1
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Drzewnioková P, Marciano S, Leopardi S, Panzarin V, De Benedictis P. Comparison of Pan-Lyssavirus RT-PCRs and Development of an Improved Protocol for Surveillance of Non-RABV Lyssaviruses. Viruses 2023; 15:v15030680. [PMID: 36992389 PMCID: PMC10052027 DOI: 10.3390/v15030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably cause rabies, and therefore their impact on animal and public health should not be neglected. For accurate and reliable surveillance, diagnosis should rely on broad-spectrum tests able to detect all known lyssaviruses, including the most divergent ones. In the present study, we evaluated four different pan-lyssavirus protocols widely used at an international level, including two real-time RT-PCR assays (namely LN34 and JW12/N165-146), a hemi-nested RT-PCR and a one-step RT-PCR. Additionally, an improved version of the LN34 assay ((n) LN34) was developed to increase primer–template complementarity with respect to all lyssavirus species. All protocols were evaluated in silico, and their performance was compared in vitro employing 18 lyssavirus RNAs (encompassing 15 species). The (n) LN34 assay showed enhanced sensitivity in detecting most lyssavirus species, with limits of detection ranging from 10 to 100 RNA copies/µL depending on the strain, while retaining high sensitivity against Lyssavirus rabies. The development of this protocol represents a step forward towards improved surveillance of the entire Lyssavirus genus.
Collapse
Affiliation(s)
- Petra Drzewnioková
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
- Correspondence: (P.D.); (P.D.B.)
| | - Sabrina Marciano
- Innovative Virology Laboratory, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Stefania Leopardi
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Valentina Panzarin
- Innovative Virology Laboratory, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Paola De Benedictis
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
- Correspondence: (P.D.); (P.D.B.)
| |
Collapse
|
3
|
Conselheiro JA, Barone GT, Miyagi SAT, de Souza Silva SO, Agostinho WC, Aguiar J, Brandão PE. Evolution of Rabies Virus Isolates: Virulence Signatures and Effects of Modulation by Neutralizing Antibodies. Pathogens 2022; 11:pathogens11121556. [PMID: 36558890 PMCID: PMC9782306 DOI: 10.3390/pathogens11121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lyssavirus rabies (RABV) is an RNA virus and, therefore, is subject to mutations due to low RNA polymerase replication fidelity, forming a population structure known as a viral quasispecies, which is the core of RNA viruses' adaptive strategy. Under new microenvironmental conditions, the fittest populations are selected, and the study of this process on the molecular level can help determine molecular signatures related to virulence. Our aim was to survey gene signatures on nucleoprotein and glycoprotein genes that might be involved in virulence modulation during the in vitro evolution of RABV lineages after serial passages in a neuronal cell system with or without the presence of neutralizing antibodies based on replicative fitness, in vivo neurotropism and protein structure and dynamics. The experiments revealed that amino acids at positions 186 and 188 of the glycoprotein are virulence factors of Lyssavirus rabies, and site 186 specifically might allow the attachment to heparan as a secondary cell receptor, while polymorphism at position 333 might allow the selection of escape mutants under suboptimal neutralizing antibodies titers.
Collapse
Affiliation(s)
- Juliana Amorim Conselheiro
- Laboratory of Diagnostics of Zoonosis and Vector-borne Diseases (LabZoo), Zoonosis Surveillance Division, Health Surveillance Coordination, Municipal Health Department, São Paulo 02031-020, SP, Brazil
- Correspondence:
| | - Gisely Toledo Barone
- Laboratory of Diagnostics of Zoonosis and Vector-borne Diseases (LabZoo), Zoonosis Surveillance Division, Health Surveillance Coordination, Municipal Health Department, São Paulo 02031-020, SP, Brazil
| | - Sueli Akemi Taniwaki Miyagi
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Sheila Oliveira de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Washington Carlos Agostinho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Joana Aguiar
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
4
|
Novel Bat Lyssaviruses Identified by Nationwide Passive Surveillance in Taiwan, 2018–2021. Viruses 2022; 14:v14071562. [PMID: 35891542 PMCID: PMC9316062 DOI: 10.3390/v14071562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Bat lyssaviruses were identified in Taiwan’s bat population during 2016–2017. The lyssavirus surveillance system was continuously conducted to understand the epidemiology. Through this system, the found dead bats were collected for lyssavirus detection by direct fluorescent antibody test and reverse transcription polymerase chain reaction. Three bats were identified as positive during 2018–2021. A novel lyssavirus, designated as Taiwan bat lyssavirus 2, was detected in a Nyctalus plancyi velutinus. This lyssavirus had less than 80% nucleotide identity in the nucleoprotein (N) gene with other lyssavirus species, forming a separate branch in the phylogenetic analysis. The other two cases were identified in Pipistrellus abramus (Japanese pipistrelles); they were identified to be similar to the former lyssavirus identified in 2016–2017, which was renominated as Taiwan bat lyssavirus 1 (TWBLV-1) in this study. Even though one of the TWBLV-1 isolates showed high genetic diversity in the N gene compared with other TWBLV-1 isolates, it may be a TWBLV-1 variant but not a new species based on its high amino acid identities in the nucleoprotein, same host species, and same geographic location as the other TWBLV-1.
Collapse
|
5
|
Spillover of West Caucasian Bat Lyssavirus (WCBV) in a Domestic Cat and Westward Expansion in the Palearctic Region. Viruses 2021; 13:v13102064. [PMID: 34696493 PMCID: PMC8540014 DOI: 10.3390/v13102064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat’s house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation.
Collapse
|
6
|
Phenotypic Divergence of P Proteins of Australian Bat Lyssavirus Lineages Circulating in Microbats and Flying Foxes. Viruses 2021; 13:v13050831. [PMID: 34064444 PMCID: PMC8147779 DOI: 10.3390/v13050831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bats are reservoirs of many pathogenic viruses, including the lyssaviruses rabies virus (RABV) and Australian bat lyssavirus (ABLV). Lyssavirus strains are closely associated with particular host reservoir species, with evidence of specific adaptation. Associated phenotypic changes remain poorly understood but are likely to involve phosphoprotein (P protein), a key mediator of the intracellular virus-host interface. Here, we examine the phenotype of P protein of ABLV, which circulates as two defined lineages associated with frugivorous and insectivorous bats, providing the opportunity to compare proteins of viruses adapted to divergent bat species. We report that key functions of P protein in the antagonism of interferon/signal transducers and activators of transcription 1 (STAT1) signaling and the capacity of P protein to undergo nuclear trafficking differ between lineages. Molecular mapping indicates that these differences are functionally distinct and appear to involve modulatory effects on regulatory regions or structural impact rather than changes to defined interaction sequences. This results in partial but significant phenotypic divergence, consistent with "fine-tuning" to host biology, and with potentially distinct properties in the virus-host interface between bat families that represent key zoonotic reservoirs.
Collapse
|
7
|
Full-Genome Sequences and Phylogenetic Analysis of Archived Danish European Bat Lyssavirus 1 (EBLV-1) Emphasize a Higher Genetic Resolution and Spatial Segregation for Sublineage 1a. Viruses 2021; 13:v13040634. [PMID: 33917139 PMCID: PMC8067844 DOI: 10.3390/v13040634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
European bat lyssavirus type 1 (EBLV-1) is the causative agent for almost all reported rabies cases found in European bats. In recent years, increasing numbers of available EBLV-1 full genomes and their phylogenetic analyses helped to further elucidate the distribution and genetic characteristics of EBLV-1 and its two subtypes, namely EBLV-1a and EBLV-1b. Nonetheless, the absence of full-genome sequences from regions with known detections of EBLV-1 still limit the understanding of the phylogeographic relations between viruses from different European regions. In this study, a set of 21 archived Danish EBLV-1 samples from the years 1985 to 2009 was processed for the acquisition of full-genome sequences using a high-throughput sequencing approach. Subsequent phylogenetic analysis encompassing all available EBLV-1 full genomes from databases revealed the Danish sequences belong to the EBLV-1a subtype and further highlighted the distinct, close phylogenetic relationship of Danish, Dutch and German isolates in this region. In addition, the formation of five putative groups nearly exclusively formed by Danish isolates and the overall increased resolution of the EBLV-1a branch indicate a higher genetic diversity and spatial segregation for this sublineage than was previously known. These results emphasize the importance of phylogenetic analyses of full-genome sequences of lyssaviruses for genetic geography.
Collapse
|
8
|
Forró B, Marton S, Fehér E, Domán M, Kemenesi G, Cadar D, Hornyák Á, Bányai K. Phylogeny of Hungarian EBLV-1 strains using whole-genome sequence data. Transbound Emerg Dis 2020; 68:1323-1331. [PMID: 33460276 DOI: 10.1111/tbed.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
European bat lyssavirus 1 (EBLV-1) is a widespread lyssavirus across Europe, whose epizootic cycle is linked to a few bat species. Occasionally, EBLV-1 infection may occur in domestic animals and humans. EBLV-1 can be classified into two subtypes, where subtype EBLV-1a shows a wide geographic distribution between France and Russia whereas subtype EBLV-1b is distributed between Spain and Poland. In this study, we determined the genome sequence of two recent EBLV-1a strains detected in Hungary and analysed their adaptive evolution and phylodynamics. The data set that included 100 EBLV-1 genome sequences identified positive selection at selected sites in genes coding for viral proteins (N, codon 18; P, 141 and 155; G, 244 and 488; L, 168, 980, 1597 and 1754). A major genetic clade containing EBLV-1a isolates from Hungary, Slovakia, Denmark and Poland was estimated to have diverged during the 19th century whereas the divergence of the most recent ancestor of Hungarian and Slovakian isolates dates back to 1950 (time span, 1930 to 1970). Phylogeographic analysis of the EBLV-1a genomic sequences demonstrated strong evidence of viral dispersal from Poland to Hungary. This new information indicates that additional migratory flyways may help the virus spread, a finding that supplements the general theory on a west-to-east dispersal of EBLV-1a strains. Long-distance migrant bats may mediate the dispersal of EBLV-1 strains across Europe; however, structured surveillance and extended genome sequencing would be needed to better understand the epizootiology of EBLV-1 infections in Europe.
Collapse
Affiliation(s)
- Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Marianna Domán
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Gábor Kemenesi
- Szentágothai Research Centre, Virological Research Group Pécs Hungary, University of Pécs, Pécs, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Daniel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, National Reference Centre for Tropical Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ákos Hornyák
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
9
|
Barrett J, Höger A, Agnihotri K, Oakey J, Skerratt LF, Field HE, Meers J, Smith C. An unprecedented cluster of Australian bat lyssavirus in Pteropus conspicillatus indicates pre-flight flying fox pups are at risk of mass infection. Zoonoses Public Health 2020; 67:435-442. [PMID: 32311218 DOI: 10.1111/zph.12703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/21/2019] [Accepted: 03/06/2020] [Indexed: 11/29/2022]
Abstract
In November 2017, two groups of P. conspicillatus pups from separate locations in Far North Queensland presented with neurological signs consistent with Australian bat lyssavirus (ABLV) infection. These pups (n = 11) died over an 11-day period and were submitted to a government laboratory for testing where ABLV infection was confirmed. Over the next several weeks, additional ABLV cases in flying foxes in Queensland were also detected. Brain tissue from ABLV-infected flying foxes during this period, as well as archived brain tissue, was selected for next-generation sequencing. Phylogenetic analysis suggests that the two groups of pups were each infected from single sources. They were likely exposed while in crèche at night as their dams foraged. This study identifies crèche-age pups at a potentially heightened risk for mass ABLV infection.
Collapse
Affiliation(s)
- Janine Barrett
- Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Alison Höger
- University of Queensland, Gatton, QLD, Australia
| | - Kalpana Agnihotri
- Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | - Jane Oakey
- Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| | | | - Hume E Field
- University of Queensland, Gatton, QLD, Australia.,EcoHealth Alliance, New York, NY, USA
| | - Joanne Meers
- University of Queensland, Gatton, QLD, Australia
| | - Craig Smith
- Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Phylogenetic analysis of near full-length sequences of the Desmodus rotundus genetic lineage of rabies virus. INFECTION GENETICS AND EVOLUTION 2020; 80:104179. [PMID: 31917361 DOI: 10.1016/j.meegid.2020.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 11/23/2022]
Abstract
The World Health Organization (WHO), reports that rabies causes tens of thousands of deaths every year killing humans, non-human primates and other animals. Rabies continues to be a public health issue, despite the existence of effective vaccines. The dogs remain the primary reservoir and transmitter of rabies to humans globally. In the Americas, bats are regarded as the second most common source of rabies virus to humans. The vampire bat Desmodus rotundus has been identified as a natural reservoir of rabies virus (RABV) in this region. The complete genome of the RABV variant maintained by populations of vampire bats D. rotundus has rarely been reported. In this study, we sequenced and analyzed the genome of a RABV variant detected in D. rotundus. The sample, collected from an endemic area in São Paulo State, was phylogenetically compared with the genome of the standard sample for species Rabies virus as well as other samples belonging to terrestrial and bat-associated cycles of rabies transmission, available in GenBank. Distinct patterns linked to the genetic lineage were identified. These data can aid in the understanding of the molecular epidemiology of this virus and the epidemiological importance of this species in the transmission of the RABV.
Collapse
|
11
|
Hume AJ, Mühlberger E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J Mol Biol 2019; 431:4290-4320. [PMID: 31260690 PMCID: PMC6879820 DOI: 10.1016/j.jmb.2019.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Research on filoviruses has historically focused on the highly pathogenic ebola- and marburgviruses. Indeed, until recently, these were the only two genera in the filovirus family. Recent advances in sequencing technologies have facilitated the discovery of not only a new ebolavirus, but also three new filovirus genera and a sixth proposed genus. While two of these new genera are similar to the ebola- and marburgviruses, the other two, discovered in saltwater fishes, are considerably more diverse. Nonetheless, these viruses retain a number of key features of the other filoviruses. Here, we review the key characteristics of filovirus replication and transcription, highlighting similarities and differences between the viruses. In particular, we focus on key regulatory elements in the genomes, replication and transcription strategies, and the conservation of protein domains and functions among the viruses. In addition, using computational analyses, we were able to identify potential homology and functions for some of the genes of the novel filoviruses with previously unknown functions. Although none of the newly discovered filoviruses have yet been isolated, initial studies of some of these viruses using minigenome systems have yielded insights into their mechanisms of replication and transcription. In general, the Cuevavirus and proposed Dianlovirus genera appear to follow the transcription and replication strategies employed by the ebola- and marburgviruses, respectively. While our knowledge of the fish filoviruses is currently limited to sequence analysis, the lack of certain conserved motifs and even entire genes necessitates that they have evolved distinct mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
12
|
Reddy GBM, Singh R, Singh KP, Sharma AK, Vineetha S, Saminathan M, Sajjanar B. Molecular epidemiological analysis of wild animal rabies isolates from India. Vet World 2019; 12:352-357. [PMID: 31089302 PMCID: PMC6487239 DOI: 10.14202/vetworld.2019.352-357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Aim This study was conducted to know the genetic variability of rabies viruses (RVs) from wild animals in India. Materials and Methods A total of 20 rabies suspected brain samples of wild animals from different states of India were included in the study. The samples were subjected for direct fluorescent antibody test (dFAT), reverse transcription polymerase chain reaction (RT-PCR), and quantitative reverse transcriptase real-time PCR (RT-qPCR). The phylogenetic analysis of partial nucleoprotein gene sequences was performed. Results Of 20 samples, 11, 10, and 12 cases were found positive by dFAT, RT-PCR, and RT-qPCR, respectively. Phylogenetic analysis showed that all Indian wild RVs isolates belonged to classical genotype 1 of Lyssavirus and were closely related to Arctic/Arctic-like single cluster indicating the possibility of a spillover of rabies among different species. Conclusion The results indicated the circulation of similar RVs in sylvatic and urban cycles in India. However, understanding the role of wild animals as reservoir host needs to be studied in India.
Collapse
Affiliation(s)
| | - Rajendra Singh
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anil Kumar Sharma
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mani Saminathan
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Basavaraj Sajjanar
- Department of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
14
|
Manjunatha Reddy GB, Krishnappa S, Vinayagamurthy B, Singh R, Singh KP, Saminathan M, Sajjanar B, Rahman H. Molecular epidemiology of rabies virus circulating in domestic animals in India. Virusdisease 2018; 29:362-368. [PMID: 30159372 DOI: 10.1007/s13337-018-0478-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022] Open
Abstract
Rabies is a neglected viral zoonotic disease affecting humans, domestic and wild animals and is endemic in most parts of the India. Dog mediated rabies is more predominant than other forms of rabies and molecular epidemiology is poorly understood in both reservoir and susceptible hosts. In the present study, a total of 140 rabies suspected brain samples from different species of animals from different geographical regions of India were used. The samples were parallelly tested by direct fluorescent antibody test, reverse transcriptase PCR and real-time PCR. Thirty positive samples were subjected for partial nucleoprotein gene sequencing and phylogenetic analysis. On sequence and phylogenetic analysis, it was observed that all Indian rabies viruses belonged to classical rabies virus of genotype 1 of Lyssavirus and formed two distinct groups. The majority of isolates were in group-1 and are closely related to arctic/arctic like lineage, whereas group-II isolated are closely related to cosmopolitan lineage. These results indicated there is simultaneous existence of two distinct lineages of rabies viruses in Indian subcontinent. Further whole genome studies are needed for better understanding of molecular epidemiology of rabies virus circulating in animals for control and prevention of rabies in India.
Collapse
Affiliation(s)
| | - Sumana Krishnappa
- 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064 India
| | - Balamurugan Vinayagamurthy
- 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064 India
| | - Rajendra Singh
- 2Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh 243122 India
| | - Karam Pal Singh
- 3CADRAD, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, 243122 Uttar Pradesh India
| | - Mani Saminathan
- 2Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh 243122 India
| | - Basavaraj Sajjanar
- 4Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh 243122 India
| | - Habibur Rahman
- International Livestock Research Institute, NASC Complex, New Delhi, India
| |
Collapse
|
15
|
McElhinney LM, Marston DA, Wise EL, Freuling CM, Bourhy H, Zanoni R, Moldal T, Kooi EA, Neubauer-Juric A, Nokireki T, Müller T, Fooks AR. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int J Mol Sci 2018; 19:ijms19010156. [PMID: 29303971 PMCID: PMC5796105 DOI: 10.3390/ijms19010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10-5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).
Collapse
Affiliation(s)
- Lorraine M McElhinney
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| | - Denise A Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Emma L Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, 75015 Paris, France.
| | - Reto Zanoni
- Institute of Virology and Immunology, University of Berne, 3012 Berne, Switzerland.
| | | | - Engbert A Kooi
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands.
| | | | - Tiina Nokireki
- Finnish Food Safety Authority Evira, 00790 Helsinki, Finland.
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
16
|
Moldal T, Vikøren T, Cliquet F, Marston DA, van der Kooij J, Madslien K, Ørpetveit I. First detection of European bat lyssavirus type 2 (EBLV-2) in Norway. BMC Vet Res 2017; 13:216. [PMID: 28693578 PMCID: PMC5504624 DOI: 10.1186/s12917-017-1135-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In Europe, bat rabies is primarily attributed to European bat lyssavirus type 1 (EBLV-1) and European bat lyssavirus type 2 (EBLV-2) which are both strongly host-specific. Approximately thirty cases of infection with EBLV-2 in Daubenton's bats (Myotis daubentonii) and pond bats (M. dasycneme) have been reported. Two human cases of rabies caused by EBLV-2 have also been confirmed during the last thirty years, while natural spill-over to other non-flying mammals has never been reported. Rabies has never been diagnosed in mainland Norway previously. CASE PRESENTATION In late September 2015, a subadult male Daubenton's bat was found in a poor condition 800 m above sea level in the southern part of Norway. The bat was brought to the national Bat Care Centre where it eventually displayed signs of neurological disease and died after two days. EBLV-2 was detected in brain tissues by polymerase chain reaction (PCR) followed by sequencing of a part of the nucleoprotein gene, and lyssavirus was isolated in neuroblastoma cells. CONCLUSIONS The detection of EBLV-2 in a bat in Norway broadens the knowledge on the occurrence of this zoonotic agent. Since Norway is considered free of rabies, adequate information to the general public regarding the possibility of human cases of bat-associated rabies should be given. No extensive surveillance of lyssavirus infections in bats has been conducted in the country, and a passive surveillance network to assess rabies prevalence and bat epidemiology is highly desired.
Collapse
Affiliation(s)
- Torfinn Moldal
- Norwegian Veterinary Institute, Postbox 750, Sentrum, 0106 Oslo, Norway
| | - Turid Vikøren
- Norwegian Veterinary Institute, Postbox 750, Sentrum, 0106 Oslo, Norway
| | - Florence Cliquet
- Nancy OIE/WHO/EU Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health & Safety, CS 40009, 54220 Malzéville, France
| | - Denise A. Marston
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB UK
| | - Jeroen van der Kooij
- Norwegian Zoological Society’s Bat Care Centre, Rudsteinveien 67, 1480 Slattum, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, Postbox 750, Sentrum, 0106 Oslo, Norway
| | - Irene Ørpetveit
- Norwegian Veterinary Institute, Postbox 750, Sentrum, 0106 Oslo, Norway
| |
Collapse
|
17
|
Marston DA, Horton DL, Nunez J, Ellis RJ, Orton RJ, Johnson N, Banyard AC, McElhinney LM, Freuling CM, Fırat M, Ünal N, Müller T, de Lamballerie X, Fooks AR. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evol 2017; 3:vex038. [PMID: 29255631 PMCID: PMC5729694 DOI: 10.1093/ve/vex038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL UK
| | - Javier Nunez
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Centre for Virus Research, MRC-University of Glasgow, University of Glasgow, Glasgow, G61 1QH UK
| | - Nicholas Johnson
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Ashley C Banyard
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| | - Conrad M Freuling
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Müge Fırat
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Nil Ünal
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Thomas Müller
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Xavier de Lamballerie
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Anthony R Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| |
Collapse
|
18
|
Eggerbauer E, Pfaff F, Finke S, Höper D, Beer M, Mettenleiter TC, Nolden T, Teifke JP, Müller T, Freuling CM. Comparative analysis of European bat lyssavirus 1 pathogenicity in the mouse model. PLoS Negl Trop Dis 2017; 11:e0005668. [PMID: 28628617 PMCID: PMC5491315 DOI: 10.1371/journal.pntd.0005668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
European bat lyssavirus 1 is responsible for most bat rabies cases in Europe. Although EBLV-1 isolates display a high degree of sequence identity, different sublineages exist. In individual isolates various insertions and deletions have been identified, with unknown impact on viral replication and pathogenicity. In order to assess whether different genetic features of EBLV-1 isolates correlate with phenotypic changes, different EBLV-1 variants were compared for pathogenicity in the mouse model. Groups of three mice were infected intracranially (i.c.) with 102 TCID50/ml and groups of six mice were infected intramuscularly (i.m.) with 105 TCID50/ml and 102 TCID50/ml as well as intranasally (i.n.) with 102 TCID50/ml. Significant differences in survival following i.m. inoculation with low doses as well as i.n. inoculation were observed. Also, striking variations in incubation periods following i.c. inoculation and i.m. inoculation with high doses were seen. Hereby, the clinical picture differed between general symptoms, spasms and aggressiveness depending on the inoculation route. Immunohistochemistry of mouse brains showed that the virus distribution in the brain depended on the inoculation route. In conclusion, different EBLV-1 isolates differ in pathogenicity indicating variation which is not reflected in studies of single isolates.
Collapse
Affiliation(s)
- Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tobias Nolden
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jens-Peter Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Moeschler S, Locher S, Conzelmann KK, Krämer B, Zimmer G. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles. Viruses 2016; 8:E254. [PMID: 27649230 PMCID: PMC5035968 DOI: 10.3390/v8090254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.
Collapse
Affiliation(s)
- Sarah Moeschler
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Samira Locher
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institut und Genzentrum, Ludwig-Maximilians-Universität, D-81377 München, Germany.
| | - Beate Krämer
- Paul-Ehrlich-Institut, Abteilung Veterinärmedizin, D-63225 Langen, Germany.
| | - Gert Zimmer
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| |
Collapse
|
20
|
Peng J, Zhu S, Hu L, Ye P, Wang Y, Tian Q, Mei M, Chen H, Guo X. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines. Autophagy 2016; 12:1704-1720. [PMID: 27463027 DOI: 10.1080/15548627.2016.1196315] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.
Collapse
Affiliation(s)
- Jiaojiao Peng
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Shenghe Zhu
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Lili Hu
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Pingping Ye
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Yifei Wang
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Qin Tian
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Mingzhu Mei
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Hao Chen
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| | - Xiaofeng Guo
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou , China
| |
Collapse
|
21
|
Ayub G, Waheed Y. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations. Mol Med Rep 2016; 13:4821-4826. [PMID: 27082438 DOI: 10.3892/mmr.2016.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.
Collapse
Affiliation(s)
- Gohar Ayub
- Department of Health Biotechnology, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Department of Health Biotechnology, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
22
|
Brunker K, Marston DA, Horton DL, Cleaveland S, Fooks AR, Kazwala R, Ngeleja C, Lembo T, Sambo M, Mtema ZJ, Sikana L, Wilkie G, Biek R, Hampson K. Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evol 2015; 1:vev011. [PMID: 27774283 PMCID: PMC5014479 DOI: 10.1093/ve/vev011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many of the pathogens perceived to pose the greatest risk to humans are viral zoonoses, responsible for a range of emerging and endemic infectious diseases. Phylogeography is a useful tool to understand the processes that give rise to spatial patterns and drive dynamics in virus populations. Increasingly, whole-genome information is being used to uncover these patterns, but the limits of phylogenetic resolution that can be achieved with this are unclear. Here, whole-genome variation was used to uncover fine-scale population structure in endemic canine rabies virus circulating in Tanzania. This is the first whole-genome population study of rabies virus and the first comprehensive phylogenetic analysis of rabies virus in East Africa, providing important insights into rabies transmission in an endemic system. In addition, sub-continental scale patterns of population structure were identified using partial gene data and used to determine population structure at larger spatial scales in Africa. While rabies virus has a defined spatial structure at large scales, increasingly frequent levels of admixture were observed at regional and local levels. Discrete phylogeographic analysis revealed long-distance dispersal within Tanzania, which could be attributed to human-mediated movement, and we found evidence of multiple persistent, co-circulating lineages at a very local scale in a single district, despite on-going mass dog vaccination campaigns. This may reflect the wider endemic circulation of these lineages over several decades alongside increased admixture due to human-mediated introductions. These data indicate that successful rabies control in Tanzania could be established at a national level, since most dispersal appears to be restricted within the confines of country borders but some coordination with neighbouring countries may be required to limit transboundary movements. Evidence of complex patterns of rabies circulation within Tanzania necessitates the use of whole-genome sequencing to delineate finer scale population structure that can that can guide interventions, such as the spatial scale and design of dog vaccination campaigns and dog movement controls to achieve and maintain freedom from disease.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK; Animal and Plant Health Agency, Weybridge, Woodham Lane, KT15 3NB, UK
| | - Denise A Marston
- Animal and Plant Health Agency, Weybridge, Woodham Lane, KT15 3NB, UK
| | - Daniel L Horton
- Animal and Plant Health Agency, Weybridge, Woodham Lane, KT15 3NB, UK; School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency, Weybridge, Woodham Lane, KT15 3NB, UK
| | - Rudovick Kazwala
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, United Republic of Tanzania
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory Agency, Dar es Salaam, United Republic of Tanzania, Temeke Veterinary, Mandela Road, P.O. BOX 9254
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maganga Sambo
- Ifakara Health Institute, Ifakara, United Republic of Tanzania, P.O. Box 53
| | - Zacharia J Mtema
- Ifakara Health Institute, Ifakara, United Republic of Tanzania, P.O. Box 53
| | - Lwitiko Sikana
- Ifakara Health Institute, Ifakara, United Republic of Tanzania, P.O. Box 53
| | - Gavin Wilkie
- MRC Centre for Virus Research, University of Glasgow, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
A Dynein Light Chain 1 Binding Motif in Rabies Virus Polymerase L Protein Plays a Role in Microtubule Reorganization and Viral Primary Transcription. J Virol 2015; 89:9591-600. [PMID: 26157129 DOI: 10.1128/jvi.01298-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Rabies virus (RABV) polymerase L together with phosphoprotein P forms the PL polymerase complex that is essential for replication and transcription. However, its exact mechanism of action, interactions with cellular factors, and intracellular distribution are yet to be understood. Here by imaging a fluorescently tagged polymerase (mCherry-RABV-L), we show that L accumulates at acetylated and reorganized microtubules (MT). In silico analysis revealed a dynein light chain 1 (DLC1) binding motif in L that could mediate MT binding through dynein motors. As DLC1 binding by polymerase cofactor P is known, we compared the impact of the DLC1-binding motifs in P and L. Viruses with mutations in the respective motifs revealed that both motifs are required for efficient primary transcription, indicating that DLC1 acts as a transcription enhancer by binding to both P and L. Notably, also the levels of cellular DLC1 protein were regulated by both motifs, suggesting regulation of the DLC1 gene expression by both P and L. Finally, disruption of the motif in L resulted in a cell-type-specific loss of MT localization, demonstrating that DLC1 is involved in L-mediated cytoskeleton reorganization. Overall, we conclude that DLC1 acts as a transcription factor that stimulates primary RABV transcription by binding to both P and L. We further conclude that L influences MT organization and posttranslational modification, suggesting a model in which MT manipulation by L contributes to efficient intracellular transport of virus components and thus may serve as an important step in virus replication. IMPORTANCE Regulation of rabies virus polymerase complex by viral and cellular factors thus far has not been fully understood. Although cellular dynein light chain 1 (DLC1) has been reported to increase primary transcription by binding to polymerase cofactor phosphoprotein P, the detailed mechanism is unknown, and it is also not known whether the large enzymatic polymerase subunit L is involved. By fluorescence microscopy analysis of fluorescence-tagged rabies virus L, in silico identification of a potential DLC1 binding site in L, and characterization of recombinant rabies virus mutants, we show that a DLC1 binding motif in L is involved in cytoskeleton localization and reorganization, primary transcription regulation by DLC1, and regulation of cellular DLC1 gene expression. By providing evidence for a direct contribution of a DLC1 binding motif in L, our data significantly increase the understanding of rabies virus polymerase regulation and host manipulation by the virus as well.
Collapse
|
24
|
Miia JV, Tiina N, Tarja S, Olli V, Liisa S, Anita H. Evolutionary trends of European bat lyssavirus type 2 including genetic characterization of Finnish strains of human and bat origin 24 years apart. Arch Virol 2015; 160:1489-98. [PMID: 25877913 PMCID: PMC4429142 DOI: 10.1007/s00705-015-2424-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/05/2015] [Indexed: 12/25/2022]
Abstract
Among other Lyssaviruses, Daubenton’s and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.
Collapse
Affiliation(s)
| | - Nokireki Tiina
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| | - Sironen Tarja
- />Department of Virology, University of Helsinki, POB 21, Helsinki, Finland
| | - Vapalahti Olli
- />Department of Virology, University of Helsinki, POB 21, Helsinki, Finland
- />Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, FI-00014 Helsinki, Finland
| | - Sihvonen Liisa
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
- />Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, FI-00014 Helsinki, Finland
| | - Huovilainen Anita
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| |
Collapse
|
25
|
Zeynalova S, Shikhiyev M, Aliyeva T, Ismayilova R, Wise E, Abdullayev R, Asadov K, Rustamova S, Quliyev F, Whatmore AM, Marshall ES, Fooks AR, Horton DL. Epidemiological characteristics of human and animal rabies in Azerbaijan. Zoonoses Public Health 2014; 62:111-8. [PMID: 24845953 DOI: 10.1111/zph.12119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Indexed: 12/25/2022]
Abstract
The Caucasus is a region of geopolitical importance, in the gateway between Europe and Asia. This geographical location makes the region equally important in the epidemiology and control of transboundary infectious diseases such as rabies. Azerbaijan is the largest country in the Caucasus, and although rabies is notifiable and considered endemic, there is little information on the burden of human and animal rabies. Here, we describe a cross-disciplinary international collaboration aimed at improving rabies control in Azerbaijan. Partial nucleoprotein gene sequences were obtained from animal rabies cases for comparison with those from surrounding areas. Reported human and animal rabies cases between 2000 and 2010 were also reviewed and analysed by region and year. Comparison of rabies virus strains circulating in Azerbaijan demonstrates more than one lineage of rabies virus circulating concurrently in Azerbaijan and illustrates the need for further sample collection and characterization. Officially reported rabies data showed an increase in human and animal rabies cases, and an increase in animal bites requiring provision of post-exposure prophylaxis, since 2006. This is despite apparently consistent levels of dog vaccination and culling of stray dogs.
Collapse
Affiliation(s)
- S Zeynalova
- Republican Veterinary Laboratory, Baku, Azerbaijan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. Vampire bat rabies: ecology, epidemiology and control. Viruses 2014; 6:1911-28. [PMID: 24784570 PMCID: PMC4036541 DOI: 10.3390/v6051911] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control.
Collapse
Affiliation(s)
- Nicholas Johnson
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Surrey, KT15 3NB, UK.
| | - Nidia Aréchiga-Ceballos
- Rabies Laboratory, Virology Department, Institute of Epidemiology Diagnostic and Reference (InDRE), Francisco de P. Miranda #177Bis. Colonia Unidad Lomas de Plateros. 01480 D.F., Mexico.
| | - Alvaro Aguilar-Setien
- Medical Immunology Research Unit, Paediatric Hospital, Naional Medical Center "Siglo XXL", Mexican Social Security Institute (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, D.F., Mexico.
| |
Collapse
|
27
|
Vaccine-induced rabies in a red fox (Vulpes vulpes): isolation of vaccine virus in brain tissue and salivary glands. J Wildl Dis 2014; 50:397-401. [PMID: 24484500 DOI: 10.7589/2013-07-183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oral vaccination campaigns to eliminate fox rabies were initiated in Slovenia in 1995. In May 2012, a young fox (Vulpes vulpes) with typical rabies signs was captured. Its brain and salivary gland tissues were found to contain vaccine strain SAD B19. The Basic Logical Alignment Search Tool alignment of 589 nucleotides determined from the N gene of the virus isolated from the brain and salivary glands of the affected fox was 100% identical to the GenBank reference SAD B19 strain. Sequence analysis of the N and M genes (4,351 nucleotides) showed two nucleotide modifications at position 1335 (N gene) and 3114 (M gene) in the KC522613 isolate identified in the fox compared to SAD B19.
Collapse
|
28
|
Liu Y, Li N, Zhang S, Zhang F, Lian H, Wang Y, Zhang J, Hu R. Analysis of the complete genome of the first Irkut virus isolate from China: comparison across the Lyssavirus genus. Mol Phylogenet Evol 2013; 69:687-93. [PMID: 23872529 DOI: 10.1016/j.ympev.2013.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 01/29/2023]
Abstract
The genome of Irkut virus, isolate IRKV-THChina12, the first non-rabies lyssavirus from China (of bat origin), has been completely sequenced. In general, coding and non-coding regions of this viral genome are similar to those of other lyssaviruses. However, alignment of the deduced amino acid sequences of the structural proteins of IRKV-THChina12 with those of other lyssavirus representatives revealed significant variability between viral species. The nucleoprotein and matrix protein were found to be the most conserved, followed by the large protein, glycoprotein and phosphoprotein. Differences in the antigenic sites in glycoprotein may result in only partial protection of the available rabies biologics against Irkut virus, which is of particular concern for pre- and post-exposure rabies prophylaxis.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Epidemiology and Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Veterinary Research Institute, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economy Development Zone, Changchun 130122, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Marston DA, McElhinney LM, Ellis RJ, Horton DL, Wise EL, Leech SL, David D, de Lamballerie X, Fooks AR. Next generation sequencing of viral RNA genomes. BMC Genomics 2013; 14:444. [PMID: 23822119 PMCID: PMC3708773 DOI: 10.1186/1471-2164-14-444] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background With the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform. Results As representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed. Conclusions The approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources.
Collapse
|
30
|
Wenqiang J, Xiangping Y, Xuerui L, Jixing L. Complete genome sequence of rabies virus CVS-24 from China. Arch Virol 2013; 158:1993-2000. [PMID: 23575882 DOI: 10.1007/s00705-013-1657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
Abstract
The entire genome of the mouse-adapted rabies virus strain CVS-24 (challenge virus standard 24), was sequenced. The overall length of the genome was 11,927 nucleotide (nt), comprising a leader sequence of 58 nt, a nucleoprotein (N) gene of 1353 nt, phosphoprotein (P) gene of 894 nt, a matrix protein (M) gene of 609 nt, a glycoprotein (G) gene of 1575 nt, an RNA-dependent RNA polymerase (RdRp, L) gene of 6384 nt and a trailer region of 70 nt. There was a TGAAAAAAA (TG7) consensus sequence at the end of each gene, except the G gene which had an AGAAAAAAA sequence at the end, and the L/trailer region had the sequence CGAAAAAAA. Three were AACAYYYCT consensus start signals close to TG7. The five cistrons were separated by intergenic regions (IGRS) of 2, 5, 5, 24 nt, respectively. Residue 333 of the mature G protein, which is considered to be associated with pathogenicity, was Ala in CVS-24. The topology of the phylogenetic trees generated using N protein sequences suggested that CVS-11 and CVS-N2C have a close relationship to CVS-24.
Collapse
Affiliation(s)
- Jiao Wenqiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science LVRI, CAAS, Xujiaping 1, Yanchang bu, Lanzhou, Gansu, 730046, China
| | | | | | | |
Collapse
|
31
|
Luo Y, Zhang Y, Liu X, Yang Y, Yang X, Zheng Z, Deng X, Wu X, Guo X. Characterization of a wild rabies virus isolate of porcine origin in China. INFECTION GENETICS AND EVOLUTION 2013; 17:147-52. [PMID: 23567821 DOI: 10.1016/j.meegid.2013.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Rabies virus (RABV) that circulates worldwide in a variety of mammals can cause fatal encephalomyelitis. GD-SH-01, a street rabies virus, was isolated from a rabid pig in China. We investigated the pathogenicity of GD-SH-01 in suckling and adult mice, and compared the susceptibility of NA and BHK-21 cells in the culture to infection by GD-SH-01 and CVS-24. The complete GD-SH-01 genome sequence was determined and compared with known RABV wild strains to understand the mutations and genetic diversity that allow RABV to spread and adapt in new hosts, such as pigs. Our results suggest that GD-SH-01 possesses the characteristics of a virulent strain in Southern China and shows higher pathogenicity index than that of CVS-24 regardless of its lower level of replication in mouse brain. Up to 47 unique nucleotide substitutions were found in the genome, including five missense mutations. These data provide useful information for further understanding the transmission mechanism and the genetic variation of RABV in dissimilar hosts.
Collapse
Affiliation(s)
- Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Park JS, Kim CK, Kim SY, Ju YR. Molecular characterization of KGH, the first human isolate of rabies virus in Korea. Virus Genes 2013; 46:231-41. [PMID: 23242520 DOI: 10.1007/s11262-012-0850-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/12/2012] [Indexed: 12/25/2022]
Abstract
The complete genome sequence of the KGH strain of the first human rabies virus, which was isolated from a skin biopsy of a patient with rabies, whose symptoms developed due to bites from a raccoon dog in 2001. The size of the KGH strain genome was determined to be 11,928 nucleotides (nt) with a leader sequence of 58 nt, nucleoprotein gene of 1,353 nt, phosphoprotein gene of 894 nt, matrix protein gene of 609 nt, glycoprotein gene of 1,575 nt, RNA-dependent RNA polymerase gene of 6,384 nt, and trailer region of 69 nt. Sequence similarity was compared with 39 fully sequenced rabies virus genomes currently available, and the result showed 70.6-91.6 % at the nucleotide level, and 82.8-97.9 % at the amino acid level. The deduced amino acids in the viral protein were compared with those of other rabies viruses, and various functional regions were investigated. As a result, we found that the KGH strain only had a unique amino acid substitution that was identified to be associated either with host immune response and pathogenicity in the N protein, or with a related region regulating STAT1 in the P protein, and related to pathogenicity in G protein. Based on phylogenetic analyses using the complete genome of 39 rabies viruses, the KGH strain was determined to be closely related with the NNV-RAB-H strain and transplant rabies virus serotype 1, which are Indian isolates, and was confirmed to belong to the Arctic-like 2 clade. The KGH strain was most closely related to the SKRRD0204HC and SKRRD0205HC strain when compared with Korean animal isolates, which was separated around the same time and place, and belonged to the Gangwon III subgroup.
Collapse
|
33
|
Isolation of Irkut virus from a Murina leucogaster bat in China. PLoS Negl Trop Dis 2013; 7:e2097. [PMID: 23505588 PMCID: PMC3591329 DOI: 10.1371/journal.pntd.0002097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Background and objectives Bats are recognized as a major reservoir of lyssaviruses; however, no bat lyssavirus has been isolated in Asia except for Aravan and Khujand virus in Central Asia. All Chinese lyssavirus isolates in previous reports have been of species rabies virus, mainly from dogs. Following at least two recent bat-associated human rabies-like cases in northeast China, we have initiated a study of the prevalence of lyssaviruses in bats in Jilin province and their public health implications. A bat lyssavirus has been isolated and its pathogenicity in mice and genomic alignment have been determined. Results We report the first isolation of a bat lyssavirus in China, from the brain of a northeastern bat, Murina leucogaster. Its nucleoprotein gene shared 92.4%/98.9% (nucleotide) and 92.2%/98.8% (amino acid) identity with the two known Irkut virus isolates from Russia, and was designated IRKV-THChina12. Following intracranial and intramuscular injection, IRKV-THChina12 produced rabies-like symptoms in adult mice with a short inoculation period and high mortality. Nucleotide sequence analysis showed that IRKV-THChina12 has the same genomic organization as other lyssaviruses and its isolation provides an independent origin for the species IRKV. Conclusions We have identified the existence of a bat lyssavirus in a common Chinese bat species. Its high pathogenicity in adult mice suggests that public warnings and medical education regarding bat bites in China should be increased, and that surveillance be extended to provide a better understanding of Irkut virus ecology and its significance for public health. The Lyssavirus genus presently comprises 12 species and two unapproved species with different antigenic characteristics. Rabies virus is detectable worldwide; Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus, and Ikoma lyssavirus circulate in Africa; European bat lyssavirus types 1 and 2, Irkut virus, West Caucasian bat virus, and Bokeloh bat lyssavirus are found in Europe; and Australian bat lyssavirus has been isolated in Australia. Only Aravan and Khujand viruses have been identified in central Asia. Bats are recognized as the most important reservoirs of lyssaviruses. In China, all lyssavirus isolates in previous reports have been rabies virus, mainly from dogs; none has been from bats. Recently, however, at least two bat-associated human rabies or rabies-like cases have been reported in northeast China. Therefore, we conducted a search for bat lyssaviruses in Jilin province, close to where the first bat-associated human rabies case was recorded. We isolated a bat lyssavirus, identified as an Irkut virus isolate with high pathogenicity in experimental mice. Our findings suggest that public warnings and medical education regarding bat bites in China should be increased, and that surveillance should be extended to provide a better understanding of Irkut virus ecology and its significance for public health.
Collapse
|
34
|
Horton DL, Ismail MZ, Siryan ES, Wali ARA, Ab-dulla HE, Wise E, Voller K, Harkess G, Marston DA, McElhinney LM, Abbas SF, Fooks AR. Rabies in Iraq: trends in human cases 2001-2010 and characterisation of animal rabies strains from Baghdad. PLoS Negl Trop Dis 2013; 7:e2075. [PMID: 23469303 PMCID: PMC3585036 DOI: 10.1371/journal.pntd.0002075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/08/2013] [Indexed: 12/25/2022] Open
Abstract
Control of rabies requires a consistent supply of dependable resources, constructive cooperation between veterinary and public health authorities, and systematic surveillance. These are challenging in any circumstances, but particularly during conflict. Here we describe available human rabies surveillance data from Iraq, results of renewed sampling for rabies in animals, and the first genetic characterisation of circulating rabies strains from Iraq. Human rabies is notifiable, with reported cases increasing since 2003, and a marked increase in Baghdad between 2009 and 2010. These changes coincide with increasing numbers of reported dog bites. There is no laboratory confirmation of disease or virus characterisation and no systematic surveillance for rabies in animals. To address these issues, brain samples were collected from domestic animals in the greater Baghdad region and tested for rabies. Three of 40 brain samples were positive using the fluorescent antibody test and hemi-nested RT-PCR for rabies virus (RABV). Bayesian phylogenetic analysis using partial nucleoprotein gene sequences derived from the samples demonstrated the viruses belong to a single virus variant and share a common ancestor with viruses from neighbouring countries, 22 (95% HPD 14-32) years ago. These include countries lying to the west, north and east of Iraq, some of which also have other virus variants circulating concurrently. These results suggest possible multiple introductions of rabies into the Middle East, and regular trans-boundary movement of disease. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
Collapse
Affiliation(s)
- Daniel L Horton
- Animal Health and Veterinary Laboratories Agency, Weybridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Complete genome sequence of a highly virulent rabies virus isolated from a rabid pig in south China. J Virol 2013; 86:12454-5. [PMID: 23087116 DOI: 10.1128/jvi.02234-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A virulent rabies virus (RABV) strain, GD-SH-01, was isolated from brain tissue of a rabid pig in China. This report describes the first complete genome sequence of a swine-origin RABV strain, and this information will provide important insights into the transmission cycle and genetic diversity of RABV from different hosts in China.
Collapse
|
36
|
Marston DA, McElhinney LM, Banyard AC, Horton DL, Núñez A, Koser ML, Schnell MJ, Fooks AR. Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein. J Gen Virol 2012; 94:284-292. [PMID: 23100360 PMCID: PMC3709617 DOI: 10.1099/vir.0.048827-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
European bat lyssaviruses type 1 (EBLV-1) and type 2 (EBLV-2) circulate within bat populations throughout Europe and are capable of causing disease indistinguishable from that caused by classical rabies virus (RABV). However, the determinants of viral fitness and pathogenicity are poorly understood. Full-length genome clones based on the highly attenuated, non-neuroinvasive, RABV vaccine strain (SAD-B19) were constructed with the glycoprotein (G) of either SAD-B19 (SN), of EBLV-1 (SN-1) or EBLV-2 (SN-2). In vitro characterization of SN-1 and SN-2 in comparison to wild-type EBLVs demonstrated that the substitution of G affected the final virus titre and antigenicity. In vivo, following peripheral infection with a high viral dose (104 f.f.u.), animals infected with SN-1 had reduced survivorship relative to infection with SN, resulting in survivorship similar to animals infected with EBLV-1. The histopathological changes and antigen distribution observed for SN-1 were more representative of those observed with SN than with EBLV-1. EBLV-2 was unable to achieve a titre equivalent to that of the other viruses. Therefore, a reduced-dose experiment (103 f.f.u.) was undertaken in vivo to compare EBLV-2 and SN-2, which resulted in 100 % survivorship for all recombinant viruses (SN, SN-1 and SN-2) while clinical disease developed in mice infected with the EBLVs. These data indicate that interspecies replacement of G has an effect on virus titre in vitro, probably as a result of suboptimal G–matrix protein interactions, and influences the survival outcome following a peripheral challenge with a high virus titre in mice.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- University of Liverpool, National Consortium for Zoonosis Research, Leahurst, Neston, South Wirral, CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel L Horton
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Núñez
- Pathology Unit, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Martin L Koser
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anthony R Fooks
- University of Liverpool, National Consortium for Zoonosis Research, Leahurst, Neston, South Wirral, CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
37
|
Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 2012; 30:7447-54. [PMID: 23084854 DOI: 10.1016/j.vaccine.2012.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 12/25/2022]
Abstract
All members of the lyssavirus genus are capable of causing disease that invariably results in death following the development of clinical symptoms. The recent detection of several novel lyssavirus species across the globe, in different animal species, has demonstrated that the lyssavirus genus contains a greater degree of genetic and antigenic variation than previously suspected. The divergence of species within the genus has led to a differentiation of lyssavirus isolates based on both antigenic and genetic data into two, and potentially a third phylogroup. Critically, from both a human and animal health perspective, current rabies vaccines appear able to protect against lyssaviruses classified within phylogroup I. However no protection is afforded against phylogroup II viruses or other more divergent viruses. Here we review current knowledge regarding the diversity and antigenicity of the lyssavirus glycoprotein. We review the degree of cross protection afforded by rabies vaccines, the genetic and antigenic divergence of the lyssaviruses and potential mechanisms for the development of novel lyssavirus vaccines for use in areas where divergent lyssaviruses are known to circulate, as well as for use by those at occupational risk from these pathogens.
Collapse
Affiliation(s)
- Jennifer S Evans
- Animal Health and Veterinary Laboratories Agency, Weybridge, Surrey, KT15 3NB, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
McElhinney LM, Marston DA, Leech S, Freuling CM, van der Poel WHM, Echevarria J, Vázquez-Moron S, Horton DL, Müller T, Fooks AR. Molecular epidemiology of bat lyssaviruses in Europe. Zoonoses Public Health 2012; 60:35-45. [PMID: 22937876 DOI: 10.1111/zph.12003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bat rabies cases in Europe are principally attributed to two lyssaviruses, namely European bat lyssavirus type 1 (EBLV-1) and European bat lyssavirus type 2 (EBLV-2). Between 1977 and 2011, 961 cases of bat rabies were reported to Rabies Bulletin Europe, with the vast majority (>97%) being attributed to EBLV-1. There have been 25 suspected cases of EBLV-2, of which 22 have been confirmed. In addition, two single isolations of unique lyssaviruses from European insectivorous bats were reported in south-west Russia in 2002 (West Caucasian bat virus) and in Germany in 2010 (Bokeloh bat lyssavirus). In this review, we present phylogenetic analyses of the EBLV-1 and EBLV-2 using partial nucleoprotein (N) gene sequences. In particular, we have analysed all EBLV-2 cases for which viral sequences (N gene, 400 nucleotides) are available (n = 21). Oropharyngeal swabs collected from two healthy Myotis daubentonii during active surveillance programmes in Scotland and Switzerland also yielded viral RNA (EBLV-2). Despite the relatively low number of EBLV-2 cases, a surprisingly large amount of anomalous data has been published in the scientific literature and Genbank, which we have collated and clarified. For both viruses, geographical relationships are clearly defined on the phylogenetic analysis. Whilst there is no clear chronological clustering for either virus, there is some evidence for host specific relationships, particularly for EBLV-1 where more host variation has been observed. Further genomic regions must be studied, in particular for EBLV-1 isolates from Spain and the EBLV-2 isolates to provide support for the existence of sublineages.
Collapse
Affiliation(s)
- L M McElhinney
- Animal Health and Veterinary Laboratories Agency, Weybridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xie T, Yu H, Wu J, Ming P, Huang S, Shen Z, Xu G, Yan J, Yu B, Zhou D. Molecular characterization of the complete genome of a street rabies virus WH11 isolated from donkey in China. Virus Genes 2012; 45:452-62. [PMID: 22836559 DOI: 10.1007/s11262-012-0786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
Abstract
The complete genomic sequence of a rabies virus isolate WH11, isolated from brain tissue of a rabid donkey in China, was determined and compared with other rabies viruses. This is the first Chinese street strain which was isolated from donkey and the entire length and organization of the virus was similar to that of other rabies viruses. Multiple alignments of amino acid sequences of the nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and large protein of WH11 with those of other rabies viruses were undertaken to examine the conservative degree of functional regions. Phylogenetic analysis using the complete genomic sequence of WH11 determined that this isolate is most closely related with rabies viruses previously isolated in China and the attenuated Chinese vaccine strain CTN181.
Collapse
Affiliation(s)
- Tingbo Xie
- Center for Rabies Diagnosis, Wuhan Institute of Biological Products, Wuhan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, Streicker DG, Bergman DL, Rupprecht CE. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS Pathog 2012; 8:e1002786. [PMID: 22737076 PMCID: PMC3380930 DOI: 10.1371/journal.ppat.1002786] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/18/2012] [Indexed: 12/25/2022] Open
Abstract
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches. Host shifts of the rabies virus (RABV) from bats to carnivores are important for our understanding of viral evolution and emergence, and have significant public health implications, particularly for the areas where “terrestrial” rabies has been eliminated. In this study we addressed several rabies outbreaks in carnivores that occurred in the Flagstaff area of Arizona during 2001–2009, and caused by the RABV variant associated with big brown bats (Eptesicus fuscus). Based on phylogenetic analysis we demonstrated that each outbreak resulted from a separate introduction of bat RABV into populations of carnivores. No post-shift changes in viral genomes were detected under the positive selection analysis. Trying to answer the question why certain bat RABV variants are capable for host shifts to carnivores and other variants are not, we developed a convergent evolution analysis, and implemented it for multiple RABV lineages circulating worldwide. This analysis identified several amino acids in RABV proteins which may facilitate host shifts from bats to carnivores. Precise roles of these amino acids require additional investigations, using reverse genetics and animal experimentation. In general, our approach and the results obtained can be used for prediction of host shifts and emergence of other zoonotic pathogens.
Collapse
Affiliation(s)
- Ivan V Kuzmin
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The full-length genome analysis of a street rabies virus strain isolated in Yunnan province of China. Virol Sin 2012; 27:204-13. [PMID: 22684475 DOI: 10.1007/s12250-012-3251-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022] Open
Abstract
The epidemic of rabies has rapidly increased and expanded in Yunnan province in recent years. In order to further analyze and understand the etiological reasons for the rapid expansion of rabies in Yunnan, a strain of rabies virus CYN1009D in Yunnan was isolated, and the complete genomic sequencing was carried out, and the bioimfomative analysis on genes/encoded proteins and phylogeny with reference to sequences in GenBank was performed. The complete genome of CYN1009D was 11923 nt in length and belonged to genotype I. The genes encoding different structural proteins were all conserved in their lengths, in comparison to other strains in China. The amino acid sequence was conserved at different antigen sites of NP, but the variation was detected at the secondary phosphorylation site of position 375; variations were also detected in the phosphorylation sites at positions 63-63 and 162 of PP; the sites playing important roles in virus synthesis, budding and viral morphology in MP were conserved; two glycosylation sites were detected at Asn37 and Asn319 in GP, the neutralizing antigen sites in GP were conserved; the initial amino acid of LP (ML) was different from that of most of the strains in China (MM); the variations in G-L region in the intergenic region were significant. The phylogenic tree showed that CYN1009D has a closer genetic relationship to the strains in Southeast Asia, indicating that prevention and control on rabies in borderland areas should be reinforced meanwhile efforts are made to control rabies in China.
Collapse
|
42
|
Carnieli P, de Novaes Oliveira R, de Oliveira Fahl W, de Carvalho Ruthner Batista HB, Scheffer KC, Iamamoto K, Castilho JG. Phylogenetic analysis of partial RNA-polymerase blocks II and III of Rabies virus isolated from the main rabies reservoirs in Brazil. Virus Genes 2012; 45:76-83. [PMID: 22528640 DOI: 10.1007/s11262-012-0743-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
This study describes the results of the sequencing and analysis of segments of Blocks II and III of the RNA polymerase L gene of Rabies virus isolates from different reservoir species of Brazil. The phylogenetic relations of the virus were determined and a variety of species-specific nucleotides were found in the analyzed areas, but the majority of these mutations were found to be synonymous. However, an analysis of the putative amino acid sequences were shown to have some characteristic mutations between some reservoir species of Brazil, indicating that there was positive selection in the RNA polymerase L gene of Rabies virus. On comparing the putative viral sequences obtained from the Brazilian isolates and other Lyssavirus, it was determined that amino acid mutations occurred in low-restriction areas. This study of the L gene of Rabies virus is the first to be conducted with samples of virus isolates from Brazil, and the results obtained will help in the determination of the phylogenetic relations of the virus.
Collapse
|
43
|
Cherian SS, Gunjikar RS, Banerjee A, Kumar S, Arankalle VA. Whole genomes of Chandipura virus isolates and comparative analysis with other rhabdoviruses. PLoS One 2012; 7:e30315. [PMID: 22272333 PMCID: PMC3260278 DOI: 10.1371/journal.pone.0030315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003-2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003-2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV.
Collapse
Affiliation(s)
- Sarah S. Cherian
- National Institute of Virology, Pashan, Pune, Maharashtra, India
| | | | - Arpita Banerjee
- National Institute of Virology, Pashan, Pune, Maharashtra, India
| | - Satyendra Kumar
- National Institute of Virology, Pashan, Pune, Maharashtra, India
| | | |
Collapse
|
44
|
Jiao W, Yin X, Li Z, Lan X, Li X, Tian X, Li B, Yang B, Zhang Y, Liu J. Molecular characterization of China rabies virus vaccine strain. Virol J 2011; 8:521. [PMID: 22093774 PMCID: PMC3226571 DOI: 10.1186/1743-422x-8-521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/17/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Rabies virus (RV), the agent of rabies, can cause a severe encephalomyelitis in several species of mammals, including humans. As a human rabies vaccine strain employed in China, the genetic knowledge of the aG strain has not been fully studied. The main goal of the present study is to amplify the whole genome of aG strain, and genetic relationships between other vaccine strains and wild strains were analyzed. RESULTS The entire genome of human rabies virus vaccine strain aG employed in China was sequenced; this is the second rabies virus vaccine strain from China to be fully characterized. The overall organization and the length of the genome were similar to that of other lyssaviruses. The length of aG strain was 11925nt, comprising a leader sequence of 58nt, nucleoprotein (N) gene of 1353nt, phosphoprotein (P) gene of 894 nt, matrix protein (M) gene of 609nt, glycoprotein (G) gene of 1575nt, RNA-dependent RNA polymerase (RdRp,L) gene of 6384nt, and a trailer region of 70 nt. There was TGAAAAAAA (TGA7) consensus sequence in the end of each gene, except AGA7 at the end of G gene. There was AACAYYYCT consensus start signal at the beginning of each gene. CONCLUSIONS In this report, we analyzed the full genome of China human rabies vaccine strain aG. Our studies indicated that the genome of aG retained the basic characteristics of RV. At gene level, N was the most conserved among the five coding genes, indicating this gene is the most appropriate for quantitative genotype definition. The phylogenetic analysis of the N indicated the aG strain clustered most closely with Japanese and Russian rabies vaccine strains, suggesting that they may share the same ancestor; also, the aG strain did not share high homology with wild strains isolated from China, making it may not be the best vaccine strain, more research is needed to elucidate the genetic relationship among the RV circulating in China.
Collapse
Affiliation(s)
- Wenqiang Jiao
- State Key Laboratory of Veterinary Etiological biology, Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujia ping 1, Yanchang bu, Lanzhou, Gansu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu W, Liu Y, Liu J, Zhai J, Xie Y. Evidence for inter- and intra-clade recombinations in rabies virus. INFECTION GENETICS AND EVOLUTION 2011; 11:1906-12. [PMID: 22041506 DOI: 10.1016/j.meegid.2011.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/13/2011] [Accepted: 08/13/2011] [Indexed: 12/25/2022]
Abstract
Homologous recombination is considered rare in negative-strand RNA viruses and has not been reported for rabies virus. In this study, full-length genomes of 44 rabies virus strains were analyzed for potential homologous recombination events. Phylogenetic analysis classified these strains into three clades. By applying six different recombination detection methods, one inter-clade and one intra-clade potential recombination events were identified with high confidence values. Software-predicted recombination break points of the two events were all located within the polymerase gene. This report presents the first evidence suggesting the possibility of homologous recombination in rabies virus, which could provide valuable insights for understanding the diversity and evolution of rabies virus as well as other negative-strand RNA viruses.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Abstract
Rabies virus (RABV) is a negative-stranded RNA virus. Its genome is tightly encapsidated by the viral nucleoprotein (N) and this RNA-N complex is the template for transcription and replication by the viral RNA-dependent RNA polymerase (L) and its cofactor, the phosphoprotein (P). We present molecular, structural, and cellular aspects of RABV transcription and replication. We first summarize the characteristics and molecular biology of both RNA synthesis processes. We then discuss biochemical and structural data on the viral proteins (N, P, and L) and their interactions with regard to their role in viral transcription and replication. Finally, we review evidence that rabies viral transcription and replication take place in cytoplasmic inclusion bodies formed in RABV-infected cells and discuss the role of this cellular compartmentalization.
Collapse
|
47
|
Abstract
Numerous bat species have been identified as important reservoirs of zoonotic viral pathogens. Rabies and rabies-related viruses constitute one of the most important viral zoonoses and pose a significant threat to public health across the globe. Whereas rabies virus (RABV) appears to be restricted to bats of the New World, related lyssavirus species have not been detected in the Americas and have only been detected in bat populations across Africa, Eurasia, and Australia. Currently, 11 distinct species of lyssavirus have been identified, 10 of which have been isolated from bat species and all of which appear to be able to cause encephalitis consistent with that seen with RABV infection of humans. In contrast, whereas lyssaviruses are apparently able to cause clinical disease in bats, it appears that these lyssaviruses may also be able to circulate within bat populations in the absence of clinical disease. This feature of these highly encephalitic viruses, alongside many other aspects of lyssavirus infection in bats, is poorly understood. Here, we review what is known of the complex relationship between bats and lyssaviruses, detailing both natural and experimental infections of these viruses in both chiropteran and nonchiropteran models. We also discuss potential mechanisms of virus excretion, transmission both to conspecifics and spill-over of virus into nonvolant species, and mechanisms of maintenance within bat populations. Importantly, we review the significance of neutralizing antibodies reported within bat populations and discuss the potential mechanisms by which highly neurovirulent viruses such as the lyssaviruses are able to infect bat species in the absence of clinical disease.
Collapse
Affiliation(s)
- Ashley C Banyard
- Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
One-step protocol for amplification of near full-length cDNA of the rabies virus genome. J Virol Methods 2011; 174:1-6. [PMID: 21473884 DOI: 10.1016/j.jviromet.2011.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 03/24/2011] [Accepted: 03/28/2011] [Indexed: 11/21/2022]
Abstract
Full-length genome sequencing of the rabies virus is not a routine laboratory procedure. To understand fully the epidemiology, genetic variation and evolution of the rabies virus, full-length viral genomes need to be obtained. For rabies virus studies, cDNA synthesis is usually performed using nonspecific oligonucleotides followed by cloning. When specific primers are used, the cDNA obtained is only partial and is limited to the coding regions. Therefore, the development of methods for synthesizing long cDNA using rabies virus-specific primers is of fundamental importance. A new protocol for the synthesis of long cDNA and the development of 19 new primers are described in this study. This procedure allowed the efficient amplification of the full-length genome of the rabies virus variant maintained by hematophagous bat (Desmodus rotundus) populations following the synthesis of a complete long cDNA. Partial sequencing of the rabies virus genome was performed to confirm rabies-specific PCR amplification. Because degenerate primers were employed, this technique can be adapted easily to other variants. Importantly, this new method is faster and less expensive than cloning methods.
Collapse
|
49
|
Characterization of rabies virus from a human case in Nepal. Arch Virol 2011; 156:681-4. [DOI: 10.1007/s00705-010-0868-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
50
|
Abstract
All lyssaviruses cause fatal encephalitis in mammals. There is sufficient antigenic variation within the genus to cause variable vaccine efficacy, but this variation is difficult to characterize quantitatively: sequence analysis cannot yet provide detailed antigenic information, and antigenic neutralization data have been refractory to high-resolution robust interpretation. Here, we address these issues by using state-of-the-art antigenic analyses to generate a high-resolution antigenic map of a global panel of 25 lyssaviruses. We compared the calculated antigenic distances with viral glycoprotein ectodomain sequence data. Although 67% of antigenic variation was predictable from the glycoprotein amino acid sequence, there are in some cases substantial differences between genetic and antigenic distances, thus highlighting the risk of inferring antigenic relationships solely from sequence data at this time. These differences included epidemiologically important antigenic differences between vaccine strains and wild-type rabies viruses. Further, we quantitatively assessed the antigenic relationships measured by using rabbit, mouse, and human sera, validating the use of nonhuman experimental animals as a model for determining antigenic variation in humans. The use of passive immune globulin is a crucial component of rabies postexposure prophylaxis, and here we also show that it is possible to predict the reactivity of immune globulin against divergent lyssaviruses.
Collapse
|