1
|
Chaudhary B, Kobakhidze G, Wachelder L, Mazumdar PA, Dong G, Madhurantakam C. Crystal structures of the mycolic acid methyl transferase 1 (MmaA1) from Mycobacterium tuberculosis in the apo-form and in complex with different cofactors reveal unique features for substrate binding. J Biomol Struct Dyn 2025:1-10. [PMID: 40411373 DOI: 10.1080/07391102.2025.2483952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/18/2025] [Indexed: 05/26/2025]
Abstract
Mycolic acid methyl transferase 1 (MmaA1) protein from Mycobacterium tuberculosis plays a crucial role in the biosynthesis of cell wall mycolic acids that aid in survival of the bacteria under adverse conditions. The enzyme converts a cis to a trans olefin and adds a methyl group at the proximal position of both methoxy and keto-mycolic acid chains. Here we report the crystal structures of apo-MmaA1 and complexes with the cofactor S-adenosylmethionine (SAM), the end-product of methylation reactions - S-adenosylhomocysteine (SAH), and the nucleoside analog Sinefungin (SFG) at 1.4-1.9 Å resolution. These structures reveal the typical seven-stranded α/β fold accompanied by other α-helical embellishments. A dynamic labile loop across the cofactor binding site in the apo-form became relatively rigid upon binding of SAM or SFG but remained labile in the SAH-bound form. A comprehensive analysis of the binding pattern of SAM with MmaA1 reveals critical residues involved in the hydrogen bond interactions with the cofactor, most of which are conserved across other methyltransferases. We also observed a highly conserved cysteine residue (C268) packed against the inner part of the substrate entry channel. C268 is in the reduced state in the SAM-bound but oxidized in the SAH-bound structure. The bulkier sidechain of the oxidized C268 significantly blocks the substrate-binding channel, which might serve as a regulator to control substrate binding and/or selectivity. This atomic view of this critical methyltransferase will build a basis for the identification of small molecule inhibitors against M. tuberculosis.
Collapse
Affiliation(s)
- Bhawna Chaudhary
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - George Kobakhidze
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Lynn Wachelder
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
- Academy of Life Science and Technology, Avans University of Applied Sciences, Breda, Netherlands
| | | | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
2
|
Vasyankin AV, Panteleev SV, Steshin IS, Shirokova EA, Rozhkov AV, Livshits GD, Radchenko EV, Ignatov SK, Palyulin VA. Temperature-Induced Restructuring of Mycolic Acid Bilayers Modeling the Mycobacterium tuberculosis Outer Membrane: A Molecular Dynamics Study. Molecules 2024; 29:696. [PMID: 38338443 PMCID: PMC10856651 DOI: 10.3390/molecules29030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The emergence of new drug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied. In this work, we consider the temperature-induced changes in the structure, ordering, and molecular mobility of bilayer MA membranes of various chemical and conformational compositions. Using all-atom long-term molecular dynamics simulations of various MA membranes, we report the kinetic parameters of temperature-dependent changes in the MA self-diffusion coefficients and conformational compositions, including the apparent activation energies of these processes, as well as the characteristic times of ordering changes and the features of phase transitions occurring over a wide range of elevated temperatures. Understanding these effects could be useful for the prevention of drug resistance and the development of membrane-targeting pharmaceuticals, as well as in the design of membrane-based materials.
Collapse
Affiliation(s)
- Alexander V. Vasyankin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Sergey V. Panteleev
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Ilya S. Steshin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Ekaterina A. Shirokova
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Alexey V. Rozhkov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Grigory D. Livshits
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Stanislav K. Ignatov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
3
|
Baumann PT, Dal Molin M, Aring H, Krumbach K, Müller MF, Vroling B, van Summeren-Wesenhagen PV, Noack S, Marienhagen J. Beyond rational-biosensor-guided isolation of 100 independently evolved bacterial strain variants and comparative analysis of their genomes. BMC Biol 2023; 21:183. [PMID: 37667306 PMCID: PMC10478468 DOI: 10.1186/s12915-023-01688-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND In contrast to modern rational metabolic engineering, classical strain development strongly relies on random mutagenesis and screening for the desired production phenotype. Nowadays, with the availability of biosensor-based FACS screening strategies, these random approaches are coming back into fashion. In this study, we employ this technology in combination with comparative genome analyses to identify novel mutations contributing to product formation in the genome of a Corynebacterium glutamicum L-histidine producer. Since all known genetic targets contributing to L-histidine production have been already rationally engineered in this strain, identification of novel beneficial mutations can be regarded as challenging, as they might not be intuitively linkable to L-histidine biosynthesis. RESULTS In order to identify 100 improved strain variants that had each arisen independently, we performed > 600 chemical mutagenesis experiments, > 200 biosensor-based FACS screenings, isolated > 50,000 variants with increased fluorescence, and characterized > 4500 variants with regard to biomass formation and L-histidine production. Based on comparative genome analyses of these 100 variants accumulating 10-80% more L-histidine, we discovered several beneficial mutations. Combination of selected genetic modifications allowed for the construction of a strain variant characterized by a doubled L-histidine titer (29 mM) and product yield (0.13 C-mol C-mol-1) in comparison to the starting variant. CONCLUSIONS This study may serve as a blueprint for the identification of novel beneficial mutations in microbial producers in a more systematic manner. This way, also previously unexplored genes or genes with previously unknown contribution to the respective production phenotype can be identified. We believe that this technology has a great potential to push industrial production strains towards maximum performance.
Collapse
Affiliation(s)
- Philipp T Baumann
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Michael Dal Molin
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hannah Aring
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Moritz-Fabian Müller
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Bas Vroling
- Bioprodict GmbH, Nieuwe Marktstraat 54E, 6511AA, Nijmegen, The Netherlands
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res 2023; 272:127390. [PMID: 37087971 DOI: 10.1016/j.micres.2023.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Trehalose dicorynomycolates are structurally important constituents of the cell envelope in Corynebacterium glutamicum. The genes treS, treY, otsA, mytA and mytB are necessary for the biosynthesis of trehalose dicorynomycolates. In this study, the effect of biosynthesis of trehalose dicorynomycolates on L-isoleucine production in C. glutamicum has been investigated by deleting the genes treS, treY, otsA, mytA, and mytB in the L-isoleucine producing C. glutamicum WM001. L-isoleucine production was slightly improved in the mutants ΔtreY, ΔotsA, and ΔtreYA, and not improved in the single deletion mutant ΔtreS , but significantly improved in the triple deletion mutant ΔtreSYA. Deletion of mytA or mytB in ΔtreSYA could further improve L-isoleucine production. However, deletion of both mytA and mytB in ΔtreSYA significantly decreased L-isoleucine production. The final L-isoleucine producing C. glutamicum WL001 was constructed by deletion of treS, treY, otsA, and mytB, insertion of lrp, and replacement of the native promoter of ilvA with the L-isoleucine sensitive promoter PbrnFE7. WL001 grew worse than the control WM001, but produced 36.1% more L-isoleucine after 72 h shake flask cultivation than WM001.
Collapse
Affiliation(s)
- Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Daqing Xu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dezhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guihong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ziwei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res 2022; 267:127260. [PMID: 36463830 DOI: 10.1016/j.micres.2022.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.
Collapse
|
6
|
Pohane AA, Moore DJ, Lepori I, Gordon RA, Nathan TO, Gepford DM, Kavunja HW, Gaidhane IV, Swarts BM, Siegrist MS. A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria. ACS Infect Dis 2022; 8:2223-2231. [PMID: 36288262 PMCID: PMC9924612 DOI: 10.1021/acsinfecdis.2c00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Devin J. Moore
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Rebecca A. Gordon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| | - Temitope O. Nathan
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Dana M. Gepford
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Ishani V. Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| |
Collapse
|
7
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
8
|
Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022; 55:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
Microbial cell surface layers, which mainly include the cell membrane, cell wall, periplasmic space, outer membrane, capsules, S-layers, pili, and flagella, control material exchange between the cell and the extracellular environment, and have great impact on production titers and yields of various bio-products synthesized by microbes. Recent research work has made exciting achievements in metabolic engineering using microbial cell surface components as novel regulation targets without direct modifications of the metabolic pathways of the desired products. This review article will summarize the accomplishments obtained in this emerging field, and will describe various engineering strategies that have been adopted in bacteria and yeasts for the enhancement of mass transfer across the cell surface, improvement of protein expression and folding, modulation of cell size and shape, and re-direction of cellular resources, all of which contribute to the construction of more efficient microbial cell factories toward the synthesis of a variety of bio-products. The existing problems and possible future directions will also be discussed.
Collapse
|
9
|
Li H, Xu D, Liu Y, Tan X, Qiao J, Li Z, Qi B, Hu X, Wang X. Preventing mycolic acid reduction in Corynebacterium glutamicum can efficiently increase L-glutamate production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Kumari B, Kaur J. Correlation of over-expression of rv1900c with enhanced survival of M. smegmatis under stress conditions: Modulation of cell surface properties. Gene 2021; 791:145720. [PMID: 34019937 DOI: 10.1016/j.gene.2021.145720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis has distinct cell wall composition that helps in intracellular survival of bacteria. Rv1900c, a two domain protein, has been grouped in lip gene family. The expression of rv1900c was upregulated under acidic, nutritive and iron stress conditions in M. tuberculosis H37Ra. To investigate the biological effect of Rv1900c in mycobacterium physiology, rv1900c gene was cloned in M. smegmatis, a surrogate host. Its counterpart MSMEG_4477 in M. smegmatis demonstrated 38% protein similarity with Rv1900c. MSMEG_4477 gene was knocked out in M. smegmatis by homologous recombination. rv1900c and MSMEG_4477 genes, cloned in pVV16, were expressed in the M. smegmatis knockout strain (M. smegmatis ΔMSMEG_4477). Gene knockout significantly altered colony morphology and growth kinetics of M. smegmatis. M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) colonies were less wrinkled and had smooth surface as compared to M. smegmatis ΔMSMEG_4477. The changes were reverted back to normal upon expression of MSMEG_4477 in knockout strain M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). The expression of rv1900c enhanced the biofilm formation and survival of bacteria under various in vitro stresses like acidic, nutritive stress, including lysozyme, SDS and multiple antibiotics treatment in comparison to control. On the other hand the expression of rv1900c decreased the cell wall permeability. The resistance provided by M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477) was comparable to M. smegmatis having vector alone (MS_vec). The lipid content of M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was observed to be different from M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was more tolerant to stress conditions in comparison to M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). Expression of rv1900c enhanced the intracellular survival of mycobacteria. Therefore, the present study suggested an association of Rv1900c to the stress tolerance by cell wall modification that might have resulted in enhanced intracellular survival of the mycobacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
12
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
13
|
Henson WR, Hsu FF, Dantas G, Moon TS, Foston M. Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:339. [PMID: 30607174 PMCID: PMC6309088 DOI: 10.1186/s13068-018-1337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole carbon source and characterized a phenol-adapted R. opacus strain (evol40) and the wild-type (WT) strain by whole genome and RNA sequencing. While this effort increased our understanding of the aromatic tolerance, the tolerance mechanisms were not completely elucidated. RESULTS We hypothesize that the composition of lipids plays an important role in phenol tolerance. To test this hypothesis, we applied high-resolution mass spectrometry analysis to lipid samples obtained from the WT and evol40 strains grown in 1 g/L glucose (glucose), 0.75 g/L phenol (low phenol), or 1.5 g/L phenol (high phenol, evol40 only) as a sole carbon source. This analysis identified > 100 lipid species of mycolic acids, phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and triacylglycerols. In both strains, mycolic acids had fewer double bond numbers in phenol conditions than the glucose condition, and evol40 had significantly shorter mycolic acid chain lengths than the WT strain in phenol conditions. These results indicate that phenol adaptation affected mycolic acid membrane composition. In addition, the percentage of unsaturated phospholipids decreased for both strains in phenol conditions compared to the glucose condition. Moreover, the PI content increased for both strains in the low phenol condition compared to the glucose condition, and the PI content increased further for evol40 in the high phenol condition relative to the low phenol condition. CONCLUSIONS This work represents the first comprehensive lipidomic study on the membrane of R. opacus grown using phenol as a sole carbon source. Our results suggest that the alteration of the mycolic acid and phospholipid membrane composition may be a strategy of R. opacus for phenol tolerance.
Collapse
Affiliation(s)
- William R. Henson
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
14
|
Takeno S, Murata N, Kura M, Takasaki M, Hayashi M, Ikeda M. The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains. Appl Microbiol Biotechnol 2018; 102:10603-10612. [DOI: 10.1007/s00253-018-9395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023]
|
15
|
Baek I, Kim M, Lee I, Na SI, Goodfellow M, Chun J. Phylogeny Trumps Chemotaxonomy: A Case Study Involving Turicella otitidis. Front Microbiol 2018; 9:834. [PMID: 29760685 PMCID: PMC5936774 DOI: 10.3389/fmicb.2018.00834] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
The genus Turicella was proposed to harbor clinical strains isolated from middle-ear fluids of patients with otitis media. 16S rRNA phylogeny showed that it belonged to the mycolic acid-containing actinobacteria, currently classified in the order Corynebacteriales, and was closely related to the genus Corynebacterium. A new genus was proposed for the organisms as unlike corynebacteria they lacked mycolic acids and had different menaquinones. Here, we carried out large-scale comparative genomics on representative strains of the genera Corynebacterium and Turicella to check if this chemotaxonomic classification is justified. Three genes that are known to play an essential role in mycolic acid biosynthesis were absent in Turicella and two other mycolate-less Corynebacterium spp., explaining the lack of mycolic acids resulted from the deletion of genes and does not confer any phylogenetic context. Polyphasic phylogenetic analyses using 16S rRNA, bacterial core genes and genes responsible for synthesizing menaquinones unequivocally indicate that Turicella is a true member of the genus Corynebacterium. Here, we demonstrate that menaquinone and mycolic acid that have been used as critical taxonomic markers should be interpreted carefully, particularly when genome-based taxonomy is readily available. Based on the phylogenetic analysis, we propose to reclassify Turicella otitidis as Corynebacterium otitidis comb. nov.
Collapse
Affiliation(s)
- Inwoo Baek
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Imchang Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Seong-In Na
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Campodónico VL, Rifat D, Chuang YM, Ioerger TR, Karakousis PC. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D. Front Microbiol 2018; 9:494. [PMID: 29616007 PMCID: PMC5867343 DOI: 10.3389/fmicb.2018.00494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background:Mycobacterium tuberculosis (Mtb) rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs. Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared. Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS) after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin. Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.
Collapse
Affiliation(s)
- Victoria L. Campodónico
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dalin Rifat
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu-Min Chuang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Petros C. Karakousis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
17
|
The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018; 111:717-725. [PMID: 29435693 DOI: 10.1007/s10482-018-1036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.
Collapse
|
18
|
Abstract
Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans share one distinctive feature: they are all putative carriers of the diphtheria toxin (DT), encoded by a β-corynephage integrated into the genome. Due to its medical relevance, C. diphtheriae may be the most highly investigated species of the genus Corynebacterium. Nevertheless, systemic infections caused by C. ulcerans are increasingly being reported indicating that this species is an emerging pathogen today. C. diphtheriae, C. pseudotuberculosis and C. ulcerans are able to colonize different types of epithelial cells in a strain-specific manner, independent of the presence of the tox gene. However, the molecular mechanisms contributing to host colonization are barely understood. This review gives a comprehensive update of recent data concerning the adhesion properties of toxigenic corynebacteria, demonstrating that adhesion is a multi-factorial process.
Collapse
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Professur für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
20
|
Gao Y, Hu X, Wang J, Li H, Wang X. Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869. Biotechnol Appl Biochem 2017; 65:435-445. [PMID: 29072327 DOI: 10.1002/bab.1622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022]
Abstract
Mycolic acid (MA) plays important role in Corynebacterium glutamicum, but the key enzymes in the biosynthetic pathway of MA in C. glutamicum ATCC13869 have not been characterized. Since the locus BBD29_RS14045 in C. glutamicum ATCC13869 shows high similarity to the gene Cgl2871, which encodes Pks13, the key enzyme for synthesizing MA in C. glutamicum ATCC13032, it was deleted, resulting in the mutant WG001. Compared with the wild-type ATCC13869, MA was not synthesized in WG001, but more phosphatidylglycerol and phosphatidylinositol containing longer unsaturated fatty acids were produced. WG001 cells also show hindered cell growth and defective cell separation when compared with ATCC13869 cells. Transcriptomic analysis shows that many genes relevant to the pathways of fatty acids, inositol, phospholipids, cell wall, and cell division were significantly regulated in WG001 cells when compared with ATCC13869 cells. This study demonstrates that the locus BBD29_RS14045 encodes a key enzyme that plays important role for synthesizing MA in C. glutamicum ATCC13869.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Wuxi, People's Republic of China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Huazhong Li
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Wuxi, People's Republic of China
| |
Collapse
|
21
|
Effects of EGTA on cell surface structures of Corynebacterium glutamicum. Arch Microbiol 2017; 200:281-289. [DOI: 10.1007/s00203-017-1445-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022]
|
22
|
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech 2017; 7:325. [PMID: 28955622 PMCID: PMC5602786 DOI: 10.1007/s13205-017-0972-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Lipids are most adaptable molecules that acclimatize to the development of multidrug resistance (MDR). The precise molecular mechanism of this acclimatization achieved in Mycobacterium tuberculosis (MTB) remains elusive. Although lipids of MTB have been characterized to some details, a comparable resource does not exist between drug sensitive (DS) and resistant (DR) strains of MTB. Here, by employing high-throughput mass spectrometry-based lipidomic approach, we attempted to analyze the differential lipidome profile of DS and DR MTB clinical isolates. We analyzed three major classes of lipids viz fatty acyls, glycerophospholipids and glycerolipids and their respective subclasses. Notably, we observed differential fatty acyls and glycerophospholipids as evident from increased mycolic acids phosphatidylinositol mannosides, phosphatidylinositol, cardiolipin and triacylglycerides abundance, respectively, which are crucial for MTB virulence and pathogenicity. Considering the fact that 30% of the MTB genome codes for lipid, this comprehensive lipidomic approach unravels extensive lipid alterations in DS and DR that will serve as a resource for identifying biomarkers aimed at disrupting the functions of MTB lipids responsible for MDR acquisition in MTB.
Collapse
Affiliation(s)
- Rahul Pal
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Parveen Kumar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| |
Collapse
|
23
|
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol 2017; 17:158. [PMID: 28701150 PMCID: PMC5508688 DOI: 10.1186/s12866-017-1067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sigma factors are one of the components of RNA polymerase holoenzymes, and an essential factor of transcription initiation in bacteria. Corynebacterium glutamicum possesses seven genes coding for sigma factors, most of which have been studied to some detail; however, the role of SigD in transcriptional regulation in C. glutamicum has been mostly unknown. RESULTS In this work, pleiotropic effects of sigD overexpression at the level of phenotype, transcripts, proteins and metabolites were investigated. Overexpression of sigD decreased the growth rate of C. glutamicum cultures, and induced several physiological effects such as reduced culture foaming, turbid supernatant and cell aggregation. Upon overexpression of sigD, the level of Cmt1 (corynomycolyl transferase) in the supernatant was notably enhanced, and carbohydrate-containing compounds were excreted to the supernatant. The real-time PCR analysis revealed that sigD overexpression increased the expression of genes related to corynomycolic acid synthesis (fadD2, pks), genes encoding corynomycolyl transferases (cop1, cmt1, cmt2, cmt3), L, D-transpeptidase (lppS), a subunit of the major cell wall channel (porH), and the envelope lipid regulation factor (elrF). Furthermore, overexpression of sigD resulted in trehalose dicorynomycolate accumulation in the cell envelope. CONCLUSIONS This study demonstrated that SigD regulates the synthesis of corynomycolate and related compounds, and expanded the knowledge of regulatory functions of sigma factors in C. glutamicum.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Patschkowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
24
|
Analysis of Corynebacterium diphtheriae macrophage interaction: Dispensability of corynomycolic acids for inhibition of phagolysosome maturation and identification of a new gene involved in synthesis of the corynomycolic acid layer. PLoS One 2017; 12:e0180105. [PMID: 28686600 PMCID: PMC5501465 DOI: 10.1371/journal.pone.0180105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of diphtheria, a toxin mediated disease of upper respiratory tract, which can be fatal. As a member of the CMNR group, C. diphtheriae is closely related to members of the genera Mycobacterium, Nocardia and Rhodococcus. Almost all members of these genera comprise an outer membrane layer of mycolic acids, which is assumed to influence host-pathogen interactions. In this study, three different C. diphtheriae strains were investigated in respect to their interaction with phagocytic murine and human cells and the invertebrate infection model Caenorhabditis elegans. Our results indicate that C. diphtheriae is able to delay phagolysosome maturation after internalization in murine and human cell lines. This effect is independent of the presence of mycolic acids, as one of the strains lacked corynomycolates. In addition, analyses of NF-κB induction revealed a mycolate-independent mechanism and hint to detrimental effects of the different strains tested on the phagocytic cells. Bioinformatics analyses carried out to elucidate the reason for the lack of mycolates in one of the strains led to the identification of a new gene involved in mycomembrane formation in C. diphtheriae.
Collapse
|
25
|
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs. PLoS Pathog 2016; 12:e1005949. [PMID: 27760199 PMCID: PMC5070874 DOI: 10.1371/journal.ppat.1005949] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023] Open
Abstract
The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer’s dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria, which synthesize folate de novo. Here we identify the methylfolate trap as a novel determinant of the bacterial intrinsic death by sulfonamides, antibiotics that block de novo folate synthesis. Genetic mutagenesis, chemical complementation, and metabolomic profiling revealed trap-mediated metabolic imbalances, which induced thymineless death, a phenomenon in which rapidly growing cells succumb to thymine starvation. Restriction of B12 bioavailability, required for preventing trap formation, using an “antivitamin B12” molecule, sensitized intracellular bacteria to sulfonamides. Since boosting the bactericidal activity of sulfonamides through methylfolate trap induction can be achieved in Gram-negative bacteria and mycobacteria, it represents a novel strategy to render these pathogens more susceptible to existing sulfonamides. Sulfonamides were the first agents to successfully treat bacterial infections, but their use later declined due to the emergence of resistant organisms. Restoration of these drugs may be achieved through inactivation of molecular mechanisms responsible for resistance. A chemo-genomic screen first identified 50 chromosomal loci representing the whole-genome antifolate resistance determinants in Mycobacterium smegmatis. Interestingly, many determinants resembled components of the methylfolate trap, a metabolic blockage exclusively described in mammalian cells. Targeted mutagenesis, genetic and chemical complementation, followed by chemical analyses established the methylfolate trap as a novel mechanism of sulfonamide sensitivity, ubiquitously present in mycobacteria and Gram-negative bacterial pathogens. Furthermore, metabolomic analyses revealed trap-mediated interruptions in folate and related metabolic pathways. These metabolic imbalances induced thymineless death, which was reversible with exogenous thymine supplementation. Chemical restriction of vitamin B12, an important molecule required for prevention of the methylfolate trap, sensitized intracellular bacteria to sulfonamides. Thus, pharmaceutical promotion of the methylfolate trap represents a novel folate antagonistic strategy to render pathogenic bacteria more susceptible to available, clinically approved sulfonamides.
Collapse
|
26
|
Liu X, Zhang W, Zhao Z, Dai X, Yang Y, Bai Z. Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol 2016; 37:541-551. [PMID: 27737570 DOI: 10.1080/07388551.2016.1206059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics - its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity - C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression - the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Wei Zhang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zihao Zhao
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Xiaofeng Dai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yankun Yang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zhonghu Bai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
27
|
Quémard A. New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria. Trends Microbiol 2016; 24:725-738. [DOI: 10.1016/j.tim.2016.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
|
28
|
Slama N, Jamet S, Frigui W, Pawlik A, Bottai D, Laval F, Constant P, Lemassu A, Cam K, Daffé M, Brosch R, Eynard N, Quémard A. The changes in mycolic acid structures caused byhadCmutation have a dramatic effect on the virulence ofMycobacterium tuberculosis. Mol Microbiol 2015; 99:794-807. [DOI: 10.1111/mmi.13266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Nawel Slama
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Daria Bottai
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Patricia Constant
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections; Institut de Pharmacologie et de Biologie Structurale - UMR5089; Centre National de la Recherche Scientifique; Toulouse France
- Institut de Pharmacologie et de Biologie Structurale; Université de Toulouse; Université Paul Sabatier; Toulouse France
| |
Collapse
|
29
|
Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FSL. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res 2015; 44:D663-8. [PMID: 26602691 PMCID: PMC4702898 DOI: 10.1093/nar/gkv1271] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Protein subcellular localization (SCL) is important for understanding protein function, genome annotation, and has practical applications such as identification of potential vaccine components or diagnostic/drug targets. PSORTdb (http://db.psort.org) comprises manually curated SCLs for proteins which have been experimentally verified (ePSORTdb), as well as pre-computed SCL predictions for deduced proteomes from bacterial and archaeal complete genomes available from NCBI (cPSORTdb). We now report PSORTdb 3.0. It features improvements increasing user-friendliness, and further expands both ePSORTdb and cPSORTdb with a focus on improving protein SCL data in cases where it is most difficult—proteins associated with non-classical Gram-positive/Gram-negative/Gram-variable cell envelopes. ePSORTdb data curation was expanded, including adding in additional cell envelope localizations, and incorporating markers for cPSORTdb to automatically computationally identify if new genomes to be analysed fall into certain atypical cell envelope categories (i.e. Deinococcus-Thermus, Thermotogae, Corynebacteriales/Corynebacterineae, including Mycobacteria). The number of predicted proteins in cPSORTdb has increased from 3 700 000 when PSORTdb 2.0 was released to over 13 000 000 currently. PSORTdb 3.0 will be of wider use to researchers studying a greater diversity of monoderm or diderm microbes, including medically, agriculturally and industrially important species that have non-classical outer membranes or other cell envelope features.
Collapse
Affiliation(s)
- Michael A Peabody
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Matthew R Laird
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Caitlyn Vlasschaert
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Raymond Lo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
30
|
Antibiofilm Activity of Low-Amperage Continuous and Intermittent Direct Electrical Current. Antimicrob Agents Chemother 2015; 59:4610-5. [PMID: 26014944 DOI: 10.1128/aac.00483-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022] Open
Abstract
Bacterial biofilms are difficult to treat using available antimicrobial agents, so new antibiofilm strategies are needed. We previously showed that 20, 200, and 2,000 μA of electrical current reduced bacterial biofilms of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. Here, we tested continuous direct current at lower amperages, intermittent direct current, and combinations of surface materials (Teflon or titanium) and electrode compositions (stainless steel, graphite, titanium, or platinum) against S. aureus, S. epidermidis, and P. aeruginosa biofilms. In addition, we tested 200 or 2,000 μA for 1 and 4 days against biofilms of 33 strains representing 13 species of microorganisms. The logarithmic reduction factor was used to measure treatment effects. Using continuous current delivery, the lowest active amperage was 2 μA for 1, 4, or 7 days against P. aeruginosa and 5 μA for 7 days against S. epidermidis and S. aureus biofilms. Delivery of 200 μA for 4 h a day over 4 days reduced P. aeruginosa, S. aureus, and S. epidermidis biofilms on Teflon or titanium discs. A reduction of P. aeruginosa, S. aureus, and S. epidermidis biofilms was measured for 23 of 24 combinations of surface materials and electrode compositions tested. Four days of direct current delivery reduced biofilms of 25 of 33 strains studied. In conclusion, low-amperage current or 4 h a day of intermittent current delivered using a variety of electrode compositions reduced P. aeruginosa, S. aureus, and S. epidermidis biofilms on a variety of surface materials. The electricidal effect was observed against a majority of bacterial species studied.
Collapse
|
31
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
32
|
The Polyketide Synthase Pks13 Catalyzes a Novel Mechanism of Lipid Transfer in Mycobacteria. ACTA ACUST UNITED AC 2014; 21:1660-9. [DOI: 10.1016/j.chembiol.2014.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
|
33
|
Singh PR, Bajaj H, Benz R, Winterhalter M, Mahendran KR. Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:654-61. [PMID: 25462168 DOI: 10.1016/j.bbamem.2014.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
The role of the outer-membrane channel from a mycolic acid containing Gram-positive bacteria Nocardia farcinica, which forms a hydrophilic pathway across the cell wall, was characterized. Single channel electrophysiology measurements and liposome swelling assays revealed the permeation of hydrophilic solutes including sugars, amino acids and antibiotics. The cation selective N. farcinica channel exhibited strong interaction with the positively charged antibiotics; amikacin and kanamycin, and surprisingly also with the negatively charged ertapenem. Voltage dependent kinetics of amikacin and kanamycin interactions were studied to distinguish binding from translocation. Moreover, the importance of charged residues inside the channel was investigated using mutational studies that revealed rate limiting interactions during the permeation.
Collapse
Affiliation(s)
- Pratik Raj Singh
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Harsha Bajaj
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Mathias Winterhalter
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Kozhinjampara R Mahendran
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
34
|
Migliardo F, Salmeron C, Bayan N. Mobility and temperature resistance of trehalose mycolates as key characteristics of the outer membrane ofMycobacterium tuberculosis. J Biomol Struct Dyn 2014; 33:447-59. [DOI: 10.1080/07391102.2014.887032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Lanéelle MA, Tropis M, Daffé M. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 2013; 97:9923-30. [PMID: 24113823 DOI: 10.1007/s00253-013-5265-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 11/29/2022]
Abstract
Corynebacterium glutamicum is the world's largest producer of glutamate and lysine. Industrial glutamate overproduction is induced by empirical processes, such as biotin limitation, supplementation with specific surfactants or addition of sublethal concentration of certain antibiotics to the culture media. Although Gram-positive bacteria, C. glutamicum and related bacterial species and genera contain, in addition to the plasma membrane, an outer permeability membrane similar to that of Gram-negative microorganisms. As the amino acids have to cross both membranes, their integrity, composition and fluidity influence the export process. While the precise mechanism of the export of the amino acids by C. glutamicum is not fully understood, the excretion of amino acids through the inner membrane involved at least a major export system mechanosensitive channel MscS family (MscCG) encoded by NCgl1221. As the various industrial treatments have been shown to affect the lipid content of the bacterial cell, it is strongly believed that defects in the hallmark of the outer membrane, 2-alkyl, 3-hydroxylated long-chain fatty acids (mycolic acids), could be key factors in the glutamate overproduction. This review aims at giving an overview of the current knowledge on mycolic acids structure, biosynthesis and transfer in C. glutamicum and their relevance for amino acid biotechnological production.
Collapse
Affiliation(s)
- Marie-Antoinette Lanéelle
- Team « Mycobacterial Cell Envelopes: Structure, Biosynthesis and Roles », Département "Mécanismes Moléculaires des Infections Mycobactériennes", Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (IPBS), UMR 5089, BP 64182, 205, Route de Narbonne, 31077, Toulouse Cedex 04, France
| | | | | |
Collapse
|
36
|
Migliardo F, Salmeron C, Bayan N. A neutron scattering study on the stability of trehalose mycolates under thermal stress. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Vera-Cabrera L, Ortiz-Lopez R, Elizondo-Gonzalez R, Ocampo-Candiani J. Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis. PLoS One 2013; 8:e65425. [PMID: 23755230 PMCID: PMC3670865 DOI: 10.1371/journal.pone.0065425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/24/2013] [Indexed: 01/17/2023] Open
Abstract
Nocardia brasiliensis is an important etiologic agent of mycetoma. These bacteria live as a saprobe in soil or organic material and enter the tissue via minor trauma. Mycetoma is characterized by tumefaction and the production of fistula and abscesses, with no spontaneous cure. By using mass sequencing, we determined the complete genomic nucleotide sequence of the bacteria. According to our data, the genome is a circular chromosome 9,436,348-bp long with 68% G+C content that encodes 8,414 proteins. We observed orthologs for virulence factors, a higher number of genes involved in lipid biosynthesis and catabolism, and gene clusters for the synthesis of bioactive compounds, such as antibiotics, terpenes, and polyketides. An in silico analysis of the sequence supports the conclusion that the bacteria acquired diverse genes by horizontal transfer from other soil bacteria, even from eukaryotic organisms. The genome composition reflects the evolution of bacteria via the acquisition of a large amount of DNA, which allows it to survive in new ecological niches, including humans.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chromosome Mapping
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- DNA Transposable Elements
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Gene Transfer, Horizontal
- Genome, Bacterial
- Humans
- Metabolic Networks and Pathways/genetics
- Molecular Sequence Annotation
- Mycetoma/microbiology
- Mycetoma/pathology
- Nocardia/drug effects
- Nocardia/genetics
- Nocardia/metabolism
- Nocardia/pathogenicity
- Nocardia Infections/microbiology
- Nocardia Infections/pathology
- Sequence Analysis, DNA
- Soil Microbiology
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Lucio Vera-Cabrera
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, UANL, Monterrey, NL, México.
| | | | | | | |
Collapse
|
38
|
Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN MICROBIOLOGY 2013; 2013:935736. [PMID: 23724339 PMCID: PMC3658426 DOI: 10.1155/2013/935736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Collapse
|
39
|
Hassan SS, Guimarães LC, Pereira UDP, Islam A, Ali A, Bakhtiar SM, Ribeiro D, Rodrigues dos Santos A, Soares SDC, Dorella F, Pinto AC, Schneider MPC, Barbosa MS, Almeida S, Abreu V, Aburjaile F, Carneiro AR, Cerdeira LT, Fiaux K, Barbosa E, Diniz C, Rocha FS, Ramos RTJ, Jain N, Tiwari S, Barh D, Miyoshi A, Müller B, Silva A, Azevedo V. Complete genome sequence of Corynebacterium pseudotuberculosis biovar ovis strain P54B96 isolated from antelope in South Africa obtained by rapid next generation sequencing technology. Stand Genomic Sci 2012; 7:189-99. [PMID: 23408795 PMCID: PMC3569390 DOI: 10.4056/sigs.3066455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Actinobacteria, Corynebacterium pseudotuberculosis strain P54B96, a nonmotile, non-sporulating and a mesophile bacterium, was isolated from liver, lung and mediastinal lymph node lesions in an antelope from South Africa. This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation. In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation. The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%. The analysis of the genome sequence provides means to better understanding the molecular and genetic basis of virulence of this bacterium, enabling a detailed investigation of its pathogenesis.
Collapse
Affiliation(s)
- Syed Shah Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Carlos Guimarães
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Arshad Islam
- Instituto de Ciências Exatas (ICEX), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amjad Ali
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syeda Marriam Bakhtiar
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dayana Ribeiro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Rodrigues dos Santos
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Siomar de Castro Soares
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Dorella
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Síntia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Abreu
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Aburjaile
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Karina Fiaux
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eudes Barbosa
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Diniz
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavia S. Rocha
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Neha Jain
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Sandeep Tiwari
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Borna Müller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
40
|
Effect of growth media on cell envelope composition and nitrile hydratase stability in Rhodococcus rhodochrous strain DAP 96253. ACTA ACUST UNITED AC 2012; 39:1577-85. [DOI: 10.1007/s10295-012-1168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Rhodococcus is an important industrial microorganism that possesses diverse metabolic capabilities; it also has a cell envelope, composed of an outer layer of mycolic acids and glycolipids. Selected Rhodococcus species when induced are capable of transforming nitriles to the corresponding amide by the enzyme nitrile hydratase (NHase), and subsequently to the corresponding acid via an amidase. This nitrile biochemistry has generated interest in using the rhodococci as biocatalysts. It was hypothesized that altering sugars in the growth medium might impact cell envelope components and have effects on NHase. When the primary carbon source in growth media was changed from glucose to fructose, maltose, or maltodextrin, the NHase activity increased. Cells grown in the presence of maltose and maltodextrin showed the highest activities against propionitrile, 197 and 202 units/mg cdw, respectively. Stability of NHase was also affected as cells grown in the presence of maltose and maltodextrin retained more NHase activity at 55 °C (45 and 23 %, respectively) than cells grown in the presence of glucose or fructose (19 and 10 %, respectively). Supplementation of trehalose in the growth media resulted in increased NHase stability at 55 °C, as cells grown in the presence of glucose retained 40 % NHase activity as opposed to 19 % without the presence of trehalose. Changes in cell envelope components, such mycolic acids and glycolipids, were evaluated by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), respectively. Changing sugars and the addition of inducing components for NHase, such as cobalt and urea in growth media, resulted in changes in mycolic acid profiles. Mycolic acid content increased 5 times when cobalt and urea were added to media with glucose. Glycolipids levels were also affected by the changes in sugars and addition of inducing components. This research demonstrates that carbohydrate selection impacts NHase activity and stability. Cell envelope components such as mycolic acids are also influenced by sugars and inducers such as cobalt and urea. This is information that can be useful when implementing rhodococcal catalysts in industrial applications.
Collapse
|
41
|
Verschoor JA, Baird MS, Grooten J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 2012; 51:325-39. [PMID: 22659327 DOI: 10.1016/j.plipres.2012.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/05/2012] [Accepted: 05/23/2012] [Indexed: 01/08/2023]
Abstract
Mycolic acids constitute the waxy layer of the outer cell wall of Mycobacterium spp. and a few other genera. They are diverse in structure, providing a unique chromatographic foot-print for almost each of the more than 70 Mycobacterium species. Although mainly esterified to cell wall arabinogalactan, trehalose or glucose, some free mycolic acid is secreted during in vitro growth of Mycobacterium tuberculosis. In M. tuberculosis, α-, keto- and methoxy-mycolic acids are the main classes, each differing in their ability to attract neutrophils, induce foamy macrophages or adopt an antigenic structure for antibody recognition. Of interest is their particular relationship to cholesterol, discovered by their ability to attract cholesterol, to bind Amphotericin B or to be recognised by monoclonal antibodies that cross-react with cholesterol. The structural elements that determine this diverse functionality include the carboxylic acid in the mycolic motif, as well as the nature and stereochemistry of the two functional groups in the merochain. The functional diversity of mycolic acid classes implies that much information may be contained in the selective expression and secretion of mycolic acids to establish tuberculosis after infection of the host. Their cholesteroid nature may relate to how they utilize host cholesterol for their persistent survival.
Collapse
Affiliation(s)
- Jan A Verschoor
- Department Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
42
|
Yun JY, Lee JE, Yang KM, Cho S, Kim A, Kwon YU, Park JB. Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives. Bioprocess Biosyst Eng 2011; 35:211-6. [PMID: 21909677 DOI: 10.1007/s00449-011-0594-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/13/2011] [Indexed: 11/27/2022]
Abstract
The effects of structural modification of cell wall on the biotransformation capability by recombinant Corynebacterium glutamicum cells, expressing the chnB gene encoding cyclohexanone monooxygenase of Acinetobacter calcoaceticus NCIMB 9871, were investigated. Baeyer-Villiger oxygenation of 2-(2'-acetoxyethyl) cyclohexanone (MW 170 Da) into R-7-(2'-acetoxyethyl)-2-oxepanone was used as a model reaction. The whole-cell biotransformation followed Michaelis-Menten kinetics. The V (max) and K (S) values were estimated as 96.8 U g(-1) of dry cells and 0.98 mM, respectively. The V (max) was comparable with that of cyclohexanone oxygenation, whereas the K (S) was almost eightfold higher. The K (S) value of 2-(2'-acetoxyethyl) cyclohexanone oxygenation was reduced by ca. 30% via altering the cell envelop structure of C. glutamicum with ethambutol, which inhibits arabinosyl transferases involved in the biosynthesis of cell wall arabinogalactan and mycolate layers. The higher whole-cell biotransformation rate was also observed in the oxygenation of ethyl 2-cyclohexanone acetate upon ethambutol treatment of the recombinant C. glutamicum. Therefore, it was assumed that the biotransformation efficiency of C. glutamicum-based biocatalysts, with respect to medium- to large-sized lipophilic organic substrates (MW > ca. 170), can be enhanced by engineering their cell wall outer layers, which are known to function as a formidable barrier to lipophilic molecules.
Collapse
Affiliation(s)
- Ji-Yeong Yun
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Alonso-Gutiérrez J, Teramoto M, Yamazoe A, Harayama S, Figueras A, Novoa B. Alkane-degrading properties of Dietzia sp. H0B, a key player in the Prestige oil spill biodegradation (NW Spain). J Appl Microbiol 2011; 111:800-10. [PMID: 21767337 DOI: 10.1111/j.1365-2672.2011.05104.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Investigation of the alkane-degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. METHODS AND RESULTS Using molecular and chemical analyses, the alkane-degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n-alkanes ranging from C₁₂ to C₃₈ and branched alkanes (pristane and phytane). 8-Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane-degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR-amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. CONCLUSIONS The results from this study suggest novel alkane-degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil-degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. SIGNIFICANCE AND IMPACT OF THE STUDY This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.
Collapse
|
44
|
Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R. Comparative genomics of cell envelope components in mycobacteria. PLoS One 2011; 6:e19280. [PMID: 21573108 PMCID: PMC3089613 DOI: 10.1371/journal.pone.0019280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/25/2011] [Indexed: 12/26/2022] Open
Abstract
Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like 'DLLAQPTPAW' of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH.
Collapse
Affiliation(s)
- Ruma Banerjee
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Pankaj Vats
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sonal Dahale
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sunitha Manjari Kasibhatla
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Rajendra Joshi
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
45
|
Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 2011; 35:475-97. [PMID: 21204864 DOI: 10.1111/j.1574-6976.2010.00259.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.
Collapse
Affiliation(s)
- Gabriela Gago
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
46
|
Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80. J Lipids 2010; 2011:676535. [PMID: 21490808 PMCID: PMC3066834 DOI: 10.1155/2011/676535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/21/2010] [Indexed: 12/03/2022] Open
Abstract
The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.
Collapse
|
47
|
A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction. J Bacteriol 2010; 192:4776-85. [PMID: 20601476 DOI: 10.1128/jb.00261-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 +/- 6 U mg(-1). Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsDelta0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsDelta0220) or an inactive (ComMsDelta0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsDelta0220 and ComMsDelta0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsDelta0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.
Collapse
|
48
|
Mycobacterial outer membranes: in search of proteins. Trends Microbiol 2010; 18:109-16. [PMID: 20060722 DOI: 10.1016/j.tim.2009.12.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/01/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023]
Abstract
The cell wall is a major virulence factor of Mycobacterium tuberculosis and contributes to its intrinsic drug resistance. Recently, cryo-electron microscopy showed that mycobacterial cell wall lipids form an unusual outer membrane. Identification of the components of the uptake and secretion machinery across this membrane will be crucial for understanding the physiology and pathogenicity of M. tuberculosis and for the development of better anti-tuberculosis drugs. Although the genome of M. tuberculosis appears to encode over 100 putative outer membrane proteins, only a few have been identified and characterized. Here, we summarize the current knowledge on the structure of the mycobacterial outer membrane and its known proteins. Through comparison to transport processes in Gram-negative bacteria, we highlight several hypothetical outer membrane proteins of M. tuberculosis that await discovery.
Collapse
|
49
|
Reconstitution experiments and gene deletions reveal the existence of two-component major cell wall channels in the genus Corynebacterium. J Bacteriol 2009; 192:786-800. [PMID: 19966008 DOI: 10.1128/jb.01142-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two small polypeptides, PorA and PorH, are known to form cell wall channels in Corynebacterium glutamicum and in Corynebacterium efficiens. The genes coding for both polypeptides are localized in close proximity to one another between the genes coding for GroEl2 and a polyphosphate kinase (PKK2). In this study, we investigated the relationship of PorA and PorH to one another. The results suggested that the major cell wall channels of Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae need the obligatory presence of two distinct polypeptides, one of class PorA and one of class PorH, to form an active cell wall channel. Identification of genes coding for homologous proteins in the chromosome of Corynebacterium callunae suggested a similar result for this strain. Contrary to our previous reports on channel-forming proteins in these strains, a heterooligomeric structure composed of PorA and PorH is needed in all of them to form the major cell wall channel. This was concluded from complementation experiments using a porH- and porA-deficient C. glutamicum strain. The stringent necessity of proteins of either class to recover the wild-type channels was demonstrated by black lipid bilayer experiments using detergent or organic solvent extracts of the complemented porH- and porA-deficient C. glutamicum strain. The channel-forming capability of recombinant expressed, affinity-purified PorA and PorH proteins of C. glutamicum revealed that the channels consisted solely of these two components. This agreed with results obtained from a transcript coding for both channel-forming components identified in C. glutamicum by Northern blot analysis and reverse transcription-PCR analysis. The transcription start point of the genes was determined by the rapid amplification of cDNA ends approach, allowing the prediction of the -35 and -10 regions of the promoter. The results demonstrate that the cell wall channels within the genus Corynebacterium may be formed by two-component oligomers.
Collapse
|
50
|
Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill. Appl Environ Microbiol 2009; 75:3407-18. [PMID: 19376924 PMCID: PMC2687268 DOI: 10.1128/aem.01776-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 03/26/2009] [Indexed: 11/20/2022] Open
Abstract
The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected areas with similar characteristics.
Collapse
MESH Headings
- Alkenes/metabolism
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodegradation, Environmental
- Biodiversity
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Geologic Sediments/microbiology
- Hydrocarbons, Aromatic/metabolism
- Mineral Oil
- Molecular Sequence Data
- Nucleic Acid Denaturation
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spain
- Water Pollution, Chemical
Collapse
|