for detecting "unhealthy" regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.
Collapse
Affiliation(s)
- Marek Schikora
- Department Sensor Data and Information Fusion, Fraunhofer FKIE, 53343 Wachtberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Barak JD, Schroeder BK. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:241-66. [PMID: 22656644 DOI: 10.1146/annurev-phyto-081211-172936] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Collapse
Affiliation(s)
- Jeri D Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
26
|
Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella. TRENDS IN PLANT SCIENCE 2012; 17:245-249. [PMID: 22513107 DOI: 10.1016/j.tplants.2012.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Recent findings show that many human pathogenic bacteria can use multiple host organisms. For example, Salmonella Typhimurium can use plants as alternative hosts to humans and other animals. These bacteria are able to adhere to plant surfaces and actively infect the interior of plants. Similarly to the infection of animal cells, S. Typhimurium suppresses plant defense responses by a type III secretion mechanism, indicating that these bacteria possess a dedicated multi-kingdom infection strategy, raising the question of host specificity. In addition, evidence is accumulating that the interaction of Salmonella with plants is an active process with different levels of specificity, because different Salmonella serovars show variations in pathogenicity, and different plant species reveal various levels of resistance towards these bacteria.
Collapse
Affiliation(s)
- Adam Schikora
- Institute for Plant Pathology and Applied Zoology, Research Centre for BioSystems, Land Use and Nutrition, JL University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
27
|
Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica. Appl Environ Microbiol 2012; 78:4561-70. [PMID: 22522683 DOI: 10.1128/aem.07867-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate. AroA is part of the chorismic acid biosynthesis pathway, a central metabolic node involved in aromatic amino acid and siderophore production. Addition of tryptophan or phenylalanine to alfalfa root exudates did not restore aroA mutant replication. However, addition of ferrous sulfate restored replication of the aroA mutant, as well as alfalfa colonization. Tryptophan and phenylalanine auxotrophs had minor plant colonization defects, suggesting that suboptimal concentrations of these amino acids in root exudates were not major limiting factors for Salmonella replication. An entB mutant defective in siderophore biosynthesis had colonization and growth defects similar to those of the aroA mutant, and the defective phenotype was complemented by the addition of ferrous sulfate. Biosynthetic genes of each Salmonella siderophore, enterobactin and salmochelin, were upregulated in alfalfa root exudates, yet only enterobactin was sufficient for plant survival and persistence. Similar results in lettuce leaves indicate that siderophore biosynthesis is a widespread or perhaps universal plant colonization fitness factor for Salmonella, unlike phytobacterial pathogens, such as Pseudomonas and Xanthomonas.
Collapse
|
28
|
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.038] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
|
30
|
Distribution and Genetic Diversity of Salmonella enterica in the Upper Suwannee River. Int J Microbiol 2011; 2011:461321. [PMID: 22347228 PMCID: PMC3278925 DOI: 10.1155/2011/461321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Suwannee River spans the Florida/Georgia border to the Gulf of Mexico, and contributes to regional irrigation and recreational activities. Association of Salmonella enterica with these resources may result in the contamination of produce and disease outbreaks. Therefore, surface water was examined for the distribution of S. enterica at multiple time points from 4 sites on the upper Suwannee River. Isolates were confirmed by detection of the invA gene, and 96% of all samples were positive for the bacterium. Most probable number enumeration ranged from <18 to 5400 MPN/100 mL. Genetic diversity of these isolates (n=110) was compared to other environmental (n=47) or clinical (n=28) strains and to an online library (n=314) using DiversiLab rep-PCR. All strains showed >60% similarity and distributed into 16 rep-PCR genogroups. Most (74%) of the Suwannee River isolates were clustered into two genogroups that were comprised almost exclusively (97%) of just these isolates. Conversely, 85% of the clinical reference strains clustered into other genogroups. However, some Suwannee River isolates (12%) were clustered with these primarily clinically-associated genogroups, supporting the hypothesis that river water can serve as a disease reservoir and that pathogenic strains may persist or possibly originate from environmental sources.
Collapse
|
31
|
|
32
|
Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, Pelletier S, Menanteau P, Baccarini M, Velge P, Hirt H. Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 2011; 6:e24112. [PMID: 21915285 PMCID: PMC3167816 DOI: 10.1371/journal.pone.0024112] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/31/2011] [Indexed: 11/19/2022] Open
Abstract
Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.
Collapse
Affiliation(s)
- Adam Schikora
- URGV Plant Genomics, INRA/University of Evry, Evry, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gene expression analysis of monospecies Salmonella Typhimurium biofilms using Differential Fluorescence Induction. J Microbiol Methods 2011; 84:467-78. [DOI: 10.1016/j.mimet.2011.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 12/22/2022]
|
34
|
Andrews-Polymenis HL, Bäumler AJ, McCormick BA, Fang FC. Taming the elephant: Salmonella biology, pathogenesis, and prevention. Infect Immun 2010; 78:2356-69. [PMID: 20385760 PMCID: PMC2876576 DOI: 10.1128/iai.00096-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella infections continue to cause substantial morbidity and mortality throughout the world. However, recent discoveries and new paradigms promise to lead to novel strategies to diagnose, treat, and prevent Salmonella infections. This review provides an update of the Salmonella field based on oral presentations given at the recent 3rd ASM Conference on Salmonella: Biology, Pathogenesis and Prevention.
Collapse
Affiliation(s)
- Helene L. Andrews-Polymenis
- Department of Microbiology and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, Texas, Department of Medical Microbiology and Immunology, University of California at Davis, Davis, California, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester, Massachusetts, Departments of Microbiology and Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Andreas J. Bäumler
- Department of Microbiology and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, Texas, Department of Medical Microbiology and Immunology, University of California at Davis, Davis, California, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester, Massachusetts, Departments of Microbiology and Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Beth A. McCormick
- Department of Microbiology and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, Texas, Department of Medical Microbiology and Immunology, University of California at Davis, Davis, California, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester, Massachusetts, Departments of Microbiology and Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Ferric C. Fang
- Department of Microbiology and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, Texas, Department of Medical Microbiology and Immunology, University of California at Davis, Davis, California, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester, Massachusetts, Departments of Microbiology and Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
35
|
Gorski L, Liang AS. Effect of enrichment medium on real-time detection of Salmonella enterica from lettuce and tomato enrichment cultures. J Food Prot 2010; 73:1047-56. [PMID: 20537259 DOI: 10.4315/0362-028x-73.6.1047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three enrichment broths commonly used for detection of Salmonella (buffered peptone water [BPW], tryptic soy broth [TSB], and universal preenrichment broth [UPB]) were compared for use in real-time SYBR Green PCR detection of Salmonella introduced into enrichment cultures made from store-bought lettuce and tomatoes. The produce served as a source of normal plant microbiota to measure how well DNA-based detection methods for Salmonella work in a suspension of plant-associated bacteria that may be closely related to Salmonella. A qualitative assessment of the background microbiota that grew in the three enrichment broths cultures from tomato and lettuce samples revealed that different bacteria predominated in the different broths. Results obtained with five produce-related outbreak Salmonella strains and PCR primers directed toward three different Salmonella genes suggest that the ability to detect Salmonella from these enrichment cultures by real-time PCR was 10 to 1,000 times better with TSB enrichment cultures. Detection levels were similar between the different enrichment media when an immunomagnetic separation method was used; however, the immunological technique did not enhance detection from TSB enrichment cultures. Detection could be affected by the medium and by the background microbiota. An immunomagnetic separation method may be useful in BPW and UPB enrichment cultures but not in TSB enrichment cultures.
Collapse
Affiliation(s)
- Lisa Gorski
- U.S. Department of Agriculture, Agricultural Research Service, Produce Safety and Microbiology Research Unit, Albany, California 94710, USA.
| | | |
Collapse
|