1
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
2
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
3
|
The Effect of Curcuma phaeocaulis Valeton (Zingiberaceae) Extract on Prion Propagation in Cell-Based and Animal Models. Int J Mol Sci 2022; 24:ijms24010182. [PMID: 36613636 PMCID: PMC9820341 DOI: 10.3390/ijms24010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.
Collapse
|
4
|
Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants (Basel) 2022; 11:antiox11040726. [PMID: 35453411 PMCID: PMC9027925 DOI: 10.3390/antiox11040726] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Collapse
|
5
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Bamia A, Sinane M, Naït-Saïdi R, Dhiab J, Keruzoré M, Nguyen PH, Bertho A, Soubigou F, Halliez S, Blondel M, Trollet C, Simonelig M, Friocourt G, Béringue V, Bihel F, Voisset C. Anti-prion Drugs Targeting the Protein Folding Activity of the Ribosome Reduce PABPN1 Aggregation. Neurotherapeutics 2021; 18:1137-1150. [PMID: 33533011 PMCID: PMC8423950 DOI: 10.1007/s13311-020-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
Prion diseases are caused by the propagation of PrPSc, the pathological conformation of the PrPC prion protein. The molecular mechanisms underlying PrPSc propagation are still unsolved and no therapeutic solution is currently available. We thus sought to identify new anti-prion molecules and found that flunarizine inhibited PrPSc propagation in cell culture and significantly prolonged survival of prion-infected mice. Using an in silico therapeutic repositioning approach based on similarities with flunarizine chemical structure, we tested azelastine, duloxetine, ebastine, loperamide and metixene and showed that they all have an anti-prion activity. Like flunarizine, these marketed drugs reduced PrPSc propagation in cell culture and in mouse cerebellum organotypic slice culture, and inhibited the protein folding activity of the ribosome (PFAR). Strikingly, some of these drugs were also able to alleviate phenotypes due to PABPN1 nuclear aggregation in cell and Drosophila models of oculopharyngeal muscular dystrophy (OPMD). These data emphasize the therapeutic potential of anti-PFAR drugs for neurodegenerative and neuromuscular proteinopathies.
Collapse
Affiliation(s)
- Aline Bamia
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Maha Sinane
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Rima Naït-Saïdi
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | - Jamila Dhiab
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Marc Keruzoré
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Phu Hai Nguyen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Host Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Agathe Bertho
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Flavie Soubigou
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sophie Halliez
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Univ. Lille, F-59000, Lille, France
| | - Marc Blondel
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Capucine Trollet
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, LIT, UMR7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, F-67400, France.
| | - Cécile Voisset
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France.
| |
Collapse
|
7
|
Reidenbach AG, Minikel EV, Zhao HT, Guzman SG, Leed AJ, Mesleh MF, Kordasiewicz HB, Schreiber SL, Vallabh SM. Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides. Biomolecules 2019; 10:E1. [PMID: 31861275 PMCID: PMC7022474 DOI: 10.3390/biom10010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
Antisense oligonucleotides (ASOs) designed to lower prion protein (PrP) expression in the brain through RNase H1-mediated degradation of PrP RNA are in development as prion disease therapeutics. ASOs were previously reported to sequence-independently interact with PrP and inhibit prion accumulation in cell culture, yet in vivo studies using a new generation of ASOs found that only PrP-lowering sequences were effective at extending survival. Cerebrospinal fluid (CSF) PrP has been proposed as a pharmacodynamic biomarker for trials of such ASOs, but is only interpretable if PrP lowering is indeed the relevant mechanism of action in vivo and if measurement of PrP is unconfounded by any PrP-ASO interaction. Here, we examine the PrP-binding and antiprion properties of ASOs in vitro and in cell culture. Binding parameters determined by isothermal titration calorimetry were similar across all ASOs tested, indicating that ASOs of various chemistries bind full-length recombinant PrP with low- to mid-nanomolar affinity in a sequence-independent manner. Nuclear magnetic resonance, dynamic light scattering, and visual inspection of ASO-PrP mixtures suggested, however, that this interaction is characterized by the formation of large aggregates, a conclusion further supported by the salt dependence of the affinity measured by isothermal titration calorimetry. Sequence-independent inhibition of prion accumulation in cell culture was observed. The inefficacy of non-PrP-lowering ASOs against prion disease in vivo may be because their apparent activity in vitro is an artifact of aggregation, or because the concentration of ASOs in relevant compartments within the central nervous system (CNS) quickly drops below the effective concentration for sequence-independent antiprion activity after bolus dosing into CSF. Measurements of PrP concentration in human CSF were not impacted by the addition of ASO. These findings support the further development of PrP-lowering ASOs and of CSF PrP as a pharmacodynamic biomarker.
Collapse
Affiliation(s)
- Andrew G. Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.G.R.); (E.V.M.); (S.G.G.); (S.L.S.)
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.G.R.); (E.V.M.); (S.G.G.); (S.L.S.)
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA 02139, USA
| | - Hien T. Zhao
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (H.T.Z.); (H.B.K.)
| | - Stacy G. Guzman
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.G.R.); (E.V.M.); (S.G.G.); (S.L.S.)
- Exceptional Research Opportunities Program (EXROP), Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alison J. Leed
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.J.L.); (M.F.M.)
| | - Michael F. Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.J.L.); (M.F.M.)
| | | | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.G.R.); (E.V.M.); (S.G.G.); (S.L.S.)
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sonia M. Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (A.G.R.); (E.V.M.); (S.G.G.); (S.L.S.)
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Koukouli F, Paspaltsis I, Salta E, Xanthopoulos K, Koini EN, Calogeropoulou T, Sklaviadis T. Inhibition of PrP(Sc) formation in scrapie infected N2a cells by 5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine derivatives. Prion 2012; 6:470-6. [PMID: 22918434 DOI: 10.4161/pri.21913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrP (C) into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrP (Sc) . Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrP (C) and its conversion to the abnormal isoforms of PrP (Sc) in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrP (Sc) , thus establishing a class of compounds with a promising therapeutic use against prion diseases.
Collapse
Affiliation(s)
- Fani Koukouli
- Aristotle University of Thessaloniki, Thessaloniki, Department of Pharmaceutical Sciences, Laboratory of Pharmacology, Group of Neurodegenerative Diseases, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
9
|
Eiden M, Leidel F, Strohmeier B, Fast C, Groschup MH. A Medicinal Herb Scutellaria lateriflora Inhibits PrP Replication in vitro and Delays the Onset of Prion Disease in Mice. Front Psychiatry 2012; 3:9. [PMID: 22363300 PMCID: PMC3281244 DOI: 10.3389/fpsyt.2012.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/11/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSE) are characterized by the misfolding of the host encoded prion protein (PrP(C)) into a pathogenic isoform (PrP(Sc)) which leads to the accumulation of β-sheet-rich fibrils and subsequent loss of neurons and synaptic functions. Although many compounds have been identified which inhibit accumulation or dissolve fibrils and aggregates in vitro there is no therapeutic treatment to stop these progressive neurodegenerative diseases. Here we describe the effects of the traditional medicinal herb Scutellaria lateriflora (S. lateriflora) and its natural compounds, the flavonoids baicalein and baicalin, on the development of prion disease using in vitro and in vivo models. S. lateriflora extract as well as both constituents reduced the PrP(res) accumulation in scrapie-infected cell cultures and cell-free conversion assays and lead to the destabilization of pre-existing PrP(Sc) fibrils. Moreover, tea prepared from S. lateriflora, prolonged significantly the incubation time of scrapie-infected mice upon oral treatment. Therefore S. lateriflora extracts as well as the individual compounds can be considered as promising candidates for the development of new therapeutic drugs against TSEs and other neurodegenerative diseases like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | | | | | | | | |
Collapse
|
10
|
Leidel F, Eiden M, Geissen M, Kretzschmar HA, Giese A, Hirschberger T, Tavan P, Schätzl HM, Groschup MH. Diphenylpyrazole-derived compounds increase survival time of mice after prion infection. Antimicrob Agents Chemother 2011; 55:4774-81. [PMID: 21746938 PMCID: PMC3186986 DOI: 10.1128/aac.00151-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/04/2011] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative disorders that can be transmitted by natural infection or inoculation. TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jakob disease (CJD) in humans. The emergence of a variant form of CJD (vCJD), which has been associated with BSE, produced strong pressure to search for effective treatments with new drugs. Up to now, however, TSEs have proved incurable, although many efforts have been made both in vitro and in vivo to search for potent therapeutic and prophylactic compounds. For this purpose, we analyzed a compound library consisting of 10,000 compounds with a cell-based high-throughput screening assay dealing with scrapie-infected scrapie mouse brain and ScN(2)A cells and identified a new class of inhibitors consisting of 3,5-diphenylpyrazole (DPP) derivatives. The most effective DPP derivative showed half-maximal inhibition of PrP(Sc) formation at concentrations (IC(50)) of 0.6 and 1.2 μM, respectively. This compound was subsequently subjected to a number of animal experiments using scrapie-infected wild-type C57BL/6 and transgenic Tga20 mice. The DPP derivative induced a significant increase of incubation time both in therapeutic and prophylactic experiments. The onset of the prion disease was delayed by 37 days after intraperitoneal and 42 days after oral application, respectively. In summary, we demonstrate a high in vitro efficiency of DPP derivatives against prion infections that was substantiated in vivo for one of these compounds. These results indicate that the novel class of DPP compounds should comprise excellent candidates for future therapeutic studies.
Collapse
Affiliation(s)
- Fabienne Leidel
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Markus Geissen
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Hans A. Kretzschmar
- Institute for Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Armin Giese
- Institute for Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Hirschberger
- Arbeitsgruppe Theoretische Biophysik, Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul Tavan
- Arbeitsgruppe Theoretische Biophysik, Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hermann M. Schätzl
- Department of Molecular Biology and of Veterinary Sciences, University of Wyoming, Laramie, Wyoming
| | - Martin H. Groschup
- Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Abstract
Drug resistance is a refractory barrier in the battle against many fatal diseases caused by rapidly evolving agents, including HIV, apicomplexans and specific cancers. Emerging evidence suggests that drug resistance might extend to lethal prion disorders and related neurodegenerative amyloidoses. Prions are self-replicating protein conformers, usually 'cross-beta' amyloid polymers, which are naturally transmitted between individuals and promote phenotypic change. Prion conformers are catalytic templates that specifically convert other copies of the same protein to the prion form. Once in motion, this chain reaction of conformational replication can deplete all non-prion copies of a protein. Typically, prions exist as ensembles of multiple structurally distinct, self-replicating forms or 'strains'. Each strain confers a distinct phenotype and replicates at different rates depending on the environment. As replicators, prions are units of selection. Thus, natural selection inescapably enriches or depletes various prion strains from populations depending on their conformational fitness (ability to self-replicate) in the prevailing environment. The most successful prions confer advantages to their host as with numerous yeast prions. Here, I review recent evidence that drug-like small molecules can antagonize some prion strains but simultaneously select for drug-resistant prions composed of mammalian PrP or the yeast prion protein, Sup35. For Sup35, the drug-resistant strain configures original intermolecular amyloid contacts that are not ordinarily detected. Importantly, a synergistic small-molecule cocktail counters prion diversity by eliminating multiple Sup35 prion strains. Collectively, these advances illuminate the plasticity of prionogenesis and suggest that synergistic combinatorial therapies might circumvent this pathological vicissitude.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox Res 2010; 19:556-74. [PMID: 20405353 DOI: 10.1007/s12640-010-9189-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
Quinacrine is one of the few molecules tested to treat patients affected by prion diseases, although the clinical outcome is largely unsatisfactory. To identify novel derivatives with higher neuroprotective activity, we evaluated the effects of a small library of acridine derivatives. The 6-chloro-2-methoxyacridine derivatives bearing on position 9 a quinolizidin-1-ylamino (Q1, Q2) or a quinolizidin-1-ylalkylamino residue (Q3, Q4, Q6, Q7), the thio-bioisoster of Q3 (Q5), the 9-(N-lupinylthiopropyl)amino derivative (Q8) and simple acridines (Q9 and Q10) were considered. We compared the effects of quinacrine and these novel analogues in the inhibition of the cytotoxic activity and protease K (PK) resistance of the human prion protein fragment 90-231 (hPrP90-231). We demonstrate that quinacrine caused a significant reduction of hPrP90-231 toxicity due to its binding to the fragment and the prevention of its conversion in a toxic isoform. All acridine derivatives analyzed showed high affinity binding for hPrP90-231, but only Q3 and Q10, caused a significant reduction of hPrP90-231 cytotoxicity, with higher efficacy than quinacrine. We attempted to correlate the cytoprotective effects of the new compounds with some biochemical parameters (binding affinity to hPrP90-231, intrinsic fluorescence quenching, hydrophobic amino acid exposure), but a direct relationship occurred only with the reduction of PK resistance, likely due to the prevention of the acquisition of the β-sheet-rich toxic conformation. These data represent interesting leads for further modifications of the basic side chain and the substituent pattern of the acridine nucleus to develop novel compounds with improved antiprion activity to be tested in in vivo experimental setting.
Collapse
|
13
|
Mouillet-Richard S, Nishida N, Pradines E, Laude H, Schneider B, Féraudet C, Grassi J, Launay JM, Lehmann S, Kellermann O. Prions impair bioaminergic functions through serotonin- or catecholamine-derived neurotoxins in neuronal cells. J Biol Chem 2008; 283:23782-90. [PMID: 18617522 DOI: 10.1074/jbc.m802433200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conversion of the cellular prion protein, PrP(C), to an abnormal isoform, PrP(Sc), is a central event leading to neurodegeneration in prion diseases. Deciphering the molecular and cellular changes imparted by PrP(Sc) accumulation remains an arduous task due to the small number of cell lines supporting prion replication. Here we introduce the 1C11 cell line as a new in vitro model to investigate prion pathogenesis. This cell line is a committed neuroectodermal progenitor able to differentiate into fully functional serotonergic or catecholaminergic neurons. 1C11 cells, which naturally express PrP(C) from the undifferentiated state, can be chronically infected with various prion strains. Prion infection does not promote any noticeable phenotypic change in the progenitor cells nor prevent the onset of the serotonergic and catecholaminergic differentiation programs. Pathogenic prions, however, deviate the overall neurotransmitter-metabolism in both pathways by decreasing bioamine synthesis, storage, and transport, and enhancing catabolism. Noteworthy, oxidized derivatives of both serotonin and catecholamines are selectively detected in the differentiated progenies of infected cells and contribute to irreversible impairment in bioamine synthesis. Finally, the level of PrP(Sc) accumulation, that of infectivity, and the extent of all prion-induced changes in infected cells appear to be correlated. The report of such specific effects of infection on neuronal functions provides a foundation for dissecting the events underlying loss of neuronal homeostasis in prion diseases.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Différenciation Cellulaire et prions, CNRS FRE 2937, Institut Pasteur, INSERM U747, 7 rue Guy Môquet, Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Riemer C, Burwinkel M, Schwarz A, Gültner S, Mok SWF, Heise I, Holtkamp N, Baier M. Evaluation of drugs for treatment of prion infections of the central nervous system. J Gen Virol 2008; 89:594-597. [PMID: 18198391 DOI: 10.1099/vir.0.83281-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are fatal and at present there are neither cures nor therapies available to delay disease onset or progression in humans. Inspired in part by therapeutic approaches in the fields of Alzheimer's disease and amyotrophic lateral sclerosis, we tested five different drugs, which are known to efficiently pass through the blood-brain barrier, in a murine prion model. Groups of intracerebrally prion-challenged mice were treated with the drugs curcumin, dapsone, ibuprofen, memantine and minocycline. Treatment with antibiotics dapsone and minocycline had no therapeutic benefit. Ibuprofen-treated mice showed severe adverse effects, which prevented assessment of therapeutic efficacy. Mice treated with low- but not high-dose curcumin and mice treated with memantine survived infections significantly longer than untreated controls (P<0.01). These results encourage further research efforts to improve the therapeutic effect of these drugs.
Collapse
Affiliation(s)
- Constanze Riemer
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Michael Burwinkel
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Anja Schwarz
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Sandra Gültner
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Simon W F Mok
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Ines Heise
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Nikola Holtkamp
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Baier
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
15
|
|
16
|
Hagiwara K, Nakamura Y, Nishijima M, Yamakawa Y. Prevention of prion propagation by dehydrocholesterol reductase inhibitors in cultured cells and a therapeutic trial in mice. Biol Pharm Bull 2007; 30:835-8. [PMID: 17409533 DOI: 10.1248/bpb.30.835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In prion diseases, the normal cellular form of prion protein (PrP(C)) is converted into the disease-associated isoforms (PrP(Sc)) which accumulate in the infected tissues. Although the precise mechanism of this conversion remains unsolved, drugs of various categories have been reported to reduce the accumulation of PrP(Sc) in prion-infected cultured cells. We here show that AY-9944 (a 7-dehydrocholesterol reductase inhibitor) and U18666A (a 24-dehydrocholesterol reductase inhibitor) prevent PrP(Sc) from accumulating in prion-infected mouse neuroblastoma cells (ScN2a), with an ED50 of about 0.5 microM and 10 nM, respectively. In order to evaluate the efficacy of these two inhibitors in vivo, C57BL/6J mice inoculated with mouse-adapted scrapie-prion received repetitive intraperitoneal injections of U18666A (10 mg/kg) or a mixture of U18666A (10 mg/kg) and AY-9944 (12 mg/kg). By contrast to the potent anti-prion effects observed in ScN2a cells, the in vivo trial was abortive with neither drug halting the progression of the disease.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Japan.
| | | | | | | |
Collapse
|
17
|
Kocisko DA, Bertholet N, Moore RA, Caughey B, Vaillant A. Identification of prion inhibitors by a fluorescence-polarization-based competitive binding assay. Anal Biochem 2007; 363:154-6. [PMID: 17276383 DOI: 10.1016/j.ab.2006.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/05/2006] [Indexed: 11/19/2022]
Affiliation(s)
- David A Kocisko
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
18
|
Kocisko DA, Caughey B. Searching for anti-prion compounds: cell-based high-throughput in vitro assays and animal testing strategies. Methods Enzymol 2006; 412:223-34. [PMID: 17046661 DOI: 10.1016/s0076-6879(06)12014-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurodegenerative diseases of mammals. Protease-resistant prion protein (PrP-res) is only associated with TSEs and thus has been a target for therapeutic intervention. The most effective compounds known against scrapie in vivo are inhibitors of PrP-res in infected cells. Mouse neuroblastoma (N2a) cells have been chronically infected with several strains of mouse scrapie including RML and 22L. Also, rabbit epithelial cells that produce sheep prion protein in the presence of doxycycline (Rov9) have been infected with sheep scrapie. Here a high-throughput 96-well plate PrP-res inhibition assay is described for each of these scrapie-infected cell lines. With this dot-blot assay, thousands of compounds can easily be screened for inhibition of PrP-res formation. This assay is designed to find new PrP-res inhibitors, which may make good candidates for in vivo anti-scrapie testing. However, an in vitro assay can only suggest that a given compound might have in vivo anti-scrapie activity, which is typically measured as increased survival times. Methods for in vivo testing of compounds for anti-scrapie activity in transgenic mice, a much more lengthy and expensive process, are also discussed.
Collapse
Affiliation(s)
- David A Kocisko
- Laboratory of Persisten Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
19
|
Ishikawa K, Kudo Y, Nishida N, Suemoto T, Sawada T, Iwaki T, Doh-ura K. Styrylbenzoazole derivatives for imaging of prion plaques and treatment of transmissible spongiform encephalopathies. J Neurochem 2006; 99:198-205. [PMID: 16987247 DOI: 10.1111/j.1471-4159.2006.04035.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent prevalence of acquired forms of transmissible spongiform encephalopathies (TSEs) has urged the development of early diagnostic measures as well as therapeutic interventions. To extend our previous findings on the value of amyloid imaging probes for these purposes, styrylbenzoazole derivatives with better permeability of blood-brain barrier (BBB) were developed and analyzed in this study. The new styrylbenzoazole compounds clearly labeled prion protein (PrP) plaques in brain specimens from human TSE in a manner irrespective of pathogen strain, and a representative compound BF-168 detected abnormal PrP aggregates in the brain of TSE-infected mice when the probe was injected intravenously. On the other hand, most of the compounds inhibited abnormal PrP formation in TSE-infected cells with IC50 values in the nanomolar range, indicating that they represent one of the most potent classes of inhibitor ever reported. BF-168 prolonged the lives of mice infected intracerebrally with TSE when the compound was given intravenously at the preclinical stage. The new compounds, however, failed to detect synaptic PrP deposition and to show pathogen-independent therapeutic efficacy, similar to the amyloid imaging probes we previously reported. The compounds were BBB permeable and non-toxic at doses for imaging and treatment; therefore, they are expected to be of practical use in human TSE.
Collapse
Affiliation(s)
- Kensuke Ishikawa
- Division of Prion Biology, Department of Prion Research, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Caughey B, Caughey WS, Kocisko DA, Lee KS, Silveira JR, Morrey JD. Prions and transmissible spongiform encephalopathy (TSE) chemotherapeutics: A common mechanism for anti-TSE compounds? Acc Chem Res 2006; 39:646-53. [PMID: 16981681 DOI: 10.1021/ar050068p] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
No validated treatments exist for transmissible spongiform encephalopathies (TSEs or prion diseases) in humans or livestock. The search for TSE therapeutics is complicated by persistent uncertainties about the nature of mammalian prions and their pathogenic mechanisms. In pursuit of anti-TSE drugs, we and others have focused primarily on blocking conversion of normal prion protein, PrP(C), to the TSE-associated isoform, PrP(Sc). Recently developed high-throughput screens have hastened the identification of new inhibitors with strong in vivo anti-TSE activities such as porphyrins, phthalocyanines, and phosphorthioated oligonucleotides. New routes of administration have enhanced beneficial effects against established brain infections. Several different classes of TSE inhibitors share structural similarities, compete for the same site(s) on PrP(C), and induce the clustering and internalization of PrP(C) from the cell surface. These activities may represent a common mechanism of action for these anti-TSE compounds.
Collapse
Affiliation(s)
- B Caughey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Mok SWF, Thelen KM, Riemer C, Bamme T, Gültner S, Lütjohann D, Baier M. Simvastatin prolongs survival times in prion infections of the central nervous system. Biochem Biophys Res Commun 2006; 348:697-702. [PMID: 16890918 DOI: 10.1016/j.bbrc.2006.07.123] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Prion diseases are fatal and at present there are neither cures nor palliative therapies known/available, which delay disease onset or progression. Cholesterol-lowering drugs have been reported to inhibit prion replication in infected cell cultures and to modulate inflammatory reactions. We aimed to determine whether simvastatin-treatment could delay disease onset in a murine prion model. Groups of mice were intracerebrally infected with two doses of scrapie strain 139A. Simvastatin-treatment commenced 100 days postinfection. The treatment did not affect deposition of misfolded prion protein PrP(res). However, expression of marker proteins for glia activation like major histocompatibility class II and galectin-3 was found to be affected. Analysis of brain cholesterol synthesis and metabolism revealed a mild reduction in cholesterol precursor levels, whereas levels of cholesterol and cholesterol metabolites were unchanged. Simvastatin-treatment significantly delayed disease progression and prolonged survival times in established prion infection of the CNS (p < or = 0.0003). The results suggest that modulation of glial responses and the therapeutic benefit observed in our murine prion model of simvastatin is not due to the cholesterol-lowering effect of this drug.
Collapse
Affiliation(s)
- Simon Wing Fai Mok
- Project Neurodegenerative Diseases, Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Boyé-Harnasch M, Cullin C. A novel in vitro filter trap assay identifies tannic acid as an amyloid aggregation inducer for HET-s. J Biotechnol 2006; 125:222-30. [PMID: 16621084 DOI: 10.1016/j.jbiotec.2006.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/08/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
In this work we present an easy and low cost in vitro filter trap assay to quickly identify direct actors on amyloid prion aggregation. We chose the recombinant purified prion protein HET-s from Podospora anserina as a reference. HET-s was labelled with a fluorophore prior to aggregation assays in a 96 well micro-array system. Aggregation assays were carried out in presence of a number of chemical compounds, followed by a filter trap assay through a cellulose acetate membrane and the straight detection of retained fluorescent amyloid fibres. We tested 22 chemical compounds from which 11 have already been described to affect various prions and other amyloid proteins. Four compounds showed direct effects on the aggregation of HET-s. ZnCl seemed to prevent the formation of amyloid fibres. Puzzlingly, three members of the group of tannins (tannic acid, epigallocatechin and epigallocatechin-gallate) had accelerant properties on amyloid aggregation. Resistance of the prion forming domain (PFD) in Proteinase K proteolysis assays underlined that tannic acid favours amyloid fibre formation of HET-s.
Collapse
Affiliation(s)
- Mona Boyé-Harnasch
- Institut de Biochimie et Génétique Cellulaire, 1 rue Camille St Saëns, CNRS UMR 5095, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
23
|
Kocisko DA, Caughey B. Mefloquine, an antimalaria drug with antiprion activity in vitro, lacks activity in vivo. J Virol 2006; 80:1044-6. [PMID: 16379006 PMCID: PMC1346870 DOI: 10.1128/jvi.80.2.1044-1046.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of the effectiveness of antimalaria drugs inhibiting abnormal protease-resistant prion protein (PrP-res) formation in scrapie agent-infected cells, we tested other antimalarial compounds for similar activity. Mefloquine (MF), a quinoline antimalaria drug, was the most active compound tested against RML and 22L mouse scrapie agent-infected cells, with 50% inhibitory concentrations of approximately 0.5 and approximately 1.2 microM, respectively. However, MF administered to mice did not delay the onset of intraperitoneally inoculated scrapie agent, the result previously observed with quinacrine. While most anti-scrapie agent compounds inhibit PrP-res formation in vitro, many PrP-res inhibitors have no activity in vivo. This underscores the importance of testing promising candidates in vivo.
Collapse
Affiliation(s)
- David A Kocisko
- National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | |
Collapse
|
24
|
Tribouillard D, Bach S, Gug F, Desban N, Beringue V, Andrieu T, Dormont D, Galons H, Laude H, Vilette D, Blondel M. Using budding yeast to screen for anti-prion drugs. Biotechnol J 2006; 1:58-67. [PMID: 16892225 DOI: 10.1002/biot.200500001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prions are misfolded proteins capable of propagating their altered conformation which are commonly considered as the causative agent of transmissible spongiform encephalopathies, a class of fatal neurodegenerative diseases. Currently, no treatment for prion-based diseases is available. Recently we have developed a rapid, yeast-based, two-step assay to screen for anti-prion drugs [1]. This new method allowed us to identify several compounds that are effective in vivo against budding yeast [PSI+] and [URE3] prions but also able to promote mammalian prion clearance in three different cell culture-based assays. Taken together, these results validate our method as an economic and efficient high-throughput screening approach to identify novel prion inhibitors or to carry on comprehensive structure-activity studies for already isolated anti-mammalian prion drugs. These results suggest furthermore that biochemical pathways controlling prion formation and/or maintenance are conserved from yeast to human and thus amenable to pharmacological and genetic analysis. Finally, it would be very interesting to test active drugs isolated using the yeast-based assay in models for other diseases (neurodegenerative or not) involving amyloid fibers like Huntington's, Parkinson's or Alzheimer's diseases.
Collapse
Affiliation(s)
- Déborah Tribouillard
- CNRS UMR7150, Amyloids and Cell Division Cycle Laboratory, Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kocisko DA, Engel AL, Harbuck K, Arnold KM, Olsen EA, Raymond LD, Vilette D, Caughey B. Comparison of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse and sheep scrapie. Neurosci Lett 2005; 388:106-11. [PMID: 16039063 DOI: 10.1016/j.neulet.2005.06.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/14/2005] [Accepted: 06/23/2005] [Indexed: 11/25/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases. A primary therapeutic target for TSE intervention has been a protease-resistant form of prion protein known as PrP(Sc) or PrP-res. In vitro testing of mouse scrapie-infected cell cultures has identified many PrP-res inhibitors that also have activity in vivo. Here we identify 32 new inhibitors of two strains of mouse scrapie PrP-res. Furthermore, to investigate the species-specificity of these and other PrP-res inhibitors, we have developed a high-throughput cell culture assay based on Rov9 cells chronically-infected with sheep scrapie. Of 32 inhibitors of murine PrP-res that were also tested in the Rov9 cells, only six showed inhibitory activity against sheep PrP-res. The three most potent inhibitors of both murine and ovine PrP-res formation (with 50% inhibition at < or =5 microM) were tannic acid, pentosan polysulfate and Fe(III) deuteroporphyrin 2,4-bisethyleneglycol. The latter two have anti-mouse scrapie activity in vivo. These results identify new inhibitors of murine and ovine PrP-res formation and reinforce the idea that compounds effective against PrP-res from one species or strain cannot be assumed to be active against others.
Collapse
Affiliation(s)
- David A Kocisko
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Breydo L, Bocharova OV, Baskakov IV. Semiautomated cell-free conversion of prion protein: applications for high-throughput screening of potential antiprion drugs. Anal Biochem 2005; 339:165-73. [PMID: 15766724 DOI: 10.1016/j.ab.2005.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/24/2022]
Abstract
Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.
Collapse
Affiliation(s)
- Leonid Breydo
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
27
|
Bertsch U, Winklhofer KF, Hirschberger T, Bieschke J, Weber P, Hartl FU, Tavan P, Tatzelt J, Kretzschmar HA, Giese A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol 2005; 79:7785-91. [PMID: 15919931 PMCID: PMC1143673 DOI: 10.1128/jvi.79.12.7785-7791.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conformational changes and aggregation of specific proteins are hallmarks of a number of diseases, like Alzheimer's disease, Parkinson's disease, and prion diseases. In the case of prion diseases, the prion protein (PrP), a neuronal glycoprotein, undergoes a conformational change from the normal, mainly alpha-helical conformation to a disease-associated, mainly beta-sheeted scrapie isoform (PrP(Sc)), which forms amyloid aggregates. This conversion, which is crucial for disease progression, depends on direct PrP(C)/PrP(Sc) interaction. We developed a high-throughput assay based on scanning for intensely fluorescent targets (SIFT) for the identification of drugs which interfere with this interaction at the molecular level. Screening of a library of 10,000 drug-like compounds yielded 256 primary hits, 80 of which were confirmed by dose response curves with half-maximal inhibitory effects ranging from 0.3 to 60 microM. Among these, six compounds displayed an inhibitory effect on PrP(Sc) propagation in scrapie-infected N2a cells. Four of these candidate drugs share an N'-benzylidene-benzohydrazide core structure. Thus, the combination of high-throughput in vitro assay with the established cell culture system provides a rapid and efficient method to identify new antiprion drugs, which corroborates that interaction of PrP(C) and PrP(Sc) is a crucial molecular step in the propagation of prions. Moreover, SIFT-based screening may facilitate the search for drugs against other diseases linked to protein aggregation.
Collapse
Affiliation(s)
- Uwe Bertsch
- Zentrum für Neuropathologie und Prionforschung, Ludwig Maximilians Universität, Feodor Lynen Str. 23, D-81377 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Devising approaches to the therapy of transmissible spongiform encephalopathies, or prion diseases, is beset by many difficulties. For one, the nature of the infectious agent, the prion, is understood only in outline, and its composition, structure, and mode of replication are still shrouded in mystery. In addition, the mechanism of pathogenesis is not well understood. Because clinical disease affects mainly the brain parenchyme, therapeutic agents must be able to traverse the brain-blood barrier (BBB) or have to be introduced directly into the cerebrospinal fluid or brain tissue. And finally, because the disease is usually recognized only after onset of severe clinical symptoms, the question arises as to whether the neurodegenerative processes can be reversed to any extent after a successful eradication of the agent.
Collapse
Affiliation(s)
- Charles Weissmann
- Department of Neurodegenerative Disease/MRC Prion Unit, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
29
|
Abstract
The transmissible spongiform encephalopathies could represent a new mode of transmission for infectious diseases--a process more akin to crystallization than to microbial replication. The prion hypothesis proposes that the normal isoform of the prion protein is converted to a disease-specific species by template-directed misfolding. Therapeutic and prophylactic strategies to combat these diseases have emerged from immunological and chemotherapeutic approaches. The lessons learned in treating prion disease will almost certainly have an impact on other diseases that are characterized by the pathological accumulation of misfolded proteins.
Collapse
Affiliation(s)
- Neil R Cashman
- Centre for Research in Neurodegenerative Diseases, University of Toronto, 6 Queen's Park Crescent West, Toronto, Ontario M553H2, Canada.
| | | |
Collapse
|