1
|
Holroyd DL, Kumar A, Vasquez E, Masic V, von Itzstein M, Bruning JB, Hansman GS. Antigenic structural analysis of bat and human norovirus protruding (P) domains. J Virol 2025; 99:e0197124. [PMID: 40062838 PMCID: PMC11998536 DOI: 10.1128/jvi.01971-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Affiliation(s)
- Dayna L. Holroyd
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Akhil Kumar
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Eduardo Vasquez
- Institute for Biomedicine and Glycomics (IBG), Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Veronika Masic
- Institute for Biomedicine and Glycomics (IBG), Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Biomedicine and Glycomics (IBG), Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Grant S. Hansman
- Institute for Biomedicine and Glycomics (IBG), Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Hansman GS, Kher G, Svirina AD, Tame JRH, Hartley-Tassell L, Irie H, Haselhorst T, von Itzstein M, Rudd PA, Pancera M. Development of a broad-spectrum therapeutic Fc-nanobody for human noroviruses. J Virol 2024; 98:e0070724. [PMID: 38953655 PMCID: PMC11264634 DOI: 10.1128/jvi.00707-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.
Collapse
Affiliation(s)
- Grant S. Hansman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jeremy R. H. Tame
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Lauren Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Hiro Irie
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Penny A. Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Yasuura M, Tan ZL, Horiguchi Y, Ashiba H, Fukuda T. Improvement of Sensitivity and Speed of Virus Sensing Technologies Using nm- and μm-Scale Components. SENSORS (BASEL, SWITZERLAND) 2023; 23:6830. [PMID: 37571612 PMCID: PMC10422600 DOI: 10.3390/s23156830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Various viral diseases can be widespread and cause severe disruption to global society. Highly sensitive virus detection methods are needed to take effective measures to prevent the spread of viral infection. This required the development of rapid virus detection technology to detect viruses at low concentrations, even in the biological fluid of patients in the early stages of the disease or environmental samples. This review describes an overview of various virus detection technologies and then refers to typical technologies such as beads-based assay, digital assay, and pore-based sensing, which are the three modern approaches to improve the performance of viral sensing in terms of speed and sensitivity.
Collapse
Affiliation(s)
- Masato Yasuura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (Z.L.T.); (Y.H.); (H.A.); (T.F.)
| | | | | | | | | |
Collapse
|
4
|
Kher G, Sabin C, Lun JH, Devant JM, Ruoff K, Koromyslova AD, von Itzstein M, Pancera M, Hansman GS. Direct Blockade of the Norovirus Histo-Blood Group Antigen Binding Pocket by Nanobodies. J Virol 2023; 97:e0183322. [PMID: 36971561 PMCID: PMC10134814 DOI: 10.1128/jvi.01833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 03/29/2023] Open
Abstract
Noroviruses are the leading cause of outbreaks of acute gastroenteritis. These viruses usually interact with histo-blood group antigens (HBGAs), which are considered essential cofactors for norovirus infection. This study structurally characterizes nanobodies developed against the clinically important GII.4 and GII.17 noroviruses with a focus on the identification of novel nanobodies that efficiently block the HBGA binding site. Using X-ray crystallography, we have characterized nine different nanobodies that bound to the top, side, or bottom of the P domain. The eight nanobodies that bound to the top or side of the P domain were mainly genotype specific, while one nanobody that bound to the bottom cross-reacted against several genotypes and showed HBGA blocking potential. The four nanobodies that bound to the top of the P domain also inhibited HBGA binding, and structural analysis revealed that these nanobodies interacted with several GII.4 and GII.17 P domain residues that commonly engaged HBGAs. Moreover, these nanobody complementarity-determining regions (CDRs) extended completely into the cofactor pockets and would likely impede HBGA engagement. The atomic level information for these nanobodies and their corresponding binding sites provide a valuable template for the discovery of additional "designer" nanobodies. These next-generation nanobodies would be designed to target other important genotypes and variants, while maintaining cofactor interference. Finally, our results clearly demonstrate for the first time that nanobodies directly targeting the HBGA binding site can function as potent norovirus inhibitors. IMPORTANCE Human noroviruses are highly contagious and a major problem in closed institutions, such as schools, hospitals, and cruise ships. Reducing norovirus infections is challenging on multiple levels and includes the frequent emergence of antigenic variants, which complicates designing effective, broadly reactive capsid therapeutics. We successfully developed and characterized four norovirus nanobodies that bound at the HBGA pockets. Compared with previously developed norovirus nanobodies that inhibited HBGA through disrupted particle stability, these four novel nanobodies directly inhibited HBGA engagement and interacted with HBGA binding residues. Importantly, these new nanobodies specifically target two genotypes that have caused the majority of outbreaks worldwide and consequently would have an enormous benefit if they could be further developed as norovirus therapeutics. To date, we have structurally characterized 16 different GII nanobody complexes, a number of which block HBGA binding. These structural data could be used to design multivalent nanobody constructs with improved inhibition properties.
Collapse
Affiliation(s)
- Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Charles Sabin
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Jennifer H. Lun
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Jessica M. Devant
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Ruoff
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Anna D. Koromyslova
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Grant S. Hansman
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
5
|
Bhattacharya M, Chatterjee S, Lee SS, Chakraborty C. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update. Int J Biol Macromol 2023; 229:70-80. [PMID: 36586649 PMCID: PMC9797221 DOI: 10.1016/j.ijbiomac.2022.12.284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
In the last two years, the world encountered the SARS-CoV-2 virus, which is still dominating the population due to the absence of a viable treatment. To eradicate the global pandemic, scientists, doctors, and researchers took an exceptionally significant initiative towards the development of effective therapeutics to save many lifes. This review discusses about the single-domain antibodies (sdAbs), also called nanobodies, their structure, and their types against the infections of dreadful SARS-CoV-2 virus. A precise description highlights the nanobodies and their therapeutic application against the other selected viruses. It aims to focus on the extraordinary features of these antibodies compared to the conventional therapeutics like mAbs, convalescent plasma therapy, and vaccines. The stable structure of these nanobodies along with the suitable mechanism of action also confers greater resistance to the evolving variants with numerous mutations. The nanobodies developed against SARS-CoV-2 and its mutant variants have shown the greater neutralization potential than the primitive ones. Engineering of these specialized antibodies by modern biotechnological approaches will surely be more beneficial in treating this COVID-19 pandemic along with certain other viral infections.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
6
|
Structural Basis for Rabbit Hemorrhagic Disease Virus Antibody Specificity. J Virol 2022; 96:e0121722. [PMID: 36326275 PMCID: PMC9682983 DOI: 10.1128/jvi.01217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b.
Collapse
|
7
|
Villabruna N, Izquierdo-Lara RW, Schapendonk CME, de Bruin E, Chandler F, Thao TTN, Westerhuis BM, van Beek J, Sigfrid L, Giaquinto C, Goossens H, Bielicki JA, Kohns Vasconcelos M, Fraaij PLA, Koopmans MPG, de Graaf M. Profiling of humoral immune responses to norovirus in children across Europe. Sci Rep 2022; 12:14275. [PMID: 35995986 PMCID: PMC9395339 DOI: 10.1038/s41598-022-18383-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Norovirus is a leading cause of epidemic acute gastroenteritis. More than 30 genotypes circulate in humans, some are common, and others are only sporadically detected. Here, we investigated whether serology can be used to determine which genotypes infect children. We established a multiplex protein microarray with structural and non-structural norovirus antigens that allowed simultaneous antibody testing against 30 human GI and GII genotypes. Antibody responses of sera obtained from 287 children aged < 1 month to 5.5 years were profiled. Most specific IgG and IgA responses were directed against the GII.2, GII.3, GII.4, and GII.6 capsid genotypes. While we detected antibody responses against rare genotypes, we found no evidence for wide circulation. We also detected genotype-specific antibodies against the non-structural proteins p48 and p22 in sera of older children. In this study, we show the age-dependent antibody responses to a broad range of norovirus capsid and polymerase genotypes, which will aid in the development of vaccines.
Collapse
Affiliation(s)
- Nele Villabruna
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | | | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Felicity Chandler
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brenda M Westerhuis
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Janko van Beek
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Louise Sigfrid
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Carlo Giaquinto
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Julia A Bielicki
- Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, UK.,Department of Infectious Diseases and Vaccinology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Malte Kohns Vasconcelos
- Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, UK.,Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Marion P G Koopmans
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Tohma K, Ford-Siltz LA, Kendra JA, Parra GI. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep 2022; 39:110689. [PMID: 35417705 DOI: 10.1016/j.celrep.2022.110689] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
A paradigm of RNA viruses is their ability to mutate and escape from herd immunity. Because antibody responses are a major effector for viral immunity, antigenic sites are usually under strong diversifying pressure. Here, we use norovirus as a model to study mechanisms of antigenic diversification of non-enveloped, fast-evolving RNA viruses. We comprehensively characterize all variable antigenic sites involved in virus neutralization and find that single neutralizing monoclonal antibodies (mAbs) map to multiple antigenic sites of GII.4 norovirus. Interactions of multiple epitopes on the viral capsid surface provide a broad mAb-binding repertoire with a remarkable difference in the mAb-binding profiles and immunodominance hierarchy for two distantly related GII.4 variants. Time-ordered mutant viruses confirm a progressive change of antibody immunodominance along with point mutations during the process of norovirus evolution. Thus, in addition to point mutations, switches in immunodominance that redirect immune responses could facilitate immune escape in RNA viruses.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Lauren A Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Joseph A Kendra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Gabriel I Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA.
| |
Collapse
|
9
|
Amexo JX, Negoro M, Kuurdor EDM, Lartey BL, Sokejima S, Sugata K, Tonto PB, Taniguchi K. Molecular Epidemiology of Norovirus (NoV) Infection in Mie Prefecture: The Kinetics of Norovirus Antigenemia in Pediatric Patients. Viruses 2022; 14:v14020173. [PMID: 35215766 PMCID: PMC8880472 DOI: 10.3390/v14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Few studies have shown the presence of norovirus (NoV) RNA in blood circulation but there is no data on norovirus antigenemia. We examined both antigenemia and RNAemia from the sera of children with NoV infections and studied whether norovirus antigenemia is correlated with the levels of norovirus-specific antibodies and clinical severity of gastroenteritis. Both stool and serum samples were collected from 63 children admitted to Mie National Hospital with acute NoV gastroenteritis. Norovirus antigen and RNA were detected in sera by ELISA and real-time RT-PCR, respectively. NoV antigenemia was found in 54.8% (34/62) and RNAemia in 14.3% (9/63) of sera samples. Antigenemia was more common in the younger age group (0–2 years) than in the older age groups, and most patients were male. There was no correlation between stool viral load and norovirus antigen (NoV-Ag) levels (rs = −0.063; Cl −0.3150 to 0.1967; p = 0.6251). Higher levels of acute norovirus-specific IgG serum antibodies resulted in a lower antigenemia OD value (n = 61; r = −0.4258; CI −0.62 to −0.19; p = 0.0006). Norovirus antigenemia occurred more commonly in children under 2 years of age with NoV-associated acute gastroenteritis. The occurrence of antigenemia was not correlated with stool viral load or disease severity.
Collapse
Affiliation(s)
- Jennifer X. Amexo
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-shi 514-8507, Japan; (E.D.-M.K.); (S.S.)
- Department of Clinical Research, National Hospital Organization, Mie National Hospital, Tsu-shi 514-0125, Japan; (M.N.); (K.S.); (P.B.T.)
- Correspondence: (J.X.A.); (K.T.)
| | - Manami Negoro
- Department of Clinical Research, National Hospital Organization, Mie National Hospital, Tsu-shi 514-0125, Japan; (M.N.); (K.S.); (P.B.T.)
| | - Elijah Deku-Mwin Kuurdor
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-shi 514-8507, Japan; (E.D.-M.K.); (S.S.)
| | - Belinda L. Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra 00233, Ghana;
| | - Shigeru Sokejima
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-shi 514-8507, Japan; (E.D.-M.K.); (S.S.)
- Epidemiology Centre for Disease Control and Prevention, Mie University Hospital, Tsu-shi 514-8507, Japan
| | - Ken Sugata
- Department of Clinical Research, National Hospital Organization, Mie National Hospital, Tsu-shi 514-0125, Japan; (M.N.); (K.S.); (P.B.T.)
| | - Prince Baffour Tonto
- Department of Clinical Research, National Hospital Organization, Mie National Hospital, Tsu-shi 514-0125, Japan; (M.N.); (K.S.); (P.B.T.)
| | - Kiyosu Taniguchi
- Department of Clinical Research, National Hospital Organization, Mie National Hospital, Tsu-shi 514-0125, Japan; (M.N.); (K.S.); (P.B.T.)
- Correspondence: (J.X.A.); (K.T.)
| |
Collapse
|
10
|
Abstract
Human noroviruses are the most common viral cause of acute gastroenteritis worldwide. Currently, there are no approved vaccines or specific therapeutics to treat the disease. Some obstacles delaying the development of a norovirus vaccine are: (i) the extreme diversity presented by noroviruses; (ii) our incomplete understanding of immunity to noroviruses; and (iii) the lack of a robust cell culture system or animal model for human noroviruses. Recent advances in in vitro cultivation of norovirus, novel approaches applied to viral genomics and immunity, and completion of vaccine trials and birth cohort studies have provided new information toward a better understanding of norovirus immunity. Here, we will discuss the complex relationship between norovirus diversity and correlates of protection for human noroviruses, and how this information could be used to guide the development of cross-protective vaccines.
Collapse
Affiliation(s)
- Lauren A. Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Gabriel I. Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States,CONTACT Gabriel I. Parra Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1308, Silver Spring, MD20993, United States
| |
Collapse
|
11
|
Nagarajan V, Chen J, Hsu B, Hsu G, Wang J, Hussain B. Prevalence, Distribution, and Genotypes of Adenovirus and Norovirus in the Puzi River and Its Tributaries and the Surrounding Areas in Taiwan. GEOHEALTH 2021; 5:e2021GH000465. [PMID: 34977444 PMCID: PMC8686652 DOI: 10.1029/2021gh000465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/04/2023]
Abstract
This study investigated the prevalence, distribution, and genotypes of adenoviruses (AdVs) and noroviruses (NoVs) in the Puzi River and surrounding areas in Taiwan. The viruses in the water samples were isolated using the membrane filtration method and the viral nucleic acids were extracted. The RNA of NoVs was reverse-transcribed into complementary DNA using reverse transcriptase-polymerase chain reaction. AdVs and NoVs were detected using nested PCR. Genotyping and phylogenetic analyses were performed to identify the various viral genotypes in the water samples. Human adenovirus (HAdVs) and porcine adenovirus (PAdVs) were the predominant genotypes in the water samples. The prevalence of F species HAdVs serotype 41 (79.2%) and C species PAdVs serotype 5 (18.1%) was higher than that of other serotypes. Among NoVs, genogroup GII was more prevalent than GI. In particular, GII.4 (21.2%) and GII.17 (18.2%) were the predominant genotypes, which was consistent with the clinical findings. The prevalence of both AdVs and NoVs was higher in the winter than spring, summer and autumn seasons. AdVs and NoVs detection results were statistically analyzed by investigating their association with water quality indicators. The results revealed that the presence of AdVs was significantly correlated with the heterotrophic bacterial count, total coliform Escherichia coli, turbidity, salinity, and dissolved oxygen. Meanwhile, the presence of NoVs was only significantly correlated with temperature, pH, and dissolved oxygen. Microbial pollution sources may include urban runoff and discharge of water from livestock farms situated near the river and tributaries within this region of Taiwan. Future studies should include comparisons of the presence of AdVs and NoVs in these known pollution sources and water quality monitoring of these watersheds, as this will allow potential identification of pollution sources. Additionally, remediation strategies must be developed to minimize viral contamination in the river ecosystem.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | | | - Bing‐Mu Hsu
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | - Gwo‐Jong Hsu
- Division of Infectious DiseasesDitmanson Medical FoundationChia‐Yi Christian HospitalChiayi CountyTaiwan
| | - Jiun‐Ling Wang
- Department of Internal MedicineNational Cheng Kung University HospitalTainanTaiwan
| | - Bashir Hussain
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
- Department of Biomedical SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| |
Collapse
|
12
|
Effect of recombinations on changes in genotype proportions between norovirus seasons in Japan. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Prevalence and Evolution of Noroviruses between 1966 and 2019, Implications for Vaccine Design. Pathogens 2021; 10:pathogens10081012. [PMID: 34451477 PMCID: PMC8400007 DOI: 10.3390/pathogens10081012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Noroviruses (NoVs), a group of single-stranded RNA viruses causing epidemic acute gastroenteritis in humans, are highly diverse, consisting of multiple genogroups with >30 genotypes. Their continual evolutions make NoV vaccine design and development difficult. Here, we report a study of NoV sequences obtained from a population-based diarrhea surveillance in Zhengding County of Hebei Province spanning from 2001 to 2019 and those available in the GenBank database from 1966 to 2019. NoV genotypes and/or variants that may evade immunity were screened and identified based on primary and conformational structures for vaccine design. We selected 366, 301, 139, 74 and 495 complete VP1-coding nucleotide sequences representing the predominant genotypes of GII.4, GII.2, GII.3, GII.6 and GII.17, respectively. A total of 16 distinct GII.4 variants were identified, showing a typical linear evolutionary pattern of variant replacement, while only 1–4 variants of the other genotypes were found to co-circulate over the 40–50-year period without typical variant replacement. The vaccine strain GII.4c is close to variant Sydney_2012 (0.053) in their primary structure, but they are distinct at epitopes A and E in conformations. Our data suggested GII.4 variant Sydney_2012, GII.2 variant A, a GII.3 strain, GII.6 variants B and C and GII.17 variant D are primary candidate strains for NoV vaccine development.
Collapse
|
14
|
Antigenic Diversity of Human Norovirus Capsid Proteins Based on the Cross-Reactivities of Their Antisera. Pathogens 2021; 10:pathogens10080986. [PMID: 34451450 PMCID: PMC8398591 DOI: 10.3390/pathogens10080986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV), which is the major causative agent of acute gastroenteritis, has broad antigenic diversity; thus, the development of a broad-spectrum vaccine is challenging. To establish the relationship between viral genetic diversity and antigenic diversity, capsid P proteins and antisera of seven GI and 16 GII HuNoV genotypes were analyzed. Enzyme-linked immunosorbent assays showed that HuNoV antisera strongly reacted with the homologous capsid P proteins (with titers > 5 × 104). However, 17 (73.9%) antisera had weak or no cross-reactivity with heterologous genotypes. Interestingly, the GII.5 antiserum cross-reacted with seven (30.4%) capsid P proteins (including pandemic genotypes GII.4 and GII.17), indicating its potential use for HuNoV vaccine development. Moreover, GI.2 and GI.6 antigens reacted widely with heterologous antisera (n ≥ 5). Sequence alignment and phylogenetic analyses of the P proteins revealed conserved regions, which may be responsible for the immune crossover reactivity observed. These findings may be helpful in identifying broad-spectrum epitopes with clinical value for the development of a future vaccine.
Collapse
|
15
|
Moore RE, Xu LL, Townsend SD. Prospecting Human Milk Oligosaccharides as a Defense Against Viral Infections. ACS Infect Dis 2021; 7:254-263. [PMID: 33470804 DOI: 10.1021/acsinfecdis.0c00807] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to providing maximal nutritional value for neonatal growth and development, human milk functions as an early defense mechanism against invading pathogens. Human milk oligosaccharides (HMOs), which are abundant in human milk, are a diverse group of heterogeneous carbohydrates with wide ranging protective effects. In addition to promoting the colonization of beneficial intestinal flora, HMOs serve as decoy receptors, effectively blocking the attachment of pathogenic bacteria. HMOs also function as bacteriostatic agents, inhibiting the growth of gram-positive bacteria. Based on this precedence, an emerging area in the field has focused on characterizing the antiviral properties of HMOs. Indeed, HMOs have been evaluated as antiviral agents, with many possessing activity against life-threatening infections. This targeted review provides insight into the known glycan-binding interactions between select HMOs and influenza, rotavirus, respiratory syncytial virus, human immunodeficiency virus, and norovirus. Additionally, we review the role of HMOs in preventing necrotizing enterocolitis, an intestinal disease linked to viral infections. We close with a discussion of what is known broadly regarding human milk oligosaccharides and their interactions with coronaviruses.
Collapse
Affiliation(s)
- Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lianyan L. Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
16
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
17
|
Devant JM, Hansman GS. Structural heterogeneity of a human norovirus vaccine candidate. Virology 2020; 553:23-34. [PMID: 33202318 DOI: 10.1016/j.virol.2020.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022]
Abstract
Human norovirus virus-like particles (VLPs) are assumed to be morphologically and antigenically similar to virion particles. The norovirus virion is assembled from 180 copies of the capsid protein (VP1) and exhibits T = 3 icosahedral symmetry. In this study, we showed that the vaccine candidate GII.4c VP1 formed T = 1 and T = 3 VLPs, but mainly assembled into T = 4 icosahedral particles that were composed of 240 VP1 copies. In contrast, another clinically important genotype, GII.17, almost exclusively folded into T = 3 VLPs. Interestingly, the GII.4c T = 1 particles had higher binding capacities to norovirus-specific Nanobodies than to GII.4c T = 3 and T = 4 particles. Our data indicated that the occluded Nanobody-binding epitopes on the T = 1 particles were more accessible compared to the larger T = 3 and T = 4 particles. Overall, this new data revealed that GII.4c VLPs had a preference for forming the T = 4 icosahedral symmetry and future studies with varied sized norovirus VLPs should take caution when examining antigenicity.
Collapse
Affiliation(s)
- Jessica M Devant
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Grant S Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
18
|
Malm M, Vesikari T, Blazevic V. Simultaneous Immunization with Multivalent Norovirus VLPs Induces Better Protective Immune Responses to Norovirus Than Sequential Immunization. Viruses 2019; 11:v11111018. [PMID: 31684058 PMCID: PMC6893631 DOI: 10.3390/v11111018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Human noroviruses (NoVs) are a genetically diverse, constantly evolving group of viruses. Here, we studied the effect of NoV pre-existing immunity on the success of NoV vaccinations with genetically close and distant genotypes. A sequential immunization as an alternative approach to multivalent NoV virus-like particles (VLPs) vaccine was investigated. Mice were immunized with NoV GI.3, GII.4-1999, GII.17, and GII.4 Sydney as monovalent VLPs or as a single tetravalent mixture combined with rotavirus VP6-protein. Sequentially immunized mice were primed with a trivalent vaccine candidate (GI.3 + GII.4-1999 + VP6) and boosted, first with GII.17 and then with GII.4 Sydney VLPs. NoV serum antibodies were analyzed. Similar NoV genotype-specific immune responses were induced with the monovalent and multivalent mixture immunizations, and no immunological interference was observed. Multivalent immunization with simultaneous mix was found to be superior to sequential immunization, as sequential boost induced strong blocking antibody response against the distant genotype (GII.17), but not against GII.4 Sydney, closely related to GII.4-1999, contained in the priming vaccine. Genetically close antigens may interfere with the immune response generation and thereby immune responses may be differently formed depending on the degree of NoV VLP genotype identity.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Biokatu 10, FI-33520 Tampere, Finland.
| | - Timo Vesikari
- Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Biokatu 10, FI-33520 Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Biokatu 10, FI-33520 Tampere, Finland.
| |
Collapse
|
19
|
Devant JM, Hofhaus G, Bhella D, Hansman GS. Heterologous expression of human norovirus GII.4 VP1 leads to assembly of T=4 virus-like particles. Antiviral Res 2019; 168:175-182. [PMID: 31145925 DOI: 10.1016/j.antiviral.2019.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/01/2022]
Abstract
Human noroviruses are a leading cause of acute gastroenteritis, yet there are still no vaccines or antivirals available. Expression of the norovirus capsid protein (VP1) in insect cells typically results in the formation of virus-like particles (VLPs) that are morphologically and antigenically comparable to native virions. Indeed, several different norovirus VLP candidates are currently used in clinical trials. So far, structural analysis of norovirus VLPs showed that the capsid has a T = 3 icosahedral symmetry and is composed of 180 copies of VP1 that are folded into three quasi-equivalent subunits (A, B, and C). In this study, the VLP structures of two norovirus GII.4 genetic variants that were identified in 1974 and 2012 were determined using cryo-EM. Surprisingly, we found that greater than 95% of these GII.4 VLPs were larger than virions and 3D reconstruction showed that these VLPs exhibited T = 4 icosahedral symmetry. We also discovered that the T = 4 VLPs presented several novel structural features. The T = 4 particles assembled from 240 copies of VP1 that adopted four quasi-equivalent conformations (A, B, C, and D) and formed two distinct dimers, A/B and C/D. The protruding domains were elevated ∼21 Å off the capsid shell, which was ∼7 Å more than in the previously studied GII.10 T = 3 VLPs. A small cavity and flap-like structure at the icosahedral two-fold axis disrupted the contiguous T = 4 shell. Overall, our findings indicated that GII.4 VP1 sequences assemble into T = 4 VLPs and these larger particles might have important consequences for VLP-based vaccine development.
Collapse
Affiliation(s)
- Jessica M Devant
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Götz Hofhaus
- Bioquant, CellNetWorks, University of Heidelberg, Heidelberg, Germany
| | - David Bhella
- MRC, University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Grant S Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Structural Basis of Nanobodies Targeting the Prototype Norovirus. J Virol 2019; 93:JVI.02005-18. [PMID: 30602609 PMCID: PMC6401464 DOI: 10.1128/jvi.02005-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2′FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified. Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2′FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2′FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2′FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2′FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2′FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup. IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2′FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.
Collapse
|
21
|
Human Norovirus Neutralized by a Monoclonal Antibody Targeting the Histo-Blood Group Antigen Pocket. J Virol 2019; 93:JVI.02174-18. [PMID: 30541855 DOI: 10.1128/jvi.02174-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/13/2023] Open
Abstract
Temporal changes in the GII.4 human norovirus capsid sequences occasionally result in the emergence of genetic variants capable of causing new epidemics. The persistence of GII.4 is believed to be associated with the recognition of numerous histo-blood group antigen (HBGA) types and antigenic drift. We found that one of the earliest known GII.4 isolates (in 1974) and a more recent epidemic GII.4 variant (in 2012) had varied norovirus-specific monoclonal antibody (MAb) reactivities but similar HBGA binding profiles. To better understand the binding interaction of one MAb (10E9) that had varied reactivity with these GII.4 variants, we determined the X-ray crystal structure of the NSW-2012 GII.4 P domain 10E9 Fab complex. We showed that the 10E9 Fab interacted with conserved and variable residues, which could be associated with antigenic drift. Interestingly, the 10E9 Fab binding pocket partially overlapped the HBGA pocket and had direct competition for conserved HBGA binding residues (i.e., Arg345 and Tyr444). Indeed, the 10E9 MAb blocked norovirus virus-like particles (VLPs) from binding to several sources of HBGAs. Moreover, the 10E9 antibody completely abolished virus replication in the human norovirus intestinal enteroid cell culture system. Our new findings provide the first direct evidence that competition for GII.4 HBGA binding residues and steric obstruction could lead to norovirus neutralization. On the other hand, the 10E9 MAb recognized residues flanking the HBGA pocket, which are often substituted as the virus evolves. This mechanism of antigenic drift likely influences herd immunity and impedes the possibility of acquiring broadly reactive HBGA-blocking antibodies.IMPORTANCE The emergence of new epidemic GII.4 norovirus variants is thought to be associated with changes in antigenicity and HBGA binding capacity. Here, we show that HBGA binding profiles remain unchanged between the 1974 and 2012 GII.4 variants, whereas these variants showed various levels of reactivity against a panel of GII.4 MAbs. We identified a MAb that bound at the HBGA pocket, blocked norovirus VLPs from binding to HBGAs, and neutralized norovirus virions in the cell culture system. Raised against a GII.4 2006 strain, this MAb was unreactive to a GII.4 1974 isolate but was able to neutralize the newer 2012 strain, which has important implications for vaccine design. Altogether, these new findings suggest that the amino acid variations surrounding the HBGA pocket lead to temporal changes in antigenicity without affecting the ability of GII.4 variants to bind HBGAs, which are known cofactors for infection.
Collapse
|
22
|
Genome characterization and temporal evolution analysis of a non-epidemic norovirus variant GII.8. INFECTION GENETICS AND EVOLUTION 2019; 70:15-23. [PMID: 30776488 DOI: 10.1016/j.meegid.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
Abstract
Noroviruses are the primary cause of non-bacterial acute gastroenteritis worldwide, and GII.8 belongs to a non-epidemic genotype with a limited understanding currently. In this study, we assembled the first GII.8 norovirus genome from China and clarified the temporal evolutionary process of this non-epidemic variant. Using the "4+1+1" application strategy with newly designed primer sets, the genome of one GII.8 strain GZ2017-L601 from China was firstly sequenced that comprised 7476 nucleotides. The homology of the new genome and the previous only GII.8 genome reached 93.8% identity at the nucleotide level, but only 10, 6, 7 amino acid mutations occurred in three ORFs. When compared the new strain with other GII reference strains, p22 and P2 were calculated as the variable encoding regions, and NTPase, VPg, 3CL, RdRp and S were shown as the conserved ones. We then reconstructed the evolutionary process of the GII.8 genotype using other available sequences in GenBank. Based on the partial N/C region, all GII.8 strains could be subdivided chronologically into four clusters, which spans 1967-1994, 1997-2005, 2003-2009, and 2007-2017, respectively. Moreover, differences of capsid P proteins between GII.8 strains and the epidemic GII.4 strain VA387 were also compared. There existed 147/310 distinct amino acid sites in the alignment, including two insertion and three deletion mutations. Distribution of antigen epitopes of two GII.8 variants was comparable, but the numbers of antigenic sites of GII.8 strains were less than that of VA387. In summary, the first GII.8 genome from China was assembled and extensively characterized, and a time-order evolutionary process of this genotype was identified with a static pattern of antigenic variations.
Collapse
|
23
|
Suzuki Y, Doan YH, Kimura H, Shinomiya H, Shirabe K, Katayama K. Predicting Directions of Changes in Genotype Proportions Between Norovirus Seasons in Japan. Front Microbiol 2019; 10:116. [PMID: 30804908 PMCID: PMC6370659 DOI: 10.3389/fmicb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
The norovirus forecasting system (NOROCAST) has been developed for predicting directions of changes in genotype proportions between human norovirus (HuNoV) seasons in Japan through modeling herd immunity to structural protein 1 (VP1). Here 404 nearly complete genomic sequences of HuNoV were analyzed to examine whether the performance of NOROCAST could be improved by modeling herd immunity to VP2 and non-structural proteins (NS) in addition to VP1. It was found that the applicability of NOROCAST may be extended by compensating for unavailable sequence data and observed genotype proportions of 0 in each season. Incorporation of herd immunity to VP2 and NS did not appear to improve the performance of NOROCAST, suggesting that VP1 may be a suitable target of vaccines.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hirokazu Kimura
- Graduate School of Health Science, Gunma Paz University, Takasaki, Japan
| | - Hiroto Shinomiya
- Department of Microbiology, Ehime Prefecctural Institute of Public Health and Environmental Science, Matsuyama, Japan
| | - Komei Shirabe
- Division of Virology, Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Kazuhiko Katayama
- Kitasato Institute for Life Sciences, Kitasato University, Minato, Japan
| |
Collapse
|
24
|
Structural Basis for Human Norovirus Capsid Binding to Bile Acids. J Virol 2019; 93:JVI.01581-18. [PMID: 30355683 DOI: 10.1128/jvi.01581-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023] Open
Abstract
A recently developed human norovirus cell culture system revealed that the presence of bile enhanced or was an essential requirement for the growth of certain genotypes. Before this discovery, histo-blood group antigens (HBGAs) were the only well-studied cofactor known for human noroviruses, and there was evidence that several genotypes poorly bound HBGAs. Therefore, the purpose of this study was to investigate how human norovirus capsids interact with bile acids. We found that bile acids had low-micromolar affinities for GII.1, GII.10, and GII.19 capsids but did not bind GI.1, GII.3, GII.4, or GII.17. We showed that bile acid bound at a partially conserved pocket on the norovirus capsid-protruding (P) domain using X-ray crystallography. Amino acid sequence alignment and structural analysis delivered an explanation of selective bile acid binding. Intriguingly, we discovered that binding of the bile acid was the critical step to stabilize several P domain loops that optimally placed an essential amino acid side chain (Asp375) to bind HBGAs in an otherwise HBGA nonbinder (GII.1). Furthermore, bile acid enhanced HBGA binding for a known HBGA binder (GII.10). Altogether, these new data suggest that bile acid functions as a loop-stabilizing regulator and enhancer of HBGA binding for certain norovirus genotypes.IMPORTANCE Given that human norovirus virions likely interact with bile acid during a natural infection, our evidence that an HBGA nonbinder (GII.1) can be converted to an HBGA binder after bile acid binding is of major significance. Our data provide direct evidence that, like HBGAs, bile acid interaction on the capsid is an important cofactor for certain genotypes. However, more unanswered questions seem to arise from these new discoveries. For example, is there an association between the bile acid requirement and the prevalence of certain genotypes? That is, the GII.1 and GII.10 (bile acid binders) genotypes rarely caused outbreaks, whereas the GII.4 and GII.17 genotypes (bile acid nonbinders) were responsible for large epidemics. Therefore, it seems plausible that certain genotypes require bile acids, whereas others have modified their bile acid requirements on the capsid.
Collapse
|
25
|
Morozov V, Hanisch FG, Wegner KM, Schroten H. Pandemic GII.4 Sydney and Epidemic GII.17 Kawasaki308 Noroviruses Display Distinct Specificities for Histo-Blood Group Antigens Leading to Different Transmission Vector Dynamics in Pacific Oysters. Front Microbiol 2018; 9:2826. [PMID: 30542329 PMCID: PMC6278567 DOI: 10.3389/fmicb.2018.02826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023] Open
Abstract
Noroviruses are the major cause of foodborne outbreaks of acute gastroenteritis, which are often linked to raw oyster consumption. Previous studies have suggested histo-blood group antigens (HBGA)-like structures in the oyster tissues as ligands for norovirus binding and persistence. To better understand how oysters function as vectors for the most common human noroviruses, we first tested the ability of the norovirus strains GI.1 West Chester, the pandemic GII.4 Sydney, and the epidemic GII.17 Kawasaki308 strains to interact with oyster tissues. Secondly, we explored how the HBGA preferences of these strains can affect their persistence in oyster tissues. We found limited HBGA expression in oyster tissues. HBGAs of A and H type 1 were present in the digestive tissues and palps of the Pacific oyster Crassostrea gigas, while the gills and mantle lacked any HBGA structures. By using Virus-like particles (VLPs), which are antigenically and morphologically similar to native virions, we were able to demonstrate that VLPs of GI.1 West Chester norovirus reacted with the digestive tissues and palps. Despite of the lack of HBGA expression in mantle, dominant GII.4 Sydney strain readily bound to all the oyster tissues, including the digestive tissues, gills, palps, and mantle. In contrast, no binding of the epidemic GII.17 Kawasaki308 VLPs to any of the investigated oyster tissues was observed. In synthetic HBGA and saliva-binding assays, GI.1 reacted with A type, H type, and Leb (Lewis b) HBGAs. GII.4 Sydney VLPs showed a broad binding pattern and interacted with various HBGA types. Compared to GI.1 and GII.4 VLPs, the GII.17 Kawasaki308 VLPs only weakly associated with long-chain saccharides containing A type, B type, H type, and Leb blood group epitopes. Our findings indicate that GI.1 and GII.4 noroviruses are likely to be concentrated in oysters, by binding to HBGA-like glycans, and therefore potentially leading to increased long term transmission. In regards to the GII.17 Kawasaki308 strain, we suggest that oysters can only function as short term transmission vector in periods of high environmental virus concentrations.
Collapse
Affiliation(s)
- Vasily Morozov
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - K Mathias Wegner
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Tamminen K, Malm M, Vesikari T, Blazevic V. Norovirus-specific mucosal antibodies correlate to systemic antibodies and block norovirus virus-like particles binding to histo-blood group antigens. Clin Immunol 2018; 197:110-117. [PMID: 30244152 DOI: 10.1016/j.clim.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
The best acknowledged correlate of protection from norovirus (NoV) infection is the ability of serum antibodies to block binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs). We investigated mucosal NoV-specific antibody levels in adult volunteers and used saliva from a single donor to determine whether purified saliva antibodies confer blocking. NoV-specific IgG and IgA levels in saliva and plasma samples were measured against four NoV genotype VLPs. NoV-specific IgG and IgA titers in saliva and plasma samples correlated significantly. Antibodies were detected against all VLPs with the highest level of antibodies directed against ancestral GII.4 99 genotype. Affinity chromatography purified salivary IgA and IgG blocked binding of GII.4 99 VLPs to HBGAs. Saliva sampling is a non-invasive alternative to blood drawing and an excellent biological fluid to study NoV-specific immune responses. Mucosal anti-NoV antibodies block binding of NoV VLPs to HBGAs, and may therefore be protective.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland.
| | - Maria Malm
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| | - Timo Vesikari
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| | - Vesna Blazevic
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| |
Collapse
|
27
|
Pogan R, Dülfer J, Uetrecht C. Norovirus assembly and stability. Curr Opin Virol 2018; 31:59-65. [DOI: 10.1016/j.coviro.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
|
28
|
Hwang HS, Puth S, Tan W, Verma V, Jeong K, Lee SE, Rhee JH. More robust gut immune responses induced by combining intranasal and sublingual routes for prime-boost immunization. Hum Vaccin Immunother 2018; 14:2194-2202. [PMID: 29781755 PMCID: PMC6183199 DOI: 10.1080/21645515.2018.1472185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Norovirus causes acute and debilitating gastroenteritis, characterized by vomiting and diarrhea. We recently reported a recombinant GII. 4 P domain particle (Pd) vaccine adjuvanted with a flagellin, Vibrio vulnificus FlaB, effectively promoting both humoral and cell-mediated immune responses. In the previous study, we found that sublingual (SL) immunization induced higher fecal secretory IgA (SIgA) responses while intranasal (IN) route provided higher amplitude of humoral and cellular immune responses in the systemic compartment. We hypothesized that the combination of IN and SL routes should induce more potent and sustained SIgA responses in the gut. In this study, we have tried combinatorial prime-boost immunization employing both IN and SL routes. The IN priming and SL boosting with the Pd+FlaB vaccine enhanced highest SIgA responses in feces, accompanying increased Pd-specific memory B cells and plasma cells in spleen and bone marrow, respectively. Notably, the strongest long-lasting SIgA response in feces was induced by combined IN prime and SL boost vaccination, which was sustained for more than 3 months. Significantly enhanced gut-homing B cell and follicular helper T cell responses in mesenteric lymph nodes (mLNs) were observed in the IN prime and SL boost combination. IN priming was a requisite for the robust induction of Pd-specific IFNγ, IL-2, IL-4 and IL-5 cytokine responses in the systemic immune compartment. Collectively, the IN prime and SL boost combination was the best option for inducing balanced long-lasting immune responses against the norovirus antigen in both enteric and systemic compartments. These results suggest that immune responses in specific mucosal compartments may be programmed by employing different prime-boost immunization routes.
Collapse
Affiliation(s)
- Hye Suk Hwang
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea
| | - Sao Puth
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea
| | - Wenzhi Tan
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea
| | - Vivek Verma
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea
| | - Kwangjoon Jeong
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Shee Eun Lee
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics , School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Joon Haeng Rhee
- a Clinical Vaccine R&D Center, Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| |
Collapse
|
29
|
Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. mBio 2018; 9:mBio.00869-18. [PMID: 29789360 PMCID: PMC5964351 DOI: 10.1128/mbio.00869-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Collapse
|
30
|
Guo Z, He Q, Yue H, Zhang B, Tang C. Genomic characterization of a RdRp-recombinat nebovirus strain with a novel VP1 genotype. Virus Res 2018; 251:6-13. [PMID: 29709508 DOI: 10.1016/j.virusres.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/12/2023]
Abstract
Nebovirus is a new genus within the family Caliciviridae and is a causative agent of calf diarrhea. The limited nebovirus genomic sequences that are currently available has hampered understanding of nebovirus genetic evolution. The aim of the present study was to determine the genomic characterization of strain Bo/LZB-1/17/CH, which was previously identified as being similar to the novel genotype strain Bo/DijonA216/06/FR based on partial capsid sequences. Our results show that the complete RNA genome of strain Bo/LZB-1/17/CH is 7453 nucleotides (nt) in length and shares 79.0%-83.5% nt identity with all available nebovirus genomes in the GenBank database. A phylogenetic analysis based on its complete genome sequence revealed that strain Bo/LZB-1/17/CH clustered into an independent branch. Two interesting characteristics were observed in the genome of strain Bo/LZB-1/17/CH. First, the major capsid protein (VP1) of strain Bo/LZB-1/17/CH shares 96.6% amino acid (aa) identity with strain Bo/DijonA216/06/FR but shares only 75.2%-76.8% aa identity with other nebovirus strains and has an even lower identity in the P2 domain (61.1%-65% aa identity). Second, the RNA-dependent RNA polymerase (RdRp) of strain Bo/LZB-1/17/CH is more closely related to NB-like strains than it is to strain Bo/DijonA216/06/FR, and a recombination event was identified within the 3' end of the RdRp in strain Bo/LZB-1/17/CH. In conclusion, the results in this study indicate that strain Bo/LZB-1/17/CH may represent a novel nebovirus strain. To the best of our knowledge, this is the first description of a recombinant event in nebovirus RdRp.
Collapse
Affiliation(s)
- Zijing Guo
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Qifu He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.
| |
Collapse
|
31
|
TLR7 Agonists Display Potent Antiviral Effects against Norovirus Infection via Innate Stimulation. Antimicrob Agents Chemother 2018. [PMID: 29530841 DOI: 10.1128/aac.02417-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Norovirus infections are a significant health and economic burden globally, accounting for hundreds of millions of cases of acute gastroenteritis every year. In the absence of an approved norovirus vaccine, there is an urgent need to develop antivirals to treat chronic infections and provide prophylactic therapy to limit viral spread during epidemics and pandemics. Toll-like receptor (TLR) agonists have been explored widely for their antiviral potential, and several are progressing through clinical trials for the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) and as adjuvants for norovirus viruslike particle (VLP) vaccines. However, norovirus therapies in development are largely direct-acting antivirals (DAAs) with fewer compounds that target the host. Our aim was to assess the antiviral potential of TLR7 agonist immunomodulators on norovirus infection using the murine norovirus (MNV) and human Norwalk replicon models. TLR7 agonists R-848, Gardiquimod, GS-9620, R-837, and loxoribine were screened using a plaque reduction assay, and each displayed inhibition of MNV replication (50% effective concentrations [EC50s], 23.5 nM, 134.4 nM, 0.59 μM, 1.5 μM, and 79.4 μM, respectively). RNA sequencing of TLR7-stimulated cells revealed a predominant upregulation of innate immune response genes and interferon (IFN)-stimulated genes (ISGs) that are known to drive an antiviral state. Furthermore, the combination of R-848 and the nucleoside analogue (NA) 2'C-methylcytidine elicited a synergistic antiviral effect against MNV, demonstrating that combinational therapy of host modulators and DAAs might be used to reduce drug cytotoxicity. In summary, we have identified that TLR7 agonists display potent inhibition of norovirus replication and are a therapeutic option to combat norovirus infections.
Collapse
|
32
|
Pogan R, Schneider C, Reimer R, Hansman G, Uetrecht C. Norovirus-like VP1 particles exhibit isolate dependent stability profiles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:064006. [PMID: 29282349 PMCID: PMC7104913 DOI: 10.1088/1361-648x/aaa43b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 05/08/2023]
Abstract
Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T = 1 capsids.
Collapse
Affiliation(s)
- Ronja Pogan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Grant Hansman
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- European XFEL, Schenefeld, Germany
| |
Collapse
|
33
|
Wu Y, Jiang S, Ying T. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Front Immunol 2017; 8:1802. [PMID: 29326699 PMCID: PMC5733491 DOI: 10.3389/fimmu.2017.01802] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs) offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1), influenza viruses, hepatitis C virus (HCV), respiratory syncytial virus (RSV), and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Koromyslova AD, Hansman GS. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization. PLoS Pathog 2017; 13:e1006636. [PMID: 29095961 PMCID: PMC5667739 DOI: 10.1371/journal.ppat.1006636] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses. We determined the binding sites of six novel human norovirus specific Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) using X-ray crystallography. The unique Nanobody recognition epitopes were correlated with their potential neutralizing capacities. We showed that one Nanobody (Nano-26) bound numerous genogroup II genotypes and interacted with highly conserved capsid residues. Four Nanobodies (Nano-4, Nano-26, Nano-27, and Nano-42) bound to occluded regions on the intact particles and impaired normal capsid morphology and particle integrity. One Nanobody (Nano-14) bound contiguous to the HBGA pocket and interacted with several residues involved in binding HBGAs. We found that the Nanobodies delivered multiple inhibition mechanisms, which included steric obstruction, allosteric interference, and disruption of the capsid stability. Our data suggested that the HBGA pocket might not be an ideal target for drug development, since the surrounding region is highly variable and inherently suffers from lack of conservation among the genetically diverse genotypes. Instead, we showed that the capsid contained other highly susceptible regions that could be targeted for virus inhibition.
Collapse
Affiliation(s)
- Anna D. Koromyslova
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| | - Grant S. Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| |
Collapse
|
35
|
Lucero Y, Vidal R, O'Ryan G M. Norovirus vaccines under development. Vaccine 2017; 36:5435-5441. [PMID: 28668568 DOI: 10.1016/j.vaccine.2017.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Abstract
Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis, including both outbreaks and endemic infections. The development of preventive strategies, including vaccines, for the most susceptible groups (children <5years of age, the elderly and individuals suffering crowding, such as military personnel and travelers) is desirable. However, NoV vaccine development has faced many difficulties, including genetic/antigenic diversity, limited knowledge on NoV immunology and viral cycle, lack of a permissive cell line for cultivation and lack of a widely available and successful animal model. Vaccine candidates rely on inoculation of virus-like particles (VLPs) formed by the main capsid protein VP1, subviral particles made from the protruding domain of VP1 (P-particles) or viral vectors with a NoV capsid gene insert produced by bioengineering technologies. Polivalent vaccines including multiple NoV genotypes and/or other viruses acquired by the enteric route have been developed. A VLP vaccine candidate has reached phase II clinical trials and several others are in pre-clinical stages of development. In this article we discuss the main challenges facing the development of a NoV vaccine and the current status of prevailing candidates.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pediatrics, Hospital Luis Calvo Mackenna, Faculty of Medicine, University of Chile, Santiago, Chile; Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan G
- Millennium Institute of Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile; Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
36
|
Koromyslova A, Tripathi S, Morozov V, Schroten H, Hansman GS. Human norovirus inhibition by a human milk oligosaccharide. Virology 2017; 508:81-89. [PMID: 28505592 DOI: 10.1016/j.virol.2017.04.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/30/2023]
Abstract
Human noroviruses are the leading cause of outbreaks of acute gastroenteritis. Norovirus interactions with histo-blood group antigens (HBGAs) are known to be important for an infection. In this study, we identified the HBGA binding pocket for an emerging GII genotype 17 (GII.17) variant using X-ray crystallography. The GII.17 variant bound the HBGA with an equivalent set of residues as the leading pandemic GII.4 variants. These structural data highlights the conserved nature of HBGA binding site between prevalent GII noroviruses. Noroviruses also interact with human milk oligosaccharides (HMOs), which mimic HBGAs and may function as receptor decoys. We previously showed that HMOs inhibited the binding of rarely detected GII.10 norovirus to HBGAs. We now found that an HMO, 2'-fucosyllactose (2'FL), additionally blocked both the GI.1 and GII.17 noroviruses from binding to HBGAs. Together, these findings provide evidence that 2'FL might function as a broadly reactive antiviral against multiple norovirus genogroups.
Collapse
Affiliation(s)
- Anna Koromyslova
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Shailesh Tripathi
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Vasily Morozov
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany; Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Grant S Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
37
|
Suzuki Y, Doan YH, Kimura H, Shinomiya H, Shirabe K, Katayama K. Predicting genotype compositions in norovirus seasons in Japan. Microbiol Immunol 2017; 60:418-26. [PMID: 27168450 DOI: 10.1111/1348-0421.12384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
Noroviruses cause acute gastroenteritis. Since multiple genotypes of norovirus co-circulate in humans, changing the genotype composition and eluding host immunity, development of a polyvalent vaccine against norovirus in which the genotypes of vaccine strains match the major strains in circulation in the target season is desirable. However, this would require prediction of changes in the genotype composition of circulating strains. A fitness model that predicts the proportion of a strain in the next season from that in the current season has been developed for influenza A virus. Here, such a fitness model that takes into account the fitness effect of herd immunity was used to predict genotype compositions in norovirus seasons in Japan. In the current study, a model that assumes a decline in the magnitude of cross immunity between norovirus strains according to an increase in the divergence of the major antigenic protein VP1 was found to be appropriate for predicting genotype composition. Although it is difficult to predict the proportions of genotypes accurately, the model is effective in predicting the direction of change in the proportions of genotypes. The model predicted that GII.3 and GII.4 may contract, whereas GII.17 may expand and predominate in the 2015-2016 season. The procedure of predicting genotype compositions in norovirus seasons described in the present study has been implemented in the norovirus forecasting system (NOROCAST).
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Nagoya, Aichi, 467-8501
| | | | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanbancho, Matsuyama, Ehime, 790-0003
| | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, 2-5-67 Aoi, Yamaguchi, Yamaguchi, 753-0821, Japan
| | | |
Collapse
|
38
|
Sato J, Miki M, Kubota H, Hitomi J, Tokuda H, Todaka-Takai R, Katayama K. Effects of disinfectants against norovirus virus-like particles predict norovirus inactivation. Microbiol Immunol 2017; 60:609-16. [PMID: 27554301 DOI: 10.1111/1348-0421.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/10/2016] [Accepted: 08/20/2016] [Indexed: 01/18/2023]
Abstract
Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti-NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus-like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration-dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS-PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.
Collapse
Affiliation(s)
- Jun Sato
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Motohiro Miki
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Hiromi Kubota
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan.
| | - Jun Hitomi
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Hajime Tokuda
- Research and Development Safety Science Research, Kao Corporation, Ichikai, Tochigi, Japan
| | - Reiko Todaka-Takai
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, Japan.
| |
Collapse
|
39
|
Human Norovirus Evolution in a Chronically Infected Host. mSphere 2017; 2:mSphere00352-16. [PMID: 28405629 PMCID: PMC5371696 DOI: 10.1128/msphere.00352-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
The norovirus genogroup II genotype 4 (GII.4) variants have approximately 5% divergence in capsid amino acid identity and have dominated over the past decade. The precise reason(s) for the GII.4 emergence and persistence in the human population is still unknown, but some studies have suggested that chronically infected patients might generate novel variants that can cause new epidemics. We examined GII.4 noroviruses isolated from an immunocompromised patient with a long-term infection. Numerous norovirus capsid quasi-species were isolated during the 13-month study. The capsid quasi-species clustered into two genetic and antigenic types. However, the HBGA binding profiles were similar between the two antigenic clusters, indicating that the amino acid substitutions did not alter the HBGA binding interactions. The isolated sequences represented two new GII.4 variants, but similar sequences were not found in the database. These results indicated that chronically infected patients might not generate novel noroviruses that cause outbreaks. Typically, human noroviruses cause symptoms of acute gastroenteritis for 2 to 4 days. Often, the virions are shed in stool for several days after the symptoms recede, which in turn can lead to further contamination and transmission. Moreover, a number of reports have considered that chronic norovirus infections, i.e., lasting months and years, might even function as reservoirs for the generation of novel strains that can escape the herd immunity or have modified binding interactions with histo-blood group antigens (HBGAs). In this study, we analyzed noroviruses isolated from a patient who has presented a chronic infection for more than 6 years. We found that the isolated capsid sequences clustered into two main genetic types (termed A and B), despite a plethora of capsid quasi-sequences. Furthermore, the two genetic types corresponded well with distinct antigenicities. On the other hand, we showed that numerous amino acid substitutions on the capsid surface of genetic types A and B did not alter the HBGA binding profiles. However, divergent binding profiles for types A and B were observed with human milk oligosaccharides (HMOs), which structurally mimic HBGAs and may act as natural antivirals. Importantly, the isolated capsid sequences only had approximately 90% amino acid identity with other known sequences, which suggested that transmission of these chronic noroviruses could be limited. IMPORTANCE The norovirus genogroup II genotype 4 (GII.4) variants have approximately 5% divergence in capsid amino acid identity and have dominated over the past decade. The precise reason(s) for the GII.4 emergence and persistence in the human population is still unknown, but some studies have suggested that chronically infected patients might generate novel variants that can cause new epidemics. We examined GII.4 noroviruses isolated from an immunocompromised patient with a long-term infection. Numerous norovirus capsid quasi-species were isolated during the 13-month study. The capsid quasi-species clustered into two genetic and antigenic types. However, the HBGA binding profiles were similar between the two antigenic clusters, indicating that the amino acid substitutions did not alter the HBGA binding interactions. The isolated sequences represented two new GII.4 variants, but similar sequences were not found in the database. These results indicated that chronically infected patients might not generate novel noroviruses that cause outbreaks.
Collapse
|
40
|
Detection of Extremely Low Concentrations of Biological Substances Using Near-Field Illumination. Sci Rep 2016; 6:39241. [PMID: 27991539 PMCID: PMC5171845 DOI: 10.1038/srep39241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/21/2016] [Indexed: 01/07/2023] Open
Abstract
An external force-assisted near-field illumination biosensor (EFA-NI biosensor) detects a target substance that is propelled through an evanescent field by an external force. The target substance is sandwiched between an antibody coupled to a magnetic bead and an antibody coupled to a polystyrene bead. The external force is supplied by a magnetic field. The magnetic bead propels the target substance and the polystyrene bead emits an optical signal. The detection protocol includes only two steps; mixing the sample solution with a detection reagent containing the antibody-coated beads and injecting the sample mixture into a liquid cell. Because the system detects the motion of the beads, the sensor allows detection of trace amounts of target substances without a washing step. The detection capability of the sensor was demonstrated by the detection of norovirus virus-like particles at a concentration of ~40 particles per 100 μl in contaminated water.
Collapse
|
41
|
Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus. mSphere 2016; 1:mSphere00219-16. [PMID: 27747297 PMCID: PMC5061999 DOI: 10.1128/msphere.00219-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the Nano-IC assay had sensitivities equivalent to other commercially available lateral flow systems. The Nano-IC method was capable of producing results in ~5 min, which makes this method useful in settings that require rapid diagnosis, such as cruise ship outbreaks and elder care facilities. The Nano-IC assay has several advantages over antibody-based IC methods: for example, Nanobodies can be readily produced in large quantities, they are generally more stable than conventional antibodies, and the Nanobody binding sites can be easily obtained by X-ray crystallography. Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the Nano-IC assay had sensitivities equivalent to other commercially available lateral flow systems. The Nano-IC method was capable of producing results in ~5 min, which makes this method useful in settings that require rapid diagnosis, such as cruise ship outbreaks and elder care facilities. The Nano-IC assay has several advantages over antibody-based IC methods: for example, Nanobodies can be readily produced in large quantities, they are generally more stable than conventional antibodies, and the Nanobody binding sites can be easily obtained by X-ray crystallography.
Collapse
|
42
|
Olarte-Castillo XA, Hofer H, Goller KV, Martella V, Moehlman PD, East ML. Divergent Sapovirus Strains and Infection Prevalence in Wild Carnivores in the Serengeti Ecosystem: A Long-Term Study. PLoS One 2016; 11:e0163548. [PMID: 27661997 PMCID: PMC5035092 DOI: 10.1371/journal.pone.0163548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/10/2016] [Indexed: 01/23/2023] Open
Abstract
The genus Sapovirus, in the family Caliciviridae, includes enteric viruses of humans and domestic animals. Information on sapovirus infection of wildlife is limited and is currently lacking for any free-ranging wildlife species in Africa. By screening a large number of predominantly fecal samples (n = 631) obtained from five carnivore species in the Serengeti ecosystem, East Africa, sapovirus RNA was detected in the spotted hyena (Crocuta crocuta, family Hyaenidae), African lion (Panthera leo, family Felidae), and bat-eared fox (Otocyon megalotis, family Canidae), but not in golden or silver-backed jackals (Canis aureus and C. mesomelas, respectively, family Canidae). A phylogenetic analysis based on partial RNA-dependent RNA polymerase (RdRp) gene sequences placed the sapovirus strains from African carnivores in a monophyletic group. Within this monophyletic group, sapovirus strains from spotted hyenas formed one independent sub-group, and those from bat-eared fox and African lion a second sub-group. The percentage nucleotide similarity between sapoviruses from African carnivores and those from other species was low (< 70.4%). Long-term monitoring of sapovirus in a population of individually known spotted hyenas from 2001 to 2012 revealed: i) a relatively high overall infection prevalence (34.8%); ii) the circulation of several genetically diverse variants; iii) large fluctuations in infection prevalence across years, indicative of outbreaks; iv) no significant difference in the likelihood of infection between animals in different age categories. The likelihood of sapovirus infection decreased with increasing hyena group size, suggesting an encounter reduction effect, but was independent of socially mediated ano-genital contact, or the extent of the area over which an individual roamed.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Katja V. Goller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Vito Martella
- Department of Veterinary Medicine, University of Aldo Moro of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | - Marion L. East
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens Bioelectron 2016; 93:260-266. [PMID: 27597126 DOI: 10.1016/j.bios.2016.08.099] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
A highly sensitive biosensor to detect norovirus in environment is desired to prevent the spread of infection. In this study, we investigated a design of surface plasmon resonance (SPR)-assisted fluoroimmunosensor to increase its sensitivity and performed detection of norovirus virus-like particles (VLPs). A quantum dot fluorescent dye was employed because of its large Stokes shift. The sensor design was optimized for the CdSe-ZnS-based quantum dots. The optimal design was applied to a simple SPR-assisted fluoroimmunosensor that uses a sensor chip equipped with a V-shaped trench. Excitation efficiency of the quantum dots, degree of electric field enhancement by SPR, and intensity of autofluorescence of a substrate of the sensor chip were theoretically and experimentally evaluated to maximize the signal-to-noise ratio. As the result, an excitation wavelength of 390nm was selected to excite SPR on an Al film of the sensor chip. The sandwich assay of norovirus VLPs was performed using the designed sensor. Minimum detectable concentration of 0.01ng/mL, which corresponds to 100 virus-like particles included in the detection region of the V-trench, was demonstrated.
Collapse
|
44
|
Human Norovirus Interactions with Histo-Blood Group Antigens and Human Milk Oligosaccharides. J Virol 2016; 90:5855-5859. [PMID: 27122582 DOI: 10.1128/jvi.00317-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses interact with both human histo-blood group antigens (HBGAs) and human milk oligosaccharides (HMOs). The former are believed to be important for a virus infection, while the latter might act as natural decoys in the host during an infection. However, certain noroviruses are known to bind poorly to HBGAs and yet still cause infections; some interact with numerous HBGA types but are nonprevalent; and yet others bind HBGAs and seem to be increasing in prevalence. HBGAs and HMOs can be found as soluble antigens in humans, can be structurally alike, and can interact with equivalent residues at identical binding pockets on the capsid. In this Gem, we discuss HBGA and HMO binding studies for human noroviruses, concentrating on the clinically important genogroup II noroviruses. In short, the roles of HBGA and HMO interactions in norovirus infections are still unclear.
Collapse
|
45
|
Parra GI, Sosnovtsev SV, Abente EJ, Sandoval-Jaime C, Bok K, Dolan MA, Green KY. Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell. Virology 2016; 492:232-41. [PMID: 26971245 PMCID: PMC11036327 DOI: 10.1016/j.virol.2016.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 11/17/2022]
Abstract
Noroviruses are diverse positive-strand RNA viruses associated with acute gastroenteritis. Cross-reactive epitopes have been mapped primarily to conserved sequences in the capsid VP1 Shell (S) domain, and strain-specific epitopes to the highly variable Protruding (P) domain. In this work, we investigated a strain-specific linear epitope defined by MAb NV10 that was raised against prototype (Genogroup I.1) strain Norwalk virus (NV). Using peptide scanning and mutagenesis, the epitope was mapped to amino acids 21-32 (LVPEVNASDPLA) of the NV S domain, and its specificity was verified by epitope transfer and reactivity with a recombinant MAb NV10 single-chain variable fragment (scFv). Comparative structural modeling of the NV10 strain-specific and the broadly cross-reactive TV20 epitopes identified two internal non-overlapping sites in the NV shell, corresponding to variable and conserved amino acid sequences among strains, respectively. The S domain, like the P domain, contains strain-specific epitopes that contribute to the antigenic diversity among the noroviruses.
Collapse
Affiliation(s)
- Gabriel I Parra
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eugenio J Abente
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Sandoval-Jaime
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Abstract
Human norovirus interacts with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. The genogroup II genotype 4 (GII.4) noroviruses are the dominant cluster, evolve every other year, and are thought to modify their binding interactions with different HBGA types. Most human noroviruses bind HBGAs, while some strains were found to have minimal or no HBGA interactions. Here, we explain some possible structural constraints for several noroviruses that were found to bind poorly to HBGAs by using X-ray crystallography. We showed that one aspartic acid was flexible or positioned away from the fucose moiety of the HBGAs and this likely hindered binding, although other fucose-interacting residues were perfectly oriented. Interestingly, a neighboring loop also appeared to influence the loop hosting the aspartic acid. These new findings might explain why some human noroviruses bound HBGAs poorly, although further studies are required.
Collapse
|
47
|
Springer MJ, Ni Y, Finger-Baker I, Ball JP, Hahn J, DiMarco AV, Kobs D, Horne B, Talton JD, Cobb RR. Preclinical dose-ranging studies of a novel dry powder norovirus vaccine formulation. Vaccine 2016; 34:1452-8. [PMID: 26873053 PMCID: PMC4775331 DOI: 10.1016/j.vaccine.2016.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose-dependent manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥ 15 μg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLPs based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimulatory adjuvant and provide a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine.
Collapse
Affiliation(s)
- Michael J Springer
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Yawei Ni
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Isaac Finger-Baker
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Jordan P Ball
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Jessica Hahn
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Ashley V DiMarco
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Dean Kobs
- Toxicology Department, Battelle Memorial Institute, West Jefferson, OH, United States
| | - Bobbi Horne
- Battelle Eastern Science and Technology Center, Aberdeen, MD, United States
| | - James D Talton
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States
| | - Ronald R Cobb
- Research and Development Department, Nanotherapeutics, Inc., Alachua, FL, United States.
| |
Collapse
|
48
|
Furuya K, Nakajima H, Sasaki Y, Urita Y. An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility. Biomed Rep 2016; 4:331-334. [PMID: 26998270 DOI: 10.3892/br.2016.585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate co-infection in the gastrointestinal tract in terms of viruses, bacteria and the ABO blood group. We hypothesized that a combination of norovirus (NV) and bacteria in the gastrointestinal tract could affect the likelihood of an individual to contracting NV. Histo-blood group antigens (HBGAs) are considered to act as receptors that can lead to NV susceptibility. In addition to genetics, co-infection in the gastrointestinal tract may be associated with this mechanism. A total of 370 patients with acute gastroenteritis presenting with diarrhea (14-89 years) were recruited. The male/female ratio was 20/17. Single infection (bacteria or virus), co-infection with two viruses, and co-infection with one virus and one bacterium were statistically analyzed. In total, 88 of the 376 subjects (23.4%) were positive for one virus, and 50 (13.3%) were positive for one bacterium. Co-transfection with bacteria and a virus were detected in 46 (47.9%) of the 96 bacterial gastroenteritis cases. Statistical analysis revealed that co-infection of bacteria and NV was not significant in all viral infections (P=0.768). In terms of the ABO histo-blood group type and NV infection, the frequency in the O type was not significantly increased (P=0.052). Co-infection of bacteria and a virus occurred frequently in the gastrointestinal tract. The ABO blood phenotype expression was not a significant factor in NV infection in the present case series and the results did not suggest an affinity of NV for specific bacteria.
Collapse
Affiliation(s)
- Kenta Furuya
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Hitoshi Nakajima
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Yousuke Sasaki
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| |
Collapse
|
49
|
Structural Evolution of the Emerging 2014-2015 GII.17 Noroviruses. J Virol 2015; 90:2710-5. [PMID: 26699640 DOI: 10.1128/jvi.03119-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Recent reports suggest that human genogroup II genotype 17 (GII.17) noroviruses are increasing in prevalence. We analyzed the evolutionary changes of three GII.17 capsid protruding (P) domains. We found that the GII.17 P domains had little cross-reactivity with antisera raised against the dominant GII.4 strains. X-ray structural analysis of GII.17 P domains from 2002 to 2014 and 2015 suggested that surface-exposed substitutions on the uppermost part of the P domain might have generated a novel 2014-2015 GII.17 variant.
Collapse
|
50
|
Singh BK, Koromyslova A, Hansman GS. Structural analysis of bovine norovirus protruding domain. Virology 2015; 487:296-301. [PMID: 26599362 DOI: 10.1016/j.virol.2015.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/01/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022]
Abstract
We determined a structure of a bovine (genogroup III, GIII) norovirus capsid protruding (P) domain using X-ray crystallography. The bovine P domain was reminiscent of other norovirus genogroups (GI, GII, GIV, and GV), but closely matched the human GI P domain. We also identified a monoclonal antibody that was capable of binding the five different (GI-GV) P domains. Our data suggests that genetically diverse noroviruses still contain common epitopes.
Collapse
Affiliation(s)
- Bishal Kumar Singh
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg 69120, Germany
| | - Anna Koromyslova
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg 69120, Germany
| | - Grant S Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg 69120, Germany.
| |
Collapse
|