1
|
Yi X, Liu L, Tao R, Li W, Li H, He L, Liu Y, Shang S. The effect of T cells on the lncRNA4.9-TGF-β1 axis in HCMV latently infected cells. Medicine (Baltimore) 2025; 104:e42400. [PMID: 40388758 PMCID: PMC12091603 DOI: 10.1097/md.0000000000042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2025] [Indexed: 05/21/2025] Open
Abstract
Human cytomegalovirus (HCMV), a prevalent double-stranded DNA virus, exhibits a high infectioraten, yet the mechanisms underlying latent infection and activation remain unclear. Viral cyclic reactivation in healthy HCMV and latent infection is usually well controlled by the T-cell response. Long noncoding RNA (lncRNA) is known to play vital roles in physiological and pathological processes. This study investigates the impact of T cells on the expression of lncRNA4.9, transforming growth factor-β (TGF-β), and multiple cytokines during HCMV latent infection. We established an HCMV latent infection model, coculturing human acute monocytic leukemia cell line (THP-1) cells with T cells subjected to different treatments: NC1 (THP-1 cells cocultured with untreated T cells), NC2 (HCMV latently infected group without T cells), phytohemagglutinin A (PHA) group (PHA-activated T cells added), FK506 group (FK506-suppressed T cells added), and T-cell group (untreated T cells added). Cytokines were assessed in cell culture supernatants collected at 24, 48, and 72 hours. Reverse transcription-quantitative polymerase chain reaction examined changes in RNA and HCMV DNA copy numbers after 3 and 5 days. In the HCMV latent infection model, PHA group, T-cell group, and FK506 group exhibited significantly increased interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha secretion. Expressions of lncRNA4.9 and TGF-β1 significantly increased in T-cell group after 3 and 5 days. Expressions of lncRNA4.9 and TGF-β1 significantly decreased in the PHA group after 5 days. DNA copy numbers of HCMV decreased in T cell and PHA groups after 3 days, with no significant change after 5 days. This study reveals that PHA-activated T cells downregulate the expression of lncRNA4.9 and TGF-β1 in HCMV, highlighting the effect of T cells on the lncRNA4.9-TGF-β1 axis during HCMV latent infection. Regardless of T-cell activation, the study also indicates that IL-6, IL-10, and tumor necrosis factor-alpha levels increase during HCMV latent infection.
Collapse
Affiliation(s)
- Xiaolian Yi
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Lifang Liu
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Tao
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Huamei Li
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Lin He
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Yujie Liu
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqiang Shang
- Department of Laboratory Center, Children’s Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
3
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun signaling during initial HSV-1 infection modulates latency to enhance later reactivation in addition to directly promoting the progression to full reactivation. J Virol 2024; 98:e0176423. [PMID: 38193709 PMCID: PMC10878265 DOI: 10.1128/jvi.01764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun Signaling During Initial HSV-1 Infection Modulates Latency to Enhance Later Reactivation in addition to Directly Promoting the Progression to Full Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566462. [PMID: 37986840 PMCID: PMC10659354 DOI: 10.1101/2023.11.10.566462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and can periodically reactivate to permit transmission and clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection and therefore HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. Activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full, Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required for the transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during HSV latent infection of neurons to promote reactivation. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
5
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Mason R, Bradley E, Wills M, Sinclair J, Reeves M. Repression of the major immediate early promoter of human cytomegalovirus allows transcription from an alternate promoter. J Gen Virol 2023; 104. [PMID: 37702591 DOI: 10.1099/jgv.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Following infection, the human cytomegalovirus (HCMV) genome becomes rapidly associated with host histones which can contribute to the regulation of viral gene expression. This can be seen clearly during HCMV latency where silencing of the major immediate early promoter (MIEP), normally responsible for expression of the key lytic proteins IE72 and IE86, is mediated by histone methylation and recruitment of heterochromatin protein 1. Crucially, reversal of these histone modifications coupled with histone acetylation drives viral reactivation which can be blocked with specific histone acetyltransferase inhibitors (HATi). In lytic infection, a role for HATi is less clear despite the well-established enhancement of viral replication observed with histone deacetylase inhibitors. Here we report that a number of different broad-acting HATi have a minor impact on viral infection and replication during lytic infection with the more overt phenotypes observed at lower multiplicities of infection. However, specific analyses of the regulation of major immediate early (MIE) gene expression reveal that the HATi C646, which targets p300/CBP, transiently repressed MIE gene expression via inhibition of the MIEP but by 24 h post-infection MIE gene expression was rescued due to compensatory activation of an alternative IE promoter, ip2. This suggested that silencing of the MIEP promoted alternative ip2 promoter activity in lytic infection and, consistent with this, ip2 transcription is impaired in cells infected with a recombinant HCMV that does not auto-repress the MIEP at late times of infection. Furthermore, inhibition of the histone methyltransferases known to be responsible for auto-repression is similarly inhibitory to ip2 transcription in wild-type infected cells. We also observe that these discrete transcriptional activities of the MIEP and ip2 promoter are also reflected in reactivation; essentially in cells where the MIEP is silenced, ip2 activity is easier to detect at very early times post-reactivation whereas in cells where robust activation of the MIEP is observed ip2 transcription is reduced or delayed. Finally, we observe that inhibition of pathways demonstrated to be important for reactivation of HCMV in dendritic cells, e.g. in response to IL-6, are preferentially important for activation of the MIEP and not the ip2 promoter. Together, these data add to the hypothesis that the existence of multiple promoters within the MIE region of HCMV can drive reactivation in a cell type- and ligand-specific manner and also suggest that inter-dependent regulatory activity between the two promoters exists.
Collapse
Affiliation(s)
- Rebecca Mason
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Eleanor Bradley
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Mark Wills
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Matthew Reeves
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| |
Collapse
|
7
|
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ian J. Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O'Connor
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Murray MJ, Bradley E, Ng Y, Thomas O, Patel K, Angus C, Atkinson C, Reeves MB. In silico interrogation of the miRNAome of infected hematopoietic cells to predict processes important for human cytomegalovirus latent infection. J Biol Chem 2023; 299:104727. [PMID: 37080390 PMCID: PMC10206818 DOI: 10.1016/j.jbc.2023.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) latency in CD34+ progenitor cells is the outcome of a complex and continued interaction of virus and host that is initiated during very early stages of infection and reflects pro- and anti-viral activity. We hypothesized that a key event during early infection could involve changes to host miRNAs, allowing for rapid modulation of the host proteome. Here, we identify 72 significantly upregulated miRNAs and three that were downregulated by 6hpi of infection of CD34+ cells which were then subject to multiple in silico analyses to identify potential genes and pathways important for viral infection. The analyses focused on the upregulated miRNAs and were used to predict potential gene hubs or common mRNA targets of multiple miRNAs. Constitutive deletion of one target, the transcriptional regulator JDP2, resulted in a defect in latent infection of myeloid cells; interestingly, transient knockdown in differentiated dendritic cells resulted in increased viral lytic IE gene expression, arguing for subtle differences in the role of JDP2 during latency establishment and reactivation of HCMV. Finally, in silico predictions identified clusters of genes with related functions (such as calcium signaling, ubiquitination, and chromatin modification), suggesting potential importance in latency and reactivation. Consistent with this hypothesis, we demonstrate that viral IE gene expression is sensitive to calcium channel inhibition in reactivating dendritic cells. In conclusion, we demonstrate HCMV alters the miRNAome rapidly upon infection and that in silico interrogation of these changes reveals new insight into mechanisms controlling viral gene expression during HCMV latency and, intriguingly, reactivation.
Collapse
Affiliation(s)
- M J Murray
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom.
| | - E Bradley
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - Y Ng
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - O Thomas
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - K Patel
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - C Angus
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - C Atkinson
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom
| | - M B Reeves
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Campus, UCL, London, United Kingdom.
| |
Collapse
|
9
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
10
|
Forte E, Li M, Ayaloglu Butun F, Hu Q, Borst EM, Schipma MJ, Piunti A, Shilatifard A, Terhune SS, Abecassis M, Meier JL, Hummel M. Critical Role for the Human Cytomegalovirus Major Immediate Early Proteins in Recruitment of RNA Polymerase II and H3K27Ac To an Enhancer-Like Element in Ori Lyt. Microbiol Spectr 2023; 11:e0314422. [PMID: 36645269 PMCID: PMC9927211 DOI: 10.1128/spectrum.03144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac. Although it is well known that the major immediate early (IE) proteins activate early gene expression through both direct and indirect interactions, and that histone modifications play an important role in regulating viral gene expression, the role of the IE proteins in modulating viral chromatin is not fully understood. To address this question, we have used a virus engineered for conditional expression of the IE proteins combined with RNA and Chromatin immunoprecipitation (ChIP) analyses to assess the role of these proteins in modulating both viral chromatin and gene expression. Our results show that (i) there is an enhancer-like element in OriLyt that is extraordinarily enriched in H3K27Ac; (ii) in addition to activation of viral gene expression, the IE proteins play a critical role in recruitment of Pol II and H3K27Ac to this element. IMPORTANCE HCMV is an important human pathogen associated with complications in transplant patients and birth defects. The complex program of viral gene expression is regulated by both viral proteins and host factors. Here, we have investigated the role of the immediate early proteins in regulating the viral epigenome. Our results show that the viral immediate early proteins bring about an enormous enrichment of H3K27Ac marks at the OriLyt RNA4.9 promoter, concomitant with an increase in RNA4.9 expression. This epigenetic characteristic adds importantly to the view that OriLyt has structural and functional characteristics of a strong enhancer that, we now discover, is regulated by IE proteins.
Collapse
Affiliation(s)
- Eleonora Forte
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Fatma Ayaloglu Butun
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Schipma
- NUSeq Core, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Mary Hummel
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms232012285. [PMID: 36293135 PMCID: PMC9603650 DOI: 10.3390/ijms232012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.
Collapse
|
12
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
13
|
Smith NA, Chan GC, O'Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. MAIN BODY To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. CONCLUSIONS HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas A Smith
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Christine M O'Connor
- Department of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
15
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
16
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
17
|
Cell signaling and cytomegalovirus reactivation: what do Src family kinases have to do with it? Biochem Soc Trans 2021; 48:667-675. [PMID: 32311019 PMCID: PMC7200638 DOI: 10.1042/bst20191110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Primary infection with human cytomegalovirus (HCMV) is usually asymptomatic and leads to the establishment of lifelong latent infection. A major site of latency are the CD34+ hematopoietic progenitor cells. Importantly, normal cellular differentiation of CD34+ cells to a macrophage or dendritic cell phenotype is concomitant with viral reactivation. Molecular studies of HCMV latency have shown that the latent viral genome is associated with histone proteins and that specific post-translational modifications of these histones correlates with the transcriptional activity of the genome arguing that expression of key viral genes that dictate latency and reactivation are subject to the rules of the histone code hypothesis postulated for the regulation of eukaryotic gene expression. Finally, many studies now point to a key role for multiple signaling pathways to provide the cue for HCMV reactivation. The challenge now is to understand the complex interplay between cell identity, transcriptional regulation and cell signaling that occurs to promote reactivation and, additionally, how HCMV may further manipulate these events to support reactivation. Understanding how HCMV utilizes these pathways to drive HCMV reactivation will provide new insight into the mechanisms that govern viral and host gene expression and, potentially, illuminate new, host-directed, therapeutic opportunities to support our attempts to control this important medical pathogen of immune-compromised individuals.
Collapse
|
18
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
19
|
Mason R, Groves IJ, Wills MR, Sinclair JH, Reeves MB. Human cytomegalovirus major immediate early transcripts arise predominantly from the canonical major immediate early promoter in reactivating progenitor-derived dendritic cells. J Gen Virol 2020; 101:635-644. [PMID: 32375946 PMCID: PMC7414444 DOI: 10.1099/jgv.0.001419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus latency and reactivation is a major source of morbidity in immune-suppressed patient populations. Lifelong latent infections are established in CD34+progenitor cells in the bone marrow, which are hallmarked by a lack of major lytic gene expression, genome replication and virus production. A number of studies have shown that inhibition of the major immediate early promoter (MIEP) – the promoter that regulates immediate early (IE) gene expression – is important for the establishment of latency and that, by extension, reactivation requires reversal of this repression of the MIEP. The identification of novel promoters (termed ip1 and ip2) downstream of the MIEP that can drive IE gene expression has led to speculation over the precise role of the MIEP in reactivation. In this study we show that IE transcripts arise from both the MIEP and ip2 promoter in the THP1 cell macrophage cell line and also CD14+monocytes stimulated with phorbol ester. In contrast, we show that in in vitro generated dendritic cells or macrophages that support HCMV reactivation IE transcripts arise predominantly from the MIEP and not the intronic promoters. Furthermore, inhibition of histone modifying enzyme activity confirms the view that the MIEP is predominantly regulated by the activity of cellular chromatin. Finally, we observe that ip2-derived IE transcription is cycloheximide-sensitive in reactivating DCs, behaviour consistent with an early gene designation. Taken together, these data argue that MIEP activity is still important for HCMV reactivation but ip2 activity could play cell-type-specific roles in reactivation.
Collapse
Affiliation(s)
- Rebecca Mason
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Groves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John H Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Matthew B Reeves
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK
| |
Collapse
|
20
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
21
|
New Insights Into the Molecular Mechanisms and Immune Control of Cytomegalovirus Reactivation. Transplantation 2020; 104:e118-e124. [PMID: 31996662 PMCID: PMC7790173 DOI: 10.1097/tp.0000000000003138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus that establishes lifelong latency in infected hosts. Following transplantation of a latently infected organ, reactivation can occur and consists of a spectrum of clinically apparent syndromes from mild symptoms to tissue-invasive, resulting in both direct and indirect sequelae. Before the advent of effective antiviral agents, the primary treatment was reduction in immunosuppression (IS). While antiviral agents provide effective prophylaxis, there are several important caveats associated with their use, including drug toxicity and resistance. The traditional view attributes CMV reactivation and the ensuing clinical disease primarily to IS, either intrinsic to disease-related immune compromise or from the extrinsic administration of IS agents. However, previous data from both animal models and human subjects showed that inflammatory signals could induce upregulation of latent viral gene expression. New data demonstrate that ischemia/reperfusion is necessary and sufficient to induce CMV reactivation following murine transplantation of a latently infected graft. In this article, we review a growing body of evidence that suggests that reactivation of both human CMV and murine CMV is first triggered by molecular events that activate CMV gene expression and lytic infection and viral dissemination are then facilitated by IS. The initial activation of viral gene expression may be mediated by oxidative stress, DNA damage, or inflammatory cytokines, and these factors may act synergistically. New therapeutic approaches are needed to capture this complex array of targets.
Collapse
|
22
|
Kim ET, Roche KL, Kulej K, Spruce LA, Seeholzer SH, Coen DM, Diaz-Griffero F, Murphy EA, Weitzman MD. SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Rep 2020; 28:434-448.e6. [PMID: 31291579 DOI: 10.1016/j.celrep.2019.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/22/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular SAMHD1 inhibits replication of many viruses by limiting intracellular deoxynucleoside triphosphate (dNTP) pools. We investigate the influence of SAMHD1 on human cytomegalovirus (HCMV). During HCMV infection, we observe SAMHD1 induction, accompanied by phosphorylation via viral kinase UL97. SAMHD1 depletion increases HCMV replication in permissive fibroblasts and conditionally permissive myeloid cells. We show this is due to enhanced gene expression from the major immediate-early (MIE) promoter and is independent of dNTP levels. SAMHD1 suppresses innate immune responses by inhibiting nuclear factor κB (NF-κB) activation. We show that SAMHD1 regulates the HCMV MIE promoter through NF-κB activation. Chromatin immunoprecipitation reveals increased RELA and RNA polymerase II on the HCMV MIE promoter in the absence of SAMHD1. Our studies reveal a mechanism of HCMV virus restriction by SAMHD1 and show how SAMHD1 deficiency activates an innate immune pathway that paradoxically results in increased viral replication through transcriptional activation of the HCMV MIE gene promoter.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathryn L Roche
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Evrys Bio, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Evrys Bio, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
24
|
Liu XF, Swaminathan S, Yan S, Engelmann F, Abbott DA, VanOsdol LA, Heald-Sargent T, Qiu L, Chen Q, Iovane A, Zhang Z, Abecassis MM. A novel murine model of differentiation-mediated cytomegalovirus reactivation from latently infected bone marrow haematopoietic cells. J Gen Virol 2020; 100:1680-1694. [PMID: 31647403 DOI: 10.1099/jgv.0.001327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD34+ myeloid lineage progenitor cells are an important reservoir of latent human cytomegalovirus (HCMV), and differentiation to macrophages or dendritic cells (DCs) is known to cause reactivation of latent virus. Due to its species-specificity, murine models have been used to study mouse CMV (MCMV) latency and reactivation in vivo. While previous studies have shown that MCMV genomic DNA can be detected in the bone marrow (BM) of latently infected mice, the identity of these cells has not been defined. Therefore, we sought to identify and enrich for cellular sites of MCMV latency in the BM haematopoietic system, and to explore the potential for establishing an in vitro model for reactivation of latent MCMV. We studied the kinetics and cellular characteristics of acute infection and establishment of latency in the BM of mice. We found that while MCMV can infect a broad range of haematopoietic BM cells (BMCs), latent virus is only detectable in haematopoietic stem cells (HSCs), myeloid progenitor cells, monocytes and DC-enriched cell subsets. Using three separate approaches, MCMV reactivation was detected in association with differentiation into DC-enriched BMCs cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) followed by lipopolysaccharide (LPS) treatment. In summary, we have defined the kinetics and cellular profile of MCMV infection followed by the natural establishment of latency in vivo in the mouse BM haematopoietic system, including the haematopoietic phenotypes of cells that are permissive to acute infection, establish and harbour detectable latent virus, and can be stimulated to reactivate following DC enrichment and differentiation, followed by treatment with LPS.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shixian Yan
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Flora Engelmann
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Darryl Adelaide Abbott
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Andrew VanOsdol
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor Heald-Sargent
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Longhui Qiu
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre Iovane
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zheng Zhang
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020; 8:microorganisms8050685. [PMID: 32397070 PMCID: PMC7284540 DOI: 10.3390/microorganisms8050685] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. Here, we review past and current literature that has greatly advanced our understanding of the biology and genetics of HCMV, stressing the urgent need for innovative and safe anti-HCMV therapies and effective vaccines to treat and prevent HCMV infections, particularly in vulnerable populations.
Collapse
|
26
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
27
|
Forte E, Zhang Z, Thorp EB, Hummel M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay With the Host Immune Response. Front Cell Infect Microbiol 2020; 10:130. [PMID: 32296651 PMCID: PMC7136410 DOI: 10.3389/fcimb.2020.00130] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
CMV is an ancient herpesvirus that has co-evolved with its host over millions of years. The 236 kbp genome encodes at least 165 genes, four non-coding RNAs and 14 miRNAs. Of the protein-coding genes, 43-44 are core replication genes common to all herpesviruses, while ~30 are unique to betaherpesviruses. Many CMV genes are involved in evading detection by the host immune response, and others have roles in cell tropism. CMV replicates systemically, and thus, has adapted to various biological niches within the host. Different biological niches may place competing demands on the virus, such that genes that are favorable in some contexts are unfavorable in others. The outcome of infection is dependent on the cell type. In fibroblasts, the virus replicates lytically to produce infectious virus. In other cell types, such as myeloid progenitor cells, there is an initial burst of lytic gene expression, which is subsequently silenced through epigenetic repression, leading to establishment of latency. Latently infected monocytes disseminate the virus to various organs. Latency is established through cell type specific mechanisms of transcriptional silencing. In contrast, reactivation is triggered through pathways activated by inflammation, infection, and injury that are common to many cell types, as well as differentiation of myeloid cells to dendritic cells. Thus, CMV has evolved a complex relationship with the host immune response, in which it exploits cell type specific mechanisms of gene regulation to establish latency and to disseminate infection systemically, and also uses the inflammatory response to infection as an early warning system which allows the virus to escape from situations in which its survival is threatened, either by cellular damage or infection of the host with another pathogen. Spontaneous reactivation induced by cellular aging/damage may explain why extensive expression of lytic genes has been observed in recent studies using highly sensitive transcriptome analyses of cells from latently infected individuals. Recent studies with animal models highlight the potential for harnessing the host immune response to blunt cellular injury induced by organ transplantation, and thus, prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Edward B. Thorp
- Department of Pathology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mary Hummel
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
28
|
Shnayder M, Nachshon A, Rozman B, Bernshtein B, Lavi M, Fein N, Poole E, Avdic S, Blyth E, Gottlieb D, Abendroth A, Slobedman B, Sinclair J, Stern-Ginossar N, Schwartz M. Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. eLife 2020; 9:e52168. [PMID: 31967545 PMCID: PMC7039680 DOI: 10.7554/elife.52168] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.
Collapse
Affiliation(s)
- Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Biana Bernshtein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michael Lavi
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Fein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Selmir Avdic
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
| | - Emily Blyth
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - David Gottlieb
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
30
|
Elder EG, Krishna BA, Williamson J, Lim EY, Poole E, Sedikides GX, Wills M, O'Connor CM, Lehner PJ, Sinclair J. Interferon-Responsive Genes Are Targeted during the Establishment of Human Cytomegalovirus Latency. mBio 2019; 10:e02574-19. [PMID: 31796538 PMCID: PMC6890990 DOI: 10.1128/mbio.02574-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) latency is an active process which remodels the latently infected cell to optimize latent carriage and reactivation. This is achieved, in part, through the expression of viral genes, including the G-protein-coupled receptor US28. Here, we use an unbiased proteomic screen to assess changes in host proteins induced by US28, revealing that interferon-inducible genes are downregulated by US28. We validate that major histocompatibility complex (MHC) class II and two pyrin and HIN domain (PYHIN) proteins, myeloid cell nuclear differentiation antigen (MNDA) and IFI16, are downregulated during experimental latency in primary human CD14+ monocytes. We find that IFI16 is targeted rapidly during the establishment of latency in a US28-dependent manner but only in undifferentiated myeloid cells, a natural site of latent carriage. Finally, by overexpressing IFI16, we show that IFI16 can activate the viral major immediate early promoter and immediate early gene expression during latency via NF-κB, a function which explains why downregulation of IFI16 during latency is advantageous for the virus.IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus which infects 50 to 100% of humans worldwide. HCMV causes a lifelong subclinical infection in immunocompetent individuals but is a serious cause of mortality and morbidity in the immunocompromised and neonates. In particular, reactivation of HCMV in the transplant setting is a major cause of transplant failure and related disease. Therefore, a molecular understanding of HCMV latency and reactivation could provide insights into potential ways to target the latent viral reservoir in at-risk patient populations.
Collapse
Affiliation(s)
- Elizabeth G Elder
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin A Krishna
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Y Lim
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - George X Sedikides
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul J Lehner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Bellizzi A, Ahye N, Jalagadugula G, Wollebo HS. A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. J Neuroimmune Pharmacol 2019; 14:578-594. [PMID: 31512166 PMCID: PMC6898781 DOI: 10.1007/s11481-019-09878-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Virus-induced diseases or neurological complications are huge socio-economic burden to human health globally. The complexity of viral-mediated CNS pathology is exacerbated by reemergence of new pathogenic neurotropic viruses of high public relevance. Although the central nervous system is considered as an immune privileged organ and is mainly protected by barrier system, there are a vast majority of neurotropic viruses capable of gaining access and cause diseases. Despite continued growth of the patient population and a number of treatment strategies, there is no successful viral specific therapy available for viral induced CNS diseases. Therefore, there is an urgent need for a clear alternative treatment strategy that can effectively target neurotropic viruses of DNA or RNA genome. To address this need, rapidly growing gene editing technology based on CRISPR/Cas9, provides unprecedented control over viral genome editing and will be an effective, highly specific and versatile tool for targeting CNS viral infection. In this review, we discuss the application of this system to control CNS viral infection and associated neurological disorders and future prospects. Graphical Abstract CRISPR/Cas9 technology as agent control over CNS viral infection.
Collapse
Affiliation(s)
- Anna Bellizzi
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Nicholas Ahye
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Gauthami Jalagadugula
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassen S Wollebo
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
32
|
Aslam Y, Williamson J, Romashova V, Elder E, Krishna B, Wills M, Lehner P, Sinclair J, Poole E. Human Cytomegalovirus Upregulates Expression of HCLS1 Resulting in Increased Cell Motility and Transendothelial Migration during Latency. iScience 2019; 20:60-72. [PMID: 31569051 PMCID: PMC6817630 DOI: 10.1016/j.isci.2019.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus establishes a lifelong, latent infection in the human host and can cause significant morbidity and mortality, particularly, in immunocompromised individuals. One established site of HCMV latency and reactivation is in cells of the myeloid lineage. In undifferentiated myeloid cells, such as CD14+ monocytes, virus is maintained latently. We have recently reported an analysis of the total proteome of latently infected CD14+ monocytes, which identified an increase in hematopoietic lineage cell-specific protein (HCLS1). Here we show that this latency-associated upregulation of HCLS1 occurs in a US28-dependent manner and stabilizes actin structure in latently infected cells. This results in their increased motility and ability to transit endothelial cell layers. Thus, latency-associated increases in monocyte motility could aid dissemination of the latently infected reservoir, and targeting this increased motility could have an impact on the ability of latently infected monocytes to distribute to tissue sites of reactivation.
Collapse
Affiliation(s)
- Yusuf Aslam
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James Williamson
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth Elder
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Mark Wills
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul Lehner
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
33
|
Poole E, Huang CJZ, Forbester J, Shnayder M, Nachshon A, Kweider B, Basaj A, Smith D, Jackson SE, Liu B, Shih J, Kiskin FN, Roche K, Murphy E, Wills MR, Morrell NW, Dougan G, Stern-Ginossar N, Rana AA, Sinclair J. An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Front Microbiol 2019; 10:2233. [PMID: 31649625 PMCID: PMC6795026 DOI: 10.3389/fmicb.2019.02233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/11/2019] [Indexed: 02/02/2023] Open
Abstract
Herpesviruses undergo life-long latent infection which can be life-threatening in the immunocompromised. Models of latency and reactivation of human cytomegalovirus (HCMV) include primary myeloid cells, cells known to be important for HCMV latent carriage and reactivation in vivo. However, primary cells are limited in availability, and difficult to culture and to genetically modify; all of which have hampered our ability to fully understand virus/host interactions of this persistent human pathogen. We have now used iPSCs to develop a model cell system to study HCMV latency and reactivation in different cell types after their differentiation down the myeloid lineage. Our results show that iPSCs can effectively mimic HCMV latency/reactivation in primary myeloid cells, allowing molecular interrogations of the viral latent/lytic switch. This model may also be suitable for analysis of other viruses, such as HIV and Zika, which also infect cells of the myeloid lineage.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jessica Forbester
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Baraa Kweider
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anna Basaj
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Smith
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Bin Liu
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joy Shih
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fedir N. Kiskin
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - K. Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - E. Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amer A. Rana
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Gelbmann CB, Kalejta RF. The Golgi sorting motifs of human cytomegalovirus UL138 are not required for latency maintenance. Virus Res 2019; 270:197646. [PMID: 31260705 PMCID: PMC6697590 DOI: 10.1016/j.virusres.2019.197646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Human cytomegalovirus (HCMV) establishes latency within incompletely differentiated cells of the myeloid lineage. The viral protein UL138 participates in establishing and maintaining this latent state. UL138 has multiple functions during latency that include silencing productive phase viral gene transcription and modulating intracellular protein trafficking. Trafficking and subsequent downregulation of the multidrug resistance-associated protein 1 (MRP1) by UL138 is mediated by one of four Golgi sorting motifs within UL138. Here we investigate whether any of the Golgi sorting motifs of UL138 are required for the establishment and/or maintenance of HCMV latency in model cell systems in vitro. We determined that a mutant UL138 protein lacking an acidic cluster dileucine sorting motif unable to downregulate MRP1, as well as another mutant lacking all four Golgi sorting motifs still silenced viral immediate early (IE) gene expression and prevented progeny virion formation during latency. We conclude that the Golgi sorting motifs are not required for latency establishment or maintenance in model cell systems in vitro.
Collapse
Affiliation(s)
- Christopher B Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
35
|
Zhang Z, Qiu L, Yan S, Wang JJ, Thomas PM, Kandpal M, Zhao L, Iovane A, Liu XF, Thorp EB, Chen Q, Hummel M, Kanwar YS, Abecassis MM. A clinically relevant murine model unmasks a "two-hit" mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. Am J Transplant 2019; 19:2421-2433. [PMID: 30947382 PMCID: PMC6873708 DOI: 10.1111/ajt.15376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 01/25/2023]
Abstract
Reactivation of latent cytomegalovirus remains an important complication after transplant. Although immunosuppression (IS) has been implicated as a primary cause, we have previously shown that the implantation response of a kidney allograft can lead to early transcriptional activation of latent murine cytomegalovirus (MCMV) genes in an immune-competent host and to MCMV reactivation and dissemination to other organs in a genetically immune-deficient recipient. We now describe a model that allows us to separately analyze the impact of the implantation effect vs that of a clinically relevant IS regimen. Treatment with IS of latently infected mice alone does not induce viral reactivation, but transplant of latently infected allogeneic kidneys combined with IS facilitates MCMV reactivation in the graft and dissemination to other organs. The IS regimen effectively dampens allo-immune inflammatory pathways and depletes recipient anti-MCMV but does not affect ischemia-reperfusion injury pathways. MCMV reactivation similar to that seen in allogeneic transplants combined with also occurs after syngeneic transplants. Thus, our data strongly suggest that while ischemia-reperfusion injury of the implanted graft is sufficient and necessary to initiate transcriptional reactivation of latent MCMV ("first hit"), IS is permissive to the first hit and facilitates dissemination to other organs ("second hit").
Collapse
Affiliation(s)
- Zheng Zhang
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Longhui Qiu
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Paul M. Thomas
- Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Lihui Zhao
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Andre Iovane
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xue-feng Liu
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Edward B. Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Qing Chen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Mary Hummel
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Michael M. Abecassis
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
36
|
Dupont L, Du L, Poulter M, Choi S, McIntosh M, Reeves MB. Src family kinase activity drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral promoter. J Biol Chem 2019; 294:12901-12910. [PMID: 31273084 PMCID: PMC6721939 DOI: 10.1074/jbc.ra119.009667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency and reactivation rely on a complex interplay between cellular differentiation, cell signaling pathways, and viral gene functions. HCMV reactivation in dendritic cells (DCs) is triggered by IL-6 and extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase signaling. However, activation of the same pathway fails to reactivate HCMV in other myeloid cell types, despite this signaling axis being active in those cells. We hypothesized that IL-6-induced ERK activation initiates the changes in chromatin structure required for viral reactivation but that a concomitant signal is necessary to complete the changes in chromatin structure required for gene expression to occur. Using a differential phosphoproteomics approach in cells that do or do not support IL-6-induced viral reactivation, we identified the concomitant activation of an Src family kinase (SFK), hematopoietic cell kinase (HCK), specifically in DCs in response to IL-6. Pharmacological and genetic inhibition of HCK activity indicated that HCK is required for HCMV reactivation. Furthermore, the HCK/SFK activity was linked to recruitment of the monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase to the viral promoter, which promoted histone acetylation after ERK-mediated histone phosphorylation. Importantly, pharmacological and genetic inhibition of MOZ activity prevented reactivation. These results provide an explanation for the selective activation of viral gene expression in DCs by IL-6, dependent on concomitant SFK and ERK signaling. They also reveal a previously unreported role for SFK activity in the regulation of chromatin structure at promoters in eukaryotic cells via MOZ histone acetyltransferase activity.
Collapse
Affiliation(s)
- Liane Dupont
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Lily Du
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Madeleine Poulter
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Stephanie Choi
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Megan McIntosh
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom, Supported by Wellcome Trust Grant WT/204870/Z/16/Z. To whom correspondence should be addressed. Tel.:
44-203-1086783; E-mail:
| |
Collapse
|
37
|
Collins-McMillen D, Rak M, Buehler JC, Igarashi-Hayes S, Kamil JP, Moorman NJ, Goodrum F. Alternative promoters drive human cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A 2019; 116:17492-17497. [PMID: 31409717 PMCID: PMC6717278 DOI: 10.1073/pnas.1900783116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.
Collapse
Affiliation(s)
| | - Mike Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | | | | | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71103
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721;
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
38
|
Nauclér CS, Geisler J, Vetvik K. The emerging role of human cytomegalovirus infection in human carcinogenesis: a review of current evidence and potential therapeutic implications. Oncotarget 2019; 10:4333-4347. [PMID: 31303966 PMCID: PMC6611507 DOI: 10.18632/oncotarget.27016] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
It is well-established that infections with viruses harboring oncogenic potential increase the cancer risk. Virus induced oncogenic processes are influenced by a complex and unique combination of host and environmental risk factors that are currently not fully understood. Many of the oncogenic viruses exhibit a prolonged, asymptomatic latency after a primary infection, and cause cancer in only a minority of carriers. From an epidemiologic point of view, it is therefore difficult to determine their role in cancer development. However, recent evidence suggests a neoplastic potential of one additional ubiquitous virus; human Cytomegalovirus (HCMV). Emerging data presents HCMV as a plausible cancer-causing virus by demonstrating its presence in >90% of common tumor types, while being absent in normal tissue surrounding the tumor. HCMV targets many cell types in tumor tissues, and can cause all the ten proposed hallmarks of cancer. This virus exhibits cellular tumor-promoting and immune-evasive strategies, hijacks proangiogenic and anti-apoptotic mechanisms and induces immunosuppressive effects in the tumor micro-environment. Recognizing new cancer-causing mechanisms may increase the therapeutic potential and prophylactic options for virus associated cancer forms. Such approaches could limit viral spread, and promote anti-viral and immune controlling strategies if given as add on to standard therapy to potentially improve the prognosis of cancer patients. This review will focus on HCMV-related onco-viral mechanisms and the potential of HCMV as a new therapeutic target in HCMV positive cancer forms.
Collapse
Affiliation(s)
- Cecilia Söderberg Nauclér
- Department of Medicine, Unit of Microbial Pathogenesis, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Breast and Endocrine Surgery, AHUS, Lørenskog, Norway
| |
Collapse
|
39
|
Stern L, Withers B, Avdic S, Gottlieb D, Abendroth A, Blyth E, Slobedman B. Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Front Microbiol 2019; 10:1186. [PMID: 31191499 PMCID: PMC6546901 DOI: 10.3389/fmicb.2019.01186] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) reactivation is a major infectious cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). HCMV is a ubiquitous beta-herpesvirus which asymptomatically infects immunocompetent individuals but establishes lifelong latency, with the potential to reactivate to a life-threatening productive infection when the host immune system is suppressed or compromised. Opportunistic HCMV reactivation is the most common viral complication following engraftment after HSCT and is associated with a marked increase in non-relapse mortality, which appears to be linked to complex effects on post-transplant immune recovery. This minireview explores the cellular sites of HCMV latency and reactivation in HSCT recipients and provides an overview of the risk factors for HCMV reactivation post-HSCT. The impact of HCMV in shaping post-transplant immune reconstitution and its relationship with patient outcomes such as relapse and graft-versus-host disease will be discussed. Finally, we survey current and emerging strategies to prevent and control HCMV reactivation in HSCT recipients, with recent developments including adoptive T cell therapies to accelerate HCMV-specific T cell reconstitution and new anti-HCMV drug therapy for HCMV reactivation after HSCT.
Collapse
Affiliation(s)
- Lauren Stern
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barbara Withers
- Department of Haematology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Selmir Avdic
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia
| | - David Gottlieb
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
41
|
Abstract
Human cytomegalovirus (HCMV) latency and reactivation is regulated by the chromatin structure at the major immediate early promoter (MIEP) within myeloid cells. Both cellular and viral factors are known to control this promoter during latency, here we will review the known mechanisms for MIEP regulation during latency. We will then focus on the virally encoded G-protein coupled receptor, US28, which suppresses the MIEP in early myeloid lineage cells. The importance of this function is underlined by the fact that US28 is essential for HCMV latency in CD34+ progenitor cells and CD14+ monocytes. We will describe cellular signalling pathways modulated by US28 to direct MIEP suppression during latency and demonstrate how US28 is able to ‘regulate the regulators’ of HCMV latency. Finally, we will describe how cell-surface US28 can be a target for antiviral therapies directed at the latent viral reservoir.
Collapse
|
42
|
HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection? Viruses 2018; 10:v10100533. [PMID: 30274264 PMCID: PMC6213175 DOI: 10.3390/v10100533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of peripheral blood monocytes plays a key role in the hematogenous dissemination of the virus to multiple organ systems following primary infection or reactivation of latent virus in the bone marrow. Monocytes have a short life span of 1⁻3 days in circulation; thus, HCMV must alter their survival and differentiation to utilize these cells and their differentiated counterparts-macrophages-for dissemination and long term viral persistence. Because monocytes are not initially permissive for viral gene expression and replication, HCMV must control host-derived factors early during infection to prevent apoptosis or programmed cell death prior to viral induced differentiation into naturally long-lived macrophages. This review provides a short overview of HCMV infection of monocytes and describes how HCMV has evolved to utilize host cell anti-apoptotic pathways to allow infected monocytes to bridge the 48⁻72 h viability gate so that differentiation into a long term stable mature cell can occur. Because viral gene expression is delayed in monocytes following initial infection and only occurs (begins around two to three weeks post infection in our model) following what appears to be complete differentiation into mature macrophages or dendritic cells, or both; virally-encoded anti-apoptotic gene products cannot initially control long term infected cell survival. Anti-apoptotic viral genes are discussed in the second section of this review and we argue they would play an important role in long term macrophage or dendritic cell survival following infection-induced differentiation.
Collapse
|
43
|
Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio 2018; 9:mBio.01560-18. [PMID: 30206173 PMCID: PMC6134100 DOI: 10.1128/mbio.01560-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HCMV is an important human pathogen that establishes lifelong latent infection in myeloid progenitor cells and reactivates frequently to cause significant disease in immunocompromised people. Our observation that viral gene expression is first turned on and then turned off to establish latency suggests that there is a host defense, which may be myeloid cell specific, responsible for transcriptional silencing of viral gene expression. Our observation that TNF-α induces reactivation independently of differentiation provides insight into molecular mechanisms that control reactivation. We used the Kasumi-3 model to study human cytomegalovirus (HCMV) latency and reactivation in myeloid progenitor cells. Kasumi-3 cells were infected with HCMV strain TB40/Ewt-GFP, flow sorted for green fluorescent protein-positive (GFP+) cells, and cultured for various times to monitor establishment of latency, as judged by repression of viral gene expression (RNA/DNA ratio) and loss of virus production. We found that, in the vast majority of cells, latency was established posttranscriptionally in the GFP+ infected cells: transcription was initially turned on and then turned off. We also found that some of the GFP− cells were infected, suggesting that latency might be established in these cells at the outset of infection. We were not able to test this hypothesis because some GFP− cells expressed lytic genes and thus it was not possible to separate them from GFP− quiescent cells. In addition, we found that the pattern of expression of lytic genes that have been associated with latency, including UL138, US28, and RNA2.7, was the same as that of other lytic genes, indicating that there was no preferential expression of these genes once latency was established. We confirmed previous studies showing that tumor necrosis factor alpha (TNF-α) induced reactivation of infectious virus, and by analyzing expression of the progenitor cell marker CD34 as well as myeloid cell differentiation markers in IE+ cells after treatment with TNF-α, we showed that TNF-α induced transcriptional reactivation of IE gene expression independently of differentiation. TNF-α-mediated reactivation in Kasumi-3 cells was correlated with activation of NF-κB, KAP-1, and ATM.
Collapse
|
44
|
Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. Molecular Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation. Viruses 2018; 10:E444. [PMID: 30127257 PMCID: PMC6116278 DOI: 10.3390/v10080444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Collapse
Affiliation(s)
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
45
|
Poole EL, Kew VG, Lau JC, Murray MJ, Stamminger T, Sinclair JH, Reeves MB. A Virally Encoded DeSUMOylase Activity Is Required for Cytomegalovirus Reactivation from Latency. Cell Rep 2018; 24:594-606. [PMID: 30021158 PMCID: PMC6077246 DOI: 10.1016/j.celrep.2018.06.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023] Open
Abstract
A subset of viral genes is required for the long-term latent infection of hematopoietic cells by human cytomegalovirus (HCMV). Here, we show that a latency-associated gene product (LUNA) promotes the disruption of cellular PML bodies during latency. Mutation and inhibitor studies reveal that LUNA encodes a deSUMOylase activity responsible for this disruption. Specifically, LUNA encodes a conserved Asp-Cys-Gly motif common to all deSUMOylases. Importantly, mutation of the putative catalytic cysteine is sufficient to reverse LUNA-mediated PML dispersal and markedly reduces the efficiency of viral reactivation. The depletion of PML from cells is sufficient to rescue the reactivation of the LUNA-deficient viruses, arguing that targeting PML is an important biological role of LUNA. Finally, we demonstrate that reactivation of naturally latent HCMV is blocked by deSUMOylase inhibitors. Thus, latent HCMV primes the cellular environment for efficient reactivation via the activity of a virally encoded deSUMOylase.
Collapse
Affiliation(s)
- Emma L. Poole
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Verity G. Kew
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Jonathan C.H. Lau
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Matthew J. Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK
| | | | - John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK,Corresponding author
| | - Matthew B. Reeves
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK,Corresponding author
| |
Collapse
|
46
|
Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 2018; 3:503-513. [PMID: 29588542 DOI: 10.1038/s41564-018-0131-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
Abstract
The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3-iNOS-NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.
Collapse
|
47
|
Shnayder M, Nachshon A, Krishna B, Poole E, Boshkov A, Binyamin A, Maza I, Sinclair J, Schwartz M, Stern-Ginossar N. Defining the Transcriptional Landscape during Cytomegalovirus Latency with Single-Cell RNA Sequencing. mBio 2018; 9:e00013-18. [PMID: 29535194 PMCID: PMC5850328 DOI: 10.1128/mbio.00013-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in a lifelong infection due to its ability to establish latent infection, with one characterized viral reservoir being hematopoietic cells. Although reactivation from latency causes serious disease in immunocompromised individuals, our molecular understanding of latency is limited. Here, we delineate viral gene expression during natural HCMV persistent infection by analyzing the massive transcriptome RNA sequencing (RNA-seq) atlas generated by the Genotype-Tissue Expression (GTEx) project. This systematic analysis reveals that HCMV persistence in vivo is prevalent in diverse tissues. Notably, we find only viral transcripts that resemble gene expression during various stages of lytic infection with no evidence of any highly restricted latency-associated viral gene expression program. To further define the transcriptional landscape during HCMV latent infection, we also used single-cell RNA-seq and a tractable experimental latency model. In contrast to some current views on latency, we also find no evidence for any highly restricted latency-associated viral gene expression program. Instead, we reveal that latency-associated gene expression largely mirrors a late lytic viral program, albeit at much lower levels of expression. Overall, our work has the potential to revolutionize our understanding of HCMV persistence and suggests that latency is governed mainly by quantitative changes, with a limited number of qualitative changes, in viral gene expression.IMPORTANCE Human cytomegalovirus is a prevalent pathogen, infecting most of the population worldwide and establishing lifelong latency in its hosts. Although reactivation from latency causes significant morbidity and mortality in immunocompromised hosts, our molecular understanding of the latent state remains limited. Here, we examine the viral gene expression during natural and experimental latent HCMV infection on a transcriptome-wide level. In contrast to the classical views on herpesvirus latency, we find no evidence for a restricted latency-associated viral gene expression program. Instead, we reveal that latency gene expression largely resembles a late lytic viral profile, albeit at much lower levels of expression. Taken together, our data transform the current view of HCMV persistence and suggest that latency is mainly governed by quantitative rather than qualitative changes in viral gene expression.
Collapse
Affiliation(s)
- Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Krishna
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Alina Boshkov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Maza
- Department of Gastroenterology, Rambam Health Care Campus and Bruce Rappaport School of Medicine, Technion, Institute of Technology, Haifa, Israel
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Immune responses to an early lytic cytomegalovirus antigen in systemic lupus erythematosus patients: T-cell responses, cytokine secretions and antibody status. PLoS One 2018; 13:e0193244. [PMID: 29499037 PMCID: PMC5834189 DOI: 10.1371/journal.pone.0193244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/07/2018] [Indexed: 01/12/2023] Open
Abstract
We investigated immune responses to a lytic cytomegalovirus antigen (CMVpp52), and to a lytic human herpes virus (HHV) 6 antigen (HHV6p41), in systemic lupus erythematosus (SLE) patients and healthy controls (HCs), in order to clarify if the previously established impaired responses to Epstein-Barr virus (EBV) in SLE patients is a general defect in their responses against (all) HHVs. Multiplex Luminex technology results showed a normal induction of five quantified cytokines (interferon γ, interleukin(IL)12, IL17, IL10, and tumor necrosis factor α) in SLE patients compared to HCs upon stimulation with CMVpp52 and HHV6p41. However, flow cytometric results showed a reduced upregulation of the activation marker CD69 on T-cells from SLE patients (n = 17) compared to HCs (n = 17) upon stimulation with CMVpp52, indicating limited or defective CMVpp52-specific T-cells and/or poor antigen-presentation in SLE patients, and thereby possibly decreased control of the CMV infection. In conclusion, the dysfunctional immune response against EBV previously established in SLE patients does not seem to apply to the same degree regarding the immune responses against CMV or HHV6. Results designate that the main contributing HHV agent in development or exacerbation of SLE (in genetically predisposed individuals) is the previously determined uncontrolled EBV infection, and to a lesser extent CMV infection, and probably with no involvement of HHV6 infection.
Collapse
|
49
|
Kasmapour B, Kubsch T, Rand U, Eiz-Vesper B, Messerle M, Vondran FWR, Wiegmann B, Haverich A, Cicin-Sain L. Myeloid Dendritic Cells Repress Human Cytomegalovirus Gene Expression and Spread by Releasing Interferon-Unrelated Soluble Antiviral Factors. J Virol 2018; 92:e01138-17. [PMID: 29046460 PMCID: PMC5730771 DOI: 10.1128/jvi.01138-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is a betaherpesvirus that latently infects most adult humans worldwide and is a major cause of morbidity and mortality in immunocompromised hosts. Latent human CMV (HCMV) is believed to reside in precursors of myeloid-lineage leukocytes and monocytes, which give rise to macrophages and dendritic cells (DC). We report here that human monocyte-derived DC (mo-DC) suppress HCMV infection in coculture with infected fibroblast target cells in a manner dependent on the effector-to-target ratio. Intriguingly, optimal activation of mo-DC was achieved under coculture conditions and not by direct infection with HCMV, implying that mo-DC may recognize unique molecular patterns on, or within, infected fibroblasts. We show that HCMV is controlled by secreted factors that act by priming defenses in target cells rather than by direct viral neutralization, but we excluded a role for interferons (IFNs) in this control. The expression of lytic viral genes in infected cells and the progression of infection were significantly slowed, but this effect was reversible, indicating that the control of infection depended on the transient induction of antiviral effector molecules in target cells. Using immediate early or late-phase reporter HCMVs, we show that soluble factors secreted in the cocultures suppress HCMV replication at both stages of the infection and that their antiviral effects are robust and comparable in numerous batches of mo-DC as well as in primary fibroblasts and stromal cells.IMPORTANCE Human cytomegalovirus is a widespread opportunistic pathogen that can cause severe disease and complications in vulnerable individuals. This includes newborn children, HIV AIDS patients, and transplant recipients. Although the majority of healthy humans carry this virus throughout their lives without symptoms, it is not exactly clear which tissues in the body are the main reservoirs of latent virus infection or how the delicate balance between the virus and the immune system is maintained over an individual's lifetime. Here, for the first time, we provide evidence for a novel mechanism of direct virus control by a subset of human innate immune cells called dendritic cells, which are regarded as a major site of virus latency and reactivation. Our findings may have important implications in HCMV disease prevention as well as in development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bahram Kasmapour
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tobias Kubsch
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulfert Rand
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Luka Cicin-Sain
- Immune Ageing and Chronic Infections Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
50
|
Kew VG, Wills MR, Reeves MB. LPS promotes a monocyte phenotype permissive for human cytomegalovirus immediate-early gene expression upon infection but not reactivation from latency. Sci Rep 2017; 7:810. [PMID: 28400599 PMCID: PMC5429787 DOI: 10.1038/s41598-017-00999-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of myeloid cells is closely linked with the differentiation status of the cell. Haematopoietic progenitors and CD14+ monocytes are usually non-permissive for lytic gene expression which can lead to the establishment of latent infections. In contrast, differentiation to macrophage or dendritic cell (DC) phenotypes promotes viral reactivation or renders them permissive for lytic infection. The observation that high doses of Lipopolysaccharide (LPS) drove rapid monocyte differentiation in mice led us to investigate the response of human monocytes to HCMV following LPS stimulation in vitro. Here we report that LPS triggers a monocyte phenotype permissiveness for lytic infection directly correlating with LPS concentration. In contrast, addition of LPS directly to latently infected monocytes was not sufficient to trigger viral reactivation which is likely linked with the failure of the monocytes to differentiate to a DC phenotype. Interestingly, we observe that this effect on lytic infection of monocytes is transient, appears to be dependent on COX-2 activation and does not result in a full productive infection. Thus LPS stimulated monocytes are partially permissive lytic gene expression but did not have long term impact on monocyte identity regarding their differentiation and susceptibility for the full lytic cycle of HCMV.
Collapse
Affiliation(s)
- V G Kew
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - M R Wills
- Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - M B Reeves
- Institute of Immunity & Transplantation, UCL Division of Infection & Immunity, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|