1
|
Hirai M, Amaliin K, Huang JR, Aktar S, Mori Y, Arii J. HHV-6B ribonucleotide reductase sequesters NF-κB subunit p65 to inhibit innate immune responses. iScience 2025; 28:111710. [PMID: 39877902 PMCID: PMC11772975 DOI: 10.1016/j.isci.2024.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Human herpesvirus 6B (HHV-6B) belongs to the genus Roseolovirus of the betaherpesvirus subfamily, causing exanthema subitum and encephalitis. Although viral ribonucleotide reductase (RNR) is conserved in betaherpesviruses, it has lost its enzymatic activity. Human cytomegalovirus (HCMV) belongs to the other betaherpesvirus genus, Cytomegalovirus; its RNR inhibits nuclear factor-kappa B (NF-κB) signaling via interaction with the adaptor molecule RIPK1. However, the significance of enzymatically inactive RNR in roseoviruses is unclear. Here, we show that the RNRs from all three human roseoloviruses inhibit NF-κB activation. HHV-6B RNR sequesters NF-κB subunit p65 in the cytoplasm and inhibits its translocation into the nucleus. Silencing HHV-6B RNR increased the expression of inflammatory molecules in infected cells. This study reveals that inhibiting NF-κB is a conserved role of the RNR in betaherpesviruses but that the precise mechanisms responsible for these effects are different.
Collapse
Affiliation(s)
- Mansaku Hirai
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Khoir Amaliin
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jing Rin Huang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Salma Aktar
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Sucharita S, Krishnagopal A, van Drunen Littel-van den Hurk S. Comprehensive Analysis of the Tegument Proteins Involved in Capsid Transport and Virion Morphogenesis of Alpha, Beta and Gamma Herpesviruses. Viruses 2023; 15:2058. [PMID: 37896835 PMCID: PMC10611259 DOI: 10.3390/v15102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.
Collapse
Affiliation(s)
- Soumya Sucharita
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akshaya Krishnagopal
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
3
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
4
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
5
|
Cheng W, Chen Q, Ren Y, Zhang Y, Lu L, Gui L, Xu D. The identification of viral ribonucleotide reductase encoded by ORF23 and ORF141 genes and effect on CyHV-2 replication. Front Microbiol 2023; 14:1154840. [PMID: 37143536 PMCID: PMC10151572 DOI: 10.3389/fmicb.2023.1154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Ribonucleotide reductase (RR) is essential for the replication of the double-stranded DNA virus CyHV-2 due to its ability to catalyze the conversion of ribonucleotides to deoxyribonucleotides, and is a potential target for the development of antiviral drugs to control CyHV-2 infection. Methods Bioinformatic analysis was conducted to identify potential homologues of RR in CyHV-2. The transcription and translation levels of ORF23 and ORF141, which showed high homology to RR, were measured during CyHV-2 replication in GICF. Co-localization experiments and immunoprecipitation were performed to investigate the interaction between ORF23 and ORF141. siRNA interference experiments were conducted to evaluate the effect of silencing ORF23 and ORF141 on CyHV-2 replication. The inhibitory effect of hydroxyurea, a nucleotide reductase inhibitor, on CyHV-2 replication in GICF cells and RR enzymatic activity in vitro was also evaluated. Results ORF23 and ORF141 were identified as potential viral ribonucleotide reductase homologues in CyHV-2, and their transcription and translation levels increased with CyHV-2 replication. Co-localization experiments and immunoprecipitation suggested an interaction between the two proteins. Simultaneous silencing of ORF23 and ORF141 effectively inhibited the replication of CyHV-2. Additionally, hydroxyurea inhibited the replication of CyHV-2 in GICF cells and the in vitro enzymatic activity of RR. Conclusion These results suggest that the CyHV-2 proteins ORF23 and ORF141 function as viral ribonucleotide reductase and their function makes an effect to CyHV-2 replication. Targeting ribonucleotide reductase could be a crucial strategy for developing new antiviral drugs against CyHV-2 and other herpesviruses.
Collapse
Affiliation(s)
- Wenjie Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yilin Ren
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Dan Xu,
| |
Collapse
|
6
|
Cheng AZ, Moraes SN, Shaban NM, Fanunza E, Bierle CJ, Southern PJ, Bresnahan WA, Rice SA, Harris RS. APOBECs and Herpesviruses. Viruses 2021; 13:v13030390. [PMID: 33671095 PMCID: PMC7998176 DOI: 10.3390/v13030390] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of DNA cytosine deaminases provides a broad and overlapping defense against viral infections. Successful viral pathogens, by definition, have evolved strategies to escape restriction by the APOBEC enzymes of their hosts. HIV-1 and related retroviruses are thought to be the predominant natural substrates of APOBEC enzymes due to obligate single-stranded (ss)DNA replication intermediates, abundant evidence for cDNA strand C-to-U editing (genomic strand G-to-A hypermutation), and a potent APOBEC degradation mechanism. In contrast, much lower mutation rates are observed in double-stranded DNA herpesviruses and the evidence for APOBEC mutation has been less compelling. However, recent work has revealed that Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and herpes simplex virus-1 (HSV-1) are potential substrates for cellular APOBEC enzymes. To prevent APOBEC-mediated restriction these viruses have repurposed their ribonucleotide reductase (RNR) large subunits to directly bind, inhibit, and relocalize at least two distinct APOBEC enzymes—APOBEC3B and APOBEC3A. The importance of this interaction is evidenced by genetic inactivation of the EBV RNR (BORF2), which results in lower viral infectivity and higher levels of C/G-to-T/A hypermutation. This RNR-mediated mechanism therefore likely functions to protect lytic phase viral DNA replication intermediates from APOBEC-catalyzed DNA C-to-U deamination. The RNR-APOBEC interaction defines a new pathogen-host conflict that the virus must win in real-time for transmission and pathogenesis. However, partial losses over evolutionary time may also benefit the virus by providing mutational fuel for adaptation.
Collapse
Affiliation(s)
- Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nadine M. Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elisa Fanunza
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig J. Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J. Southern
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen A. Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| |
Collapse
|
7
|
Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes. J Virol 2020; 94:JVI.01022-20. [PMID: 32878887 DOI: 10.1128/jvi.01022-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.
Collapse
|
8
|
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death.
Collapse
|
9
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
10
|
Shiraki K. Antiviral Drugs Against Alphaherpesvirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:103-122. [PMID: 29896665 DOI: 10.1007/978-981-10-7230-7_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The discovery of acyclovir and penciclovir has led to the development of a successful systemic therapy for treating herpes simplex virus infection and varicella-zoster virus infection, and the orally available prodrugs, valacyclovir and famciclovir, have improved antiviral treatment compliance. Acyclovir and penciclovir are phosphorylated by viral thymidine kinase and are incorporated into the DNA chain by viral DNA polymerase, resulting in chain termination. Helicase-primase plays an initial step in DNA synthesis to separate the double strand into two single strands (replication fork) and is a new target of antiviral therapy. The helicase-primase inhibitors (HPIs) pritelivir and amenamevir have novel mechanisms of action, drug resistance properties, pharmacokinetic characteristics, and clinical efficacy for treating genital herpes. The clinical study of amenamevir in herpes zoster has been completed, and amenamevir has been submitted for approval for treating herpes zoster in Japan. The clinical use of HPIs will be the beginning of a new era of anti-herpes therapy.
Collapse
|
11
|
Abstract
Antiviral transcriptional responses and regulated cell death are crucial components of the host response to virus infection. However, in contrast to the signaling pathways that promote antiviral transcription, those that initiate cell death following virus infection are less understood. Several recent studies have identified pattern recognition receptors (PRRs) of the mammalian innate immune system that activate cell death pathways. These same receptors also have established roles in the induction of antiviral gene expression. In this review we discuss the mechanisms by which PRRs can serve dual roles as initiators of inflammatory gene expression and as inducers of apoptosis and necroptosis following virus infection.
Collapse
Affiliation(s)
- Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kwon KM, Oh SE, Kim YE, Han TH, Ahn JH. Cooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit. PLoS Pathog 2017; 13:e1006423. [PMID: 28570668 PMCID: PMC5469499 DOI: 10.1371/journal.ppat.1006423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/13/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Several viruses have been found to encode a deubiquitinating protease (DUB). These viral DUBs are proposed to play a role in regulating innate immune or inflammatory signaling. In human cytomegalovirus (HCMV), the largest tegument protein encoded by UL48 contains DUB activity, but its cellular targets are not known. Here, we show that UL48 and UL45, an HCMV-encoded inactive homolog of cellular ribonucleotide reductase (RNR) large subunit (R1), target receptor-interacting protein kinase 1 (RIP1) to inhibit NF-κB signaling. Transfection assays showed that UL48 and UL45, which binds to UL48, interact with RIP1 and that UL48 DUB activity and UL45 cooperatively suppress RIP1-mediated NF-κB activation. The growth of UL45-null mutant virus was slightly impaired with showing reduced accumulation of viral late proteins. Analysis of a recombinant virus expressing HA-UL45 showed that UL45 interacts with both UL48 and RIP1 during virus infection. Infection with the mutant viruses also revealed that UL48 DUB activity and UL45 inhibit TNFα-induced NF-κB activation at late times of infection. UL48 cleaved both K48- and K63-linked polyubiquitin chains of RIP1. Although UL45 alone did not affect RIP1 ubiquitination, it could enhance the UL48 activity to cleave RIP1 polyubiquitin chains. Consistently, UL45-null virus infection showed higher ubiquitination level of endogenous RIP1 than HA-UL45 virus infection at late times. Moreover, UL45 promoted the UL48-RIP1 interaction and re-localization of RIP1 to the UL48-containing virion assembly complex. The mouse cytomegalovirus (MCMV)-encoded DUB, M48, interacted with mouse RIP1 and M45, an MCMV homolog of UL45. Collectively, our data demonstrate that cytomegalovirus-encoded DUB and inactive R1 homolog target RIP1 and cooperatively inhibit RIP1-mediated NF-κB signaling at the late stages of HCMV infection. Activation of NF-κB signaling leads to expression of proinflammatory cytokines and chemokines and plays a key role in regulating innate immune response and inflammation to virus infection. HCMV upregulates and downregulates NF-κB signaling during the course of infection. Upregulation of NF-κB signaling may promote viral gene expression or viral dissemination, but its downregulation may be necessary for suppression of excessive immune responses. Recently, it was demonstrated that viral late functions downregulate TNFα- and IL-1β-induced NF-κB activation. However, the viral proteins involved and the underlying mechanisms are not understood. In the present study, we demonstrate that two HCMV proteins, the largest tegument protein harboring deubiquitinase activity and the inactive homolog of cellular ribonucleotide reductase large subunit, cooperatively inhibit RIP1-mediated NF-κB signaling at the late stages of infection. This study for the first time identified RIP1 as a substrate of viral deubiquitinase and highlights the importance of the negative regulation of NF-κB during virus infection.
Collapse
Affiliation(s)
- Ki Mun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Se Eun Oh
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young Eui Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae-Hee Han
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Zhu F, Yuan J, Li HJ, Zeng ZF, Luo ZW, Li SQ, He CQ, Jia XF, Zhang X, Zuo H, Liu YM, Chang M, Li YQ, Zhou TH. Human cytomegalovirus UL49 encodes an early, virion-associated protein essential for virus growth in human foreskin fibroblasts. Arch Virol 2016; 161:1273-84. [PMID: 26898402 DOI: 10.1007/s00705-016-2780-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/30/2016] [Indexed: 11/30/2022]
Abstract
Despite recent results of deletion experiments showing that open reading frame (ORF) UL49 of human cytomegalovirus (HCMV) is essential, the expression, function and functional location of its encoded protein remain unknown. We generated an antibody specific for pUL49 to investigate the protein product encoded by the UL49 ORF and identified its function in HCMV-infected host foreskin fibroblasts. A bacterial artificial chromosome (BAC) of HCMV strain Towne (pRV-Towne) and the UL49-deleted mutant pRV-delUL49Towne were used to observe virus growth by plaque assay. Using a UL49-protein-binding antibody, we located pUL49 in the fibroblast cytoplasm. pUL49 exhibited expression kinetics resembling those of the class β-2 proteins and was detected in the virion tegument. Following deletion of UL49 ORF, the virus failed to replicate, but it could be recovered by addition of pUL49 from pCDNA3.1 (+)-UL49. Our findings indicate that UL49 ORF is essential for HCMV replication in host foreskin fibroblasts.
Collapse
Affiliation(s)
- Feng Zhu
- Guangzhou Occupational Disease Preventive and Treatment Center, Guangzhou No. 12 Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510620, China.
| | - Jian Yuan
- Department of Pathology, Guangdong Key Laboratory for Bioactive Drugs Research Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hong-Jian Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhi-Feng Zeng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhi-Wen Luo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shi-Qian Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Chi-Qiang He
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xue-Fang Jia
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Zuo
- Guangzhou Occupational Disease Preventive and Treatment Center, Guangzhou No. 12 Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510620, China
| | - Yi-Min Liu
- Guangzhou Occupational Disease Preventive and Treatment Center, Guangzhou No. 12 Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510620, China
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14627, USA
| | - Yue-Qin Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tian-Hong Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Mocarski ES, Guo H, Kaiser WJ. Necroptosis: The Trojan horse in cell autonomous antiviral host defense. Virology 2015; 479-480:160-6. [PMID: 25819165 DOI: 10.1016/j.virol.2015.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/12/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem 2015; 290:11635-48. [PMID: 25778401 DOI: 10.1074/jbc.m115.646042] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 12/23/2022] Open
Abstract
Necroptosis is an alternate programmed cell death pathway that is unleashed by caspase-8 compromise and mediated by receptor-interacting protein kinase 3 (RIP3). Murine cytomegalovirus (CMV) and herpes simplex virus (HSV) encode caspase-8 inhibitors that prevent apoptosis together with competitors of RIP homotypic interaction motif (RHIM)-dependent signal transduction to interrupt the necroptosis. Here, we show that pro-necrotic murine CMV M45 mutant virus drives virus-induced necroptosis during nonproductive infection of RIP3-expressing human fibroblasts, whereas WT virus does not. Thus, M45-encoded RHIM competitor, viral inhibitor of RIP activation, sustains viability of human cells like it is known to function in infected mouse cells. Importantly, human CMV is shown to block necroptosis induced by either TNF or M45 mutant murine CMV in RIP3-expressing human cells. Human CMV blocks TNF-induced necroptosis after RIP3 activation and phosphorylation of the mixed lineage kinase domain-like (MLKL) pseudokinase. An early, IE1-regulated viral gene product acts on a necroptosis step that follows MLKL phosphorylation prior to membrane leakage. This suppression strategy is distinct from RHIM signaling competition by murine CMV or HSV and interrupts an execution process that has not yet been fully elaborated.
Collapse
Affiliation(s)
- Shinya Omoto
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hongyan Guo
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ganesh R Talekar
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Linda Roback
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - William J Kaiser
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Edward S Mocarski
- From the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
16
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
17
|
Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X. Codon usage bias in human cytomegalovirus and its biological implication. Gene 2014; 545:5-14. [PMID: 24814188 DOI: 10.1016/j.gene.2014.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Collapse
Affiliation(s)
- Changyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Jing Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
18
|
Mocarski ES, Kaiser WJ, Livingston-Rosanoff D, Upton JW, Daley-Bauer LP. True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. THE JOURNAL OF IMMUNOLOGY 2014; 192:2019-26. [PMID: 24563506 DOI: 10.4049/jimmunol.1302426] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Programmed necrosis mediated by receptor interacting protein kinase (RIP)3 (also called RIPK3) has emerged as an alternate death pathway triggered by TNF family death receptors, pathogen sensors, IFNRs, Ag-specific TCR activation, and genotoxic stress. Necrosis leads to cell leakage and acts as a "trap door," eliminating cells that cannot die by apoptosis because of the elaboration of pathogen-encoded caspase inhibitors. Necrotic signaling requires RIP3 binding to one of three partners-RIP1, DAI, or TRIF-via a common RIP homotypic interaction motif. Once activated, RIP3 kinase targets the pseudokinase mixed lineage kinase domain-like to drive cell lysis. Although necrotic and apoptotic death can enhance T cell cross-priming during infection, mice that lack these extrinsic programmed cell death pathways are able to produce Ag-specific T cells and control viral infection. The entwined relationship of apoptosis and necrosis evolved in response to pathogen-encoded suppressors to support host defense and contribute to inflammation.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
19
|
Smith RM, Kosuri S, Kerry JA. Role of human cytomegalovirus tegument proteins in virion assembly. Viruses 2014; 6:582-605. [PMID: 24509811 PMCID: PMC3939473 DOI: 10.3390/v6020582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022] Open
Abstract
Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation.
Collapse
Affiliation(s)
- Rebecca Marie Smith
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Srivenkat Kosuri
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Julie Anne Kerry
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
20
|
Abstract
UNLABELLED Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. IMPORTANCE Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Collapse
|
21
|
Seirafian S, Prod'homme V, Sugrue D, Davies J, Fielding C, Tomasec P, Wilkinson GWG. Human cytomegalovirus suppresses Fas expression and function. J Gen Virol 2014; 95:933-939. [PMID: 24394698 PMCID: PMC3973480 DOI: 10.1099/vir.0.058313-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on de novo virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.
Collapse
Affiliation(s)
- Sepehr Seirafian
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Virginie Prod'homme
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Daniel Sugrue
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - James Davies
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ceri Fielding
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Peter Tomasec
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gavin W G Wilkinson
- Institute of Infection & Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
22
|
Bhave S, Elford H, McVoy MA. Ribonucleotide reductase inhibitors hydroxyurea, didox, and trimidox inhibit human cytomegalovirus replication in vitro and synergize with ganciclovir. Antiviral Res 2013; 100:151-8. [PMID: 23933116 DOI: 10.1016/j.antiviral.2013.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/15/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Ganciclovir (GCV) is a deoxyguanosine analog that is effective in inhibiting human cytomegalovirus (HCMV) replication. In infected cells GCV is converted to GCV-triphosphate which competes with dGTP for incorporation into the growing DNA strand by the viral DNA polymerase. Incorporated GCV promotes chain termination as it is an inefficient substrate for elongation. Because viral DNA synthesis also relies on cellular ribonucleotide reductase (RR) to synthesize deoxynucleotides, RR inhibitors are predicted to inhibit HCMV replication. Moreover, as dGTP competes with GCV-triphosphate for incorporation, RR inhibitors may also synergize with GCV by reducing intracellular dGTP levels and there by promoting increased GCV-triphosphate utilization by DNA polymerase. To investigate potential of RR inhibitors as anti-HCMV agents both alone and in combination with GCV, HCMV-inhibitory activities of three RR inhibitors, hydroxyurea, didox, and trimidox, were determined. In both spread inhibition and yield reduction assays RR inhibitors had modest anti-HCMV activity with 50% inhibitory concentrations ranging from 36±1.7 to 221±52μM. However, all three showed significant synergy with GCV at concentrations below their 50% inhibitory and 50% toxic concentrations. These results suggest that combining GCV with relatively low doses of RR inhibitors could significantly potentiate the anti-HCMV activity of GCV in vivo and could improve clinical response to therapy.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
23
|
Veksler-Lublinsky I, Shemer-Avni Y, Meiri E, Bentwich Z, Kedem K, Ziv-Ukelson M. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV). BMC Bioinformatics 2012. [PMID: 23206407 PMCID: PMC3598692 DOI: 10.1186/1471-2105-13-322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation.
Collapse
|
24
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
25
|
Reevaluation of the coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J Virol 2012; 86:8959-73. [PMID: 22718821 DOI: 10.1128/jvi.01132-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By comparing the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, virion proteomics independently validated the revised ORF predictions, since only proteins that were conserved across OWM CMVs could be detected. Taken together, these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs than previously assumed.
Collapse
|
26
|
Inhibition of programmed cell death by cytomegaloviruses. Virus Res 2010; 157:144-50. [PMID: 20969904 DOI: 10.1016/j.virusres.2010.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The elimination of infected cells by programmed cell death (PCD) is one of the most ancestral defense mechanisms against infectious agents. This mechanism should be most effective against intracellular parasites, such as viruses, which depend on the host cell for their replication. However, even large and slowly replicating viruses like the cytomegaloviruses (CMVs) can prevail and persist in face of cellular suicide programs and other innate defense mechanisms. During evolution, these viruses have developed an impressive set of countermeasures against premature demise of the host cell. In the last decade, several genes encoding suppressors of apoptosis and necrosis have been identified in the genomes of human and murine CMV (HCMV and MCMV). Curiously, most of the gene products are not homologous to cellular antiapoptotic proteins, suggesting that the CMVs did not capture the genes from the host cell genome. This review summarizes our current understanding of how the CMVs suppress PCD and which signaling pathways they target.
Collapse
|
27
|
Identification of binary interactions between human cytomegalovirus virion proteins. J Virol 2010; 85:440-7. [PMID: 20962080 DOI: 10.1128/jvi.01551-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) virions are composed of a DNA-containing nucleocapsid surrounded by a tegument layer and host-derived lipid envelope studded with virally encoded glycoproteins. These complex virions are estimated to be composed of more than 50 viral proteins. Assembly of HCMV virions is poorly understood, especially with respect to acquisition of the tegument; however, it is thought to involve the stepwise addition of virion components through protein-protein interactions. We sought to identify interactions among HCMV virion proteins using yeast two-hybrid analysis. Using 33 known capsid and tegument proteins, we tested 1,089 pairwise combinations for binary interaction in the two-hybrid assay. We identified 24 interactions among HCMV virion proteins, including 13 novel interactions among tegument proteins and one novel interaction between capsid proteins. Several of these novel interactions were confirmed by coimmunoprecipitation of protein complexes from transfected cells. In addition, we demonstrate three of these interactions in the context of HCMV infection. This study reveals several new protein-protein interactions among HCMV tegument proteins, some of which are likely important for HCMV replication and pathogenesis.
Collapse
|
28
|
Shen AM, Ma GP, Cheng AC, Wang MS, Luo DD, Lu LT, Zhou T, Zhu DK, Luo QH, Jia RY, Chen ZL, Zhou Y, Chen XY. Transcription phase, protein characteristics of DEV UL45 and prokaryotic expression, antibody preparation of the UL45 des-transmembrane domain. Virol J 2010; 7:232. [PMID: 20843372 PMCID: PMC2954856 DOI: 10.1186/1743-422x-7-232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/16/2010] [Indexed: 11/12/2022] Open
Abstract
Background Some UL45 gene function of Herpesvirus was reported. While there was no any report of the duck enteritis virus (DEV) UL45 protein as yet. Results The UL45 gene and des-transmembrane domain of UL45 (named UL45Δ gene, 295-675bp of UL45) of DEV were amplified by PCR and subcloned into the prokaryotic expression vector pET-32a(+). The constructed recombinant plasmids were transformed into the host strain BL21(DE3) PLysS and induced by IPTG. SDS-PAGE analysis showed the UL45 gene couldn't express while UL45Δ gene was highly expressed. His Purify Kit or salting-out could purify the protein effectively. Using the purified protein to immunize New-Zealand rabbits and produce polyclonal antibody. The agar diffusion reaction showed the titer of antibody was 1:32. Western blot analysis indicated the purified rabbit anti-UL45Δ IgG had a high level of specificity and the UL45 gene was a part of DEV genome. The transcription phase study of UL45 gene showed that expression of UL45 mRNA was at a low level from 0 to 18 h post-infection (pi), then accumulated quickly at 24 h pi and peaked at 42 h pi. It can be detected till 72 h pi. Besides, western blot analysis of purified virion and different viral ingredients showed that the UL45 protein resided in the purified virion and the viral envelope. Conclusions The rabbit anti-UL45Δ IgG was produced successfully and it can serve as a good tool for penetrating studies of the function of DEV UL45 protein. The transcription phase and protein characteristics analysis indicated that DEV UL45 gene was a late gene and UL45 protein may be a viral envelope protein.
Collapse
Affiliation(s)
- Ai-Mei Shen
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 2010; 6:e1000984. [PMID: 20628573 PMCID: PMC2900304 DOI: 10.1371/journal.ppat.1000984] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens. Efficient genome replication is central to the virulence of all DNA viruses, including poxviruses. To ensure replication efficiency, many of the more virulent poxviruses encode their own nucleotide metabolism machinery, including ribonucleotide reductase (RR) enzymes, which act to provide ample DNA precursors for replication. RR enzymes require both large (R1) and small (R2) subunit proteins for activity. Curiously, some poxviruses only encode R2 subunits. Other poxviruses, such as the smallpox vaccine strain, vaccinia virus (VACV), encode both R1 and R2 subunits. We report here that the R2, but not the R1, subunit of VACV RR is required for efficient replication and virulence. We also provide evidence that several poxvirus R2 proteins form novel complexes with host R1 subunits and this interaction is required for efficient VACV replication in primate cells. Our study explains why some poxviruses only encode R2 subunits and identifies a role for these proteins in poxvirus pathogenesis. Furthermore, we provide evidence that mutant poxviruses unable to generate R2 proteins may become entirely dependent upon host RR activity. This may restrict their replication to cells that over-express RR proteins such as cancer cells, making them potential therapeutics for human malignancies.
Collapse
Affiliation(s)
- Don B. Gammon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Branawan Gowrishankar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Duraffour
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Andoniou CE. Suicide watch: how cytomegalovirus interferes with the cell-death pathways of infected cells. ACTA ACUST UNITED AC 2010; 76:1-8. [PMID: 20403148 DOI: 10.1111/j.1399-0039.2010.01494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytomegaloviruses (CMVs) are a family of species-specific viruses that have evolved sophisticated methods to interfere with the host's ability to generate innate and adaptive immune responses. In addition, CMVs must guard against another host defence mechanism, namely the induction of apoptosis that results in the elimination of infected cells. The importance of inhibiting cell death to the evolutionary survival of CMVs is underlined by the fact that these viruses encode an array of molecules devoted to interfering with host apoptotic pathways. CMVs have also been recognised for their ability to inhibit non-apoptotic forms of cells death. Recent publications have provided important insights into how some of these CMV-encoded molecules mediate their pro-survival effects, and this review will compare the mechanisms used by various members of the CMV family to prevent the premature death of the host cell. The capacity for some of the virally encoded cell-death inhibitors to mediate effects unrelated to the suppression of cell death will also be discussed.
Collapse
Affiliation(s)
- C E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia.
| |
Collapse
|
31
|
Regulation of p53R2 and its role as potential target for cancer therapy. Cancer Lett 2009; 276:1-7. [DOI: 10.1016/j.canlet.2008.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 12/16/2022]
|
32
|
Lembo D, Brune W. Tinkering with a viral ribonucleotide reductase. Trends Biochem Sci 2008; 34:25-32. [PMID: 18990579 DOI: 10.1016/j.tibs.2008.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Ribonucleotide reductase (RNR), a crucial enzyme for nucleotide anabolism, is encoded by all living organisms and by large DNA viruses such as the herpesviruses. Surprisingly, the beta-herpesvirus subfamily RNR R1 subunit homologues are catalytically inactive and their function remained enigmatic for many years. Recent work sheds light on the function of M45, the murine cytomegalovirus R1 homologue; during viral evolution, M45 apparently lost its original RNR activity but gained the ability, via inhibiting RIP1, a cellular adaptor protein, to block cellular signaling pathways involved in innate immunity and inflammation. The discovery of this novel mechanism of viral immune subversion provides further support to the concept of evolutionary tinkering.
Collapse
Affiliation(s)
- David Lembo
- Department of Clinical and Biological Sciences, University of Turin, S Luigi Gonzaga Hospital, Orbassano, Turin, Italy.
| | | |
Collapse
|
33
|
Abstract
Caspase-dependent apoptosis has an important role in controlling viruses, and as a result, viruses often encode proteins that target this pathway. Caspase-dependent apoptosis can be activated from within the infected cell as an intrinsic response to replication-associated stresses or through death-inducing signals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA suggests that each is necessary and sufficient to promote survival of infected cells undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, IE1(491a), and IE2(579aa), can prevent apoptosis induced by various stimuli, while viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, beta2.7, binds mitochondrial respiratory complex I, maintains ATP production late in infection, and prevents death induced by a mitochondrial poison. Thus, CMV alters cell intrinsic defenses employing apoptosis, and multiple viral gene products together control death-inducing stimuli to promote survival.
Collapse
Affiliation(s)
- A L McCormick
- Department of Microbiology & Immunology, Emory Vaccine Center, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Abstract
The human cytomegalovirus (HCMV) can infect a remarkably broad cell range within its host, including parenchymal cells and connective tissue cells of virtually any organ and various hematopoietic cell types. Epithelial cells, endothelial cells, fibroblasts and smooth muscle cells are the predominant targets for virus replication. The pathogenesis of acute HCMV infections is greatly influenced by this broad target cell range. Infection of epithelial cells presumably contributes to inter-host transmission. Infection of endothelial cells and hematopoietic cells facilitates systemic spread within the host. Infection of ubiquitous cell types such as fibroblasts and smooth muscle cells provides the platform for efficient proliferation of the virus. The tropism for endothelial cells, macrophages and dendritic cells varies greatly among different HCMV strains, mostly dependent on alterations within the UL128-131 gene locus. In line with the classification of the respective proteins as structural components of the viral envelope, interstrain differences concerning the infectivity in endothelial cells and macrophages are regulated on the level of viral entry.
Collapse
|
35
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
36
|
Kalejta RF. Functions of human cytomegalovirus tegument proteins prior to immediate early gene expression. Curr Top Microbiol Immunol 2008; 325:101-15. [PMID: 18637502 DOI: 10.1007/978-3-540-77349-8_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins within the tegument layer of herpesviruses such as human cytomegalovirus (HCMV) are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active, and they mediate key events at the very start of the lytic infectious cycle, including the delivery of the viral genome to the nucleus and the initiation of viral gene expression. This review examines what is known about tegument protein function prior to the immediate early (IE) phase of the viral lytic replication cycle and identifies key questions that need to be answered to better understand how these proteins promote HCMV infection so that antiviral treatments that target these important viral regulators can be developed.
Collapse
Affiliation(s)
- R F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706-1596, USA.
| |
Collapse
|
37
|
Chabaud S, Sasseville AMJ, Elahi SM, Caron A, Dufour F, Massie B, Langelier Y. The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J Gen Virol 2007; 88:384-394. [PMID: 17251554 DOI: 10.1099/vir.0.82383-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The R1 subunit (ICP10) of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (RR), which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 aa, protects cells against apoptosis. As the NH2domain on its own is not antiapoptotic, it has been postulated that both domains of R1 or part(s) of them could be necessary for this function. Here, N- and C-terminal deletions were introduced in HSV-2 R1 to map the domain(s) involved in its antiapoptotic potential. The results showed that, whereas most of the NH2domain including part of the recently described putativeα-crystallin domain is dispensable for antiapoptotic activity, it is the integrity of the structured RR domain that is required for protection. As theα-crystallin domain appears to play an important role in protein folding and oligomerization, the N-terminal boundary of the antiapoptotic domain could not be defined precisely. In addition, this study provided evidence that overexpression of HSV-2 R2 at levels up to 30-fold more than HSV-2 R1 did not decrease protection from tumour necrosis factor alpha, indicating that the R1 surface where R2 binds is not involved in antiapoptotic activity. Importantly, this result suggests that the co-expression of both RR subunits during the lytic cycle should not affect protection from this cytokine.
Collapse
Affiliation(s)
- Stéphane Chabaud
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - A Marie-Josée Sasseville
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - Seyyed Mehdy Elahi
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Antoine Caron
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Florent Dufour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - Bernard Massie
- INRS-IAF, Université du Québec, Laval, QC H7N 4Z3, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, QC, Canada
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Yves Langelier
- Département de Médecine, Université de Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| |
Collapse
|
38
|
Lembo D, Donalisio M, Cornaglia M, Azzimonti B, Demurtas A, Landolfo S. Effect of high-risk human papillomavirus oncoproteins on p53R2 gene expression after DNA damage. Virus Res 2006; 122:189-93. [PMID: 16872707 DOI: 10.1016/j.virusres.2006.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 12/11/2022]
Abstract
The p53R2 protein is a p53-inducible small subunit of ribonucleotide reductase. It plays a crucial role in p53-dependent cellular response to DNA damage and oxidative stress by providing deoxyribonucleotides (dNTPs) to the DNA repair machinery and by scavenging reactive oxygen species (ROS). To investigate the effects of high-risk human papillomavirus (HPV) oncoproteins on p53R2 expression after DNA damage, we analyzed the p53R2 protein levels in human cells ectopically expressing the HPV-16 E6 and E7 genes, and in the HPV-positive cancer cell lines SiHa, CaSki and HeLa, exposed to adriamycin or to H(2)O(2). We found that in normal cells, p53R2 expression is efficiently induced by both H(2)O(2) and adriamycin, supporting the role of p53R2 in cellular response to oxidative stress. Ectopic expression of E6 impaired p53 and p53R2 induction after DNA damage in human fibroblasts. Moreover, SiHa, CaSki and HeLa cells were unresponsive to H(2)O(2) exposure, and adriamycin induced p53R2 levels only in SiHa cells. Our results imply that high-risk HPV infection may suppress the p53R2-dependent dNTPs supply to the DNA repair system and the ROS scavenging activity; they also suggest that an altered p53R2 response to genotoxins and to oxidative stress may contribute to HPV-induced genetic instability and carcinogenesis.
Collapse
Affiliation(s)
- David Lembo
- Department of Public Health and Microbiology, University of Turin, Via Santena 9, 10126 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Andoniou CE, Degli-Esposti MA. Insights into the mechanisms of CMV‐mediated interference with cellular apoptosis. Immunol Cell Biol 2006; 84:99-106. [PMID: 16405657 DOI: 10.1111/j.1440-1711.2005.01412.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
40
|
Patrone M, Secchi M, Fiorina L, Ierardi M, Milanesi G, Gallina A. Human cytomegalovirus UL130 protein promotes endothelial cell infection through a producer cell modification of the virion. J Virol 2005; 79:8361-73. [PMID: 15956581 PMCID: PMC1143720 DOI: 10.1128/jvi.79.13.8361-8373.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) growth in endothelial cells (EC) requires the expression of the UL131A-128 locus proteins. In this study, the UL130 protein (pUL130), the product of the largest gene of the locus, is shown to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form. To investigate the mechanism of the UL130-mediated promotion of viral growth in EC, we performed a complementation analysis of a UL130 mutant strain. To provide UL130 in trans to viral infections, we constructed human embryonic lung fibroblast (HELF) and human umbilical vein endothelial cell (HUVEC) derivative cell lines that express UL130 via a retroviral vector. When the UL130-negative virus was grown in UL130-complementing HELF, the infectivity of progeny virions for HUVEC was restored to the wild-type level. In contrast, the infectivity of the UL130-negative virus for UL130-complementing HUVEC was low and similar to that of the same virus infecting control noncomplementing HUVEC. The UL130-negative virus, regardless of whether or not it had been complemented in the prior cycle, could form plaques only on UL130-complementing HUVEC, not control HUVEC. Because (i) both wild-type and UL130-transcomplemented virions maintained their infectivity for HUVEC after purification, (ii) UL130 failed to complement in trans the UL130-negative virus when it was synthesized in a cell separate from the one that produced the virions, and (iii) pUL130 is a virion protein, models are favored in which pUL130 acquisition in the producer cell renders HCMV virions competent for a subsequent infection of EC.
Collapse
Affiliation(s)
- Marco Patrone
- Department of Medicine, Surgery and Dentistry, University of Milano, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Kattenhorn LM, Mills R, Wagner M, Lomsadze A, Makeev V, Borodovsky M, Ploegh HL, Kessler BM. Identification of proteins associated with murine cytomegalovirus virions. J Virol 2004; 78:11187-97. [PMID: 15452238 PMCID: PMC521832 DOI: 10.1128/jvi.78.20.11187-11197.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteins associated with the murine cytomegalovirus (MCMV) viral particle were identified by a combined approach of proteomic and genomic methods. Purified MCMV virions were dissociated by complete denaturation and subjected to either separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel digestion or treated directly by in-solution tryptic digestion. Peptides were separated by nanoflow liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS). The MS/MS spectra obtained were searched against a database of MCMV open reading frames (ORFs) predicted to be protein coding by an MCMV-specific version of the gene prediction algorithm GeneMarkS. We identified 38 proteins from the capsid, tegument, glycoprotein, replication, and immunomodulatory protein families, as well as 20 genes of unknown function. Observed irregularities in coding potential suggested possible sequence errors in the 3'-proximal ends of m20 and M31. These errors were experimentally confirmed by sequencing analysis. The MS data further indicated the presence of peptides derived from the unannotated ORFs ORF(c225441-226898) (m166.5) and ORF(105932-106072). Immunoblot experiments confirmed expression of m166.5 during viral infection.
Collapse
Affiliation(s)
- Lisa M Kattenhorn
- Pathology Functional Proteomics Center, Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moorman NJ, Lin CY, Speck SH. Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 2004; 78:10282-90. [PMID: 15367594 PMCID: PMC516406 DOI: 10.1128/jvi.78.19.10282-10290.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current methods for determining the role of a given gene product in the gammaherpesvirus 68 (gammaHV68) life cycle require generation of a specific mutation by either homologous recombination in mammalian cells or bacterial artificial chromosome-mediated mutagenesis in Escherichia coli. The mutant virus is then compared to wild-type virus, and the role of the gene in the viral life cycle is deduced from its phenotype. This process is both time-consuming and labor intensive. Here we present the use of random, transposon-mediated signature-tagged mutagenesis for the identification of candidate viral genes involved in virus replication. Pools of viral mutants, each containing a random insertion of a transposon, were generated with a transposon donor library in which each transposon contains a unique sequence identifier. These pools were transfected into mammalian cells, and the ability of each mutant to replicate was assessed by comparing the presence of virus in the output pool to that present in the input pool of viral genomes. With this approach we could rapidly screen up to 96 individual mutants simultaneously. The location of the transposon insertion was determined by sequencing individual clones with a common primer specific for the transposon end. Here we present the characterization of 53 distinct viral mutants that correspond to insertions in 29 open reading frames within the gammaHV68 genome. To confirm the results of the signature-tagged mutagenesis screen, we quantitated the ability of each mutant to replicate compared to wild-type gammaHV68. From these analyses we identified 16 gammaHV68 open reading frames that, when disrupted by transposon insertions, score as essential for virus replication, and six other open reading frames whose disruption led to significant attenuation of virus replication. In addition, transposon insertion in five other gammaHV68 open reading frames did not affect virus replication. Notably, all but one of the candidate essential replication genes identified in this screen have been shown to be essential for the replication of at least one other herpesvirus.
Collapse
Affiliation(s)
- Nathaniel J Moorman
- Center for Emerging Infectious Diseases, Division of Microbiology & Immunology, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
44
|
Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 2004; 78:10023-33. [PMID: 15331735 PMCID: PMC515016 DOI: 10.1128/jvi.78.18.10023-10033.2004] [Citation(s) in RCA: 404] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects and morbidity in immunocompromised patients and a potential trigger for vascular disease. HCMV replicates in vascular endothelial cells and drives leukocyte-mediated viral dissemination through close endothelium- leukocyte interaction. However, the genetic basis of HCMV growth in endothelial cells and transfer to leukocytes is unknown. We show here that the UL131-128 gene locus of HCMV is indispensable for both productive infection of endothelial cells and transmission to leukocytes. The experimental evidence for this is based on both the loss-of-function phenotype in knockout mutants and natural variants and the gain-of-function phenotype by trans-complementation with individual UL131, UL130, and UL128 genes. Our findings suggest that a common mechanism of virus transfer may be involved in both endothelial cell tropism and leukocyte transfer and shed light on a crucial step in the pathogenesis of HCMV infection.
Collapse
Affiliation(s)
- Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung Virologie, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dietrich J, Blumberg BM, Roshal M, Baker JV, Hurley SD, Mayer-Pröschel M, Mock DJ. Infection with an endemic human herpesvirus disrupts critical glial precursor cell properties. J Neurosci 2004; 24:4875-83. [PMID: 15152048 PMCID: PMC6729472 DOI: 10.1523/jneurosci.5584-03.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human herpesvirus 6 (HHV-6), a common resident virus of the human CNS, has been implicated in both acute and chronic inflammatory--demyelinating diseases. Although HHV-6 persists within the human CNS and has been described to infect mature oligodendrocytes, nothing is known about the susceptibility of glial precursors, the ancestors of myelin-producing oligodendrocytes, to viral infection. We show that HHV-6 infects human glial precursor cells in vitro. Active infection was demonstrated by both electron microscopy and expression of viral gene transcripts and proteins, with subsequent formation of cell syncytia. Infection leads to alterations in cell morphology and impairment of cell replication but not increased cell death. Infected cells showed decreased proliferation as measured by bromodeoxyuridine uptake, which was confirmed by blunting of the cell growth rate of infected cells compared with uninfected controls over time. The detailed analysis using novel, fluorescent-labeled HHV-6A or HHV-6B reagents demonstrated strong G1/S phase inhibition in infected precursor cells. Cell cycle arrest in HHV-6-infected cells was associated with a profound decrease in the expression of the glial progenitor cell marker A2B5 and a corresponding increase in the oligodendrocyte differentiation marker GalC. These data demonstrate for the first time that infection of primary human glial precursor cells with a neurologically relevant human herpesvirus causes profound alterations of critical precursor cell properties. In light of recent observations that repair of CNS demyelination is dependent on the generation of mature oligodendrocytes from the glial precursor cell pool, these findings may have broad implications for both the ineffective repair seen in demyelinating diseases and the disruption of normal glial maturation.
Collapse
Affiliation(s)
- Joerg Dietrich
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|