1
|
Mlingo TAM, Theron J, Mokoena NB. Plasmid DNA-based reverse genetics as a platform for manufacturing of bluetongue vaccine. J Virol 2025; 99:e0013925. [PMID: 40130823 PMCID: PMC11998535 DOI: 10.1128/jvi.00139-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Control of bluetongue disease is predominantly through vaccination with licensed inactivated or live-attenuated vaccines (LAVs). Manufacturing of LAVs in endemic countries requires formulation with a high number of serotypes for effective protection. Herein, we evaluated a plasmid DNA-based reverse genetics platform for manufacturing a multivalent vaccine. The synthetic vaccine was characterized by a common BTV1 backbone, with exchange of outer capsid proteins. Recombinant South African vaccine serotypes 1, 5, and 14 were rescued by exchanging the VP2 protein on the backbone. BTV6 rescue was achieved following the exchange of VP2 and VP5 proteins. The particle sizes were comparable to commercial vaccines of respective serotypes. BTV1, BTV5, and BTV6 had distinct growth profiles compared to commercial vaccines, while BTV14 was indistinguishable. Stability and shelf-life determination under various storage conditions showed that commercial vaccines were more stable. Formulated antigens were evaluated for vaccine safety and immunogenicity in sheep. Serotyped BTV1 monovalent vaccine was safe, as no clinical signs were observed. Neutralizing antibodies (nAbs) were induced on day 14 and peaked at 32 on day 28. The multivalent synthetic vaccine containing four serotypes elicited BTV6 nAbs from day 21 with a titer of 52, which decreased to 33 by day 42. BTV1 elicited a weak immune response with a titer of 1 on day 42. No nAbs were detected against BTV5 and BTV14. This is a first report comparing reverse genetics-derived antigens with commercial vaccines. Data generated on production yields, stability, and immunogenicity demonstrated that some serotypes can be implemented as novel synthetic vaccines using this platform.IMPORTANCEVaccination is the most effective control strategy for viral diseases that affect livestock. To date, only live-attenuated and inactivated vaccines have been licensed for control of bluetongue (BT). This study demonstrated the use of reverse genetics as a possible platform for BTV vaccine production. Data generated in the study contribute toward the advancement of an alternative manufacturing platform for licensing of BT vaccines. Information on production yields and stability of synthetic vaccines in comparison to the conventional products demonstrated that optimization is required for some serotypes to fully translate the reverse genetics platform for manufacturing the BTV vaccine. The study highlighted the safety and immunogenicity of vaccines manufactured using the plasmid DNA-based reverse-genetics platform.
Collapse
MESH Headings
- Animals
- Bluetongue virus/immunology
- Bluetongue virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Sheep
- Plasmids/genetics
- Plasmids/immunology
- Bluetongue/prevention & control
- Bluetongue/immunology
- Bluetongue/virology
- Reverse Genetics/methods
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Serogroup
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Tendai A. M. Mlingo
- Onderstepoort Biological Products SOC Ltd., Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
2
|
Romero-Trancón D, Valero-Lorenzo M, Ruano MJ, Fernández-Pacheco P, García-Villacieros E, Tena-Tomás C, López-Herranz A, Morales J, Martí B, Jiménez-Clavero MÁ, Cáceres-Garrido G, Agüero M, Villalba R. Emerging Bluetongue Virus Serotype 4 in the Balearic Islands, Spain (2021): Outbreak Investigations and Experimental Infection in Sheep. Microorganisms 2025; 13:411. [PMID: 40005776 PMCID: PMC11858583 DOI: 10.3390/microorganisms13020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Bluetongue is an infectious, non-contagious, arthropod-borne viral disease of ruminants caused by bluetongue virus (BTV), producing severe impacts on livestock. Historically, Southern Europe has suffered multiple incursions of different BTV serotypes with serious consequences. In 2021, BTV re-emerged in the Balearic Islands (Spain) after 16 years free of the disease, causing a large outbreak that mainly affected sheep, as well as cattle and goats. A novel emerging strain of BTV serotype 4 (BTV-4) was identified via preliminary molecular characterization as the etiological culprit of the epizootic. This study delineates the outbreak in the Balearic Islands in 2021, encompassing field-based clinical observations and laboratory findings. Additionally, an experimental infection was conducted in sheep using the novel BTV-4 strain to assess its virulence, pathogenicity, and laboratory diagnostic characteristics. The in vivo characterization was conducted concurrently with the virulent and widely disseminated BTV-4 RNM 2020 strain that has precipitated significant outbreaks in the Mediterranean region in recent years. Both strains exhibited analogous pathogenic potential in sheep and yielded equivalent outcomes in diagnostic parameters. Furthermore, the impact of the novel BTV-4 strain is discussed.
Collapse
Affiliation(s)
- David Romero-Trancón
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - Marta Valero-Lorenzo
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain; (P.F.-P.); (M.Á.J.-C.)
| | - Elena García-Villacieros
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministry of Agriculture, Fisheries and Food (MAPA), 28014 Madrid, Spain; (E.G.-V.); (G.C.-G.)
| | | | - Ana López-Herranz
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - Jorge Morales
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - Bartolomé Martí
- Laboratorio de Sanidad Animal del Instituto de Investigación y Formación Agroalimentaria y Pesquera de las Islas Baleares (IRFAP), Conselleria d’Agricultura, Pesca i Medi Natural de les Illes Balears, 07009 Palma, Spain;
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain; (P.F.-P.); (M.Á.J.-C.)
| | - Germán Cáceres-Garrido
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministry of Agriculture, Fisheries and Food (MAPA), 28014 Madrid, Spain; (E.G.-V.); (G.C.-G.)
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain; (D.R.-T.); (M.V.-L.); (M.J.R.); (A.L.-H.); (J.M.); (R.V.)
| |
Collapse
|
3
|
van den Brom R, Santman-Berends I, van der Heijden MG, Harders F, Engelsma M, van Gennip RGP, Maris-Veldhuis MA, Feddema AJ, Peterson K, Golender N, Spierenburg M, van Rijn PA, Holwerda M. Bluetongue virus serotype 12 in sheep and cattle in the Netherlands in 2024 - A BTV serotype reported in Europe for the first time. Vet Microbiol 2025; 301:110365. [PMID: 39765008 DOI: 10.1016/j.vetmic.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Bluetongue (BT) is a viral vector borne disease primarily affecting ruminants such as sheep, cattle, and goats. On 3 September 2023, the Netherlands reported the first case of bluetongue virus serotype 3 (BTV-3/NET2023)), after being BTV free for eleven years. Vaccination with inactivated BT vaccines for serotype 3 has been applied in the Netherlands since May 2024. Nonetheless, in late June/July 2024, BTV-3 re-emerged and spread over large parts of Europe. In October 2024, BTV-12 was identified by follow-up diagnostics after a BTV-3 vaccinated sheep with signs of BT was tested positive for BTV but negative for serotype 3. This marks a significant event, as BTV-12 had never been reported in Europe. Screening of farms in close proximity to the sheep farm and retrospective analysis of samples from clinically affected animals that were panBTV PCR positive resulted in the detection of nine BTV-12 affected farms in total. The emergence of BTV-12 in the Netherlands raises important questions about the route of introduction of BT in the Netherlands and mechanisms of viral spread of this specific serotype. Possible adaptation of new BTV serotypes to the European climatic and husbandry conditions prompts reconsideration of prevention, surveillance, and control strategies in relation to changing ecological conditions and vector dynamics. The initial findings, respective studies as well as the initial attempts to trace the origin of BTV-12/NET2024 are described.
Collapse
Affiliation(s)
| | | | - Mark G van der Heijden
- University Farm Animal Practice (ULP), Reijerscopse Overgang 1, Harmelen 3481 LZ, the Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| | - Rene G P van Gennip
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| | - Mieke A Maris-Veldhuis
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| | - Arno-Jan Feddema
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| | | | - Natalia Golender
- Kimron Veterinary Institute, Division of Virology, Bet Dagan, PO Box 12, 5025001, Israel
| | - Marcel Spierenburg
- NVWA Incident- and Crisiscentre (NVIC), Netherlands Food and Consumer Product Safety Authority (NVWA), P.O. Box 3511 GG, Utrecht, the Netherlands
| | - Piet A van Rijn
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands; North-West University, Department of Biochemistry, Centre for Human Metabolomics, Potchefstroom, South Africa
| | - Melle Holwerda
- Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, Lelystad 8200 AB, the Netherlands
| |
Collapse
|
4
|
Mirolo M, de le Roi M, von Dörnberg K, Kaiser F, Fayyad A, Puff C, Voigt U, Siebert U, Ludlow M, Baumgärtner W, Osterhaus A. Umatilla Virus in Zoo-Dwelling Cape Penguins with Hepatitis, Germany. Emerg Infect Dis 2024; 30:2643-2646. [PMID: 39592416 PMCID: PMC11616631 DOI: 10.3201/eid3012.240498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Analysis of liver tissue from a Cape penguin that died with hepatitis at a zoo in Germany revealed Umatilla virus. Testing uncovered Umatilla virus RNA in samples from 2 other deceased Cape penguins at the zoo. Our results expand knowledge of the prevalence of this virus in bird species across Germany.
Collapse
|
5
|
Gondard M, Postic L, Garin E, Turpaud M, Vorimore F, Ngwa-Mbot D, Tran ML, Hoffmann B, Warembourg C, Savini G, Lorusso A, Marcacci M, Felten A, Roux AL, Blanchard Y, Zientara S, Vitour D, Sailleau C, Bréard E. Exceptional Bluetongue virus (BTV) and Epizootic hemorrhagic disease virus (EHDV) circulation in France in 2023. Virus Res 2024; 350:199489. [PMID: 39471970 PMCID: PMC11565556 DOI: 10.1016/j.virusres.2024.199489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) are two notifiable animal diseases transmitted to ruminants by small hematophagous midges belonging to the Culicoides genus. The etiological agents, Bluetongue virus (BTV) and Epizootic hemorrhagic disease virus (EHDV), are both members of the Sedoreoviridae family and Orbivirus genus, which include double-stranded (ds) RNA segmented genomes (10 segments). By the end of the summer 2023, first's outbreaks of EHD were reported from the south west of France, concurrently with unexpectedly severe BT cases in Central France and Corsica. Within a few weeks, numerous BT and EHD outbreaks were recorded with significant sanitary and economic impact on cattle and sheep farms (no sanitary impact of EHD for sheep). Using a customized SISPA approach and the nanopore sequencing technology we successfully recovered genomic sequences from viral isolates and blood samples from infected animals from EHD and BT outbreaks. Three different viruses were responsible for these outbreaks: EHDV-8, BTV-8 and BTV-4. The EHDV-8 strain detected in France corresponded to the strain circulating in Tunisia, Sardinia and Spain since 2021 and 2022. A new BTV-8 strain of unknown origin, clearly different from the enzootic strain circulating in France since 2015, was responsible of the BT outbreaks in domestic ruminants in 2023 on both mainland France and Corsica. A second BTV, BTV-4, also involved in BT outbreaks in Corsica, corresponded to a BTV-4 strain occasionally detected on Corsica island since 2016, suggesting either a new introduction of this strain or a silent circulation on the field. The exceptional nature of orbivirus epizootics in France in 2023, including new introduction, emergence or incursions, raises numerous questions regarding BTV and EHDV dynamics and epidemiology and stresses out the need to identify factors involved in these emergences.
Collapse
Affiliation(s)
- Mathilde Gondard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France.
| | - Lydie Postic
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Emmanuel Garin
- Groupements de Défense Sanitaire France, 37 rue de Lyon, 75012 Paris, France
| | - Mathilde Turpaud
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - David Ngwa-Mbot
- Groupements de Défense Sanitaire France, 37 rue de Lyon, 75012 Paris, France
| | - Mai-Lan Tran
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems
| | - Charlotte Warembourg
- Société Nationale des Groupements Techniques Vétérinaires, 5 rue Moufle, 75011 Paris, France
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Arnaud Felten
- Laboratory of Ploufragan, ANSES, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Aurélie Le Roux
- Laboratory of Ploufragan, ANSES, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Yannick Blanchard
- Laboratory of Ploufragan, ANSES, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Stephan Zientara
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Damien Vitour
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Corinne Sailleau
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Emmanuel Bréard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Bissett SL, Roy P. Impact of VP2 structure on antigenicity: comparison of BTV1 and the highly virulent BTV8 serotype. J Virol 2024; 98:e0095324. [PMID: 39320096 PMCID: PMC11494903 DOI: 10.1128/jvi.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Bluetongue virus (BTV) is an agriculturally and economically significant insect-borne virus that causes serious illness and death in sheep and other domestic and wild ruminants in large areas of the world. Numerous BTV serotypes exist, and distant serotypes exhibit unique neutralizing antibody profiles, which target the outermost capsid protein VP2. The predominant serotype-specific nature of the antibody response to VP2 is a barrier to the development of broad-spectrum prophylactic BTV vaccine candidates. Although VP2 is the main serotype determinant of BTV, the structural basis of serotype specificity has not been investigated. In this study, we utilized the recently available atomic structure of VP2 with a modeled tip domain to carry out in silico structural comparisons between distant serotypes BTV1 and BTV8. These analyses identified structural differences in the tip domain, positioned at the apex of VP2, and informed the design of mutant VP2 constructs. Dissection of tip domain antigenicity demonstrated that the region of structural difference between BTV1 and highly virulent BTV8 was a target of BTV neutralizing antibodies and that mutation of this region resulted in a loss of neutralizing antibody recognition. This study has for the first time provided insights into the structural differences, which underpin the serotype-specific neutralizing antibody response to BTV.IMPORTANCEThe immune system can protect against virus infection by producing antibodies, which bind and inhibit the virus from infecting the susceptible host. These antibodies are termed neutralizing antibodies and generally target the viral receptor binding protein, such as the VP2 of bluetongue virus (BTV). This pressure from the immune system can drive mutation of the viral protein resulting in escape from antibody-mediated neutralization and the evolution of serotypes, as is the case for BTV. Understanding the structural differences, which underpin the different BTV serotypes, could help guide the design of a BTV vaccine that targets multiple serotypes. In this study, we have mapped the VP2 structural differences between distant serotypes, to a region targeted by neutralizing antibodies, and have demonstrated for the first time how VP2 structure is the fundamental basis of serotype specificity.
Collapse
Affiliation(s)
- Sara L. Bissett
- Department of Infection Biology, London School of Hygiene and Tropical, London, United Kingdom
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical, London, United Kingdom
| |
Collapse
|
7
|
Holwerda M, Santman-Berends IM, Harders F, Engelsma M, Vloet RP, Dijkstra E, van Gennip RG, Mars MH, Spierenburg M, Roos L, van den Brom R, van Rijn PA. Emergence of Bluetongue Virus Serotype 3, the Netherlands, September 2023. Emerg Infect Dis 2024; 30:1552-1561. [PMID: 38941965 PMCID: PMC11286052 DOI: 10.3201/eid3008.231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.
Collapse
Affiliation(s)
| | | | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Rianka P.M. Vloet
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Eveline Dijkstra
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Rene G.P. van Gennip
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Maria H. Mars
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Marcel Spierenburg
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Lotte Roos
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | | | | |
Collapse
|
8
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Barros L, Silva S, Cruz AC, da Silva E, Wanzeller AL, Carvalho V, Chiang J, Martins L. First Isolation and Molecular Characterization of Umatilla Virus (Sedoreoviridae, Orbivirus) in Brazil. Viruses 2024; 16:1050. [PMID: 39066213 PMCID: PMC11281679 DOI: 10.3390/v16071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we provide a genomic description of the first isolation of the Umattila virus (UMAV) in Brazil. The virus was obtained from the blood of a bird (Turdus fumigatus) and isolated in a C6/36 cell culture. The viral genome contains ten segments, and its organization is characteristic of viruses of the genus Orbivirus (family Sedoreoviridae). The coding region of each segment was sequenced, demonstrating the nucleotide identity with UMAV. The phylogenetic inference results were in line with these findings and demonstrated the formation of two distinct monophyletic clades containing strains isolated around the world, where our isolate, belonging to the same clade as the prototype strain, was allocated to a different subclade, highlighting the genetic divergence between them. This work reports the first isolation of UMAV in Brazil, and due to the scarcity of information on this viral agent in the scientific literature, it is essential to carry out further studies to better understand its epidemiology, dispersion, and, in particular, its interactions with vertebrate hosts, vectors, and the environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jannifer Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.B.); (S.S.); (A.C.C.); (E.d.S.); (A.L.W.); (V.C.); (L.M.)
| | | |
Collapse
|
10
|
Utrilla-Trigo S, Jiménez-Cabello L, Marín-López A, Illescas-Amo M, Andrés G, Calvo-Pinilla E, Lorenzo G, van Rijn PA, Ortego J, Nogales A. Engineering recombinant replication-competent bluetongue viruses expressing reporter genes for in vitro and non-invasive in vivo studies. Microbiol Spectr 2024; 12:e0249323. [PMID: 38353566 PMCID: PMC10923215 DOI: 10.1128/spectrum.02493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Bluetongue virus (BTV) is the causative agent of the important livestock disease bluetongue (BT), which is transmitted via Culicoides bites. BT causes severe economic losses associated with its considerable impact on health and trade of animals. By reverse genetics, we have designed and rescued reporter-expressing recombinant (r)BTV expressing NanoLuc luciferase (NLuc) or Venus fluorescent protein. To generate these viruses, we custom synthesized a modified viral segment 5 encoding NS1 protein with the reporter genes located downstream and linked by the Porcine teschovirus-1 (PTV-1) 2A autoproteolytic cleavage site. Therefore, fluorescent signal or luciferase activity is only detected after virus replication and expression of non-structural proteins. Fluorescence or luminescence signals were detected in cells infected with rBTV/Venus or rBTV/NLuc, respectively. Moreover, the marking of NS2 protein confirmed that reporter genes were only expressed in BTV-infected cells. Growth kinetics of rBTV/NLuc and rBTV/Venus in Vero cells showed replication rates similar to those of wild-type and rBTV. Infectivity studies of these recombinant viruses in IFNAR(-/-) mice showed a higher lethal dose for rBTV/NLuc and rBTV/Venus than for rBTV indicating that viruses expressing the reporter genes are attenuated in vivo. Interestingly, luciferase activity was detected in the plasma of viraemic mice infected with rBTV/NLuc. Furthermore, luciferase activity quantitatively correlated with RNAemia levels of infected mice throughout the infection. In addition, we have investigated the in vivo replication and dissemination of BTV in IFNAR (-/-) mice using BTV/NLuc and non-invasive in vivo imaging systems.IMPORTANCEThe use of replication-competent viruses that encode a traceable fluorescent or luciferase reporter protein has significantly contributed to the in vitro and in vivo study of viral infections and the development of novel therapeutic approaches. In this work, we have generated rBTV that express fluorescent or luminescence proteins to track BTV infection both in vitro and in vivo. Despite the availability of vaccines, BTV and other related orbivirus are still associated with a significant impact on animal health and have important economic consequences worldwide. Our studies may contribute to the advance in orbivirus research and pave the way for the rapid development of new treatments, including vaccines.
Collapse
Affiliation(s)
- Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Germán Andrés
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
11
|
Carpenter MJ, Rodgers CR, Torchetti MK, Fox KA, Burton M, Sherman TJ, Mayo CE. Recovery of multireassortant bluetongue virus serotype 6 sequences from a mule deer (Odocoileus hemionus) and Dorset sheep (Ovis aries) in Colorado. Vet Microbiol 2024; 289:109944. [PMID: 38141398 DOI: 10.1016/j.vetmic.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
We report the discovery of two bluetongue virus serotype 6 (BTV-6) reassortants recovered from a domestic sheep and a free-ranging mule deer in northern Colorado. At the time of this publication, whole-genome sequencing of BTV-6 isolates in the Western U.S. have not been undertaken. These findings reflect the incursive movement of geographically distinct BTV serotypes into important agricultural areas of the U.S. and demonstrate reassortment with regionally circulating serotypes.
Collapse
Affiliation(s)
- Molly J Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Case R Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, 1800 Dayton Ave, Ames, IA 50010, USA.
| | - Karen A Fox
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, CO 80521, USA.
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA.
| | - Christie E Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| |
Collapse
|
12
|
He Y, Meng J, Li N, Li Z, Wang D, Kou M, Yang Z, Li Y, Zhang L, Wang J. Isolation of Epizootic Hemorrhagic Disease Virus Serotype 10 from Culicoides tainanus and Associated Infections in Livestock in Yunnan, China. Viruses 2024; 16:175. [PMID: 38399951 PMCID: PMC10892452 DOI: 10.3390/v16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.
Collapse
Affiliation(s)
- Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhao Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Dongmei Wang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Meiling Kou
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Yunhui Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Laxi Zhang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| |
Collapse
|
13
|
Acevedo AM, Postic L, Curiel M, Gondard M, Bréard E, Zientara S, Vorimore F, Tran ML, Turpaud M, Savini G, Lorusso A, Marcacci M, Vitour D, Dujardin P, Perera CL, Díaz C, Obret Y, Sailleau C. Detection, Characterization and Sequencing of BTV Serotypes Circulating in Cuba in 2022. Viruses 2024; 16:164. [PMID: 38275974 PMCID: PMC10819738 DOI: 10.3390/v16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
In Cuba, despite a high sero-prevalence of bluetongue virus (BTV), circulating serotypes remain unknown. The aim of this study was to identify circulating BTV serotypes in farms throughout the western region of Cuba. Blood samples were collected from 200 young cattle and sheep between May and July 2022 for virological analyses (PCR, viral isolation and virus neutralization) and genome sequencing. The results confirmed viral circulation, with viro-prevalence of 25% for BTV. The virus was isolated from 18 blood samples and twelve BTV serotypes were identified by sequencing RT-PCR products targeting the segment 2 of the BTV genome (BTV-1, 2, 3, 6, 10, 12, 13, 17, 18, 19, 22 and 24). Finally, the full genome sequences of 17 Cuban BTV isolates were recovered using a Sequence Independent Single Primer Amplification (SISPA) approach combined to MinION Oxford Nanopore sequencing technology. All together, these results highlight the co-circulation of a wide diversity of BTV serotypes in a quite restricted area and emphasize the need for entomological and livestock surveillance, particularly in light of recent changes in the global distribution and nature of BTV infections.
Collapse
Affiliation(s)
- Ana María Acevedo
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Lydie Postic
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Maray Curiel
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Mathilde Gondard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Emmanuel Bréard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Stéphan Zientara
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (F.V.); (M.-L.T.)
| | - Mai-Lan Tran
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (F.V.); (M.-L.T.)
| | - Mathilde Turpaud
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Damien Vitour
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Pascal Dujardin
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Carmen Laura Perera
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Cristian Díaz
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Yalainne Obret
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Corinne Sailleau
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| |
Collapse
|
14
|
Kirkland PD, Finlaison DS, Biddle A, Parsons M, Austin H, Boland S, Roach G, McKinnon R, Braddon E, Britton S. Bluetongue disease in sheep in New South Wales - April 2023. Aust Vet J 2024; 102:26-29. [PMID: 37772339 DOI: 10.1111/avj.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
In 2016, bluetongue virus (BTV), serotype 16 (BTV-16), was detected in New South Wales (NSW) in sentinel cattle for the first time. Over the next 6 years, BTV-16 has been detected regularly and over an increasing area of the BTV zone in NSW. In April 2023, disease was reported in sheep on two farms on the Northern Tablelands of NSW. The consistent clinical signs included reduced exercise tolerance, facial swelling, serous nasal discharges with encrustation of the nasal plane, subcutaneous oedema of the neck and brisket and variable congestion of the coronary band. Affected sheep were mainly mature ewes and rams, with an estimated morbidity of 20% over a period of 6-8 weeks. Although there were several unexpected deaths, no veterinary examination was sought. Predominantly BTV-16 RNA was detected in sick sheep, with an incidence of infection of approximately 40% in a cross section of one flock. These events represent the first confirmation of disease due to bluetongue virus in NSW. As these cases occurred in a region with a high density of sheep, if there is ongoing transmission of BTV-16 during subsequent summers, further disease might be expected.
Collapse
Affiliation(s)
- P D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, 2568, Australia
| | - D S Finlaison
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, 2568, Australia
| | - A Biddle
- Northern Tablelands Local Lands Services, Inverell, New South Wales, 2360, Australia
| | - M Parsons
- Northern Tablelands Local Lands Services, Glen Innes, New South Wales, 2370, Australia
| | - H Austin
- North-West Local Lands Services, Tamworth, New South Wales, 2340, Australia
| | - S Boland
- Northern Tablelands Local Lands Services, Inverell, New South Wales, 2360, Australia
| | - G Roach
- Inverell Veterinary Clinic, Inverell, New South Wales, 2360, Australia
| | - R McKinnon
- North-West Local Lands Services, Tamworth, New South Wales, 2340, Australia
| | - E Braddon
- Animal Biosecurity, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| | - S Britton
- Animal Biosecurity, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| |
Collapse
|
15
|
Yang Z, He Y, Chen Y, Meng J, Li N, Li S, Wang J. Full genome characterization and evolutionary analysis of Banna virus isolated from Culicoides, mosquitoes and ticks in Yunnan, China. Front Cell Infect Microbiol 2023; 13:1283580. [PMID: 38035340 PMCID: PMC10687475 DOI: 10.3389/fcimb.2023.1283580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Banna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia. Methods Culicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing. Results In this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution. Conclusion The data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yiju Chen
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
16
|
Attoui H, Mohd Jaafar F, Monsion B, Klonjkowski B, Reid E, Fay PC, Saunders K, Lomonossoff G, Haig D, Mertens PPC. Increased Clinical Signs and Mortality in IFNAR (-/-) Mice Immunised with the Bluetongue Virus Outer-Capsid Proteins VP2 or VP5, after Challenge with an Attenuated Heterologous Serotype. Pathogens 2023; 12:pathogens12040602. [PMID: 37111488 PMCID: PMC10141489 DOI: 10.3390/pathogens12040602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Bluetongue is an economically important disease of domesticated and wild ruminants caused by bluetongue virus (BTV). There are at least 36 different serotypes of BTV (the identity of which is determined by its outer-capsid protein VP2), most of which are transmitted by Culicoides biting midges. IFNAR(-/-) mice immunised with plant-expressed outer-capsid protein VP2 (rVP2) of BTV serotypes -1, -4 or -8, or the smaller outer-capsid protein rVP5 of BTV-10, or mock-immunised with PBS, were subsequently challenged with virulent strains of BTV-4 or BTV-8, or with an attenuated clone of BTV-1 (BTV-1RGC7). The mice that had received rVP2 generated a protective immune response against the homologous BTV serotype, reducing viraemia (as detected by qRT-PCR), the severity of clinical signs and mortality levels. No cross-serotype protection was observed after challenge with the heterologous BTV serotypes. However, the severity of clinical signs, viraemia and fatality levels after challenge with the attenuated strain of BTV-1 were all increased in mice immunised with rVP2 of BTV-4 and BTV-8, or with rVP5 of BTV10. The possibility is discussed that non-neutralising antibodies, reflecting serological relationships between the outer-capsid proteins of these different BTV serotypes, could lead to 'antibody-dependent enhancement of infection' (ADE). Such interactions could affect the epidemiology and emergence of different BTV strains in the field and would therefore be relevant to the design and implementation of vaccination campaigns.
Collapse
Affiliation(s)
- Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Bernard Klonjkowski
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Elizabeth Reid
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Petra C Fay
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - George Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - David Haig
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Peter P C Mertens
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
17
|
Mohd Jaafar F, Monsion B, Mertens PPC, Attoui H. Identification of Orbivirus Non-Structural Protein 5 (NS5), Its Role and Interaction with RNA/DNA in Infected Cells. Int J Mol Sci 2023; 24:ijms24076845. [PMID: 37047816 PMCID: PMC10095184 DOI: 10.3390/ijms24076845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice and were used to identify NS5 synthesised in orbivirus-infected BSR cells or cells transfected with NS5 expression plasmids. Confocal microscopy shows that although NS5 accumulates in the nucleus, particularly in the nucleolus, which becomes disrupted, it also appears in the cell cytoplasm, co-localising with mitochondria. NS5 helps to prevent the degradation of ribosomal RNAs during infection and reduces host-cell protein synthesis However, it helps to extend cell viability by supporting viral protein synthesis and virus replication. Pulldown studies showed that NS5 binds to ssRNAs and supercoiled DNAs and demonstrates interactions with ZBP1, suggesting that it modulates host-cell responses.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Peter P. C. Mertens
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| |
Collapse
|
18
|
Re-Emergence of BTV-4 in Sheep Farms in Kosovo, 2020: A Retrospective Study. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/3112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Kosovo has previously seen two bluetongue (BT) epizootics, each caused by a different serotype, BTV-9 in 2001 and BTV-4 in 2014. Since 2014, no clinical cases of BT have been reported in Kosovo. In September, 2020, clinical signs suggestive of BTV infection were observed in several sheep farms in Kosovo. Blood samples from sheep (n = 40) were collected and subjected to further molecular investigations. Molecular analyses confirmed BTV serotype 4 (BTV-4) infection in thirty-six sheep from five different farms across two different regions. Full genome sequence analyses indicated that the BTV-4 strains (KOS2020/01 and KOS2020/02) detected in Kosovo in 2020 had high sequence identity (99.9%-100%) with a strain responsible for an outbreak in North Macedonia in July, 2020, (MKD2020/06) and with previous isolates (≥99.3%) from Greece, Hungary, and France. The percent nucleotide sequence (nt%) identity and phylogenetic analyses suggest that the incursion of BTV-4 into Kosovo was a re-emergence of a previously seen strain and not a novel reassortant. This could be due to a reintroduction of the strain into the region or from subclinical circulation which had been ongoing and underreported for years. Surveillance across Kosovo and the Balkan region to monitor the circulation of BTV is crucial if outbreaks are to be brought under control.
Collapse
|
19
|
Characterization of a Novel Orbivirus from Cattle Reveals Active Circulation of a Previously Unknown and Pathogenic Orbivirus in Ruminants in Kenya. mSphere 2023; 8:e0048822. [PMID: 36794933 PMCID: PMC10117150 DOI: 10.1128/msphere.00488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.
Collapse
|
20
|
Mahapatra CS, Sharma P, Biswas SK, Chand K. Development of ELISA for the detection of antibodies against VP2 protein of bluetongue virus serotype-1. J Immunol Methods 2022; 511:113386. [PMID: 36384199 DOI: 10.1016/j.jim.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
Serotype-specific diagnosis of bluetongue virus (BTV) is necessary for sero-surveillance and taking effective control measures. The VP2 is the major serotype determining protein and BTV-1 is the most predominant serotype in India. In the present study, an indirect ELISA (i-ELISA) was optimized for the detection of serotype-specific antibody against BTV-1 serotype. The VP2 protein of BTV-1 was expressed in a prokaryotic expression system and used to optimize i-ELISA to detect VP2 antibodies of BTV-1 in serum samples of both small and large ruminants. Serum samples (n = 363) classified as positive and negative for antibodies to BTV-1 by serum neutralization test (SNT) and also positive and negative for BTV antibodies by c-ELSIA kit (VMRD, USA) were used to determine the cut-off value, diagnostic sensitivity (DSn), and diagnostic specificity (D-Sp) using receiver operating characteristic (ROC) analysis. The percent positivity (PP) value >30.10% was accepted as the cut-off for i-ELISA at which DSn of 99.52% and D-Sp of 99.35% was observed with a 95% confidence interval. Further, there was no cross-reactivity with other available BTV serotypes in the country. The study indicated serotype-specific i-ELISA is sensitive, specific and suitable alternative to tedious SNT method for determining serotype. The assay will also help in the serotype-specific epidemiological studies and implementation of future control strategies including vaccination and selection of suitable serotype as a vaccine candidate.
Collapse
Affiliation(s)
- Chayna Singha Mahapatra
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, 263138 Nainital, Uttarakhand, India
| | - Priya Sharma
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, 263138 Nainital, Uttarakhand, India
| | - Sanchay Kumar Biswas
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, 263138 Nainital, Uttarakhand, India
| | - Karam Chand
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
21
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
22
|
Fay PC, Mohd Jaafar F, Batten C, Attoui H, Saunders K, Lomonossoff GP, Reid E, Horton D, Maan S, Haig D, Daly JM, Mertens PPC. Serological Cross-Reactions between Expressed VP2 Proteins from Different Bluetongue Virus Serotypes. Viruses 2021; 13:1455. [PMID: 34452321 PMCID: PMC8402635 DOI: 10.3390/v13081455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/26/2023] Open
Abstract
Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.
Collapse
Affiliation(s)
- Petra C. Fay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Fauziah Mohd Jaafar
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Carrie Batten
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Houssam Attoui
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - Elizabeth Reid
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Daniel Horton
- Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK;
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar 125004, India;
| | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Peter P. C. Mertens
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| |
Collapse
|
23
|
van Rijn PA, Boonstra J. Critical parameters of real time reverse transcription polymerase chain reaction (RT-PCR) diagnostics: Sensitivity and specificity for bluetongue virus. J Virol Methods 2021; 295:114211. [PMID: 34126108 DOI: 10.1016/j.jviromet.2021.114211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/18/2022]
Abstract
A new variant of bluetongue virus serotype 3, BTV3 ITL 2018 (here named: BTV3), was included in serial dilutions in the BT Proficiency Test 2020. Although the OIE-recommended panBTV real time RT-PCR test targeting genome segment 10 (Seg-10) detected this variant, we showed that reverse transcription (RT) at 61 °C instead of 50 °C completely abolished detection. Another Seg-10 panBTV real time RT-PCR test detected BTV3, irrespective of the temperature of RT. In silico validation showed that each of the OIE-recommended PCR primers using IVI-primers contain single mismatches at the -3 position for BTV3. In contrast, WBVR-primers of a second test completely match to the BTV3 variant. Our results suggest that single mismatches caused false negative PCR results for BTV3 at high RT temperature. Indeed, correction of both IVI-primers for BTV3 led to positive results for BTV3 but negative results for all other samples of the BT Proficiency Test 2020. Apparently, variability of the -3 position is sufficient for discriminative PCR detection, although the single mismatch in the IVI-reverse primer was the most important for this phenomenon. Extensive in silico validation showed that targets of both Seg-10 panBTV RT-PCR tests are not completely conserved, and the detailed effect of single mismatches are hard to predict. Therefore, we recommend at least two panBTV RT-PCR tests to minimize the risk of false negatives. Preferably, their PCR targets should be located at completely different and highly conserved regions of the BTV genome to guarantee adequate detection of future BTV infections.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
24
|
An Early Block in the Replication of the Atypical Bluetongue Virus Serotype 26 in Culicoides Cells Is Determined by Its Capsid Proteins. Viruses 2021; 13:v13050919. [PMID: 34063508 PMCID: PMC8156691 DOI: 10.3390/v13050919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
Arboviruses such as bluetongue virus (BTV) replicate in arthropod vectors involved in their transmission between susceptible vertebrate-hosts. The "classical" BTV strains infect and replicate effectively in cells of their insect-vectors (Culicoides biting-midges), as well as in those of their mammalian-hosts (ruminants). However, in the last decade, some "atypical" BTV strains, belonging to additional serotypes (e.g., BTV-26), have been found to replicate efficiently only in mammalian cells, while their replication is severely restricted in Culicoides cells. Importantly, there is evidence that these atypical BTV are transmitted by direct-contact between their mammalian hosts. Here, the viral determinants and mechanisms restricting viral replication in Culicoides were investigated using a classical BTV-1, an "atypical" BTV-26 and a BTV-1/BTV-26 reassortant virus, derived by reverse genetics. Viruses containing the capsid of BTV-26 showed a reduced ability to attach to Culicoides cells, blocking early steps of the replication cycle, while attachment and replication in mammalian cells was not restricted. The replication of BTV-26 was also severely reduced in other arthropod cells, derived from mosquitoes or ticks. The data presented identifies mechanisms and potential barriers to infection and transmission by the newly emerged "atypical" BTV strains in Culicoides.
Collapse
|
25
|
Wang A, Du J, Feng H, Zhou J, Chen Y, Liu Y, Jiang M, Jia R, Tian Y, Zhang G. Identification of a novel bluetongue virus 1 specific B cell epitope using monoclonal antibodies against the VP2 protein. Int J Biol Macromol 2021; 183:1393-1401. [PMID: 33984384 DOI: 10.1016/j.ijbiomac.2021.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Bluetongue (BT) is a non-contact infectious disease caused by Bluetongue virus (BTV), which can be transmitted by vector insects such as Culicoides and Aedes mosquitoes. The BTV VP2 protein encoded by the L2 gene is located at the outermost layer of the virus particle, plays a key role on mediating the adsorption and entry of virus, and it is also a main antigenic protein widely used for vaccine development. In this study, the BTV1 VP2 gene was cloned into pFastBac™Dual vector, and expressed in insect Sf21 cells. Immunized mice with purified recombinant VP2 protein can induce higher levels of antibodies. Three anti BTV1 VP2 monoclonal antibodies (mAbs) were generated (17E9C6, 17E9C8, 17E9H12), and showed high specific reactivity with recombinant VP2 protein and inactivated BTV1 virus. Finally, a novel linear B-cell epitope 296-KEPAD-300 on recombinant VP2 protein was identified by using three mAbs react with a series of continue-truncated peptides. The results of this study may provide new information on the structure and function of BTV1 VP2 protein and lay a foundation for the development of BTV1 diagnostic and prophylactic methods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinran Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Feng
- Key Laboratory of Animal Immunology of the Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
27
|
Yang H, Gu W, Li Z, Zhang L, Liao D, Song J, Shi B, Hasimu J, Li Z, Yang Z, Zhong Q, Li H. Novel putative bluetongue virus serotype 29 isolated from inapparently infected goat in Xinjiang of China. Transbound Emerg Dis 2021; 68:2543-2555. [PMID: 33190404 DOI: 10.1111/tbed.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus causing bluetongue (BT) in sheep, bovine and other ruminants. Twenty-four serotypes and several atypical serotypes of BTV were identified worldwide. In present study, a novel strain of BTV (V196/XJ/2014) was isolated from an asymptomatic sentinel goat in Yuli County, Xinjiang of China. Serotype identification of this isolate exhibited uniform negative results by serotype-specific conventional RT-PCR and real-time RT-PCR for BTV-1 to BTV-27, and virus neutralization tests using reference sera of BTV-1 to BTV-24. Genomic analysis showed V196/XJ/2014 grouped with atypical serotypes of BTV-25 to BTV-28, BTV-X/XJ1407, BTV-X/ITL2015 and BTV-Y/TUN2017, while segment 2 and VP2 protein of V196/XJ/2014 shared <63.4%/61.4% nucleic acids and amino acids sequence identities with other recognized BTV serotypes and its segment 2 formed a separate 'nucleotype' in phylogenetic tree. These results indicated V196/XJ/2014 does not belong to any reported serotypes of BTV. Further studies of infectivity and pathogenicity showed that goats infected with V196/XJ/2014 did not exhibit observed clinical symptoms, but high level of virus amplification and homologous neutralization antibodies were detected post-infection. Our studies suggested a novel putative serotype of BTV-29 was isolated in Xinjiang of China, which expands our knowledge about the diversity of BTV.
Collapse
Affiliation(s)
- Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Wenxi Gu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Ling Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Baoxin Shi
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Jiapaer Hasimu
- Yuli Animal Husbandry and Veterinary Station, Yuli, Xinjiang Autonomous Region, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qi Zhong
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
28
|
Rojas JM, Barba-Moreno D, Avia M, Sevilla N, Martín V. Vaccination With Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front Vet Sci 2021; 8:645561. [PMID: 33778041 PMCID: PMC7987666 DOI: 10.3389/fvets.2021.645561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a disease that affects domestic and wild ruminants and leads to critical economic losses. BTV is an arbovirus from the Reoviridae family that is typically transmitted by the bite of infected Culicoides midges. BTV possesses multiple serotypes (up to 28 have been described), and immunity to one serotype offers little cross-protection to other serotypes. The design of vaccines that provide protection across multiple serotypes is therefore highly desirable to control this disease. We previously reported that a recombinant replication-defective human adenovirus serotype 5 (Ad5) that expresses the VP7 inner core protein of BTV serotype 8 (Ad5VP7-8) induced T-cell responses and provided protection. In the present work, we evaluated as BTV vaccine the combination of Ad5VP7-8 with another recombinant Ad5 that expresses the outer core protein VP2 from BTV-1 (Ad5VP2-1). The combination of Ad5VP2-1 and Ad5VP7-8 protected against homologous BTV challenge (BTV-1 and BTV-8) and partially against heterologous BTV-4 in a murine model. Cross-reactive anti-BTV immunoglobulin G (IgG) were detected in immunized animals, but no significant titers of neutralizing antibodies were elicited. The Ad5VP7-8 immunization induced T-cell responses that recognized all three serotypes tested in this study and primed cytotoxic T lymphocytes specific for VP7. This study further confirms that targeting antigenic determinant shared by several BTV serotypes using cellular immunity could help develop multiserotype BTV vaccines.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Diego Barba-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
29
|
Thota R, Ganji VK, Machanagari S, Yella NR, Buddala B, Yadlapati K, Rao PP, Maan S, Maan NS, Hemadri D, Singh KP, Putty K. VP2 Gene-Based Molecular Evolutionary Patterns of Major Circulating Bluetongue Virus Serotypes Isolated during 2014-2018 from Telangana and Andhra Pradesh States of India. Intervirology 2020; 64:1-8. [PMID: 33378762 DOI: 10.1159/000512131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Bluetongue disease is an economically important viral disease of livestock caused by bluetongue virus (BTV) having multiple serotypes. It belongs to the genus Orbivirus of family Reoviridae and subfamily Sedoreovirinae. The genome of BTV is 10 segmented dsRNA that codes for 7 structural and 4 nonstructural proteins, of which VP2 was reported to be serotype-specific and a major antigenic determinant. OBJECTIVE It is important to know the circulating serotypes in a particular geographical location for effective control of the disease. The present study unravels the molecular evolution of the circulating BTV serotypes during 2014-2018 in Telangana and Andhra Pradesh states of India. METHODS Multiple sequence alignment with available BTV serotypes in GenBank and phylogenetic analysis were performed for the partial VP2 sequences of major circulating BTV serotypes during the study period. RESULTS The multiple sequence alignment of circulating serotypes with respective reference isolates revealed variations in antigenic VP2. The phylogenetic analysis revealed that the major circulating serotypes were grouped into eastern topotypes (BTV-1, BTV-2, BTV-4, and BTV-16) and Western topotypes (BTV-5, BTV-12, and BTV-24). CONCLUSION Our study strengthens the need for development of an effective vaccine, which can induce the immune response for a range of serotypes within and in between topotypes.
Collapse
Affiliation(s)
- Ravali Thota
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India
| | - Vishweshwar Kumar Ganji
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India
| | - Sharanya Machanagari
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India
| | - Narasimha Reddy Yella
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India
| | - Bhagyalakshmi Buddala
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India
| | | | | | - Sushila Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Narender S Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | | | - Karam Pal Singh
- Pathology Laboratory, CADRAD, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Kalyani Putty
- Departments of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, India,
| |
Collapse
|
30
|
Ries C, Sharav T, Tseren-Ochir EO, Beer M, Hoffmann B. Putative Novel Serotypes '33' and '35' in Clinically Healthy Small Ruminants in Mongolia Expand the Group of Atypical BTV. Viruses 2020; 13:v13010042. [PMID: 33383902 PMCID: PMC7824028 DOI: 10.3390/v13010042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
Between 2015 and 2018, we identified the presence of three so-far-unknown Bluetongue virus (BTV) strains (BTV-MNG1/2018, BTV-MNG2/2016, and BTV-MNG3/2016) circulating in clinical healthy sheep and goats in Mongolia. Virus isolation from EDTA blood samples of BTV-MNG1/2018 and BTV-MNG3/2016 was successful on the mammalian cell line BSR using blood collected from surveillance. After experimental inoculation of goats with BTV-MNG2/2016 positive blood as inoculum, we observed viraemia in one goat and with the EDTA blood of the experimental inoculation, the propagation of BTV-MNG2/2016 in cell culture was successful on mammalian cell line BSR as well. However, virus isolation experiments for BTV-MNG2/2016 on KC cells were unsuccessful. Furthermore, we generated the complete coding sequence of all three novel Mongolian strains. For atypical BTV, serotyping via the traditional serum neutralization assay is not trivial. We therefore sorted the ‘putative novel atypical serotypes’ according to their segment-2 sequence identities and their time point of sampling. Hence, the BTV-MNG1/2018 isolate forms the ‘putative novel atypical serotype’ 33, the BTV-MNG3/2016 the ‘putative novel atypical serotype’ 35, whereas the BTV-MNG2/2016 strain belongs to the same putative novel atypical serotype ‘30’ as BTV-XJ1407 from China.
Collapse
Affiliation(s)
- Christina Ries
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
| | - Tumenjargal Sharav
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-uul District, Zaisan 17024, Mongolia or (T.S.); (E.-O.T.-O.)
| | - Erdene-Ochir Tseren-Ochir
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-uul District, Zaisan 17024, Mongolia or (T.S.); (E.-O.T.-O.)
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17943 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
- Correspondence:
| |
Collapse
|
31
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
32
|
Isolation and Cultivation of a New Isolate of BTV-25 and Presumptive Evidence for a Potential Persistent Infection in Healthy Goats. Viruses 2020; 12:v12090983. [PMID: 32899808 PMCID: PMC7552037 DOI: 10.3390/v12090983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Recently, several so-called “atypical” Bluetongue virus (BTV) serotypes were discovered, including BTV-25 (Toggenburg virus), in Switzerland. Most “atypical” BTV were identified in small ruminants without clinical signs. In 2018, two goats from a holding in Germany tested positive for BTV-25 genome by RT-qPCR prior to export. After experimental inoculation of the two goats with the BTV-25 positive field blood samples for generation of reference materials, viremia could be observed in one animal. For the first time, the BTV-25-related virus was isolated in cell culture from EDTA-blood and the full genome of isolate “BTV-25-GER2018” could be generated. BTV-25-GER2018 was only incompletely neutralized by ELISA-positive sera. We could monitor the BTV-25 occurrence in the respective affected goat flock of approximately 120 goats over several years. EDTA blood samples were screened with RT-qPCR using a newly developed BTV-25 specific assay. For serological surveillance, serum samples were screened using a commercial cELISA. BTV-25-GER2018 was detected over 4.5 years in the goat flock with intermittent PCR-positivity in some animals, and with or without concomitantly detected antibodies since 2015. We could demonstrate the viral persistence of BTV-25-GER2018 in goats for up to 4.5 years, and the first BTV-25 isolate is now available for further characterization.
Collapse
|
33
|
Chambaro HM, Sasaki M, Simulundu E, Silwamba I, Sinkala Y, Gonzalez G, Squarre D, Fandamu P, Lubaba CH, Munyeme M, Maseko A, Chimvwele C, Mataa L, Mooya LE, Mukubesa AN, Harima H, Samui KL, Munang’andu HM, Simuunza M, Nalubamba KS, Qiu Y, Carr MJ, Hall WW, Eshita Y, Sawa H, Orba Y. Co-Circulation of Multiple Serotypes of Bluetongue Virus in Zambia. Viruses 2020; 12:v12090963. [PMID: 32878170 PMCID: PMC7552058 DOI: 10.3390/v12090963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Bluetongue (BT) is an arthropod-borne viral disease of ruminants with serious trade and socio-economic implications. Although the disease has been reported in a number of countries in sub-Saharan Africa, there is currently no information on circulating serotypes and disease distribution in Zambia. Following surveillance for BT in domestic and wild ruminants in Zambia, BT virus (BTV) nucleic acid and antibodies were detected in eight of the 10 provinces of the country. About 40% (87/215) of pooled blood samples from cattle and goats were positive for BTV nucleic acid, while one hartebeest pool (1/43) was positive among wildlife samples. Sequence analysis of segment 2 revealed presence of serotypes 3, 5, 7, 12 and 15, with five nucleotypes (B, E, F, G and J) being identified. Segment 10 phylogeny showed Zambian BTV sequences clustering with Western topotype strains from South Africa, intimating likely transboundary spread of BTV in Southern Africa. Interestingly, two Zambian viruses and one isolate from Israel formed a novel clade, which we designated as Western topotype 4. The high seroprevalence (96.2%) in cattle from Lusaka and Central provinces and co-circulation of multiple serotypes showed that BT is widespread, underscoring the need for prevention and control strategies.
Collapse
Affiliation(s)
- Herman M. Chambaro
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (H.H.); (H.S.)
- Virology Unit, Central Veterinary Research Institute, Lusaka 10101, Zambia;
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
- Correspondence: (H.M.C.); (E.S.); (Y.O.); Tel.: +81-80-1375-4174 (H.M.C.); +26-09-7746-9479 (E.S.); +81-11-706-5185 (Y.O.)
| | - Michihito Sasaki
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (H.H.); (H.S.)
| | - Edgar Simulundu
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
- Macha Research Trust, Choma 10101, Zambia
- Correspondence: (H.M.C.); (E.S.); (Y.O.); Tel.: +81-80-1375-4174 (H.M.C.); +26-09-7746-9479 (E.S.); +81-11-706-5185 (Y.O.)
| | - Isaac Silwamba
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - Yona Sinkala
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, School of Medicine, Dublin DO4V1W8, Ireland; (G.G.); (M.J.C.); (W.W.H.)
| | - David Squarre
- The University of Edinburgh, Edinburgh EH25 9RG, Scotland, UK;
- Department of National Parks and Wildlife, Chilanga 10101, Zambia
| | - Paul Fandamu
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Caesar H. Lubaba
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Musso Munyeme
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - Alikhadio Maseko
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Choopa Chimvwele
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Liywalii Mataa
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Lynnfield E. Mooya
- Virology Unit, Central Veterinary Research Institute, Lusaka 10101, Zambia;
- Ministry of Fisheries and Livestock, Lusaka 10101, Zambia; (Y.S.); (P.F.); (C.H.L.); (A.M.); (C.C.); (L.M.)
| | - Andrew N. Mukubesa
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - Hayato Harima
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (H.H.); (H.S.)
| | - Kenny L. Samui
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - Hetron M. Munang’andu
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, 0454 Oslo, Norway;
| | - Martin Simuunza
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - King S. Nalubamba
- School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia; (I.S.); (M.M.); (A.N.M.); (K.L.S.); (M.S.); (K.S.N.)
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (Y.Q.); (Y.E.)
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, Dublin DO4V1W8, Ireland; (G.G.); (M.J.C.); (W.W.H.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - William W. Hall
- National Virus Reference Laboratory, School of Medicine, Dublin DO4V1W8, Ireland; (G.G.); (M.J.C.); (W.W.H.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
| | - Yuki Eshita
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (Y.Q.); (Y.E.)
| | - Hirofumi Sawa
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (H.H.); (H.S.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (H.H.); (H.S.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Correspondence: (H.M.C.); (E.S.); (Y.O.); Tel.: +81-80-1375-4174 (H.M.C.); +26-09-7746-9479 (E.S.); +81-11-706-5185 (Y.O.)
| |
Collapse
|
34
|
Guo Y, Huang L, Bi K, Xu Q, Bu Z, Wang F, Sun E. Recombinant bluetongue virus with hemagglutinin epitopes in VP2 has potential as a labeled vaccine. Vet Microbiol 2020; 248:108825. [PMID: 32891953 DOI: 10.1016/j.vetmic.2020.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022]
Abstract
Bluetongue (BT) is an arbovirus-borne disease of ruminants caused by bluetongue virus (BTV) that has the potential to have a serious economic impact. Currently available commercial vaccines include attenuated vaccines and inactivated vaccines, both of which have achieved great success in the prevention and control of BTV. However, these vaccines cannot distinguish between infected animals and immunized animals. To control outbreaks of BTV, the development of labeled vaccines is urgently needed. In this study, we used the plasmid-based reverse genetics system (RGS) of BTV to rescue four recombinant viruses in which HA (influenza hemagglutinin) tags were inserted at different sites of VP2. In vitro, the recombinant tagged viruses exhibited morphologies, plaque, and growth kinetics similar to the parental BTV-16, and expressed both VP2 and HA tag. Subsequently, the selected recombinant tagged viruses were prepared as inactivated vaccines to immunize IFNAR(-/-) mice and sheep, and serological detection results of anti-HA antibody provided discriminative detection. In summary, we used plasmid-based RGS to rescue BTV recombinant viruses with HA tags inserted into VP2, and detected several sites on VP2 that can accommodate HA tags. Some of the recombinant tagged viruses have potential to be developed into distinctive inactivated vaccines.
Collapse
Affiliation(s)
- Yunze Guo
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liping Huang
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Kaixuan Bi
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qingyuan Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Fenglong Wang
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Encheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
35
|
Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines (Basel) 2020; 8:vaccines8030346. [PMID: 32610561 PMCID: PMC7564706 DOI: 10.3390/vaccines8030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.
Collapse
|
36
|
Roy P. Highly efficient vaccines for Bluetongue virus and a related Orbivirus based on reverse genetics. Curr Opin Virol 2020; 44:35-41. [PMID: 32610251 DOI: 10.1016/j.coviro.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Bluetongue virus (BTV) reverse genetics (RG), available since 2007, has allowed the dissection of the virus replication cycle, including discovery of a primary replication stage. This information has allowed the generation of Entry-Competent-Replication-Abortive (ECRA) vaccines, which enter cells and complete primary replication but fail to complete the later stage. A series of vaccine trials in sheep and cattle either with a single ECRA serotype or a cocktail of multiple ECRA serotypes have demonstrated that these vaccines provide complete protection against virulent virus challenge without cross-serotype interference. Similarly, an RG system developed for the related African Horse Sickness virus, which causes high mortality in equids has provided AHSV ECRA vaccines that are protective in horses. ECRA vaccines were incapable of productive replication in animals despite being competent for cell entry. This technology allows rapid generation of emerging Orbivirus vaccines and offers immunogenicity and safety levels that surpass attenuated or recombinant routes.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom.
| |
Collapse
|
37
|
Ries C, Beer M, Hoffmann B. BlueTYPE - A low density TaqMan-RT-qPCR array for the identification of all 24 classical Bluetongue virus serotypes. J Virol Methods 2020; 282:113881. [PMID: 32413478 DOI: 10.1016/j.jviromet.2020.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Bluetongue virus is a double-stranded RNA virus with 10 genome segments. VP2 is the primary target for neutralising antibodies and defines the serotype. Today, more than 27 serotypes are known, 24 are defined as "classical", and new serotypes are under investigation. Beside group-specific BTV-genome detection, additional serotype characterisation is important for disease control and epidemiological investigations. Therefore, a low-density RT-qPCR array representing a panel of group- and serotype-specific assays, was combined with an internal control system. For BTV serotype detection, both published and the newly developed in-house PCR systems were combined. The different primer-probe-mixes were placed in advance into a 96-well plate stored at -20 °C until use. At the time of analysis, the only template RNA was added to the prepared primer-probe-mixes and heat denatured at 95 °C for 3 min. After cooling, the master mix was added to each well and the PCR could run for around 90 min. The presented low-density TaqMan-RT-qPCR array enables fast and precise characterisation of the BTV serotype in clinical cases. Furthermore, mixed infections can be easily identified. In addition, the newly developed low-density RT-qPCR-array can easily be adapted to novel BTV strain variants or extended for relevant differential diagnosis.
Collapse
Affiliation(s)
- Christina Ries
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany.
| |
Collapse
|
38
|
Qin S, Lin J, Li L, Zhang Y, Xiao L, Cao Y, Ren P, Li H, Wu J. Seroprevalence and Potential Risk Factors of Bluetongue Virus Infection in Domestic Cattle and Goats in Guangxi Province, Southern China. Vector Borne Zoonotic Dis 2020; 20:551-556. [PMID: 32343911 DOI: 10.1089/vbz.2019.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bluetongue is one of the most important vector-borne viral diseases that can lead to significant economic losses as a result of reduction of productivity and even death in some susceptible ruminants. However, epidemiological information on bluetongue virus (BTV) infection in cattle and goats is scarce in China. To determine the seropositive rate and risk factors of BTV infection in cattle and goats in Guangxi province, a subtropical region in Southern China, a total of 548 cattle serum samples and 6567 goat serum samples collected from 13 cities across Guangxi province during 2003-2015 were analyzed and found that the seroprevalence is 44.5% (244/548) in cattle and 28.0% (1837/6567) in goats and the main BTV serotypes are BTV-1, -2, -4, and -8. Climatic zone, age, and species are found to be the likely risk factors for BTV infection. To our knowledge, this is the first large-scale serological survey for BTV infection in domestic cattle and goats in Guangxi province, Southern China.
Collapse
Affiliation(s)
- Shaomin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jun Lin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Yixuan Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lei Xiao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Yingying Cao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Pengfei Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| |
Collapse
|
39
|
Golender N, Bumbarov V, Eldar A, Lorusso A, Kenigswald G, Varsano JS, David D, Schainin S, Dagoni I, Gur I, Kaplan A, Gorohov A, Koren O, Oron E, Khinich Y, Sclamovich I, Meir A, Savini G. Bluetongue Serotype 3 in Israel 2013-2018: Clinical Manifestations of the Disease and Molecular Characterization of Israeli Strains. Front Vet Sci 2020; 7:112. [PMID: 32211429 PMCID: PMC7068852 DOI: 10.3389/fvets.2020.00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, the results of the diagnostic activities on Bluetongue virus serotype 3 (BTV-3) conducted at Kimron Veterinary Institute (Beit Dagan, Israel) between 2013 and 2018 are reported. Bluetongue virus is the causative agent of bluetongue (BT), a disease of ruminants, mostly transmitted by competent Culicoides species. In Israel, BTV-3 circulation was first detected in 2013 from a sheep showing classical BT clinical signs. It was also evidenced in 2016, and, since then, it has been regularly detected in Israeli livestock. Between 2013 and 2017, BTV-3 outbreaks were limited in sheep flocks located in the southern area only. In 2018, BTV-3 was instead found in the Israeli coastal area being one of the dominant BTV serotypes isolated from symptomatic sheep, cattle and goats. In Israeli sheep, BTV-3 was able to cause BT classical clinical manifestations and fatalities, while in cattle and goats infection ranged from asymptomatic forms to death cases, depending on either general welfare of the herds or on the occurrence of viral and bacterial co-infections. Three different BTV-3 strains were identified in Israel between 2013 and 2018: ISR-2019/13 isolated in 2013, ISR-2153/16 and ISR-2262/2/16 isolated in 2016. Sequencing and phylogenetic analysis of these strains showed more than 99% identity by segment (Seg) 2, 5, 6, 7, and 8 sequences. In contrast, a wide range of diversity among these strains was exhibited in other viral gene segments, implying the occurrence of genome reassortment between these local circulating strains and those originating from Africa. The genome sequences of the BTV-3 isolated in 2017 and 2018 were most closely related to those of the ISR-2153/16 strain suggesting their common ancestor. Comparison of BTV-3 Israeli strains with those recently detected in the Mediterranean region uncovered high percentage identity (98.19–98.28%) only between Seg-2 of all Israeli strains and the BTV-3 Zarzis/TUN2016 strain. A 98.93% identity was also observed between Seg-4 sequences of ISR-2019/13 and the BTV-3 Zarzis/TUN2016 strain. This study demonstrated that BTV-3 has been circulating in the Mediterranean region at least since 2013, but, unlike the other Mediterranean strains, Israeli BTV-3 were able to cause clinical signs also in cattle.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| | | | | | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Ilan Dagoni
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Iosef Gur
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Alon Kaplan
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Anna Gorohov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Ori Koren
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Eldad Oron
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Yevgeny Khinich
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Abraham Meir
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| |
Collapse
|
40
|
Koltsov A, Tsybanov S, Gogin A, Kolbasov D, Koltsova G. Identification and Characterization of Bluetongue Virus Serotype 14 in Russia. Front Vet Sci 2020; 7:26. [PMID: 32181261 PMCID: PMC7059698 DOI: 10.3389/fvets.2020.00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
This paper reports a case of bluetongue virus (BTV) infection in the Smolensk and Kaluga regions of Russia in 2011-2012. The virus was initially detected in heifers transferred in Russia from Germany through Poland and Belarus in 2011. On day 27 of quarantine, RNA and infectious viruses of BTV were detected in four heifers, but five were serologically positive. However, on day 3 before shipment, all heifers were seronegative and PCR-negative for BTV. Thus, a few animals from this consignment were viremic without any evident subclinical infection. Based on Seg-2 (VP2 gene) and Seg-5 (NS1 gene) sequencing, the recovered virus had 99.86-100% nucleotide identity with BTV-14-like viruses such as the vaccine BTV-14 strain RSArrrr/BTV 14 and the BTV-14 isolates detected in Lithuania and Poland in 2012. Subsequently, BTV-14 was also reported in local animals in two regions of Russia. During the monitoring survey, 1623 local animals within a 300-km radius were tested, of which 471 tested positive by ELISA and 183 by PCR for BTV-14 RNA. No other serotypes were identified in either imported or aboriginal animals within that radius. The Culicoides midges trapped at the site of the outbreak in May 2012 tested positive for the BTV-14 genome, indicating that the possible mechanism of spread most likely occurs via vector bites. However, further investigation is required to confirm this hypothesis, which would provide an improved understanding of the circulation and overwintering of BTV in northern latitudes.
Collapse
Affiliation(s)
- Andrei Koltsov
- Federal Research Center for Virology and Microbiology, Pokrov, Russia
| | - Sodnom Tsybanov
- Federal Research Center for Virology and Microbiology, Pokrov, Russia
| | - Andrey Gogin
- Federal Research Center for Virology and Microbiology, Pokrov, Russia
| | - Denis Kolbasov
- Federal Research Center for Virology and Microbiology, Pokrov, Russia
| | - Galina Koltsova
- Federal Research Center for Virology and Microbiology, Pokrov, Russia
| |
Collapse
|
41
|
Alternative methods to reduce the animal use in quality controls of inactivated BTV8 Bluetongue vaccines. Prev Vet Med 2020; 176:104923. [PMID: 32066029 DOI: 10.1016/j.prevetmed.2020.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
The acceptance of serology data instead of challenge for market release of new batches of commercial vaccine is under evaluation by regulatory agencies in order to reduce the use of animals and costs for manufacturers. In this study two vaccines for Bluetongue virus serotype 8 were submitted to quality controls required by the European Pharmacopoeia and tested on sheep in comparison with a commercial inactivated vaccine. Body temperature, antibody titres and viraemia of vaccinated and controls sheep were recorded. In addition IL4 and IFNγ in sera and supernatant derived from in vitro stimulation of blood cells were also quantified using two commercial ELISA kit. The outer-capsid protein VP2 contained in vaccine formulations was quantified using a home-made capture-ELISA. Results obtained indicates that in-lab evaluation of cell-mediated and humoral immune response are useful parameters to predict the efficacy of BTV inactivated vaccines avoiding the challenge phase required to release new batches of vaccines with proven clinical efficacy and safety. The correlation observed between serology data and VP2 protein concentration of final product could be useful in-process control to predict if a new vaccine batch of BTV must be discarded or released to the market.
Collapse
|
42
|
Haegeman A, Vandaele L, De Leeuw I, Oliveira AP, Nauwynck H, Van Soom A, De Clercq K. Failure to Remove Bluetongue Serotype 8 Virus (BTV-8) From in vitro Produced and in vivo Derived Bovine Embryos and Subsequent Transmission of BTV-8 to Recipient Cows After Embryo Transfer. Front Vet Sci 2019; 6:432. [PMID: 31867345 PMCID: PMC6907088 DOI: 10.3389/fvets.2019.00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
The behavior of BTV-8 in cattle is different from most other serotypes not only with regards to clinical signs but certainly with respect to virus transmission (transplacental, contact). Therefore, the possibility of virus transmission by means of embryo transfer was examined by in vitro exposure of in vitro produced and in vivo derived bovine blastocysts to BTV-8 followed by different washing protocols, including longer exposure times (up to 120 s) to 0.25% trypsin at room temperature or at 37°C. None of the washing protocols used was successful in removing the viral genome completely from the in vitro produced and in vivo derived embryos as was demonstrated by real-time PCR. Moreover, BTV-8 virus was transmitted to recipient cows after embryo transfer of in vivo derived BTV8-exposed embryos, which had been subjected to routine decontamination as recommended by IETS, consisting of 5 washes in PBS followed by a double treatment of 0.25% trypsin for 45s at 37°C, and an additional 5 washes in PBS with 2% FCS. This study clearly demonstrates the necessity of vigorous application of the directives for screening of potential donors and the collected embryos, especially in regions with BTV-8, to prevent transmission of the disease.
Collapse
Affiliation(s)
- Andy Haegeman
- Unit of Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Leen Vandaele
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - André P Oliveira
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium.,EPAMIG, Escola de Veterinaria da UFMG, Bolsista CAPES, Belo Horizonte, Brazil
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
43
|
Comparative Evaluation of T-Cell Immune Response to BTV Infection in Sheep Vaccinated with Pentavalent BTV Vaccine When Compared to Un-Vaccinated Animals. Vet Med Int 2019; 2019:8762780. [PMID: 31885849 PMCID: PMC6915004 DOI: 10.1155/2019/8762780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 11/23/2022] Open
Abstract
Recent invasion of multiple bluetongue virus serotypes (BTV) in different regions of the world necessitates urgent development of efficient vaccine that is directed against multiple BTV serotypes. In this experimental study, cell mediated immune response and protective efficacy of binary ethylenimine (BEI) inactivated Montanide™ ISA 206 adjuvanted pentavalent (BTV-1, 2, 10, 16 and 23) vaccine was evaluated in sheep and direct challenge with homologous BTV serotypes in their respective group. Significant (P < 0.05) up-regulation of mRNA transcripts of IFN-α, IL-2, IL-6, IL-12, IFN-γ and TNF-α in PBMCs of vaccinated animals as compared to control (un-vaccinated) animals at certain time points was observed. On the other hand, there was a significant increase in mean ± SD percentage of CD8+ T cells after 7 days post challenge (DPC) but, the mean ± SD percentage of CD4+ T-cell population slightly declined at 7 DPC and enhanced after 14 DPC. Significant differences (P < 0.05) of CD8+ and CD4+T cells population was also observed between vaccinated and unvaccinated sheep. The vaccine also significantly (P < 0.05) reduced BTV RNA load in PBMCs of vaccinated animals than unvaccinated animals following challenge. There were no significant difference (P > 0.05) in cytokine induction, BTV RNA load and CD8+ and CD4+cell count among BTV-1, 2, 10, 16 and 23 serotype challenges except significant increase in mean ± SD percentage of CD8+ in BTV-2 group. These findings put forwarded that binary ethylenimine inactivated montanide adjuvanted pentavalent bluetongue vaccine has stimulated cell mediated immune response and most importantly reduced the severity of BTV-1, 2, 10, 16 and 23 infections following challenge in respective group.
Collapse
|
44
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
45
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
46
|
Fay PC, Attoui H, Batten C, Mohd Jaafar F, Lomonossoff GP, Daly JM, Mertens PP. Bluetongue virus outer-capsid protein VP2 expressed in Nicotiana benthamiana raises neutralising antibodies and a protective immune response in IFNAR -/- mice. Vaccine X 2019; 2:100026. [PMID: 31384743 PMCID: PMC6668234 DOI: 10.1016/j.jvacx.2019.100026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Bluetongue is a severe, economically important disease of ruminants that is widely distributed in tropical and temperate regions around the world. It is associated with major production losses, restrictions of animal movements and trade, as well as costs associated with developing and implementing effective surveillance and control measures. Mammalian hosts infected with bluetongue virus (BTV) generate a protective neutralising antibody response targeting the major BTV outer-capsid protein and serotype-specific antigen, VP2. BTV VP2 proteins that have been expressed in plants are soluble, with a native conformation displaying neutralising epitopes and can assemble with other BTV structural proteins to form virus-like particles (VLPs). His-tagged VP2 proteins of BTV serotypes 4 and 8 were transiently expressed in Nicotiana benthamiana then purified by immobilised metal affinity chromatography (IMAC). Antisera from IFNAR -/- mice prime/boost vaccinated with the purified proteins, were shown to contain VP2-specific antibodies by Indirect ELISA (I-ELISA), western blotting and serum neutralisation tests (SNT). Vaccinated mice, subsequently challenged with either the homologous or heterologous BTV serotype, developed viraemia by day 3 post-infection. However, no clinical signs were observed in mice challenged with the homologous serotype (either prime-boost or single-shot vaccinated), all of which survived for the duration of the study. In contrast, all of the vaccinated mice challenged with a heterologous serotype, died, showing no evidence of cross-protection or suppression of viraemia, as detected by real-time RT-qPCR or virus isolation. The induction of protective, serotype-specific neutralising antibodies in IFNAR -/- mice, indicates potential for the use of plant-expressed BTV VP2s as subunit vaccine components, or as a basis for serotype-specific serological assays.
Collapse
Affiliation(s)
- Petra C. Fay
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Houssam Attoui
- UMR VIROLOGIE 1161, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort F-94700, France
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Fauziah Mohd Jaafar
- UMR VIROLOGIE 1161, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort F-94700, France
| | | | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Peter P.C. Mertens
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| |
Collapse
|
47
|
White JR, Williams DT, Wang J, Chen H, Melville LF, Davis SS, Weir RP, Certoma A, Di Rubbo A, Harvey G, Lunt RA, Eagles D. Identification and genomic characterization of the first isolate of bluetongue virus serotype 5 detected in Australia. Vet Med Sci 2019; 5:129-145. [PMID: 30747479 PMCID: PMC6556758 DOI: 10.1002/vms3.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bluetongue virus (BTV), transmitted by midges (Culicoides sp), is distributed worldwide and causes disease in ruminants. In particular, BT can be a debilitating disease in sheep causing serious trade and socio-economic consequences at both local and global levels. Across Australia, a sentinel cattle herd surveillance program monitors the BTV activity. Prior to 2014, BTV-1, -2, -3, -7, -9, -15, -16, -20, -21 and -23 had been isolated in Australia, but no bluetongue disease has occurred in a commercial Australian flock. We routinely use a combination of serology, virus isolation, RT-PCR and next generation and conventional nucleotide sequencing technologies to detect and phylogenetically characterize incursions of novel BTV strains into Australia. Screening of Northern Territory virus isolates in 2015 revealed BTV-5, a serotype new to Australia. We derived the complete genome of this isolate and determined its phylogenetic relationship with exotic BTV-5 isolates. Gene segments 2, 6, 7 and 10 exhibited a close relationship with the South African prototype isolate RSArrrr/5. This was the first Australian isolation of a Western topotype of segment 10. Serological surveillance data highlighted the antigenic cross-reactivity between BTV-5 and BTV-9. Phylogenetic investigation of segments 2 and 6 of these serotypes confirmed their unconventional relationships within the BTV serogroup. Our results further highlighted a need for a revision of the current serologically based system for BTV strain differentiation and importantly, implied a potential for genome segments of pathogenic Western BTV strains to rapidly enter Southeast Asia. This emphasized a need for continued high-level surveillance of vectors and viruses at strategic locations in the north of Australia The expansion of routine characterization and classification of BTV to a whole genome approach is recommended, to better monitor the presence and level of establishment of novel Western topotype segments within the Australian episystem.
Collapse
Affiliation(s)
- John R. White
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | | | - Jianning Wang
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Honglei Chen
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Lorna F. Melville
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Steven S. Davis
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Richard P. Weir
- Department of Primary Industry and ResourcesBerrimah Veterinary LaboratoriesNorthern Territory GovernmentBerrimahNorthern TerritoryAustralia
| | - Andrea Certoma
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Antonio Di Rubbo
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Gemma Harvey
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Ross A. Lunt
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| | - Debbie Eagles
- CSIRO Australian Animal Health LaboratoryGeelongVictoriaAustralia
| |
Collapse
|
48
|
Putty K, Shaik AM, Peera SJ, Reddy YN, Rao PP, Patil SR, Reddy MS, Susmitha B, Jyothi JS. Infection kinetics and antibody responses in Deccani sheep during experimental infection and superinfection with bluetongue virus serotypes 4 and 16. Vet World 2019; 12:41-47. [PMID: 30936652 PMCID: PMC6431802 DOI: 10.14202/vetworld.2019.41-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Aim: The current study was designed to understand the infection kinetics and antibody responses of major circulating serotypes of bluetongue virus (BTV) in India, i.e., BTV-4 and BTV-16 through experimental infection and superinfection of Deccani sheep, a popular breed of sheep found in the southern states of India. Materials and Methods: Experimental infection with 106 TCID50/ml BTV-4 was followed by superinfection with BTV-16 and vice versa. Along with observing for clinical signs and immunological responses in the experimentally infected sheep, the effect of infection of one specific serotype on the outcome of superinfection with a different serotype was also studied. Results: Certain interesting findings have been made in the course of experimental infection, such as prominent signs of infection in BTV-4 infection, mild or no clinical signs in BTV-16-infected and superinfected animals, and non-seroconversion of one of the BTV-16-superinfected animals. In addition, BTV was isolated from infected sheep in all the experimental conditions except BTV-16 superinfection. Furthermore, it was observed that immune response in the form of type-specific antibodies was slower with BTV-16 superinfection. Conclusion: Superinfection of a sheep with more than one serotype of BTV is a common phenomenon in BT endemic countries like India. Such situation was replicated in an experimental infection in the current study, and the findings to our knowledge are first of a kind and are likely to aid in unfolding the newer aspects of BTV pathogenesis and virulence.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - Abdul Muzeer Shaik
- Veterinary Dispensary, Department of Animal Husbandry, Labbipet, Vijayawada, Andhra Pradesh, India
| | - Shaik Jahangeer Peera
- Veterinary Dispensary, Department of Animal Husbandry, Labbipet, Vijayawada, Andhra Pradesh, India
| | - Y Narasimha Reddy
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - P P Rao
- Biovet, KIADB Industrial Area, Malur, Karnataka, India
| | - Sunil R Patil
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - M Shreekanth Reddy
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - B Susmitha
- Ella Foundation, Genome Valley, Shamirpet, Hyderabad, Telangana, India
| | - J Shiva Jyothi
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| |
Collapse
|
49
|
GENETIC RELATEDNESS OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS SEROTYPE 2 FROM 2012 OUTBREAK IN THE USA. J Wildl Dis 2018; 55:363-374. [PMID: 30284951 DOI: 10.7589/2017-05-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During summer and early fall of 2012, the US experienced the largest outbreak of hemorrhagic disease (HD) on record; deer (both Odocoileus virginianus and Odocoileus hemionus) in 35 states were affected, including many northern states where HD typically does not occur. Epizootic hemorrhagic disease virus (EHDV) was the predominant virus isolated, with serotype 2 (EHDV-2) representing 66% (135/205) of all isolated viruses. Viruses within the EHDV serogroup are genetically similar, but we hypothesized that subtle genetic distinctions between viruses would exist across the geographic range of the outbreak if multiple EHDV-2 strains were responsible. We examined viral relatedness and molecular epidemiology of the outbreak by sequencing the mammalian binding protein (VP2) gene and the insect vector binding protein (VP7) gene of 34 EHDV-2 isolates from 2012 across 21 states. Nucleotide sequences of VP2 had 99.0% pairwise identity; VP7 nucleotide sequences had 99.1% pairwise identity. Very few changes were observed in either protein at the amino acid level. Despite the high genetic similarity between isolates, subtle nucleotide differences existed. Both VP2 and VP7 gene sequences separated into two distinct clades based on patterns of single-nucleotide polymorphisms after phylogenetic analysis. The clades were divided geographically into eastern and western clades, although those divisions were not identical between VP2 and VP7. There was also an association between percent sequence identity and geographic distance between isolates. We concluded that multiple EHDV-2 strains contributed to this outbreak.
Collapse
|
50
|
da Silva TG, Lima MS, Spedicato M, Carmine I, Teodori L, Leone A, Martins MSN, Buchala FG, Hellwig KS, de Campos Nogueira Romaldini AH, De Stefano E, Savini G, Pituco EM. Prevalence and risk factors for bluetongue in the State of São Paulo, Brazil. Vet Med Sci 2018; 4:280-287. [PMID: 29963762 PMCID: PMC6236132 DOI: 10.1002/vms3.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bluetongue (BT), caused by Bluetongue virus (BTV), is a disease that affects ruminants such as cattle, sheep, goats and deer. BTV is transmitted by female midges of the genus Culicoides. In Brazil, information on the prevalence of BTV in cattle is limited, so the objective of this work was to identify BTV serotypes in cattle. The State of São Paulo was divided into seven cattle‐producing regions, and in each of them, 300 cattle farms were randomly selected. One animal from each farm (out of a total of 1,598 farms) was selected and its sera tested by virus neutralization technique against BTV serotypes (1–24 and 26) for determining antibody titre. Moreover, for each sampled farm, an epidemiological questionnaire was submitted to verify the type of cattle production and the zootechnical and sanitary practices carried out, which could be associated with a higher risk of BTV infection. In this study, antibodies (percentage, [95% confidence interval]) were identified against 11 serotypes: BTV‐1 (22.15%, [15.72–27.92]), BTV‐2 (31.03%, [26.65–37.98]), BTV‐3 (18.96%, [12.42–24.90]), BTV‐4 (24.90% [19.41–29.12]), BTV‐9 (6.82%, [1.45–11.72]), BTV‐12 (7.50%, [2.82–12.51]), BTV‐17 (23.90%, [17.35–29.35]), BTV‐19 (10.20%, [4.62–5.56]), BTV‐21 (30.66%, [25.00–36.00]), BTV‐22 (12.14%, [5.91–18.55]), BTV‐26 (57.00%, [51.41–63.59]). In this study, for the first time in Brazil serological evidence of the presence of serotypes BTV‐2, BTV‐9, BTV‐21 and BTV‐26 is reported. The variable ‘new cattle entering herd’ was considered a risk factor for the occurrence of infection (OR = 2.183, 95% CI = 1.6–2.9).
Collapse
Affiliation(s)
- Thaís G da Silva
- Laboratory of Bovine Viruses, Center for Animal Health Research and Development, Biological Institute, Sao Paulo, SP, Brazil
| | - Michele S Lima
- Laboratory of Bovine Viruses, Center for Animal Health Research and Development, Biological Institute, Sao Paulo, SP, Brazil
| | - Massimo Spedicato
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Irene Carmine
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Liana Teodori
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Alessandra Leone
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Maira S N Martins
- Laboratory of Bovine Viruses, Center for Animal Health Research and Development, Biological Institute, Sao Paulo, SP, Brazil
| | - Fernando G Buchala
- Agricultural Defense Coordination of the State of São Paulo, Sao Paulo, SP, Brazil
| | - Klaus S Hellwig
- Agricultural Defense Coordination of the State of São Paulo, Sao Paulo, SP, Brazil
| | | | - Eliana De Stefano
- Laboratory of Bovine Viruses, Center for Animal Health Research and Development, Biological Institute, Sao Paulo, SP, Brazil
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Edviges M Pituco
- Laboratory of Bovine Viruses, Center for Animal Health Research and Development, Biological Institute, Sao Paulo, SP, Brazil
| |
Collapse
|