1
|
Elois MA, Pavi CP, Jempierre YFSH, Pilati GVT, Zanchetta L, Grisard HBDS, García N, Rodríguez-Lázaro D, Fongaro G. Trends and Challenges in the Detection and Environmental Surveillance of the Hepatitis E Virus. Microorganisms 2025; 13:998. [PMID: 40431171 PMCID: PMC12114463 DOI: 10.3390/microorganisms13050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is acute in low-income countries, HEV has also been recognized as a zoonotic disease in high-income countries. The zoonotic transmission requires flexible approaches to effectively monitor the virus, vectors, and reservoirs. However, the environmental monitoring of HEV presents additional challenges due to limitations in current detection methods, making it difficult to accurately assess the global prevalence of the virus. These challenges hinder efforts to fully understand the scope of the disease and to implement effective control measures. This review will explore these and other critical concerns, addressing gaps in HEV research and highlighting the need for improved strategies in the monitoring, prevention, and management of Hepatitis E using a One Health approach.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Yasmin Ferreira Souza Hoffmann Jempierre
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Lucas Zanchetta
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Nerea García
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain;
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| |
Collapse
|
2
|
Orf GS, Bbosa N, Berg MG, Downing R, Weiss SL, Ssemwanga D, Ssekagiri A, Ashraf S, da Silva Filipe A, Kiiza R, Buule J, Namagembe HS, Nabirye SE, Kayiwa J, Deng LL, Wani G, Maror JA, Baguma A, Mogga JJH, Kamili S, Thomson EC, Kaleebu P, Cloherty GA. The 2023 South Sudanese outbreak of Hepatitis E emphasizes ongoing circulation of genotype 1 in North, Central, and East Africa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105667. [PMID: 39251076 PMCID: PMC11413618 DOI: 10.1016/j.meegid.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
In April 2023, an outbreak of acute hepatitis was reported amongst internally displaced persons in the Nazareth community of South Sudan. IgM serology-based screening suggested the likely etiologic agent to be Hepatitis E virus (HEV). In this study, plasma specimens collected from anti-HEV IgM-positive cases were subjected to additional RT-qPCR testing and sequencing of extracted nucleic acids, resulting in the recovery of five full and eight partial HEV genomes. Maximum likelihood phylogenetic reconstruction confirmed the genomes belong to HEV genotype 1. Using distance-based methods, we show that genotype 1 is best split into three sub-genotypes instead of the previously proposed seven, and that these sub-genotypes are geographically restricted. The South Sudanese sequences confidently cluster within sub-genotype 1e, endemic to northeast, central, and east Africa. Bayesian Inference of phylogeny incorporating sampling dates shows that this new outbreak is not directly descended from other recent local outbreaks for which sequence data is available. However, the analysis suggests that sub-genotype 1e has been consistently and cryptically circulating locally for at least the past half century and that the known outbreaks are often not directly descended from one another. The ongoing presence of HEV, combined with poor sanitation and hygiene in the conflict-affected areas in the region, place vulnerable populations at risk for infection and its more serious effects, including progression to fulminant hepatitis.
Collapse
Affiliation(s)
- Gregory S Orf
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, USA; Abbott Pandemic Defense Coalition, Abbott Park, IL, USA.
| | - Nicholas Bbosa
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA; Uganda Virus Research Institute, Entebbe, Uganda; MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Michael G Berg
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, USA; Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Robert Downing
- Abbott Pandemic Defense Coalition, Abbott Park, IL, USA; Uganda Virus Research Institute, Entebbe, Uganda
| | - Sonja L Weiss
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, USA; Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| | - Deogratius Ssemwanga
- Uganda Virus Research Institute, Entebbe, Uganda; MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | | | - Ronald Kiiza
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Joshua Buule
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | - John Kayiwa
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Lul Lojok Deng
- National Public Health Laboratory (NPHL), Ministry of Health, Juba, South Sudan
| | - Gregory Wani
- National Public Health Laboratory (NPHL), Ministry of Health, Juba, South Sudan
| | - James A Maror
- National Public Health Laboratory (NPHL), Ministry of Health, Juba, South Sudan
| | - Andrew Baguma
- World Health Organization, Juba, South Sudan; Department of Microbiology, Kabale University School of Medicine, Kabale, Uganda
| | | | - Saleem Kamili
- Epidemiology and Surveillance Branch, U.S. Centers for Disease Control, Atlanta, GA, USA
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK; Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Pontiano Kaleebu
- Uganda Virus Research Institute, Entebbe, Uganda; MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gavin A Cloherty
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, USA; Abbott Pandemic Defense Coalition, Abbott Park, IL, USA
| |
Collapse
|
3
|
Traore KA, Akapovi MM, Ouedraogo N, Ouoba JB, Roques P, Barro N. Geographical distribution of enteric pathogenic viruses in Burkina Faso: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:756. [PMID: 39080551 PMCID: PMC11290313 DOI: 10.1186/s12879-024-09668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Viruses, which are transmitted mainly via the digestive tract, are responsible for the high morbidity and mortality of diseases, particularly in low-income countries. Although several studies have established the prevalence and characterization of various enteric viruses in Burkina Faso, to date, no aggregate data have been released. OBJECTIVE Our objective was to describe the available data on the prevalence and circulating genotypes of enteric pathogen viruses responsible for human infections in Burkina Faso by carrying out a systematic review and meta-analysis. METHODS Potentially relevant studies were identified by a search of PubMed, ScienceDirect, Google Scholar, university libraries and by a manual search of the reference lists of identified studies. The search with no restrictions on language or age was limited to studies conducted only in Burkina. Study selection, data extraction, and methodological quality of the included studies were performed independently by two investigators. Heterogeneity between studies was assessed using the Cochrane Q test and I2 test statistics based on the random effects model. Comprehensive meta-analysis (CMA 3.7) was employed to compute the pooled prevalence of pathogens identified in the studies. RESULTS Forty-three (43) studies reporting 4,214 diagnosed cases in all aged human populations were selected. Overall, 72.6% of the pathogens diagnosed were gastroenteritis, and 27.2% were entero-transmissible hepatitis viruses. Rotavirus was the most common cause of human viral gastroenteritis, accounting for 27.7% (95% CI: 20.9 - 35.8) of the cases, followed by norovirus (16% (95% CI: 12.25 - 20.6)) and sapovirus (11.2% (95% CI: 6.2 - 19.4)). In terms of human entero-transmissible infections, hepatitis A virus (HAV) was the most prevalent (52% [95% CI: 14.2-87.7] of total antibodies), followed by hepatitis E virus (HEV) (28.3% [95% CI: 17.7-42]). CONCLUSIONS This study highlights the substantial burden of viral enteric infections and highlights the need for more molecular epidemiological studies to improve preventive measures against these viruses.
Collapse
Affiliation(s)
- Kuan Abdoulaye Traore
- Laboratoire Sciences de la Vie et de la Terre (LaSVT), Université Norbert ZONGO (UNZ), Koudougou, Burkina Faso.
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.
| | - Messanh Marius Akapovi
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Nafissatou Ouedraogo
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Université de Dédougou (UDD), Dédougou, Burkina Faso
| | - Jean Bienvenue Ouoba
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Centre universitaire de Manga (CUM), Manga, Burkina Faso
| | - Pierre Roques
- Virology Unit, Institut Pasteur de Guinée (IPGui), Conakry, Guinea
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| |
Collapse
|
4
|
Molini U, Franzo G, de Villiers L, van Zyl L, de Villiers M, Khaiseb S, Busch F, Knauf S, Dietze K, Eiden M. Serological survey on Hepatitis E virus in Namibian dogs, cats, horses, and donkeys. Front Vet Sci 2024; 11:1422001. [PMID: 39091395 PMCID: PMC11292797 DOI: 10.3389/fvets.2024.1422001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The present study investigated the seropositivity rate of Hepatitis E virus (HEV) in domestic and working animals in Namibia, which included dogs, cats, horses, and donkeys. HEV poses a growing threat as a significant cause of human hepatitis globally and has several genotypes of varying zoonotic potential. As epidemiological data on the seroprevalence of HEV in Namibia is scarce, a serosurvey was conducted on archived serum samples of 374 dogs, 238 cats, 98 horses, and 60 donkeys collected between 2018 and 2022 from different regions, to assess the potential of these animals as sources of HEV infection. The findings revealed that 10.43% (n = 39/374) canine and 5.88% (n = 14/238) feline samples tested positive for HEV antibodies, whereas no seropositivity was detected in horses and donkeys. The study further examined the risk factors associated with HEV seropositivity, including animal sex, age, and geographical region, and noted a higher prevalence in dogs living in areas with intensive pig farming. Although there is no direct evidence indicating that these animals served as major reservoirs for HEV transmission to humans, the study underscores the importance of preventive measures to minimize contact exposure with pets considering the potential zoonotic risk, especially for susceptible risk groups. Further research is needed to explore the zoonotic potential of domestic animals and the epidemiological links between animal and human HEV transmissions in Namibia.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
- Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Lourens de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Leandra van Zyl
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Mari de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | | | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
- One Health/International Animal Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Zahmanova G, Takova K, Lukov GL, Andonov A. Hepatitis E Virus in Domestic Ruminants and Virus Excretion in Milk-A Potential Source of Zoonotic HEV Infection. Viruses 2024; 16:684. [PMID: 38793568 PMCID: PMC11126035 DOI: 10.3390/v16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Georgi L. Lukov
- Faculty of Sciences, Brigham Young University–Hawaii, Laie, HI 96762, USA
| | - Anton Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
6
|
Viera-Segura O, Calderón-Flores A, Batún-Alfaro JA, Fierro NA. Tracing the History of Hepatitis E Virus Infection in Mexico: From the Enigmatic Genotype 2 to the Current Disease Situation. Viruses 2023; 15:1911. [PMID: 37766316 PMCID: PMC10536485 DOI: 10.3390/v15091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis worldwide. This virus is responsible for waterborne outbreaks in low-income countries and zoonosis transmission in industrialized regions. Initially, considered self-limiting, HEV may also lead to chronic disease, and evidence supports that infection can be considered a systemic disease. In the late 1980s, Mexico became a hot spot in the study of HEV due to one of the first virus outbreaks in Latin America related to enterically transmitted viral non-A, non-B hepatitis. Viral stool particles recovered from Mexican viral hepatitis outbreaks represented the first identification of HEV genotype (Gt) 2 (Gt2) in the world. No new findings of HEV-Gt2 have been reported in the country, whereas this genotype has been found in countries on the African continent. Recent investigations in Mexico have identified other strains (HEV-Gt1 and -Gt3) and a high frequency of anti-HEV antibodies in animal and human populations. Herein, the potential reasons for the disappearance of HEV-Gt2 in Mexico and the advances in the study of HEV in the country are discussed along with challenges in studying this neglected pathogen. These pieces of information are expected to contribute to disease control in the entire Latin American region.
Collapse
Affiliation(s)
- Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Calderón-Flores
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julio A. Batún-Alfaro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nora A. Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Khuroo MS. Discovery of Hepatitis E and Its Impact on Global Health: A Journey of 44 Years about an Incredible Human-Interest Story. Viruses 2023; 15:1745. [PMID: 37632090 PMCID: PMC10459142 DOI: 10.3390/v15081745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The story of the discovery of hepatitis E originated in the late 1970s with my extreme belief that there was a hidden saga in the relationship between jaundice and pregnancy in developing countries and the opportunity for a massive epidemic of viral hepatitis, which hit the Gulmarg Kashmir region in November 1978. Based on data collected from a door-to-door survey, the existence of a new disease, epidemic non-A, non-B hepatitis, caused by a hitherto unknown hepatitis virus, was announced. This news was received by the world community with hype and skepticism. In the early 1980s, the world watched in awe as an extreme example of human self-experimentation led to the identification of VLP. In 1990, a cDNA clone from the virus responsible for epidemic non-A, non-B hepatitis was isolated. Over the years, we traversed three eras of ambiguity, hope, and hype of hepatitis E research and conducted several seminal studies to understand the biology of HEV and manifestations of hepatitis E. Many milestones have been reached on the long and winding road of hepatitis E research to understand the structure, biology, and diversity of the agent, changing the behavior of the pathogen in developed countries, and the discovery of a highly effective vaccine.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu & Kashmir 190010, India
| |
Collapse
|
8
|
Ostankova YV, Shchemelev AN, Boumbaly S, Balde TAL, Zueva EB, Valutite DE, Serikova EN, Davydenko VS, Skvoroda VV, Vasileva DA, Semenov AV, Esaulenko EV, Totolian AA. Prevalence of HIV and Viral Hepatitis Markers among Healthcare Workers in the Republic of Guinea. Diagnostics (Basel) 2023; 13:diagnostics13030378. [PMID: 36766482 PMCID: PMC9914033 DOI: 10.3390/diagnostics13030378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Healthcare workers are much more likely to be infected with HIV and hepatitis viruses compared to the general population. Although healthcare workers are more aware of HIV and hepatitis viruses, several countries in Africa lack a comprehensive grasp of disease routes and transmission risks. The aim of this study was to assess the prevalence of the serological and molecular biological markers of HIV and viral hepatitis among healthcare workers in the Republic of Guinea. The study material was 74 blood serum samples collected from healthcare workers who received additional training at the Institute of Applied Biological Research of Guinea (IRBAG, Kindia, Republic of Guinea). The markers examined included HBsAg, HBeAg, anti-HBs IgG, anti-HBcore IgG, anti-HCV qualitative determination, anti-HEV IgM and IgG, anti-HAV IgM and IgG, and anti-HIV. For viral DNA and RNA detection, nucleic acids were extracted from blood serum, and viral presence was inferred using real-time PCR with hybridization fluorescence detection. A high prevalence of viral hepatitis B markers was shown, and significantly fewer cases of viral hepatitis C and HIV were detected. Almost all examined medical workers had anti-HAV IgG antibodies, but no antibodies to hepatitis E virus. Apparently, the identified markers depend on the general prevalence of certain pathogens in the region and are associated with the traditions and characteristics of the country's residents.
Collapse
Affiliation(s)
- Yulia V Ostankova
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Alexander N Shchemelev
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Sanaba Boumbaly
- Institute of Applied Biological Research of Guinea (IRBAG), Kindia 100 BP 75, Guinea
- Centre International de Recherche sur les Infections Tropicales en Guinée, Nzerekore 400 BP, Guinea
| | - Thierno A L Balde
- Institute of Applied Biological Research of Guinea (IRBAG), Kindia 100 BP 75, Guinea
| | - Elena B Zueva
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Diana E Valutite
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Elena N Serikova
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Vladimir S Davydenko
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Vsevolod V Skvoroda
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Daria A Vasileva
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Alexander V Semenov
- Ekaterinburg Research Institute of Viral Infections, State Research Center of Virology and Biotechnology Vector of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 620030 Ekaterinburg, Russia
| | - Elena V Esaulenko
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| | - Areg A Totolian
- Saint Petersburg Pasteur Institut of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor), 197101 Saint Petersburg, Russia
| |
Collapse
|
9
|
Geng Y, Shi T, Wang Y. Epidemiology of Hepatitis E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:33-48. [PMID: 37223857 DOI: 10.1007/978-981-99-1304-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is globally prevalent with relatively high percentages of anti-HEV immunoglobulin G-positive individuals in the populations of developing and developed countries. There are two distinct epidemiological patterns of hepatitis E. In areas with high disease endemicity, primarily developing countries in Asia and Africa, this disease is caused mainly by genotypes HEV-1 or HEV-2; both genotypes transmit predominantly through contaminated water and occur as either outbreaks or sporadic cases of acute hepatitis. The acute hepatitis has the highest attack rate in young adults and is particularly severe among pregnant women. In developed countries, sporadic cases of locally acquired HEV-3 or HEV-4 infection are observed. The reservoir of HEV-3 and HEV-4 is believed to be animals, such as pigs, with zoonotic transmission to humans. The affected persons are often elderly, and persistent infection has been well documented among immunosuppressed persons. A subunit vaccine has been shown to be effective in preventing clinical disease and has been licensed in China.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Tengfei Shi
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
10
|
Heemelaar S, Hangula AL, Chipeio ML, Josef M, Stekelenburg J, van den Akker TH, Pischke S, Mackenzie SBP. Maternal and fetal outcomes of pregnancies complicated by acute hepatitis E and the impact of HIV status: A cross-sectional study in Namibia. Liver Int 2022; 42:50-58. [PMID: 34623734 PMCID: PMC9298024 DOI: 10.1111/liv.15076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Namibia has been suffering from an outbreak of hepatitis E genotype 2 since 2017. As nearly half of hepatitis E-related deaths were among pregnant and postpartum women, we analysed maternal and fetal outcomes of pregnancies complicated by acute hepatitis E and assessed whether HIV-status impacted on outcome. METHODS A retrospective cross-sectional study was performed at Windhoek Hospital Complex. Pregnant and postpartum women, admitted between 13 October 2017 and 31 May 2019 with reactive IgM for Hepatitis E, were included. Outcomes were acute liver failure (ALF), maternal death, miscarriage, intra-uterine fetal death and neonatal death. Odds ratios (OR) and 95% confidence interval (CI) were calculated. RESULTS Seventy women were included. ALF occurred in 28 (40.0%) of whom 13 died amounting to a case fatality rate of 18.6%. Sixteen women (22.9%) were HIV infected, compared to 16.8% among the general pregnant population (OR 1.47, 95% CI 0.84-2.57, P = .17). ALF occurred in 4/5 (80%) HIV infected women not adherent to antiretroviral therapy compared to 1/8 (12.5%) women adherent to antiretroviral therapy (OR 28.0, 95% CI 1.4-580.6). There were 10 miscarriages (14.3%), five intra-uterine fetal deaths (7.1%) and four neonatal deaths (5.7%). CONCLUSIONS One in five pregnant women with Hepatitis E genotype 2 died, which is comparable to genotype 1 outbreaks. Despite small numbers, HIV infected women receiving antiretroviral therapy appear to be less likely to develop ALF in contrast with HIV infected women not on treatment. As there is currently no curative treatment, this phenomenon needs to be assessed in larger cohorts.
Collapse
Affiliation(s)
- Steffie Heemelaar
- Department of Obstetrics and GynaecologyKatutura State HospitalWindhoekNamibia,Present address:
Department of Obstetrics and GynaecologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anna L. Hangula
- Department of Obstetrics and GynaecologyKatutura State HospitalWindhoekNamibia
| | - Melody L. Chipeio
- Department of Obstetrics and GynaecologyKatutura State HospitalWindhoekNamibia
| | - Mirjam Josef
- Department of Obstetrics and GynaecologyKatutura State HospitalWindhoekNamibia
| | - Jelle Stekelenburg
- Department of Health SciencesGlobal Health UnitUniversity Medical Center GroningenGroningenThe Netherlands,Department of Obstetrics and GynaecologyMedical Center LeeuwardenLeeuwardenThe Netherlands
| | - Thomas H. van den Akker
- Department of Obstetrics and GynaecologyLeiden University Medical CenterLeidenThe Netherlands,Faculty of ScienceVU UniversityAthena InstituteAmsterdamThe Netherlands
| | - Sven Pischke
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Shonag B. P. Mackenzie
- Department of Obstetrics and GynaecologyKatutura State HospitalWindhoekNamibia,Present address:
Department of Obstetrics and GynaecologyBorders General HospitalMelroseUnited Kingdom
| |
Collapse
|
11
|
Khuroo MS. Hepatitis E and Pregnancy: An Unholy Alliance Unmasked from Kashmir, India. Viruses 2021; 13:1329. [PMID: 34372535 PMCID: PMC8310059 DOI: 10.3390/v13071329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The adverse relationship between viral hepatitis and pregnancy in developing countries had been interpreted as a reflection of retrospectively biased hospital-based data collection by the West. However, the discovery of hepatitis E virus (HEV) as the etiological agent of an epidemic of non-A, non-B hepatitis in Kashmir, and the documenting of the increased incidence and severity of hepatitis E in pregnancy via a house-to-house survey, unmasked this unholy alliance. In the Hepeviridae family, HEV-genotype (gt)1 from genus Orthohepevirus A has a unique open reading frame (ORF)4-encoded protein which enhances viral polymerase activity and viral replication. The epidemics caused by HEV-gt1, but not any other Orthohepevirus A genotype, show an adverse relationship with pregnancy in humans. The pathogenesis of the association is complex and at present not well understood. Possibly multiple factors play a role in causing severe liver disease in the pregnant women including infection and damage to the maternal-fetal interface by HEV-gt1; vertical transmission of HEV to fetus causing severe fetal/neonatal hepatitis; and combined viral and hormone related immune dysfunction of diverse nature in the pregnant women, promoting viral replication. Management is multidisciplinary and needs a close watch for the development and management of acute liver failure. (ALF). Preliminary data suggest beneficial maternal outcomes by early termination of pregnancy in patients with lower grades of encephalopathy.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
12
|
O’Keefe J, Tracy L, Yuen L, Bonanzinga S, Li X, Chong B, Nicholson S, Jackson K. Autochthonous and Travel Acquired Hepatitis E Virus in Australia. Front Microbiol 2021; 12:640325. [PMID: 33633719 PMCID: PMC7901960 DOI: 10.3389/fmicb.2021.640325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a common cause of acute viral hepatitis with significant morbidity and mortality, particularly in pregnant women. There are four major genotypes which can cause disease in humans. Genotypes 1 and 2 are usually associated with outbreaks and spread via facal/oral route or contaminated water. Genotypes 3 and 4 are zoonotic and usually associated with handling of pigs or consumption of contaminated pork. The strains circulating in Australia have never been characterized. RATIONALE/AIMS The aims for this project are to identify the HEV genotypes found in Australia and link them to possible sources of transmission by phylogenetic analysis. MATERIALS AND METHODS Between 2015 and 2020, 91 HEV isolates were sequenced and genotyped using an in-house PCR. Sixty-six of these were also sequenced by using the international HEVnet primers. Genotypes were determined using the BLASTn program. Relatedness to other strains in Australia was determined by phylogenetic analyses of the HEVnet sequences. Isolates were also stratified by state of origin, gender, age, predisposing factors and travel history (if known). RESULTS Of the 91 HEV isolates sequenced, 55 (60.4%) were genotype 1. There were 34 (37.4%) genotype 3 strains and two genotype 4 (2.2%). At least 20 of the genotype 1 strains have been linked to travel in India, and another three with Pakistan. Five of the "Indian" strains were closely related and are suspected to have originated in Gujarat. Phylogenetic analysis also showed that 12 genotype 3 strains were genetically related and potentially acquired in/from New South Wales, Australia. The two genotype 4 strains may have originated in China. DISCUSSION This is the first study to describe the HEV isolates identified in Australia. The results infer that HEV may be acquired during overseas travel as well as locally, presumably from consumption of pork or pork-related products. The phylogenetic analyses also reveal clusters of infection originating from India and Pakistan. This study provides some insight into the source and epidemiology of HEV infection in Australia which may be used to guide public health procedure and enable the implementation of measures to deal with potential outbreaks of infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Pallerla SR, Harms D, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Infection: Circulation, Molecular Epidemiology, and Impact on Global Health. Pathogens 2020; 9:856. [PMID: 33092306 PMCID: PMC7589794 DOI: 10.3390/pathogens9100856] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with hepatitis E virus (HEV) represents the most common source of viral hepatitis globally. Although infecting over 20 million people annually in endemic regions, with major outbreaks described since the 1950s, hepatitis E remains an underestimated disease. This review gives a current view of the global circulation and epidemiology of this emerging virus. The history of HEV, from the first reported enteric non-A non-B hepatitis outbreaks, to the discovery of the viral agent and the molecular characterization of the different human pathogenic genotypes, is discussed. Furthermore, the current state of research regarding the virology of HEV is critically assessed, and the challenges towards prevention and diagnosis, as well as clinical risks of the disease described. Together, these points aim to underline the significant impact of hepatitis E on global health and the need for further in-depth research to better understand the pathophysiology and its role in the complex disease manifestations of HEV infection.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Reimar Johne
- Unit Viruses in Food, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jürgen J. Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 13353 Berlin, Germany;
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30623 Hannover, Germany;
- German Center for Infection Research, Partner Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - C.-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
14
|
Bustamante ND, Matyenyika SR, Miller LA, Goers M, Katjiuanjo P, Ndiitodino K, Ndevaetela EE, Kaura U, Nyarko KM, Kahuika-Crentsil L, Haufiku B, Handzel T, Teshale EH, Dziuban EJ, Nangombe BT, Hofmeister MG. Notes from the Field: Nationwide Hepatitis E Outbreak Concentrated in Informal Settlements - Namibia, 2017-2020. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2020; 69:355-357. [PMID: 32214080 PMCID: PMC7725516 DOI: 10.15585/mmwr.mm6912a6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Carratalà A, Joost S. Population density and water balance influence the global occurrence of hepatitis E epidemics. Sci Rep 2019; 9:10042. [PMID: 31296895 PMCID: PMC6624372 DOI: 10.1038/s41598-019-46475-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/26/2019] [Indexed: 11/30/2022] Open
Abstract
In developing countries, the waterborne transmission of hepatitis E virus (HEV), caused by HEV genotypes 1 (HEV-1) and 2 (HEV-2), leads to the onset of large recurrent outbreaks. HEV infections are of particular concern among pregnant women, due to very high mortality rates (up to 70%). Unfortunately, good understanding of the factors that trigger the occurrence of HEV epidemics is currently lacking; therefore, anticipating the onset of an outbreak is yet not possible. In order to map the geographical regions at higher risk of HEV epidemics and the conditions most favorable for the transmission of the virus, we compiled a dataset of HEV waterborne outbreaks and used it to obtain models of geographical suitability for HEV across the planet. The main three variables that best predict the geographical distribution of HEV outbreaks at global scale are population density, annual potential evapotranspiration and precipitation seasonality. At a regional scale, the temporal occurrence of HEV outbreaks in the Ganges watershed is negatively correlated with the discharge of the river (r = -0.77). Combined, our findings suggest that ultimately, population density and water balance are main parameters influencing the occurrence of HEV-1 and HEV-2 outbreaks. This study expands the current understanding of the combination of factors shaping the biogeography and seasonality of waterborne viral pathogens such as HEV-1 and HEV-2, and contributes to developing novel concepts for the prediction and control of human waterborne viruses in the near future.
Collapse
Affiliation(s)
- Anna Carratalà
- Environmental Chemistry Laboratory (LCE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Dimeglio C, Kania D, Mantono JM, Kagoné T, Zida S, Tassembedo S, Dicko A, Tinto B, Yaro S, Hien H, Rouamba J, Bicaba B, Medah I, Meda N, Traoré O, Tuaillon E, Abravanel F, Izopet J. Hepatitis E Virus Infections among Patients with Acute Febrile Jaundice in Burkina Faso. Viruses 2019; 11:E554. [PMID: 31207982 PMCID: PMC6630816 DOI: 10.3390/v11060554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus infection is a significant public health problem in many parts of the world including Africa. We tested serum samples from 900 patients in Burkina Faso presenting with febrile icterus. They all tested negative for yellow fever, but those from 23/900 (2.6%) patients contained markers of acute HEV infection (anti-HEV IgM and HEV RNA positive). Genotyping indicated that 14 of the strains were HEV genotype 2b. There was an overall HEV IgG seroprevalence of 18.2% (164/900). In a bivariate analysis, the factors linked to HEV exposure were climate and patient age. Older patients and those living in arid regions were more likely to have HEV infection. HEV genotype 2b circulating only in humans can be involved in some acute febrile icterus cases in Burkina Faso. Better access to safe water, sanitation, and improved personal hygiene should improve control of HEV infection in this country.
Collapse
Affiliation(s)
- Chloé Dimeglio
- Laboratoire de virologie, Centre national de référence du virus de l'hépatite E, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France.
| | | | - Judith Mbombi Mantono
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso.
- Université Catholique d'Afrique de l'Ouest, Bobo-Dioulasso, Burkina Faso.
| | | | - Sylvie Zida
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso.
- Institut de recherche en sciences de la santé (IRSS), Ouagadougou, Burkina Faso.
| | | | | | | | | | - Hervé Hien
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso.
| | - Jérémi Rouamba
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso.
- Université Ouaga I Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso.
| | - Brice Bicaba
- Institut de recherche en sciences de la santé (IRSS), Ouagadougou, Burkina Faso.
| | - Isaïe Medah
- Ministère de la Santé, Ouagadougou, Burkina Faso.
| | - Nicolas Meda
- Ministère de la Santé, Ouagadougou, Burkina Faso.
| | - Oumar Traoré
- Agence nationale de biosécurité, Ouagadougou, Burkina Faso.
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections., Etablissement Français du Sang, CHU Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.
| | - Florence Abravanel
- Laboratoire de virologie, Centre national de référence du virus de l'hépatite E, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France.
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UMR Inserm, U1043, UMR CNRS, U5282, 31300 Toulouse, France.
| | - Jacques Izopet
- Laboratoire de virologie, Centre national de référence du virus de l'hépatite E, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France.
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UMR Inserm, U1043, UMR CNRS, U5282, 31300 Toulouse, France.
| |
Collapse
|
17
|
Nelson KE, Labrique AB, Kmush BL. Epidemiology of Genotype 1 and 2 Hepatitis E Virus Infections. Cold Spring Harb Perspect Med 2019; 9:a031732. [PMID: 29735579 PMCID: PMC6546036 DOI: 10.1101/cshperspect.a031732] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis E virus (HEV) genotypes 1 and 2 are responsible for the majority of acute viral hepatitis infections in endemic areas in South Asia and sub-Saharan Africa. In addition to frequent sporadic illnesses throughout the year, these viruses often cause large epidemics in association with monsoon rains in Asia or during humanitarian crises in Africa. Clinical hepatitis commonly involves adults more often than young children, with an overall mortality of ∼1%. However, the mortality among pregnant women is often 30% or higher. HEV infection in pregnant women frequently leads to infant mortality or premature delivery. Hepatitis E is an important, yet largely neglected, global public health problem.
Collapse
Affiliation(s)
- Kenrad E Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alain B Labrique
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Brittany L Kmush
- Department of Public Health, Food Studies, and Nutrition, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, New York 13244
| |
Collapse
|
18
|
Fenaux H, Chassaing M, Berger S, Gantzer C, Bertrand I, Schvoerer E. Transmission of hepatitis E virus by water: An issue still pending in industrialized countries. WATER RESEARCH 2019; 151:144-157. [PMID: 30594083 DOI: 10.1016/j.watres.2018.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Hepatitis E virus (HEV) is an enteric virus divided into eight genotypes. Genotype 1 (G1) and G2 are specific to humans; G3, G4 and G7 are zoonotic genotypes infecting humans and animals. Transmission to humans through water has been demonstrated for G1 and G2, mainly in developing countries, but is only suspected for the zoonotic genotypes. Thus, the water-related HEV hazard may be due to human and animal faeces. The high HEV genetic variability allows considering the presence in wastewater of not only different genotypes, but also quasispecies adding even greater diversity. Moreover, recent studies have demonstrated that HEV particles may be either quasi-enveloped or non-enveloped, potentially implying differential viral behaviours in the environment. The presence of HEV has been demonstrated at the different stages of the water cycle all over the world, especially for HEV G3 in Europe and the USA. Concerning HEV survival in water, the virus does not have higher resistance to inactivating factors (heat, UV, chlorine, physical removal), compared to viral indicators (MS2 phage) or other highly resistant enteric viruses (Hepatitis A virus). But the studies did not take into account genetic (genogroups, quasispecies) or structural (quasi- or non-enveloped forms) HEV variability. Viral variability could indeed modify HEV persistence in water by influencing its interaction with the environment, its infectivity and its pathogenicity, and subsequently its transmission by water. The cell culture methods used to study HEV survival still have drawbacks (challenging virus cultivation, time consuming, lack of sensitivity). As explained in the present review, the issue of HEV transmission to humans through water is similar to that of other enteric viruses because of their similar or lower survival. HEV transmission to animals through water and how the virus variability affects its survival and transmission remain to be investigated.
Collapse
Affiliation(s)
- H Fenaux
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - M Chassaing
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - S Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France
| | - C Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - I Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - E Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France.
| |
Collapse
|
19
|
Haffar S, Shalimar, Kaur RJ, Wang Z, Prokop LJ, Murad MH, Bazerbachi F. Acute liver failure caused by hepatitis E virus genotype 3 and 4: A systematic review and pooled analysis. Liver Int 2018; 38:1965-1973. [PMID: 29675889 DOI: 10.1111/liv.13861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Acute liver failure caused by hepatitis E virus genotype 3 and 4 has been rarely described. Because of the presence of a short golden therapeutic window in patients with viral acute liver failure from other causes, it is possible that early recognition and treatment might reduce the morbidity and mortality. We performed a systematic review and pooled analysis of acute liver failure caused by hepatitis E virus genotype 3 and 4. METHODS Two reviewers appraised studies after searching multiple databases on June 12th, 2017. Appropriate tests were used to compare hepatitis E virus genotype 3 vs 4, suspected vs confirmed genotypes, hepatitis E virus-RNA positive vs negative, and to discern important mortality risk factors. RESULTS We identified 65 patients, with median age 58 years (range: 3-79), and a male to female ratio of 1.2:1. The median bilirubin, ALT, AST and alkaline phosphatase (expressed by multiplication of the upper limit of normal) levels were 14.8, 45.3, 34.8 and 1.63 respectively. Antihepatitis E virus IgG, antihepatitis E virus IgM and hepatitis E virus-RNA were positive in 84%, 91% and 86% of patients respectively. The median interval from symptoms onset to acute liver failure was 23 days, and 16 patients underwent liver transplantation. Final outcome was reported in 58 patients and mortality was 46%. Age was a predictor of poor prognosis in multivariate analysis. No important differences were found between patients infected with genotype 3 vs 4, patients with confirmed vs suspected genotypes, or patients with positive vs negative RNA. CONCLUSION Acute liver failure caused by hepatitis E virus genotype 3 and 4 is rare, similar between genotypes, occurs commonly in middle-aged/elderly patients and has a very high mortality. Age is predictive of poor prognosis in multivariate analysis.
Collapse
Affiliation(s)
- Samir Haffar
- Digestive center for diagnosis and treatment, Damascus, Syrian Arab Republic
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder J Kaur
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Zhen Wang
- Robert D and Patricia E Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Library Public Services, Mayo Clinic, Rochester, MN, USA
| | - Mohammad H Murad
- Robert D and Patricia E Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Fateh Bazerbachi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Wang B, Akanbi OA, Harms D, Adesina O, Osundare FA, Naidoo D, Deveaux I, Ogundiran O, Ugochukwu U, Mba N, Ihekweazu C, Bock CT. A new hepatitis E virus genotype 2 strain identified from an outbreak in Nigeria, 2017. Virol J 2018; 15:163. [PMID: 30352598 PMCID: PMC6199738 DOI: 10.1186/s12985-018-1082-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In 2017 the Nigerian Ministry of Health notified the World Health Organization (WHO) of an outbreak of hepatitis E located in the north-east region of the country with 146 cases with 2 deaths. The analysis of the hepatitis E virus (HEV) genotypes responsible for the outbreak revealed the predominance of HEV genotypes 1 (HEV-1) and 2 (HEV-2). Molecular data of HEV-2 genomes are limited; therefore we characterized a HEV-2 strain of the outbreak in more detail. FINDING The full-length genome sequence of an HEV-2 strain (NG/17-0500) from the outbreak was amplified using newly designed consensus primers. Comparison with other HEV complete genome sequences, including the only HEV-2 strain (Mex-14) with available complete genome sequences and the availability of data of partial HEV-2 sequences from Sub-Saharan Africa, suggests that NG/17-0500 belongs to HEV subtype 2b (HEV-2b). CONCLUSIONS We identified a novel HEV-2b strain from Sub-Saharan Africa, which is the second complete HEV-2 sequence to date, whose natural history and epidemiology merit further investigation.
Collapse
Affiliation(s)
- Bo Wang
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Olusola Anuoluwapo Akanbi
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Olufisayo Adesina
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Folakemi Abiodun Osundare
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Ladoke Akintola University of Technology, Ogbomoso, Oyo State P.M.B 4000 Nigeria
| | - Dhamari Naidoo
- Infectious Hazard Management Department, World Health Organization, Geneva, Switzerland
| | - Isabel Deveaux
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Opeayo Ogundiran
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Uzoma Ugochukwu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Nwando Mba
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - C.-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
21
|
Antia RE, Adekola AA, Jubril AJ, Ohore OG, Emikpe BO. Hepatitis E Virus infection seroprevalence and the associated risk factors in animals raised in Ibadan, Nigeria. J Immunoassay Immunochem 2018; 39:509-520. [PMID: 30212262 DOI: 10.1080/15321819.2018.1514507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatitis E (HE) is an important viral hepatitis of global public and livestock health, and food security significance due to the ubiquitous distribution, multiple transmission route and zoonotic potentials. HE is also endemic in most developing countries including Nigeria. This study therefore investigates the seroprevalence and associated risk factors of HEV infection in pigs raised in Ibadan, Nigeria. Taking an analytical cross-sectional study design, 176 animals (comprising 120 pigs, 26 goats, and 30 cattle) were randomly sampled at the Bodija Municipal abattoir, Ibadan. Serum samples and demographic information were collected for HEV antibody detection (using a commercial recombinant genotype-3 antigen ELISA kit) and risk factors, respectively. A 57.5% (69/120) HEV seroprevalence was reported in the pigs while 0% prevalence was reported in the goats and cattle. In the pigs, a significant age-based HEV seropositivity difference (χ2 = 5.30; OR = 0.20-0.89; p = 0.02) with a higher seroprevalence in the < 6 months (68.42%; 39/57) compared to the > 6 months age group (47.62%; 20/63) was reported. No significant sex, breed and husbandry system effect on HEV seroprevalence was detected in the pigs. This study therefore underscores the high HEV seroprevalence and age-based odds of HEV-exposure in pigs in Ibadan, Nigeria.
Collapse
Affiliation(s)
- Richard Edem Antia
- a Department of Veterinary Pathology , University of Ibadan , Ibadan , Nigeria
| | | | - Afusat Jagun Jubril
- a Department of Veterinary Pathology , University of Ibadan , Ibadan , Nigeria
| | | | | |
Collapse
|
22
|
Lu W, Wen J. The divergence of epidemiological, antigenic and immunogenic characteristics of hepatitis E virus of different genotypes. Future Virol 2018. [DOI: 10.2217/fvl-2017-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is an enterically transmitted pathogen that causes hepatitis E (HE). HEVs infecting mammals have been classified into four genotypes. Numerously diverse behaviors have been found among HEV genotypes; the first two genotypes are endemic in developing countries and only infect humans, whereas genotypes 3 and 4 infect other mammalian species as well. It is still unclear why only HEV genotypes 3 and 4 can infect across species. This article comprehensively: reviews the divergence of epidemiological and immunogenic characteristics of HEV infection derived from different genotypes; provides the current knowledge on the antigenic and immunogenic differences between different HEV genotypes; and will give useful information on serological diagnosis development and vaccines preparation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Nan Y, Wu C, Zhao Q, Zhou EM. Zoonotic Hepatitis E Virus: An Ignored Risk for Public Health. Front Microbiol 2017; 8:2396. [PMID: 29255453 PMCID: PMC5723051 DOI: 10.3389/fmicb.2017.02396] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped, single-stranded positive-sense RNA virus. HEV belongs to the family Hepeviridae, a family comprised of highly diverse viruses originating from various species. Since confirmation of HEV's zoonosis, HEV-induced hepatitis has been a public health concern both for developing and developed countries. Meanwhile, the demonstration of a broad host range for zoonotic HEV suggests the existence of a variety of transmission routes that could lead to human infection. Moreover, anti-HEV antibody serosurveillance worldwide demonstrates a higher than expected HEV prevalence rate that conflicts with the rarity and sporadic nature of reported acute hepatitis E cases. In recent years, chronic HEV infection, HEV-related acute hepatic failure, and extrahepatic manifestations caused by HEV infection have been frequently reported. These observations suggest a significant underestimation of the number and complexity of transmission routes previously predicted to cause HEV-related disease, with special emphasis on zoonotic HEV as a public health concern. Significant research has revealed details regarding the virology and infectivity of zoonotic HEV in both humans and animals. In this review, the discovery of HEV zoonosis, recent progress in our understanding of the zoonotic HEV host range, and classification of diverse HEV or HEV-like isolates from various hosts are reviewed in a historic context. Ultimately, this review focuses on current understanding of viral pathogenesis and cross-species transmission of zoonotic HEV. Moreover, host factors and viral determinants influencing HEV host tropism are discussed to provide new insights into HEV transmission and prevalence mechanisms.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| |
Collapse
|
24
|
Abstract
Hepatitis E virus (HEV) infection can lead to acute and chronic hepatitis as well as to extrahepatic manifestations such as neurological and renal disease; it is the most common cause of acute viral hepatitis worldwide. Four genotypes are responsible for most infection in humans, of which HEV genotypes 1 and 2 are obligate human pathogens and HEV genotypes 3 and 4 are mostly zoonotic. Until quite recently, HEV was considered to be mainly responsible for epidemics of acute hepatitis in developing regions owing to contamination of drinking water supplies with human faeces. However, HEV is increasingly being recognized as endemic in some developed regions. In this setting, infections occur through zoonotic transmission or contaminated blood products and can cause chronic hepatitis in immunocompromised individuals. HEV infections can be diagnosed by measuring anti-HEV antibodies, HEV RNA or viral capsid antigen in blood or stool. Although an effective HEV vaccine exists, it is only licensed for use in China. Acute hepatitis E is usually self-limiting and does not require specific treatment. Management of immunocompromised individuals involves lowering the dose of immunosuppressive drugs and/or treatment with the antiviral agent ribavirin.
Collapse
|
25
|
Abstract
Hepatitis E virus (HEV) is globally prevalent with relatively high percentages of anti-HEV immunoglobulin G-positive individuals in the populations of developing and developed countries. There are two distinct epidemiologic patterns of hepatitis E. In areas with high disease endemicity, primarily developing countries in Asia and Africa, this disease is caused mainly by genotype 1 or 2 HEV, both of which transmit predominantly through contaminated water and occur as either outbreaks or as sporadic cases of acute hepatitis. The acute hepatitis caused by either of these two genotypes has the highest attack rate in young adults, and the disease is particularly severe among pregnant women. In developed countries, sporadic cases of locally acquired genotype 3 or 4 HEV infection are observed. The reservoir of genotype 3 and 4 HEV is believed to be animals, such as pigs, with zoonotic transmission to humans. The affected persons are often elderly, and persistent infection has been well documented among immunosuppressed persons. A subunit vaccine has been shown to be effective in preventing clinical disease and has been licensed in China.
Collapse
Affiliation(s)
- Yansheng Geng
- School of Public Health, Hebei University, No. 342 Yuhuadonglu, Baoding, 071000, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| |
Collapse
|
26
|
Genome Sequence of a Genotype 2 Hepatitis E Virus World Health Organization Reference Strain. GENOME ANNOUNCEMENTS 2017; 5:5/7/e01664-16. [PMID: 28209837 PMCID: PMC5313629 DOI: 10.1128/genomea.01664-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report here the sequence of a genotype 2a reference strain of hepatitis E virus (HEV), developed on behalf of the World Health Organization. The HEV reference strain is intended for use in assays based on nucleic acid amplification for the validation of HEV RNA detection.
Collapse
|
27
|
Pelosi E, Clarke I. Hepatitis E: a complex and global disease. EMERGING HEALTH THREATS JOURNAL 2017. [DOI: 10.3402/ehtj.v1i0.7069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- E Pelosi
- Department of Microbiology and Virology, Health Protection Agency, Southeast Regional Laboratory, Southampton General Hospital, Southampton, UK; and
| | - I Clarke
- Department of Molecular Microbiology, Southampton Medical School, Southampton General Hospital, Southampton, UK
| |
Collapse
|
28
|
Hakim MS, Wang W, Bramer WM, Geng J, Huang F, de Man RA, Peppelenbosch MP, Pan Q. The global burden of hepatitis E outbreaks: a systematic review. Liver Int 2017; 37:19-31. [PMID: 27542764 DOI: 10.1111/liv.13237] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is responsible for repeated water-borne outbreaks since the past century, representing an emerging issue in public health. However, the global burden of HEV outbreak has not been comprehensively described. We performed a systematic review of confirmed HEV outbreaks based on published literatures. HEV outbreaks have mainly been reported from Asian and African countries, and only a few from European and American countries. India represents a country with the highest number of reported HEV outbreaks. HEV genotypes 1 and 2 were responsible for most of the large outbreaks in developing countries. During the outbreaks in developing countries, a significantly higher case fatality rate was observed in pregnant women. In fact, outbreaks have occurred both in open and closed populations. The control measures mainly depend upon improvement of sanitation and hygiene. This study highlights that HEV outbreak is not new, yet it is a continuous global health problem.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Microbiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. Hum Vaccin Immunother 2016; 12:2603-2610. [PMID: 27184971 DOI: 10.1080/21645515.2016.1184806] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus infections have been continuously reported in Indian subcontinent, Africa, southeast and central Asia, posing great health threats to the public, especially to pregnant women. Hecolin® is the only licensed HEV vaccine developed by Xiamen Innovax Biotech Co., Ltd. Extensive characterizations on antigenicity, physicochemical properties, efficacy in clinical trials, and manufacturing capability have made Hecolin® a promising vaccine for HEV control. However, there are many obstacles in large scale application of Hecolin®. Efforts are needed to further evaluate safety and efficacy in HEV risk populations, and to complement HEV standards for quality control. Passing World Health Organization prequalification and licensing outside China are priorities as these are also hindering Hecolin® promotion. Multilateral cooperation among Chinese vaccine manufacturers, Chinese National Regulatory Authorization (NRA) and WHO will expedite the entrance of Hecolin® into international market, so that Hecolin® could play its due role in global hepatitis E control.
Collapse
Affiliation(s)
- Xing Wu
- a National Institutes for Food and Drug Control , Beijing , PR China
| | - Pan Chen
- a National Institutes for Food and Drug Control , Beijing , PR China
| | - Huijuan Lin
- b R&D Department , Shanghai Institute of Biological Products Co., Ltd. , Shanghai , PR China
| | - Xiaotian Hao
- a National Institutes for Food and Drug Control , Beijing , PR China
| | - Zhenglun Liang
- a National Institutes for Food and Drug Control , Beijing , PR China
| |
Collapse
|
30
|
Smith DB, Simmonds P. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology? Liver Int 2015; 35:1334-40. [PMID: 24974734 PMCID: PMC4676335 DOI: 10.1111/liv.12629] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 06/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. METHODS Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. RESULTS Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. CONCLUSIONS Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | |
Collapse
|
31
|
Gurley ES, Hossain MJ, Paul RC, Sazzad HMS, Islam MS, Parveen S, Faruque LI, Husain M, Ara K, Jahan Y, Rahman M, Luby SP. Outbreak of hepatitis E in urban Bangladesh resulting in maternal and perinatal mortality. Clin Infect Dis 2014; 59:658-65. [PMID: 24855146 PMCID: PMC4130310 DOI: 10.1093/cid/ciu383] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) causes outbreaks of jaundice associated with maternal mortality. Four deaths among pregnant women with jaundice occurred in an urban community near Dhaka, Bangladesh, in late 2008 and were reported to authorities in January 2009. We investigated the etiology and risk factors for jaundice and death. METHODS Field workers identified suspected cases, defined as acute onset of yellow eyes or skin, through house-to-house visits. A subset of persons with suspected HEV was tested for immunoglobulin M (IgM) antibodies to HEV to confirm infection. We used logistic regression analysis to identify risk factors for HEV disease and for death. We estimated the increased risk of perinatal mortality associated with jaundice during pregnancy. RESULTS We identified 4751 suspected HEV cases during August 2008-January 2009, including 17 deaths. IgM antibodies to HEV were identified in 56 of 73 (77%) case-patients tested who were neighbors of the case-patients who died. HEV disease was significantly associated with drinking municipally supplied water. Death among persons with HEV disease was significantly associated with being female and taking paracetamol (acetaminophen). Among women who were pregnant, miscarriage and perinatal mortality was 2.7 times higher (95% confidence interval, 1.2-6.1) in pregnancies complicated by jaundice. CONCLUSIONS This outbreak of HEV was likely caused by sewage contamination of the municipal water system. Longer-term efforts to improve access to safe water and license HEV vaccines are needed. However, securing resources and support for intervention will rely on convincing data about the endemic burden of HEV disease, particularly its role in maternal and perinatal mortality.
Collapse
Affiliation(s)
- Emily S. Gurley
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | | | - Repon C. Paul
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | | | - M. Saiful Islam
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Shahana Parveen
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Labib I. Faruque
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Mushtuq Husain
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Khorshed Ara
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Yasmin Jahan
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Mahmudur Rahman
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Stephen P. Luby
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
- Global Disease Detection Branch, Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
32
|
Johne R, Dremsek P, Reetz J, Heckel G, Hess M, Ulrich RG. Hepeviridae: an expanding family of vertebrate viruses. INFECTION GENETICS AND EVOLUTION 2014; 27:212-29. [PMID: 25050488 DOI: 10.1016/j.meegid.2014.06.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1-4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the family Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
Collapse
Affiliation(s)
- Reimar Johne
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Paul Dremsek
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland; Swiss Institute of Bioinformatics, Genopode, Lausanne, Switzerland
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), Vienna, Austria
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
33
|
Kim JH, Nelson KE, Panzner U, Kasture Y, Labrique AB, Wierzba TF. A systematic review of the epidemiology of hepatitis E virus in Africa. BMC Infect Dis 2014; 14:308. [PMID: 24902967 PMCID: PMC4055251 DOI: 10.1186/1471-2334-14-308] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatitis E Virus (HEV) infection is a newly recognized serious threat to global public health and Africa is suspected to be among the most severely affected regions in the world. Understanding HEV epidemiology in Africa will expedite the implementation of evidence-based control policies aimed at preventing the spread of HEV including policies for the use of available resources such as HEV vaccines. METHODS Here we present a comprehensive review of HEV epidemiology in Africa based on published data. We searched for articles on HEV epidemiology in Africa from online databases such as PubMed, Scopus, and ISI Web of Science and critically reviewed appropriate publications to extract consistent findings, identify knowledge gaps, and suggest future studies. RESULTS Taking a particularly high toll in pregnant women and their fetuses, HEV has infected human populations in 28 of 56 African countries. Since 1979, 17 HEV outbreaks have been reported about once every other year from Africa causing a reported 35,300 cases with 650 deaths. CONCLUSIONS In Africa, HEV infection is not new, is widespread, and the number of reported outbreaks are likely a significant underestimate. The authors suggest that this is a continent-wide public health problem that deserves the attention of local, regional and international agencies to implement control policies that can save numerous lives, especially those of pregnant women and their fetuses.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Kenrad E Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Ursula Panzner
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Yogita Kasture
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| | - Alain B Labrique
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas F Wierzba
- International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, Seoul 151-919, South Korea
| |
Collapse
|
34
|
Abstract
Hepatitis E virus (HEV) infection is an important public health concern in many developing countries, causing waterborne outbreaks as well as sporadic autochthonous hepatitis. HEV is mainly transmitted by the fecal–oral route in endemic areas through drinking of contaminated water. However, zoonotic transmission from animal reservoirs to humans has also been suggested. Three additional routes of HEV transmission have been proposed to occur: blood borne, human to human, and vertical transmission from mother to child. Acute HEV infection is usually diagnosed by detecting specific anti-HEV antibodies. However, the performance of the available assays in different settings is not optimal. Analysis of HEV ribonucleic acid in biologic specimens such as stools, serum, and liver biopsy by using nucleic acid amplification techniques is also employed. Nonetheless, additional consensus regarding the best technologies suitable for serosurveys and diagnosis of acute HEV infection is also needed. This review article summarizes the current status of HEV infection end epidemiology with particular emphasis in transmission, diagnosis, and clinical management.
Collapse
Affiliation(s)
- Santiago Mirazo
- Laboratory of Virology, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Natalia Ramos
- Laboratory of Virology, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Victoria Mainardi
- Hepatic Diseases Unit, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Solange Gerona
- Hepatic Diseases Unit, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Juan Arbiza
- Laboratory of Virology, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
35
|
El Sayed Zaki M, El Razek MMA, El Razek HMA. Maternal-Fetal Hepatitis E Transmission: Is It Underestimated? J Clin Transl Hepatol 2014; 2:117-123. [PMID: 26356414 PMCID: PMC4521258 DOI: 10.14218/jcth.2014.00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) is an enterically transmitted virus; and several modes of transmission have been proposed, including blood transfusion, person to person transmission, and transplacental transmission. HEV during pregnancy is associated with an unfavorable prognosis for mothers and in severe cases can cause acute fulminate hepatitis and death. Transplacental transmission of HEV usually results in unfavorable outcomes of pregnancy, mainly fetal loss, preterm labor, and hepatic dysfunction in neonates. In this review, we will summarize the effects of HEV on maternal-fetal health in various clinical situations.
Collapse
|
36
|
Krain LJ, Atwell JE, Nelson KE, Labrique AB. Fetal and neonatal health consequences of vertically transmitted hepatitis E virus infection. Am J Trop Med Hyg 2014; 90:365-70. [PMID: 24420778 DOI: 10.4269/ajtmh.13-0265] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) infections lead to tens of thousands of deaths annually, mostly in developing countries. Hepatitis E poses a significant threat to the health of expectant mothers, a well-noted epidemiologic feature of the disease, but the contribution of vertically transmitted HEV infection to fetal and neonatal morbidity and mortality has received limited attention. Evidence assembled to date suggests that mother-to-child HEV transmission may be frequent and deleterious to the fetus and newborn in pregnancies affected by hepatitis E. Additional work is required to resolve key questions. (1) What risks do subclinical maternal HEV infections and infections early in pregnancy pose to fetal health and development? (2) Does vertical transmission occur during labor and/or breastfeeding and contribute appreciably to neonatal morbidity and mortality? (3) How do treatment decisions for severely ill mothers affect fetal and neonatal outcomes? (4) Can maternal vaccination effectively prevent vertical transmission of HEV?
Collapse
Affiliation(s)
- Lisa J Krain
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | |
Collapse
|
37
|
Hepatitis E: an emerging disease. INFECTION GENETICS AND EVOLUTION 2014; 22:40-59. [PMID: 24434240 DOI: 10.1016/j.meegid.2014.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
Currently, the infection with the hepatitis E virus represents the most frequent cause for acute hepatitis and jaundice in the world. According to WHO estimations, around two billion people, representing one third of the world's population, live in endemic areas for HEV and, therefore, are at risk of infection. In developed countries, the circulation of the virus in both human and animal (swine, boar, deer) sewage has been confirmed; however, the incidence rate is low compared to that of developing countries where outbreaks of acute hepatitis transmitted via the fecal-oral route are originated, more frequently in the flooding season or after natural disasters, combined with deficient sanitary conditions. There are currently 4 known genotypes of HEV. Genotypes 1 and 2 are isolated in all human epidemic outbreaks in developing countries, while genotypes 3 and 4 are isolated not only in humans but also in animals, in both developing and industrialized countries. These data support genotypes 3 and 4 having zoonotic nature. The diagnosis of this disease is based in the detection of anti-HEV IgG and IgM in blood serum using enzyme-linked immunosorbent methods. However, the method that best confirms the diagnosis is the RT-PCR, which detects HEV RNA in blood serum and also provides the genotype. The clinical course is generally that of an acute hepatitis which in some cases may require hospitalization and that, in transplant patients or HIV infected individuals can become a chronic hepatitis. Furthermore, the virus constitutes an important risk for pregnant women. The hepatitis E can present a wide range of symptoms, from a subclinical case to chronic liver disease with extrahepatic manifestations. For this reason, the diagnostic is challenging if no differential diagnosis is included. There is no specific antiviral drug for hepatitis E, but satisfactory results have been observed in some patients treated with pegylated interferon alfa2a and/or ribavirin. This revision is an update of all the molecular, epidemiological, clinic and preventive knowledge on this emergent disease up to date.
Collapse
|
38
|
Krain LJ, Nelson KE, Labrique AB. Host immune status and response to hepatitis E virus infection. Clin Microbiol Rev 2014; 27:139-65. [PMID: 24396140 PMCID: PMC3910912 DOI: 10.1128/cmr.00062-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available.
Collapse
Affiliation(s)
- Lisa J. Krain
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kenrad E. Nelson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alain B. Labrique
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Debing Y, Neyts J. Antiviral strategies for hepatitis E virus. Antiviral Res 2013; 102:106-18. [PMID: 24374149 PMCID: PMC7113752 DOI: 10.1016/j.antiviral.2013.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 02/08/2023]
Abstract
The hepatitis E virus is a common cause of acute hepatitis. Contrary to hepatitis B and C, hepatitis E is mostly a mild infection, although it has a high mortality in pregnant women and can evolve to chronicity in immunocompromised patients. Ribavirin and pegylated interferon-α are the only available therapies, but both have side effects that are not acceptable for prophylaxis or treatment of mild infections. In addition, these drugs cannot be used for all patient types (e.g. in case of pregnancy, specific organ transplants or co-morbidities) and in resource-poor settings. Hence there is an urgent need for better antiviral treatments that are efficacious and safe, also during pregnancy. In this review, a concise introduction to the virus and disease is provided, followed by a discussion of the available assay systems and potential molecular targets (viral proteins and host factors) for the development of inhibitors of HEV replication. Finally, directions for future research are presented.
Collapse
Affiliation(s)
- Yannick Debing
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
40
|
Pérez-Gracia MT, Mateos Lindemann ML, Caridad Montalvo Villalba M. Hepatitis E: current status. Rev Med Virol 2013; 23:384-98. [PMID: 24038432 DOI: 10.1002/rmv.1759] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Acute hepatitis E is a very common disease in developing countries, to the point that, according to World Health Organization estimates, one third of the world's population has been exposed to HEV. It also causes outbreaks in refugee camps or after natural disasters such as floods or earthquakes. Sporadic cases of acute hepatitis have been observed in practically all European countries and other developed geographical areas, not only in travelers from endemic countries but also in people with no risk factors. But, lately, new aspects of this infection are appearing in industrialized countries such as the possibility of the disease becoming chronic in transplant patients, the immunocompromised in general, and even in patients with previous liver disease who are immunocompetent. In this comprehensive review, we summarize the current knowledge on HEV infection.
Collapse
Affiliation(s)
- María Teresa Pérez-Gracia
- Área de Microbiología. Departamento Farmacia. Instituto de Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Moncada Valencia, Spain
| | | | | |
Collapse
|
41
|
Fatal outbreaks of jaundice in pregnancy and the epidemic history of hepatitis E. Epidemiol Infect 2012; 140:767-87. [PMID: 22273541 DOI: 10.1017/s0950268811002925] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Space-time clustering of people who fall acutely ill with jaundice, then slip into coma and death, is an alarming phenomenon, more markedly so when the victims are mostly or exclusively pregnant. Documentation of the peculiar, fatal predisposition of pregnant women during outbreaks of jaundice identifies hepatitis E and enables construction of its epidemic history. Between the last decade of the 18th century and the early decades of the 20th century, hepatitis E-like outbreaks were reported mainly from Western Europe and several of its colonies. During the latter half of the 20th century, reports of these epidemics, including those that became serologically confirmed as hepatitis E, emanated from, first, the eastern and southern Mediterranean littoral and, thereafter, Southern and Central Asia, Eastern Europe, and the rest of Africa. The dispersal has been accompanied by a trend towards more frequent and larger-scale occurrences. Epidemic and endemic hepatitis E still beset people inhabiting Asia and Africa, especially pregnant women and their fetuses and infants. Their relief necessitates not only accelerated access to potable water and sanitation but also vaccination against hepatitis E.
Collapse
|
42
|
Yang W, Gu AZ, Zeng SY, Li D, He M, Shi HC. Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples. J Microbiol Methods 2011; 84:447-53. [PMID: 21256895 DOI: 10.1016/j.mimet.2011.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 11/17/2022]
Abstract
A quantitative and rapid detection method for rotavirus in water samples was developed using immunomagnetic separation combined with quantitative reverse transcription-polymerase chain reaction (IMS-RT-qPCR). Magnetic beads coated with antibodies against representative group A rotavirus were used to capture and purify intact rotavirus particles in both artificial and real environmental water sample matrix. Compared to extracting RNA using commercial kits and RT-qPCR assay, the developed IMS-RT-qPCR method increased the detection sensitivity by about one order of magnitude when applied in clean water, with a detection limit of 3.16 50% tissue culture infectious dose (TCID(50))/mL within 5h. This method was compatible with various commonly used virus eluants, including beef extract (BE), beef extract with 0.05M glycine (BEG) and urea arginine phosphate buffer (UAPB). The recovery efficiencies from various eluants using IMS-RT-qPCR are higher than that using direct RT-qPCR method, demonstrating the effectiveness of the IMS step for eliminating inhibitors in the eluant matrix. This method was also successfully applied to purify and detect rotavirus particles seeded in 10(3)-fold concentrated wastewater influent samples. It seemed to reduce the interference from complex sample background and increase the qPCR product reliability comparing to RT-qPCR method without the IMS step. The results indicated that IMS-RT-qPCR is a rapid, sensitive and reliable tool for detecting rotaviruses in complex water environments.
Collapse
Affiliation(s)
- Wan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
43
|
Huang S, Zhang X, Jiang H, Yan Q, Ai X, Wang Y, Cai J, Jiang L, Wu T, Wang Z, Guan L, Shih JWK, Ng MH, Zhu F, Zhang J, Xia N. Profile of acute infectious markers in sporadic hepatitis E. PLoS One 2010; 5:e13560. [PMID: 21042408 PMCID: PMC2958841 DOI: 10.1371/journal.pone.0013560] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/29/2010] [Indexed: 02/06/2023] Open
Abstract
Laboratory diagnosis of acute infection of hepatitis E virus (HEV) is commonly based on the detection of HEV RNA, IgM and/or rising IgG levels. However, the profile of these markers when the patients present have not been well determined. To clarify the extent of misdiagnosed sporadic hepatitis E in the initial laboratory detection, serial sera of 271 sporadic acute hepatitis cases were collected, detected and the dynamics of each acute marker during the illness course were analyzed. 91 confirmed cases of hepatitis E were identified based on the presentation of HEV RNA, IgM or at least 4 fold rising of IgG levels. 21 (23.1%) hepatitis E cases were false negative for the viral RNA and 40 (44.0%) for rising IgG, because occurrence of these markers were confined to acute phase of infection and viremia had already subsided and antibody level peaked when these patients presented. IgM was detected in 82 (90.1%) cases. It is the most prevalent of the three markers, because the antibody persisted until early convalescence. Nine cases negative for IgM were positive for rising IgG and one was also positive for the viral RNA; all of these nine cases showed high avid IgG in their acute phase sera, which indicated re-infection. In summary, it is not practicable to determine the true occurrence of sporadic hepatitis E. Nevertheless, it could be closely approximated by approach using a combination of all three acute markers.
Collapse
Affiliation(s)
- Shoujie Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Department of Preventive Medicine, Medical College of Xiamen University, Xiamen, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hanmin Jiang
- Dongtai Center for Disease Control and Prevention, Dongtai, China
| | - Qiang Yan
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xing Ai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yijun Wang
- Dongtai Center for Disease Control and Prevention, Dongtai, China
| | - Jiaping Cai
- Dongtai Center for Disease Control and Prevention, Dongtai, China
| | - Lang Jiang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Zhongze Wang
- Dongtai Center for Disease Control and Prevention, Dongtai, China
| | - Li Guan
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - J. Wai Kuo Shih
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Mun-Hon Ng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- * E-mail:
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Chandra V, Taneja S, Kalia M, Jameel S. Molecular biology and pathogenesis of hepatitis E virus. J Biosci 2009; 33:451-64. [PMID: 19208971 DOI: 10.1007/s12038-008-0064-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus (HEV) is a small RNA virus and the etiological agent for hepatitis E, a form of acute viral hepatitis. The virus has a feco-oral transmission cycle and is transmitted through environmental contamination, mainly through drinking water. Recent studies on the isolation of HEV-like viruses from animal species also suggest zoonotic transfer of the virus. The absence of small animal models of infection and efficient cell culture systems has precluded virological studies on the replication cycle and pathogenesis of HEV. A vaccine against HEV has undergone successful clinical testing and diagnostic tests are available. This review describes HEV epidemiology, clinical presentation, pathogenesis, molecular virology and the host response to HEV infection. The focus is on published literature in the past decade.
Collapse
Affiliation(s)
- Vivek Chandra
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110 067, India
| | | | | | | |
Collapse
|
45
|
Sugitani M, Tamura A, Shimizu YK, Sheikh A, Kinukawa N, Shimizu K, Moriyama M, Komiyama K, Li TC, Takeda N, Arakawa Y, Suzuki K, Ishaque SM, Roy PK, Raihan ASMA, Hasan M. Detection of hepatitis E virus RNA and genotype in Bangladesh. J Gastroenterol Hepatol 2009; 24:599-604. [PMID: 19054262 DOI: 10.1111/j.1440-1746.2008.05677.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Hepatitis E virus (HEV) in Bangladesh has not been adequately documented. We report HEV RNA and genotype detection in Bangladesh. METHODS In total, 82 samples were used; 36 sporadic acute hepatitis (AH), 12 fulminant hepatitis (FH), 14 chronic liver disease (CLD) and 20 from an apparently healthy population (HP) positive for both immunoglobulin (Ig) M and IgG specific anti-HEV antibodies (anti-HEV). The male/female ratio was 61/21, ages 12-67 (mean 30.4) years. RNA was extracted, transcribed to cDNA and amplified in nt 6345-6490 (ORF2) of HEV. Nucleic and amino acid sequences were determined. Homology comparison between Bangladesh clones and other representative HEV clones and phylogenetic tree analyses were done. Relations between HEV RNA-positivity and clinical factors were analyzed. RESULTS HEV RNA was positive in 9/36 (25.0%) of AH cases, 4/12 (33.3%) FH, 3/14 (21.4%) CLD and 0/20 (0%) HP samples; total 16/82 (19.5%). Four factors correlated significantly with HEV RNA-positivity (Mann-Whitney U test); alanine aminotransferase (ALT) (P = 0.0229), aspartate aminotransferase (AST) (P = 0.0448), and titers of IgG (P = 0.0208) and IgM (P = 0.0095) specific anti-HEV. The 16 HEV clones were divided mainly into two groups, A and B, including six different cDNA sub-groups. CONCLUSION HEV RNA was found in sporadic AH and FH and sub-clinical CLD cases, but not in HP. HEV RNA-positivity was significantly related to values of ALT and AST and titers of IgG and IgM specific anti-HEV, with IgM specific anti-HEV showing the most significant relationship. All clones were genotype I, which is prevalent in South Asia.
Collapse
Affiliation(s)
- Masahiko Sugitani
- Department of Pathology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pelosi E, Clarke I. Hepatitis E: a complex and global disease. EMERGING HEALTH THREATS JOURNAL 2008; 1:e8. [PMID: 22460217 PMCID: PMC3167588 DOI: 10.3134/ehtj.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 12/13/2022]
Abstract
Thirty years after its discovery, the hepatitis E virus (HEV) continues to represent a major public health problem in developing countries. In developed countries, it has emerged as a significant cause of non-travel-associated acute hepatitis. HEV infects a wide range of mammalian species and a key reservoir worldwide appears to be swine. Genomic sequence similarity between some human HEV genotypes and swine HEV strains has been identified and we know that humans can acquire HEV infection from animals. Although for the most part the clinical course of HEV infection is asymptomatic or mild, significant risk of serious disease exists in pregnant women and those with chronic liver disease. In addition, there are data on the threat of chronic infections in immunocompromised patients. Beyond management of exposure by public health measures, recent data support that active immunisation can prevent hepatitis E, highlighting the need for vaccination programmes. Here we review the current knowledge on HEV, its epidemiology, and the management and prevention of human disease.
Collapse
Affiliation(s)
- E Pelosi
- Department of Microbiology and Virology, Health Protection Agency, Southeast Regional Laboratory, Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
47
|
Villalba MDLCM, Lay LDLAR, Chandra V, Corredor MB, Frometa SS, Moreno AG, Jameel S. Hepatitis E virus genotype 1, Cuba. Emerg Infect Dis 2008; 14:1320-2. [PMID: 18680671 PMCID: PMC2600407 DOI: 10.3201/eid1408.080049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
| | | | - Vivek Chandra
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | - Shahid Jameel
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
48
|
Vasickova P, Psikal I, Kralik P, Widen F, Hubalek Z, Pavlik I. Hepatitis E virus: a review. VET MED-CZECH 2007; 52:365-384. [DOI: 10.17221/1999-vetmed] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
49
|
Fukuda S, Ishikawa M, Ochiai N, Suzuki Y, Sunaga J, Shinohara N, Nozawa K, Tsuda F, Takahashi M, Okamoto H. Unchanged high prevalence of antibodies to hepatitis E virus (HEV) and HEV RNA among blood donors with an elevated alanine aminotransferase level in Japan during 1991-2006. Arch Virol 2007; 152:1623-35. [PMID: 17533550 DOI: 10.1007/s00705-007-0996-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/02/2007] [Indexed: 12/28/2022]
Abstract
Hepatitis E is rare in Japan but is occurring more frequently than previously thought. To investigate whether de novo subclinical infection of hepatitis E virus (HEV) has recently increased in Japan, HEV RNA was assayed in serum samples obtained from 4019 Japanese voluntary blood donors with alanine aminotransferase (ALT) of > or =61 IU/l, who are likely to have ongoing HEV infection, during 1991-2006. The overall rates of IgG-class antibody to HEV (anti-HEV IgG), anti-HEV IgM/IgA and HEV RNA among 3185 donors in 2004-2006 were comparable with those among 594 donors in 1998 (5.3 vs. 5.2%, 0.2 vs. 0.5%, and 0.2 vs. 0.3%, respectively). Among blood donors with ALT > or = 201 IU/l in three groups according to the year of blood collection (1991-1995 [n = 156], 1996-1999 [n = 116] and 2004-2006 [n = 61]), there were no appreciable differences in the prevalence of anti-HEV IgG (5.8, 4.3, and 6.6%, respectively), anti-HEV IgM/IgA (1.9, 3.4, and 3.3%, respectively) and HEV RNA (1.3, 3.4, and 3.3%, respectively). The eleven HEV isolates obtained in the present study differed from each other by 1.7-22.8% in the ORF2 sequence and segregated into genotype 3 or 4. The occurrence rate of subclinical infection with divergent HEV strains has essentially remained unchanged during 1991-2006 in Japan.
Collapse
Affiliation(s)
- S Fukuda
- Japanese Red Cross Tochigi Blood Center, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsuura Y, Suzuki M, Yoshimatsu K, Arikawa J, Takashima I, Yokoyama M, Igota H, Yamauchi K, Ishida S, Fukui D, Bando G, Kosuge M, Tsunemitsu H, Koshimoto C, Sakae K, Chikahira M, Ogawa S, Miyamura T, Takeda N, Li TC. Prevalence of antibody to hepatitis E virus among wild sika deer, Cervus nippon, in Japan. Arch Virol 2007; 152:1375-81. [PMID: 17431737 DOI: 10.1007/s00705-007-0965-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
We examined 976 sika deer serum samples, 159 liver tissue samples and 88 stool samples collected from 16 prefectures in Japan, and performed ELISA and RT-PCR assays to detect antibodies to HEV and HEV RNA, respectively. Although 25 (2.6%) of 976 samples were positive for anti-HEV IgG, the antibody titers were very low. The OD values ranged between 0.018 and 0.486, forming a single distribution rather than a bimodal distribution, suggesting that the antibody detected in this study was not induced by HEV infection, or that deer have low sensitivity to HEV. HEV RNA was not detected in these samples, also suggesting that deer may not play a role as an HEV reservoir.
Collapse
Affiliation(s)
- Y Matsuura
- Institute for Animal Experimentation, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|