1
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
2
|
Wagner DM, Birdsell DN, McDonough RF, Nottingham R, Kocos K, Celona K, Özsürekci Y, Öhrman C, Karlsson L, Myrtennäs K, Sjödin A, Johansson A, Keim PS, Forsman M, Sahl JW. Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples. PLoS One 2022; 17:e0273273. [PMID: 36223396 PMCID: PMC9555625 DOI: 10.1371/journal.pone.0273273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the bacterium that causes the zoonosis tularemia, and its genetic near neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there is a lack of genomic information for these species that has, among other things, limited the development of robust detection assays for F. tularensis that are both specific and sensitive. The objective of this study was to develop and validate approaches to capture, enrich, sequence, and analyze Francisella DNA present in DNA extracts generated from complex samples. RNA capture probes were designed based upon the known pan genome of F. tularensis and other diverse species in the family Francisellaceae. Probes that targeted genomic regions also present in non-Francisellaceae species were excluded, and probes specific to particular Francisella species or phylogenetic clades were identified. The capture-enrichment system was then applied to diverse, complex DNA extracts containing low-level Francisella DNA, including human clinical tularemia samples, environmental samples (i.e., animal tissue and air filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of the detection of F. tularensis or other Francisella species in complex samples, identification of mixtures of different Francisella species in the same sample, analysis of gene content (e.g., known virulence and antimicrobial resistance loci), and high-resolution whole genome-based genotyping. The benefits of this capture-enrichment system include: even very low target DNA can be amplified; it is culture-independent, reducing exposure for research and/or clinical personnel and allowing genomic information to be obtained from samples that do not yield isolates; and the resulting comprehensive data not only provide robust means to confirm the presence of a target species in a sample, but also can provide data useful for source attribution, which is important from a genomic epidemiology perspective.
Collapse
Affiliation(s)
- David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- * E-mail:
| | - Dawn N. Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Roxanne Nottingham
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Karisma Kocos
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Yasemin Özsürekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Linda Karlsson
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
3
|
Hansen JD, Ray K, Chen PJ, Yun S, Elliott DG, Conway CM, Calcutt MJ, Purcell MK, Welch TJ, Bellah JP, Davis EM, Greer JB, Soto E. Disruption of the Francisella noatunensis subsp. orientalis pdpA Gene Results in Virulence Attenuation and Protection in Zebrafish. Infect Immun 2021; 89:e0022021. [PMID: 34424748 PMCID: PMC8519269 DOI: 10.1128/iai.00220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.
Collapse
Affiliation(s)
- John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Karina Ray
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Po-Jui Chen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diane G. Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Carla M. Conway
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Michael J. Calcutt
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, USA
| | - John P. Bellah
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Ellie M. Davis
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Justin B. Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
4
|
Bachert BA, Richardson JB, Mlynek KD, Klimko CP, Toothman RG, Fetterer DP, Luquette AE, Chase K, Storrs JL, Rogers AK, Cote CK, Rozak DA, Bozue JA. Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing. Front Microbiol 2021; 12:725776. [PMID: 34456897 PMCID: PMC8386241 DOI: 10.3389/fmicb.2021.725776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.
Collapse
Affiliation(s)
- Beth A. Bachert
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joshua B. Richardson
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kevin D. Mlynek
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher P. Klimko
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ronald G. Toothman
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David P. Fetterer
- Division of Biostatistics, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Andrea E. Luquette
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jessica L. Storrs
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley K. Rogers
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David A. Rozak
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joel A. Bozue
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
5
|
Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to Francisella Virulence in Galleria mellonella Larvae. Infect Immun 2021; 89:e0057920. [PMID: 33875476 PMCID: PMC8208517 DOI: 10.1128/iai.00579-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis causes the deadly zoonotic disease tularemia in humans and is able to infect a broad range of organisms including arthropods, which are thought to play a major role in Francisella transmission. However, while mammalian in vitro and in vivo infection models are widely used to investigate Francisella pathogenicity, a detailed characterization of the major Francisella virulence factor, a noncanonical type VI secretion system (T6SS), in an arthropod in vivo infection model is missing. Here, we use Galleria mellonella larvae to analyze the role of the Francisella T6SS and its corresponding effectors in F. tularensis subsp. novicida virulence. We report that G. mellonella larvae killing depends on the functional T6SS and infectious dose. In contrast to other mammalian in vivo infection models, even one of the T6SS effectors PdpC, PdpD, or OpiA is sufficient to kill G. mellonella larvae, while sheath recycling by ClpB is dispensable. We further demonstrate that treatment by polyethylene glycol (PEG) activates Francisella T6SS in liquid culture and that this is independent of the response regulator PmrA. PEG-activated IglC secretion is dependent on T6SS structural component PdpB but independent of putative effectors PdpC, PdpD, AnmK, OpiB1, OpiB2, and OpiB3. The results of larvae infection and secretion assay suggest that AnmK, a putative T6SS component with unknown function, interferes with OpiA-mediated toxicity but not with general T6SS activity. We establish that the easy-to-use G. mellonella larvae infection model provides new insights into the function of T6SS and pathogenesis of Francisella.
Collapse
|
6
|
Chin CY, Zhao J, Llewellyn AC, Golovliov I, Sjöstedt A, Zhou P, Weiss DS. Francisella FlmX broadly affects lipopolysaccharide modification and virulence. Cell Rep 2021; 35:109247. [PMID: 34133919 DOI: 10.1016/j.celrep.2021.109247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022] Open
Abstract
The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways through FlmX, an uncharacterized protein in the intracellular pathogen Francisella. FlmX is in the flippase family, which includes proteins that traffic lipid-linked envelope components across membranes. flmX deficiency causes defects in lipid A modification, core remodeling, and O-antigen addition. We find that an F. tularensis mutant lacking flmX is >1,000,000-fold attenuated. Furthermore, FlmX is required to resist the innate antimicrobial LL-37 and the antibiotic polymyxin. Given FlmX's central role in LPS modification and its conservation in intracellular pathogens Brucella, Coxiella, and Legionella, FlmX may represent a novel drug target whose inhibition could cripple bacterial virulence and sensitize bacteria to innate antimicrobials and antibiotics.
Collapse
Affiliation(s)
- Chui-Yoke Chin
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jinshi Zhao
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna C Llewellyn
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Igor Golovliov
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
| | - Anders Sjöstedt
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David S Weiss
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA; Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
7
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
8
|
Using proteomics to identify host cell interaction partners for VgrG and IglJ. Sci Rep 2020; 10:14612. [PMID: 32884055 PMCID: PMC7471685 DOI: 10.1038/s41598-020-71641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium and the causative agent of tularemia. The disease is characterized by the suboptimal innate immune response and consequently by the impaired adaptive immunity. The virulence of this pathogen depends on proteins encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). However, the precise biological roles of most of the FPI-encoded proteins remain to be clarified. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC) in combination with affinity protein purification coupled with liquid chromatography–mass spectrometry to identify potential protein-effector binding pairs for two FPI virulence effectors IglJ and VgrG. Our results may indicate that while the IglJ protein interactions primarily affect mitochondria, the VgrG interactions affect phagosome and/or autophagosome biogenesis via targeting components of the host’s exocyst complex.
Collapse
|
9
|
OpiA, a Type Six Secretion System Substrate, Localizes to the Cell Pole and Plays a Role in Bacterial Growth and Viability in Francisella tularensis LVS. J Bacteriol 2020; 202:JB.00048-20. [PMID: 32366588 DOI: 10.1128/jb.00048-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen and the causative agent of tularemia. The F. tularensis type six secretion system (T6SS) is required for a number of host-pathogen interactions, including phagolysosomal escape and invasion of erythrocytes. One known effector of the T6SS, OpiA, has recently been shown to be a phosphatidylinositol-3 kinase. To investigate the role of OpiA in erythrocyte invasion, we constructed an opiA-null mutant in the live vaccine strain, F. tularensis LVS. OpiA was not required for erythrocyte invasion; however, deletion of opiA affected growth of F. tularensis LVS in broth cultures in a medium-dependent manner. We also found that opiA influenced cell size, gentamicin sensitivity, bacterial viability, and the lipid content of F. tularensis A fluorescently tagged OpiA (OpiA-emerald-green fluorescent protein [EmGFP]) accumulated at the cell poles of F. tularensis, which is consistent with the location of the T6SS. However, OpiA-EmGFP also exhibited a highly dynamic localization, and this fusion protein was detected in erythrocytes and THP-1 cells in vitro, further supporting that OpiA is secreted. Similar to previous reports with F. novicida, our data demonstrated that opiA had a minimal effect on intracellular replication of F. tularensis in host immune cells in vitro However, THP-1 cells infected with the opiA mutant produced modestly (but significantly) higher levels of the proinflammatory cytokine tumor necrosis factor alpha compared to these host cells infected with wild-type bacteria. We conclude that, in addition to its role in host-pathogen interactions, our results reveal that the function of opiA is central to the biology of F. tularensis bacteria.IMPORTANCE F. tularensis is a pathogenic intracellular pathogen that is of importance for public health and strategic defense. This study characterizes the opiA gene of F. tularensis LVS, an attenuated strain that has been used as a live vaccine but that also shares significant genetic similarity to related Francisella strains that cause human disease. The data presented here provide the first evidence of a T6SS effector protein that affects the physiology of F. tularensis, namely, the growth, cell size, viability, and aminoglycoside resistance of F. tularensis LVS. This study also adds insight into our understanding of OpiA as a determinant of virulence. Finally, the fluorescence fusion constructs presented here will be useful tools for dissecting the role of OpiA in infection.
Collapse
|
10
|
Atomic Structure of the Francisella T6SS Central Spike Reveals a Unique α-Helical Lid and a Putative Cargo. Structure 2019; 27:1811-1819.e6. [PMID: 31677891 DOI: 10.1016/j.str.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
Francisella bacteria rely on a phylogenetically distinct type VI secretion system (T6SS) to escape host phagosomes and cause the fatal disease tularemia, but the structural and molecular mechanisms involved are unknown. Here we report the atomic structure of the Francisella T6SS central spike complex, obtained by cryo-electron microscopy. Our structural and functional studies demonstrate that, unlike the single-protein spike composition of other T6SS subtypes, Francisella T6SS's central spike is formed by two proteins, PdpA and VgrG, akin to T4-bacteriophage gp27 and gp5, respectively, and that PdpA has unique characteristics, including a putative cargo within its cavity and an N-terminal helical lid. Structure-guided mutagenesis demonstrates that the PdpA N-terminal lid and C-terminal spike are essential to Francisella T6SS function. PdpA is thus both an adaptor, connecting VgrG to the tube, and a likely carrier of secreted cargo. These findings are important to understanding Francisella pathogenicity and designing therapeutics to combat tularemia.
Collapse
|
11
|
Schneider JP, Nazarov S, Adaixo R, Liuzzo M, Ringel PD, Stahlberg H, Basler M. Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems. EMBO J 2019; 38:e100825. [PMID: 31403721 PMCID: PMC6745524 DOI: 10.15252/embj.2018100825] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
Protein translocation by the bacterial type VI secretion system (T6SS) is driven by a rapid contraction of a sheath assembled around a tube with associated effectors. Here, we show that TssA-like or TagA-like proteins with a conserved N-terminal domain and varying C-terminal domains can be grouped into at least three distinct classes based on their role in sheath assembly. The proteins of the first class increase speed and frequency of sheath assembly and form a stable dodecamer at the distal end of a polymerizing sheath. The proteins of the second class localize to the cell membrane and block sheath polymerization upon extension across the cell. This prevents excessive sheath polymerization and bending, which may result in sheath destabilization and detachment from its membrane anchor and thus result in failed secretion. The third class of these proteins localizes to the baseplate and is required for initiation of sheath assembly. Our work shows that while various proteins share a conserved N-terminal domain, their roles in T6SS biogenesis are fundamentally different.
Collapse
Affiliation(s)
| | - Sergey Nazarov
- BiozentrumUniversity of BaselBaselSwitzerland
- Present address:
Interdisciplinary Center for Electron Microscopy (CIME)EPFLLausanneSwitzerland
| | - Ricardo Adaixo
- Center for Cellular Imaging and NanoAnalytics (C‐CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | | | - Peter David Ringel
- BiozentrumUniversity of BaselBaselSwitzerland
- Present address:
Institute of Forensic MedicineJustus‐Liebig‐University GiessenGiessenGermany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C‐CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
12
|
Lewis J, Soto E. Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol 2019; 19:21. [PMID: 30665355 PMCID: PMC6341738 DOI: 10.1186/s12866-019-1389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly understood. Several potential virulence determinants have been identified in Fno, including homologues of the recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions. Results Few transcriptional differences were observed at different temperatures, growth stages and pHs; however, a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected when compared to those quantified at 30 °C and under no H2O2 (p < 0.05). Conclusions Results from this study suggest that several of the F. tularensis T6SS-homologues may play an important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and oxidative stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1389-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jainee Lewis
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Stojkova P, Spidlova P, Lenco J, Rehulkova H, Kratka L, Stulik J. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 2018; 9:754-770. [PMID: 29473442 PMCID: PMC5955460 DOI: 10.1080/21505594.2018.1441588] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.
Collapse
Affiliation(s)
- Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Juraj Lenco
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Lucie Kratka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1166-1178. [PMID: 30198820 DOI: 10.1094/mpmi-12-17-0303-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Pu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangying Lou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zishu Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Brodmann M, Heilig R, Broz P, Basler M. Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida. Front Cell Infect Microbiol 2018; 8:284. [PMID: 30234022 PMCID: PMC6128221 DOI: 10.3389/fcimb.2018.00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis is the causative agent of the life-threatening disease tularemia. However, the molecular tools to study Francisella are limited. Especially, expression plasmids are sparse and difficult to use, as they are unstable and prone to spontaneous loss. Most Francisella expression plasmids lack inducible promoters making it difficult to control gene expression levels. In addition, available expression plasmids are mainly designed for F. tularensis, however, genetic differences including restriction-modification systems impede the use of these plasmids in F. novicida, which is often used as a model organism to study Francisella pathogenesis. Here we report construction and characterization of two mobilizable plasmids (pFNMB1 and pFNMB2) designed for regulated gene expression in F. novicida. pFNMB plasmids contain a tetracycline inducible promoter to control gene expression levels and oriT for RP4 mediated mobilization. We show that both plasmids are stably maintained in bacteria for more than 40 generations over 4 days of culturing in the absence of selection against plasmid loss. Expression levels are dependent on anhydrotetracycline concentration and homogeneous in a bacterial population. pFNMB1 and pFNMB2 plasmids differ in the sequence between promoter and translation start site and thus allow to reach different maximum levels of protein expression. We used pFNMB1 and pFNMB2 for complementation of Francisella Pathogenicity Island mutants ΔiglF, ΔiglI, and ΔiglC in-vitro and pFNMB1 to complement ΔiglI mutant in bone marrow derived macrophages.
Collapse
Affiliation(s)
- Maj Brodmann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Marek Basler
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Clemens DL, Lee BY, Horwitz MA. The Francisella Type VI Secretion System. Front Cell Infect Microbiol 2018; 8:121. [PMID: 29740542 PMCID: PMC5924787 DOI: 10.3389/fcimb.2018.00121] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Francisella tularensisis subsp. tularensis is an intracellular bacterial pathogen and the causative agent of the life-threatening zoonotic disease tularemia. The Francisella Pathogenicity Island encodes a large secretion apparatus, known as a Type VI Secretion System (T6SS), which is essential for Francisella to escape from its phagosome and multiply within host macrophages and to cause disease in animals. The T6SS, found in one-quarter of Gram-negative bacteria including many highly pathogenic ones, is a recently discovered secretion system that is not yet fully understood. Nevertheless, there have been remarkable advances in our understanding of the structure, composition, and function of T6SSs of several bacteria in the past few years. The system operates like an inside-out headless contractile phage that is anchored to the bacterial membrane via a baseplate and membrane complex. The system injects effector molecules across the inner and outer bacterial membrane and into host prokaryotic or eukaryotic targets to kill, intoxicate, or in the case of Francisella, hijack the target cell. Recent advances include an atomic model of the contractile sheath, insights into the mechanics of sheath contraction, the composition of the baseplate and membrane complex, the process of assembly of the apparatus, and identification of numerous effector molecules and activities. While Francisella T6SS appears to be an outlier among T6SSs, with limited or no sequence homology with other systems, its structure and organization are strikingly similar to other systems. Nevertheless, we have only scratched the surface in uncovering the mysteries of the Francisella T6SS, and there are numerous questions that remain to be answered.
Collapse
Affiliation(s)
- Daniel L. Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Busch A, Thomas P, Zuchantke E, Brendebach H, Neubert K, Gruetzke J, Al Dahouk S, Peters M, Hotzel H, Neubauer H, Tomaso H. Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Front Microbiol 2018; 9:344. [PMID: 29593661 PMCID: PMC5859110 DOI: 10.3389/fmicb.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022] Open
Abstract
Francisella (F.) tularensis is a highly virulent, Gram-negative bacterial pathogen and the causative agent of the zoonotic disease tularemia. Here, we generated, analyzed and characterized a high quality circular genome sequence of the F. tularensis subsp. holarctica strain 12T0050 that caused fatal tularemia in a hare. Besides the genomic structure, we focused on the analysis of oriC, unique to the Francisella genus and regulating replication in and outside hosts and the first report on genomic DNA methylation of a Francisella strain. The high quality genome was used to establish and evaluate a diagnostic whole genome sequencing pipeline. A genotyping strategy for F. tularensis was developed using various bioinformatics tools for genotyping. Additionally, whole genome sequences of F. tularensis subsp. holarctica isolates isolated in the years 2008–2015 in Germany were generated. A phylogenetic analysis allowed to determine the genetic relatedness of these isolates and confirmed the highly conserved nature of F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Eric Zuchantke
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kerstin Neubert
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Josephine Gruetzke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin Peters
- Standort Arnsberg, Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
19
|
Nguyen TT, Lee HH, Park I, Seo YS. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species. THE PLANT PATHOLOGY JOURNAL 2018; 34:11-22. [PMID: 29422784 PMCID: PMC5796746 DOI: 10.5423/ppj.ft.11.2017.0231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Asian Food and Culinary Arts, Youngsan University, Busan 48015,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
20
|
Jiang H, Jiang M, Yang L, Yao P, Ma L, Wang C, Wang H, Qian G, Hu B, Fan J. The Ribosomal Protein RplY Is Required for Pectobacterium carotovorum Virulence and Is Induced by Zantedeschia elliotiana Extract. PHYTOPATHOLOGY 2017; 107:1322-1330. [PMID: 28853642 DOI: 10.1094/phyto-04-17-0161-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyi Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuke Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyan Yao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gouliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baishi Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD. Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe 2017; 20:573-583. [PMID: 27832588 PMCID: PMC5384264 DOI: 10.1016/j.chom.2016.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The intracellular bacterial pathogen Francisella tularensis causes tularemia, a zoonosis that can be fatal. The type VI secretion system (T6SS) encoded by the Francisella pathogenicity island (FPI) is critical for the virulence of this organism. Existing studies suggest that the complete repertoire of T6SS effectors delivered to host cells is encoded by the FPI. Using a proteome-wide approach, we discovered that the FPI-encoded T6SS exports at least three effectors encoded outside of the island. These proteins share features with virulence determinants of other pathogens, and we provide evidence that they can contribute to intramacrophage growth. The remaining proteins that we identified are encoded within the FPI. Two of these FPI-encoded proteins constitute effectors, whereas the others form a unique complex required for core function of the T6SS apparatus. The discovery of secreted effectors mediating interactions between Francisella and its host significantly advances our understanding of the pathogenesis of this organism.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jungyun Kim
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannah E Ledvina
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John C Whitney
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brittany R Ruhland
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - David Veesler
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Putzova D, Panda S, Härtlova A, Stulík J, Gekara NO. Subversion of innate immune responses by Francisella involves the disruption of TRAF3 and TRAF6 signalling complexes. Cell Microbiol 2017; 19. [PMID: 28745813 DOI: 10.1111/cmi.12769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
The success of pathogens depends on their ability to circumvent immune defences. Francisella tularensis is one of the most infectious bacteria known. The remarkable virulence of Francisella is believed to be due to its capacity to evade or subvert the immune system, but how remains obscure. Here, we show that Francisella triggers but concomitantly inhibits the Toll-like receptor, RIG-I-like receptor, and cytoplasmic DNA pathways. Francisella subverts these pathways at least in part by inhibiting K63-linked polyubiquitination and assembly of TRAF6 and TRAF3 complexes that control the transcriptional responses of pattern recognition receptors. We show that this mode of inhibition requires a functional type VI secretion system and/or the presence of live bacteria in the cytoplasm. The ability of Francisella to enter the cytosol while simultaneously inhibiting multiple pattern recognition receptor pathways may account for the notable capacity of this bacterium to invade and proliferate in the host without evoking a self-limiting innate immune response.
Collapse
Affiliation(s)
- Daniela Putzova
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic
| | - Swarupa Panda
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Anetta Härtlova
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jiří Stulík
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic
| | - Nelson O Gekara
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
24
|
Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 2017. [PMID: 28621333 PMCID: PMC5481754 DOI: 10.1038/ncomms15853] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that causes the fatal zoonotic disease tularaemia. Critical for its pathogenesis is the ability of the phagocytosed bacteria to escape into the cell cytosol. For this, the bacteria use a non-canonical type VI secretion system (T6SS) encoded on the Francisella pathogenicity island (FPI). Here we show that in F. novicida T6SS assembly initiates at the bacterial poles both in vitro and within infected macrophages. T6SS dynamics and function depends on the general purpose ClpB unfoldase, which specifically colocalizes with contracted sheaths and is required for their disassembly. T6SS assembly depends on iglF, iglG, iglI and iglJ, whereas pdpC, pdpD, pdpE and anmK are dispensable. Importantly, strains lacking pdpC and pdpD are unable to escape from phagosome, activate AIM2 inflammasome or cause disease in mice. This suggests that PdpC and PdpD are T6SS effectors involved in phagosome rupture. The pathogenicity of Francisella species largely depends on their escape from phagosomes in macrophages, mediated by a type VI secretion system (T6SS). Here, the authors show dynamics of T6SS assembly and disassembly and identify the genes essential for phagosome escape and pathogenicity in mice.
Collapse
|
25
|
Schmitt DM, Barnes R, Rogerson T, Haught A, Mazzella LK, Ford M, Gilson T, Birch JWM, Sjöstedt A, Reed DS, Franks JM, Stolz DB, Denvir J, Fan J, Rekulapally S, Primerano DA, Horzempa J. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis. Front Cell Infect Microbiol 2017; 7:173. [PMID: 28536678 PMCID: PMC5423315 DOI: 10.3389/fcimb.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Rebecca Barnes
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Taylor Rogerson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Ashley Haught
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Leanne K Mazzella
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Matthew Ford
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Tricia Gilson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - James W-M Birch
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå UniversityUmeå, Sweden
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of PittsburghPittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Swanthana Rekulapally
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| |
Collapse
|
26
|
Ramakrishnan G. Iron and Virulence in Francisella tularensis. Front Cell Infect Microbiol 2017; 7:107. [PMID: 28421167 PMCID: PMC5378763 DOI: 10.3389/fcimb.2017.00107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium that infects a variety of cell types including macrophages, and propagates with great efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is among the nutrients required to support this pathogenic lifestyle and the bacterium relies on specialized mechanisms to acquire iron within the host environment. Two distinct pathways for iron acquisition are encoded by the F. tularensis genome- a siderophore-dependent ferric iron uptake system and a ferrous iron transport system. Genes of the Fur-regulated fslABCDEF operon direct the production and transport of the siderophore rhizoferrin. Siderophore biosynthesis involves enzymes FslA and FslC, while export across the inner membrane is mediated by FslB. Uptake of the rhizoferrin- ferric iron complex is effected by the siderophore receptor FslE in the outer membrane in a TonB-independent process, and FslD is responsible for uptake across the inner membrane. Ferrous iron uptake relies largely on high affinity transport by FupA in the outer membrane, while the Fur-regulated FeoB protein mediates transport across the inner membrane. FslE and FupA are paralogous proteins, sharing sequence similarity and possibly sharing structural features as well. This review summarizes current knowledge of iron acquisition in this organism and the critical role of these uptake systems in bacterial pathogenicity.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine/Division of Infectious Diseases, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
27
|
Lampe EO, Tandberg JI, Rishovd AL, Winther-Larsen HC. Francisella noatunensis ssp. noatunensis iglC deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain. DISEASES OF AQUATIC ORGANISMS 2017; 123:123-140. [PMID: 28262634 DOI: 10.3354/dao03087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The intracellular fish pathogen Francisella noatunensis remains an unsolved problem for aquaculture worldwide and an efficient vaccine is needed. In Francisella sp., IglC is an important virulence factor necessary for intracellular growth and escape from phagolysosomes. Deletion of the intracellular growth locus C (iglC) in Francisella sp. causes attenuation, but vaccine potential has only been attributed to ΔiglC from Francisella noatunensis ssp. orientalis, a warm-water fish pathogen. A ΔiglC mutant was constructed in the cold-water fish pathogen F. noatunensis ssp. noatunensis (Fnn), which causes francisellosis in Atlantic cod; the mutant was assessed in primary head kidney leucocytes from Atlantic cod. Fluorescence microscopy revealed reduced growth, while qPCR revealed an initial increase followed by a reduction in mutant genomes. Mutant-infected cod leucocytes presented higher interleukin 1 beta (il1β) and interleukin 8 (il8) transcription than wild-type (WT)-infected cells. Two doses of mutant and WT were tested in an adult zebrafish model whereupon 3 × 109 CFU caused acute disease and 3 × 107 CFU caused low mortality regardless of strain. However, splenomegaly developed only in the WT-infected zebrafish. Immunization with 7 × 106 CFU of Fnn ΔiglC protected zebrafish against challenge with a lethal dose of Fnn WT, and bacterial load was minimized within 28 d. Immunized fish had lower interleukin 6 (il6) and il8 transcription in kidney and prolonged interferon-gamma (ifng) transcription in spleens after challenge compared with non-immunized fish. Our data suggest an immunogenic potential of Fnn ΔiglC and indicate important cytokines associated with francisellosis pathogenesis and protection.
Collapse
Affiliation(s)
- Elisabeth O Lampe
- Center for Integrative Microbiology and Evolution, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Petra Spidlova
- a Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Hradec Kralove , Czech Republic
| | - Jiri Stulik
- a Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Hradec Kralove , Czech Republic
| |
Collapse
|
29
|
Bröms JE, Meyer L, Sjöstedt A. A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion. Virulence 2016; 8:821-847. [PMID: 27830989 PMCID: PMC5626337 DOI: 10.1080/21505594.2016.1258507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Francisella tularensis is the etiological agent of the zoonotic disease tularemia. Its life cycle is characterized by an ability to survive within phagocytic cells through phagosomal escape and replication in the cytosol, ultimately causing inflammasome activation and host cell death. Required for these processes is the Francisella Pathogenicity Island (FPI), which encodes a Type VI secretion system (T6SS) that is active during intracellular infection. In this study, we analyzed the role of the FPI-component IglE, a lipoprotein which we previously have shown to be secreted in a T6SS-dependent manner. We demonstrate that in F. tularensis LVS, IglE is an outer membrane protein. Upon infection of J774 cells, an ΔiglE mutant failed to escape from phagosomes, and subsequently, to multiply and cause cytopathogenicity. Moreover, ΔiglE was unable to activate the inflammasome, to inhibit LPS-stimulated secretion of TNF-α, and showed marked attenuation in the mouse model. In F. novicida, IglE was required for in vitro secretion of IglC and VgrG. A mutagenesis-based approach involving frameshift mutations and alanine substitution mutations within the first ∼ 38 residues of IglE revealed that drastic changes in the sequence of the extreme N-terminus (residues 2-6) were well tolerated and, intriguingly, caused hyper-secretion of IglE during intracellular infection, while even subtle mutations further downstream lead to impaired protein function. Taken together, this study highlights the importance of IglE in F. tularensis pathogenicity, and the contribution of the N-terminus for all of the above mentioned processes.
Collapse
Affiliation(s)
- Jeanette E Bröms
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Lena Meyer
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Anders Sjöstedt
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| |
Collapse
|
30
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
31
|
Rigard M, Bröms JE, Mosnier A, Hologne M, Martin A, Lindgren L, Punginelli C, Lays C, Walker O, Charbit A, Telouk P, Conlan W, Terradot L, Sjöstedt A, Henry T. Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathog 2016; 12:e1005821. [PMID: 27602570 PMCID: PMC5014421 DOI: 10.1371/journal.ppat.1005821] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique α-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence indicates that these proteins adopt a PAAR-like fold, suggesting they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAAR-like motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds metal ions and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal α-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPI-encoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bi-modal protein that may connect the tip of the Francisella T6SS with a putative T6SS effector, IglF. Francisella tularensis is a highly pathogenic bacterium causing tularemia. Its ability to cause disease is linked to its ability to replicate in the macrophage cytosol. The intracellular life cycle of Francisella is controlled by a type VI secretion system (T6SS), which is thought to inject effectors into the host cell to allow bacterial escape into the host cytosol. The molecular mechanisms behind this process are still largely unclear. In this work, we identify IglG as a protein with two important domains, one conserved in proteins from more than 250 bacterial species (DUF4280, renamed here as PAAR-like domain) and one specific for the Francisella genus. Using protein sequence analysis and three-dimensional structure predictions, comparative modeling and biochemistry approaches, our data demonstrate that IglG is a metal-binding protein that based on its PAAR-like domain might cap the VgrG spike of the T6SS and act as a membrane-puncturing protein. Furthermore, we identified that the Francisella-specific domain is directly involved in forming a protein complex with another virulence protein, IglF. This work, in addition to enhancing the molecular understanding of the Francisella T6SS, defines the features of the conserved DUF4280, a novel PAAR-like domain involved in type VI secretion (T6S) of many bacterial species.
Collapse
Affiliation(s)
- Mélanie Rigard
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jeanette E. Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Amandine Mosnier
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maggy Hologne
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Amandine Martin
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Claire Punginelli
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Claire Lays
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Walker
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Philippe Telouk
- University of Lyon, Lyon, France
- Laboratoire de Geologie de Lyon; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Wayne Conlan
- National Research Council Canada, Human Health Therapeutics Portfolio, Ottawa, Ontario, Canada
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
- * E-mail: (LT); (AS); (TH)
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail: (LT); (AS); (TH)
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (LT); (AS); (TH)
| |
Collapse
|
32
|
Jia Q, Bowen R, Lee BY, Dillon BJ, Masleša-Galić S, Horwitz MA. Francisella tularensis Live Vaccine Strain deficient in capB and overexpressing the fusion protein of IglA, IglB, and IglC from the bfr promoter induces improved protection against F. tularensis respiratory challenge. Vaccine 2016; 34:4969-4978. [PMID: 27577555 DOI: 10.1016/j.vaccine.2016.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
A safer and more effective vaccine than the unlicensed Francisella tularensis Live Vaccine Strain (LVS) is needed to protect against the biowarfare agent F. tularensis. Previously, we developed an LVS ΔcapB mutant that is significantly safer than LVS and provides potent protective immunity against F. tularensis respiratory challenge when administered intranasally but limited protection when administered intradermally unless as part of a prime-boost vaccination strategy. To improve the immunogenicity and efficacy of LVS ΔcapB, we developed recombinant LVS ΔcapB (rLVS ΔcapB) strains overexpressing various F. tularensis Francisella Pathogenicity Island (FPI) proteins - IglA, IglB and IglC, and a fusion protein (IglABC) comprising immunodominant epitopes of IglA, IglB, and IglC downstream of different Francisella promoters, including the bacterioferritin (bfr) promoter. We show that rLVS ΔcapB/bfr-iglA, iglB, iglC, and iglABC express more IglA, IglB, IglC or IglABC than parental LVS ΔcapB in broth and in human macrophages, and stably express FPI proteins in macrophages and mice absent antibiotic selection. In response to IglC and heat-inactivated LVS, spleen cells from mice immunized intradermally with rLVS ΔcapB/bfr-iglC or bfr-iglABC secrete greater amounts of interferon-gamma and/or interleukin-17 than those from mice immunized with LVS ΔcapB, comparable to those from LVS-immunized mice. Mice immunized with rLVS ΔcapB/bfr-iglA, iglB, iglC or iglABC produce serum antibodies at levels similar to LVS-immunized mice. Mice immunized intradermally with rLVS ΔcapB/bfr-iglABC and challenged intranasally with virulent F. tularensis Schu S4 survive longer than sham- and LVS ΔcapB-immunized mice. Mice immunized intranasally with rLVS ΔcapB/bfr-iglABC - but not with LVS - just before or after respiratory challenge with F. tularensis Schu S4 are partially protected; protection is correlated with induction of a strong innate immune response. Thus, rLVS ΔcapB/bfr-iglABC shows improved immunogenicity and protective efficacy compared with parental LVS ΔcapB and, in contrast to LVS, has partial efficacy as immediate pre- and post-exposure prophylaxis.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.
| | - Barbara Jane Dillon
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.
| | - Saša Masleša-Galić
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States.
| |
Collapse
|
33
|
Phenotypic characterization of the Francisella tularensis ΔpdpC and ΔiglG mutants. Microbes Infect 2016; 18:768-776. [PMID: 27477000 DOI: 10.1016/j.micinf.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
Several bacterial pathogens interact with their host through protein secretion effectuated by a type VI secretion system (T6SS). Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. Proteins encoded by the Francisella pathogenicity island (FPI), which constitute a type VI secretion system, are essential for the virulence of the bacterium and a key mechanism behind this is the escape from the phagosome followed by productive cytosolic replication. It has been shown that T6SS in Francisella is distinct since all putative substrates of F. tularensis T6SS, except for VgrG, are unique to the species. Many of the FPI proteins are secreted into the macrophage cytosol and this is dependent on the functional components of DotU, VgrG, IglC and IglG. In addition, PdpC seems to have a regulatory role for the expression of iglABCD. Since previous results showed peculiar phenotypes of the ΔpdpC and ΔiglG mutants in mouse macrophages, their unique behavior was characterized in human monocyte-derived macrophages (HMDM) in this study. Our results show that both ΔpdpC and ΔiglG mutants of the live vaccine strain (LVS) of F. tularensis did not replicate within HMDMs. The ΔpdpC mutant did not escape from the Francisella containing phagosome (FCP), neither caused cytopathogenicity in primary macrophages and was attenuated in a mouse model. Interestingly, the ΔiglG mutant escaped from the HMDMs FCP and also caused pathological changes in the spleen and liver tissues of intradermally infected C57BL/6 mice. The ΔiglG mutant, with its unique phenotype, is a potential vaccine candidate.
Collapse
|
34
|
Mitchell G, Chen C, Portnoy DA. Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0012-2015. [PMID: 27337444 PMCID: PMC4922531 DOI: 10.1128/microbiolspec.mchd-0012-2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria are often clinically relevant pathogens that infect virtually every cell type found in host organisms. However, myeloid cells, especially macrophages, constitute the primary cells targeted by most species of intracellular bacteria. Paradoxically, macrophages possess an extensive antimicrobial arsenal and are efficient at killing microbes. In addition to their ability to detect and signal the presence of pathogens, macrophages sequester and digest microorganisms using the phagolysosomal and autophagy pathways or, ultimately, eliminate themselves through the induction of programmed cell death. Consequently, intracellular bacteria influence numerous host processes and deploy sophisticated strategies to replicate within these host cells. Although most intracellular bacteria have a unique intracellular life cycle, these pathogens are broadly categorized into intravacuolar and cytosolic bacteria. Following phagocytosis, intravacuolar bacteria reside in the host endomembrane system and, to some extent, are protected from the host cytosolic innate immune defenses. However, the intravacuolar lifestyle requires the generation and maintenance of unique specialized bacteria-containing vacuoles and involves a complex network of host-pathogen interactions. Conversely, cytosolic bacteria escape the phagolysosomal pathway and thrive in the nutrient-rich cytosol despite the presence of host cell-autonomous defenses. The understanding of host-pathogen interactions involved in the pathogenesis of intracellular bacteria will continue to provide mechanistic insights into basic cellular processes and may lead to the discovery of novel therapeutics targeting infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Feldmann EA, Cavanagh J. Teaching old drugs new tricks: Addressing resistance in Francisella. Virulence 2016; 6:414-6. [PMID: 26055396 DOI: 10.1080/21505594.2015.1053689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Erik A Feldmann
- a Department of Molecular and Structural Biochemistry; North Carolina State University ; Raleigh , NC , USA
| | | |
Collapse
|
36
|
Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein. Virulence 2016; 7:882-894. [PMID: 27028889 PMCID: PMC5160417 DOI: 10.1080/21505594.2016.1168550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
FipB, an essential virulence factor in the highly virulent Schu S4 strain of F. tularensis subsp. tularensis, shares sequence similarity with Disulfide Bond formation (Dsb) proteins, which can have oxidoreductase, isomerase, or chaperone activity. To further explore FipB's role in virulence potential substrates were identified by co-purification and 2D gel electrophoresis, followed by protein sequencing using mass spectrometry. A total of 119 potential substrates were identified. Proteins with predicted enzymatic activity were prevalent, and there were 19 proteins that had been previously identified as impacting virulence. Among the potential substrates were IglC, IglB, and PdpB, three components of the Francisella Type Six Secretion System (T6SS), which is also essential for virulence. T6SS are widespread in Gram-negative pathogens, but have not been reported to be dependent on Dsb-like proteins for assembly or function. The presented results suggest that FipB affects IglB and IglC substrates differently. In a fipB mutant there were differences in free sulfhydryl accessibility of IglC, but not IglB, when compared to wild-type bacteria. However, for both proteins FipB appears to act as a chaperone that facilitates proper folding and conformation. Understanding the role FipB plays the assembly and structure in this T6SS may reveal critical aspects of assembly that are common and novel among this widely distributed class of secretion systems.
Collapse
Affiliation(s)
- Aiping Qin
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Yan Zhang
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Melinda E Clark
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Emily A Moore
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Meaghan M Rabideau
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - G Brett Moreau
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Barbara J Mann
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
37
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
38
|
The Divergent Intracellular Lifestyle of Francisella tularensis in Evolutionarily Distinct Host Cells. PLoS Pathog 2015; 11:e1005208. [PMID: 26633893 PMCID: PMC4669081 DOI: 10.1371/journal.ppat.1005208] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
Rasmussen JA, Fletcher JR, Long ME, Allen LAH, Jones BD. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol 2015; 6:338. [PMID: 25999917 PMCID: PMC4419852 DOI: 10.3389/fmicb.2015.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Abstract
The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.
Collapse
Affiliation(s)
- Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Matthew E Long
- Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Lee-Ann H Allen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
40
|
Wu YC, Wu TH, Clemens DL, Lee BY, Wen X, Horwitz MA, Teitell MA, Chiou PY. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat Methods 2015; 12:439-44. [PMID: 25849636 PMCID: PMC5082232 DOI: 10.1038/nmeth.3357] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/09/2015] [Indexed: 01/09/2023]
Abstract
We report a high-throughput platform for delivering large cargo elements into 100,000 cells in 1 min. Our biophotonic laser-assisted surgery tool (BLAST) generates an array of microcavitation bubbles that explode in response to laser pulsing, forming pores in adjacent cell membranes through which cargo is gently driven by pressurized flow. The platform delivers large items including bacteria, enzymes, antibodies and nanoparticles into diverse cell types with high efficiency and cell viability. We used this platform to explore the intracellular lifestyle of Francisella novicida and discovered that the iglC gene is unexpectedly required for intracellular replication even after phagosome escape into the cell cytosol.
Collapse
Affiliation(s)
- Yi-Chien Wu
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California, USA
| | - Ting-Hsiang Wu
- 1] Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California, USA. [2] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Ximiao Wen
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Michael A Teitell
- 1] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA. [2] Department of Bioengineering, University of California at Los Angeles, Los Angeles, California, USA. [3] California NanoSystems Institute (CNSI), University of California at Los Angeles, Los Angeles, California, USA
| | - Pei-Yu Chiou
- 1] Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California, USA. [2] Department of Bioengineering, University of California at Los Angeles, Los Angeles, California, USA. [3] California NanoSystems Institute (CNSI), University of California at Los Angeles, Los Angeles, California, USA
| |
Collapse
|
41
|
Clemens DL, Ge P, Lee BY, Horwitz MA, Zhou ZH. Atomic structure of T6SS reveals interlaced array essential to function. Cell 2015; 160:940-951. [PMID: 25723168 DOI: 10.1016/j.cell.2015.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/17/2014] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
Type VI secretion systems (T6SSs) are newly identified contractile nanomachines that translocate effector proteins across bacterial membranes. The Francisella pathogenicity island, required for bacterial phagosome escape, intracellular replication, and virulence, was presumed to encode a T6SS-like apparatus. Here, we experimentally confirm the identity of this T6SS and, by cryo electron microscopy (cryoEM), show the structure of its post-contraction sheath at 3.7 Å resolution. We demonstrate the assembly of this T6SS by IglA/IglB and secretion of its putative effector proteins in response to environmental stimuli. The sheath has a quaternary structure with handedness opposite that of contracted sheath of T4 phage tail and is organized in an interlaced two-dimensional array by means of β sheet augmentation. By structure-based mutagenesis, we show that this interlacing is essential to secretion, phagosomal escape, and intracellular replication. Our atomic model of the T6SS will facilitate design of drugs targeting this highly prevalent secretion apparatus.
Collapse
Affiliation(s)
- Daniel L Clemens
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bai-Yu Lee
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus A Horwitz
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol 2014; 94:926-44. [PMID: 25257164 DOI: 10.1111/mmi.12808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis-proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti-bacterial implications.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | | | | |
Collapse
|
43
|
Lenco J, Tambor V, Link M, Klimentova J, Dresler J, Peterek M, Charbit A, Stulik J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics 2014; 14:2400-9. [PMID: 25156581 DOI: 10.1002/pmic.201400198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
The posttranscriptional regulatory protein Hfq was shown to be an important determinant of the stress resistance and full virulence in the dangerous human pathogen Francisella tularensis. Transcriptomics brought rather limited clues to the precise contribution of Hfq in virulence. To reveal the molecular basis of the attenuation caused by hfq inactivation, we employed iTRAQ in the present study and compared proteomes of the parent and isogenic Δhfq strains. We show that Hfq modulates the level of 76 proteins. Most of them show decreased abundance in the ∆hfq mutant, thereby indicating that Hfq widely acts rather as a positive regulator of Francisella gene expression. Several key Francisella virulence factors including those encoded within the Francisella pathogenicity island were found among the downregulated proteins, which is in a good agreement with the attenuated phenotype of the Δhfq strain. To further validate the iTRAQ exploratory findings, we subsequently performed targeted LC-SRM analysis of selected proteins. This accurate quantification method corroborated the trends found in the iTRAQ data.
Collapse
Affiliation(s)
- Juraj Lenco
- Faculty of Military Health Sciences, Institute of Molecular Pathology, University of Defense, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
45
|
Hare RF, Hueffer K. Francisella novicida pathogenicity island encoded proteins were secreted during infection of macrophage-like cells. PLoS One 2014; 9:e105773. [PMID: 25158041 PMCID: PMC4144950 DOI: 10.1371/journal.pone.0105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 01/13/2023] Open
Abstract
Intracellular pathogens and other organisms have evolved mechanisms to exploit host cells for their life cycles. Virulence genes of some intracellular bacteria responsible for these mechanisms are located in pathogenicity islands, such as secretion systems that secrete effector proteins. The Francisella pathogenicity island is required for phagosomal escape, intracellular replication, evasion of host immune responses, virulence, and encodes a type 6 secretion system. We hypothesize that some Francisella novicida pathogenicity island proteins are secreted during infection of host cells. To test this hypothesis, expression plasmids for all Francisella novicida FPI-encoded proteins with C-terminal and N-terminal epitope FLAG tags were developed. These plasmids expressed their respective epitope FLAG-tagged proteins at their predicted molecular weights. J774 murine macrophage-like cells were infected with Francisella novicida containing these plasmids. The FPI proteins expressed from these plasmids successfully restored the intramacrophage growth phenotype in mutants of the respective genes that were deficient for intramacrophage growth. Using these expression plasmids, the localization of the Francisella pathogenicity island proteins were examined via immuno-fluorescence microscopy within infected macrophage-like cells. Several Francisella pathogenicity island encoded proteins (IglABCDEFGHIJ, PdpACE, DotU and VgrG) were detected extracellularly and they were co-localized with the bacteria, while PdpBD and Anmk were not detected and thus remained inside bacteria. Proteins that were co-localized with bacteria had different patterns of localization. The localization of IglC was dependent on the type 6 secretion system. This suggests that some Francisella pathogenicity island proteins were secreted while others remain within the bacterium during infection of host cells as structural components of the secretion system and were necessary for secretion.
Collapse
Affiliation(s)
- Rebekah F. Hare
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- * E-mail:
| |
Collapse
|
46
|
Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PLoS One 2014; 9:e104881. [PMID: 25115488 PMCID: PMC4130613 DOI: 10.1371/journal.pone.0104881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023] Open
Abstract
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis 'Type B' Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells.
Collapse
Affiliation(s)
- H. T. Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aarati Sriram
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charlotte Fevang
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eli B. Nix
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Francis E. Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
47
|
Cunningham AL, Dang KM, Yu JJ, Guentzel MN, Heidner HW, Klose KE, Arulanandam BP. Enhancement of vaccine efficacy by expression of a TLR5 ligand in the defined live attenuated Francisella tularensis subsp. novicida strain U112ΔiglB::fljB. Vaccine 2014; 32:5234-40. [PMID: 25050972 DOI: 10.1016/j.vaccine.2014.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
Oral vaccination with the defined live attenuated Francisella novicida vaccine strain U112ΔiglB has been demonstrated to induce protective immunity against pulmonary challenge with the highly human virulent Francisella tularensis strain SCHU S4. However, this vaccination regimen requires a booster dose in mice and Exhibits 50% protective efficacy in the Fischer 344 rat model. To enhance the efficacy of this vaccine strain, we engineered U112ΔiglB to express the Salmonella typhimurium FljB flagellin D1 domain, a TLR5 agonist. The U112ΔiglB::fljB strain was highly attenuated for intracellular macrophage replication, and although the FljB protein was expressed within the cytosol, it exhibited TLR5 activation in a TLR5-expressing HEK cell line. Additionally, infection of splenocytes and lymphocytes with U112ΔiglB::fljB induced significantly greater TNF-α production than infection with U112ΔiglB. Oral vaccination with U112ΔiglB::fljB also induced significantly greater protection than U112ΔiglB against pulmonary SCHU S4 challenge in rats. The enhanced protection was accompanied by higher IgG2a production and serum-mediated reduction of Francisella infectivity. Thus, the U112ΔiglB::fljB strain may serve as a potential vaccine candidate against pneumonic tularemia.
Collapse
Affiliation(s)
- Aimee L Cunningham
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Kim Minh Dang
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hans W Heidner
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Karl E Klose
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
48
|
Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol 2014; 14:169. [PMID: 24961323 PMCID: PMC4230796 DOI: 10.1186/1471-2180-14-169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. RESULTS We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. CONCLUSIONS Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.
Collapse
|
49
|
Identification of mechanisms for attenuation of the FSC043 mutant of Francisella tularensis SCHU S4. Infect Immun 2014; 82:3622-35. [PMID: 24935978 DOI: 10.1128/iai.01406-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.
Collapse
|
50
|
Nguyen JQ, Gilley RP, Zogaj X, Rodriguez SA, Klose KE. Lipidation of the FPI protein IglE contributes to Francisella tularensis ssp. novicida intramacrophage replication and virulence. Pathog Dis 2014; 72:10-8. [PMID: 24616435 DOI: 10.1111/2049-632x.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is a Gram-negative bacterium responsible for the human disease tularemia. The Francisella pathogenicity island (FPI) encodes a secretion system related to type VI secretion systems (T6SS) which allows F. tularensis to escape the phagosome and replicate within the cytosol of infected macrophages and ultimately cause disease. A lipoprotein is typically found encoded within T6SS gene clusters and is believed to anchor portions of the secretion apparatus to the outer membrane. We show that the FPI protein IglE is a lipoprotein that incorporates (3)H-palmitate and localizes to the outer membrane. A C22G IglE mutant failed to be lipidated and failed to localize to the outer membrane, consistent with C22 being the site of lipidation. Francisella tularensis ssp. novicida expressing IglE C22G is defective for replication in macrophages and unable to cause disease in mice. Bacterial two-hybrid analysis demonstrated that IglE interacts with the C-terminal portion of the FPI inner membrane protein PdpB, and PhoA fusion analysis indicated the PdpB C-terminus is located within the periplasm. We predict this interaction facilitates channel formation to allow secretion through this system.
Collapse
Affiliation(s)
- Jesse Q Nguyen
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|