1
|
Carmona RCC, Reis FC, Cilli A, Dias JMM, Machado BC, de Morais DR, Jorge AV, Dias AMN, de Sousa CA, Calou SB, Ferreira GH, Leme L, Timenetsky MDCST, Eduardo MBDP. Beyond Poliomyelitis: A 21-Year Study of Non-Polio Enterovirus Genotyping and Its Relevance in Acute Flaccid Paralysis in São Paulo, Brazil. Viruses 2024; 16:1875. [PMID: 39772185 PMCID: PMC11680237 DOI: 10.3390/v16121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
In the context of the near-global eradication of wild poliovirus, the significance of non-polio enteroviruses (NPEVs) in causing acute flaccid paralysis (AFP) and their impact on public health has gained increased attention. This research, conducted from 2001 to 2021, examined stool samples from 1597 children under 15 years in São Paulo, Brazil, through the AFP/Poliomyelitis Surveillance Program, detecting NPEVs in 6.9% of cases. Among the 100 NPEV-positive strains analyzed, 90 were genotyped through genomic sequencing of the partial VP1 region, revealing a predominance of EV-B species (58.9%), followed by EV-A (27.8%) and EV-C (13.3%). This study identified 31 unique NPEV types, including EV-A71, CVB2, and E11, as the most prevalent, along with the first documented occurrence of CVA19 in Brazil. These findings emphasize the importance of NPEV genotyping in distinguishing AFP from poliomyelitis, enhancing understanding of these viruses' epidemiology. Moreover, it ensures that AFP cases are correctly classified, contributing to the effective surveillance and eradication efforts for poliomyelitis.
Collapse
Affiliation(s)
- Rita Cássia Compagnoli Carmona
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Fabricio Caldeira Reis
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Audrey Cilli
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Juliana Monti Maifrino Dias
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Bráulio Caetano Machado
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Daniele Rita de Morais
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Adriana Vieira Jorge
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Amanda Meireles Nunes Dias
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Cleusa Aparecida de Sousa
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Sabrina Bonetti Calou
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Gabriel Henriques Ferreira
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Lucas Leme
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | | | - Maria Bernadete de Paula Eduardo
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| |
Collapse
|
2
|
Yang T, Sun Q, Yan D, Zhu S, Ji T, Xiao J, Lu H, Liu Y, He Y, Wang W, Cong R, Wang X, Yang Q, Xing W, Zhang Y. Characterizing enterovirus C96 genome and phylodynamics analysis. J Med Virol 2023; 95:e29289. [PMID: 38050821 DOI: 10.1002/jmv.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Enterovirus C96 (EV-C96) is a recently discovered serotype belonging to enterovirus C species. It had been isolated from patients with acute flaccid paralysis, hand, foot, and mouth disease, diarrhea, healthy people, or environmental specimens. Despite increasing reports of the virus, the small number of full-length genomes available for EV-C96 has limited molecular epidemiological studies. In this study, newly collected rare EV-C96 strains in China from 1997 to 2020 were combined with sequences available in GenBank for comprehensive analyses. Sequence analysis revealed that the nucleotide sequence similarity of EV-C96 and the prototype strain (BAN00-10488) was 75%-81.8% and the amino acid sequence similarity was 85%-94.9%. EV-C96 had a high degree of genetic variation and could be divided into 15 genogroups. The mean evolutionary rate was 5.16 × 10-3 substitution/site/year, and the most recent common ancestor was dated to 1925. A recombination analysis revealed that EV-C96 may be a recombinant derived from other serotypes in the EV-C group in the nonstructural protein coding region. This comprehensive and integrated analysis of the whole genome sequence of EV-C96 provides valuable data for further studies on the molecular epidemiology of EV-C96 worldwide.
Collapse
Affiliation(s)
- Tingting Yang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinbo Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yun He
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenhui Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruyi Cong
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Qian Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Zhang Y, Xu L, Zhang Z, Su X, Wang Z, Wang T. Enterovirus D68 infection upregulates SOCS3 expression to inhibit JAK-STAT3 signaling and antagonize the innate interferon response of the host. Virol Sin 2023; 38:755-766. [PMID: 37657555 PMCID: PMC10590701 DOI: 10.1016/j.virs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Enterovirus D68 (EV-D68) can cause respiratory diseases and acute flaccid paralysis, posing a great threat to public health. Interferons are cytokines secreted by host cells that have broad-spectrum antiviral effects, inducing the expression of hundreds of interferon-stimulated genes (ISGs). EV-D68 activates ISG expression early in infection, but at a later stage, the virus suppresses ISG expression, a strategy evolved by EV-D68 to antagonize interferons. Here, we explore a host protein, suppressor of cytokine signaling 3 (SOCS3), is upregulated during EV-D68 infection and antagonizes the antiviral effects of type I interferon. We subsequently demonstrate that the structural protein of EV-D68 upregulated the expression of RFX7, a transcriptional regulator of SOCS3, leading to the upregulation of SOCS3 expression. Further exploration revealed that SOCS3 plays its role by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). The expression of SOCS3 inhibited the expression of ISG, thereby inhibiting the antiviral effect of type I interferon and promoting EV-D68 transcription, protein production, and viral titer. Notably, a truncated SOCS3, generated by deleting the kinase inhibitory region (KIR) domain, failed to promote replication and translation of EV-D68. Based on the above studies, we designed a short peptide named SOCS3 inhibitor, which can specifically bind and inhibit the KIR structural domain of SOCS3, significantly reducing the RNA and protein levels of EV-D68. In summary, our results demonstrated a novel mechanism by which EV-D68 inhibits ISG transcription and antagonizes the antiviral responses of host type I interferon.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Leling Xu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhe Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xin Su
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China.
| |
Collapse
|
5
|
Rosenfeld AB, Shen EQL, Melendez M, Mishra N, Lipkin WI, Racaniello VR. Cross-Reactive Antibody Responses against Nonpoliovirus Enteroviruses. mBio 2022; 13:e0366021. [PMID: 35038922 PMCID: PMC8764532 DOI: 10.1128/mbio.03660-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Enteroviruses are among the most common human viral pathogens. Infection with members of a subgroup of viruses within this genus, the nonpoliovirus enteroviruses (NPEVs), can result in a broad spectrum of serious illnesses, including acute flaccid myelitis (AFM), a polio-like childhood paralysis; neonatal sepsis; aseptic meningitis; myocarditis; and hand-foot-mouth disease. Despite the diverse primary sites of virus infection, including the respiratory and alimentary tracts, and an array of diseases associated with these infections, there is significant genetic and antigenic similarity among NPEVs. This conservation results in the induction of cross-reactive antibodies that are either able to bind and neutralize or bind but not neutralize multiple NPEVs. Using plaque reduction and enzyme-linked immunosorbent assay (ELISA)-based binding assays, we define the antigenic relationship among poliovirus and NPEVs, including multiple isolates of EV-D68, EV-A71, EV-D70, EV-94, EV-111, Coxsackievirus A24v, and rhinovirus. The results reveal extensive cross-reactivity among EVs that cannot be predicted from phylogenetic analysis. Determining the immunologic relationship among EVs is critical to understanding the humoral response elicited during homologous and heterologous virus infections. IMPORTANCE Enteroviruses (EVs) are common human pathogens. Although infection with EVs leads to cross-reactive antibodies, the clinical relevance of these antibodies is unclear given the estimated incidence of EV infections in the general population of one per year. The hypothesis that anti-EV cross-reactive antibodies can bind and neutralize heterologous EVs was investigated using polyclonal sera collected from animals immunized with individual EVs. Both binding and neutralization activities against heterologous EVs was observed in these sera, and we speculate that cross-reactive antibodies may modulate infection and disease severity. Defining the antigenic relationship among EVs may provide insights into the epidemiology and pathogenesis of enterovirus infections.
Collapse
Affiliation(s)
- Amy B. Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Edmund Qian Long Shen
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michaela Melendez
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nischay Mishra
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vincent R. Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
First evidence of enterovirus A71 and echovirus 30 in Uruguay and genetic relationship with strains circulating in the South American region. PLoS One 2021; 16:e0255846. [PMID: 34383835 PMCID: PMC8360592 DOI: 10.1371/journal.pone.0255846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human enteroviruses (EVs) comprise more than 100 types of coxsackievirus, echovirus, poliovirus and numbered enteroviruses, which are mainly transmitted by the faecal-oral route leading to diverse diseases such as aseptic meningitis, encephalitis, and acute flaccid paralysis, among others. Since enteroviruses are excreted in faeces, wastewater-based epidemiology approaches are useful to describe EV diversity in a community. In Uruguay, knowledge about enteroviruses is extremely limited. This study assessed the diversity of enteroviruses through Illumina next-generation sequencing of VP1-amplicons obtained by RT-PCR directly applied to viral concentrates of 84 wastewater samples collected in Uruguay during 2011-2012 and 2017-2018. Fifty out of the 84 samples were positive for enteroviruses. There were detected 27 different types belonging to Enterovirus A species (CVA2-A6, A10, A16, EV-A71, A90), Enterovirus B species (CVA9, B1-B5, E1, E6, E11, E14, E21, E30) and Enterovirus C species (CVA1, A13, A19, A22, A24, EV-C99). Enterovirus A71 (EV-A71) and echovirus 30 (E30) strains were studied more in depth through phylogenetic analysis, together with some strains previously detected by us in Argentina. Results unveiled that EV-A71 sub-genogroup C2 circulates in both countries at least since 2011-2012, and that the C1-like emerging variant recently entered in Argentina. We also confirmed the circulation of echovirus 30 genotypes E and F in Argentina, and reported the detection of genotype E in Uruguay. To the best of our knowledge this is the first report of the EV-A71 C1-like emerging variant in South-America, and the first report of EV-A71 and E30 in Uruguay.
Collapse
|
7
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
8
|
Wang Q, Ji F, Wang S, Lin X, Tao Z, Xu A. Complete genome characterization of three enterovirus C96 isolates in China. Arch Virol 2019; 164:2183-2186. [PMID: 31119477 DOI: 10.1007/s00705-019-04291-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Abstract
Enterovirus C96 (EV-C96) is a newer member of the species Enterovirus C. In this study, we determined the complete genome sequences of three EV-C96 isolates, one recovered from domestic sewage in 2013 and the other two isolated during surveillance of acute flaccid paralysis cases in 1991 and 2009, respectively. The complete genome sequences of these isolates were 75.6-84.2% identical to each other, 75.1-81.8% identical to the prototype strain, and 75.0-91.5% identical to other previously reported strains. Phylogenetic analysis of VP1 sequences revealed a high degree of genetic divergence among currently available EV-C96 sequences in the GenBank database, with an overall mean p-distance of 0.176. It is interesting to note that the 1991 strain 127/SD/CHN/1991 is the earliest EV-C96 isolate so far. Although EV-C96 is not frequently isolated during enterovirus surveillance, its great genetic diversity and the above findings suggest that this serotype has been circulating in China for many years.
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Feng Ji
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Suting Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Xiaojuan Lin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Zexin Tao
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Aiqiang Xu
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
9
|
Sadeuh-Mba SA, Kavunga-Membo H, Joffret ML, Yogolelo R, Endegue-Zanga MC, Bessaud M, Njouom R, Muyembe-Tamfu JJ, Delpeyroux F. Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013. PLoS Negl Trop Dis 2019; 13:e0007335. [PMID: 31002713 PMCID: PMC6505894 DOI: 10.1371/journal.pntd.0007335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide
but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in
the Democratic Republic of Congo (DR Congo). Moreover, circulating
vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks
in DR Congo from 2004 to 2018 have been characterized so far only by the
sequences of their VP1 capsid coding gene. This study was carried to i)
investigate the circulation and genetic diversity of NPEV and polio vaccine
isolates recovered from healthy children and Acute Flaccid Paralysis (AFP)
patients, ii) evaluate the occurrence of genetic recombination among EVs
belonging to the Enterovirus C species (including PVs) and iii)
identify the virological factors favoring multiple emergences of cVDPVs in DR
Congo. The biological material considered in this study included i) a collection
of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between
2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected
from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR
Congo. Studied virus isolates were sequenced in four distinct sub-genomic
regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting
sequences were compared through comparative phylogenetic analyses. Virus
isolation showed that 19.1% (63/330) healthy children were infected by EVs
including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs.
Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP
patients whereas 27.5% of the 69 NPEV isolates typed in healthy children
belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69).
Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing
exogenous sequences in at least one of the targeted non-structural regions of
their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these
non-vaccine sequences of the recombinant cVDPVs were strikingly related to
homologous sequences from co-circulating CV-A17 and A20 in the
2CATPase region as well as to those from co-circulating CV-A13,
A17 and A20 in the 3Dpol region. This study provided the first
evidence uncovering CV-A20 strains as major recombination partners of PVs. High
quality AFP surveillance, sensitive environmental surveillance and efficient
vaccination activities remain essential to ensure timely detection and efficient
response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for
any epidemiological setting where high frequency and genetic diversity of
Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the
emergence of virulent recombinant cVDPVs. The strategy of the Global Polio Eradication Initiative is based on the
surveillance of patients suffering from Acute Flaccid Paralysis (AFP) and mass
vaccination with live-attenuated vaccine strains of polioviruses (PVs) in
endemic areas. However, vaccine strains of PVs can circulate and replicate for a
long time when the vaccine coverage of the population is low. Such prolonged
circulation and replication of vaccine strains of PVs can result to the
emergence of circulating vaccine-derived polioviruses [cVDPVs] that are as
virulent as wild PVs. In this study, we performed the molecular characterization
of a large collection of 377 virus isolates recovered from paralyzed patients
between 2008 and 2012 in DR Congo and healthy children in 2013 in the Kasai
Oriental and Maniema provinces of DR Congo. We found that the genetic diversity
of enteroviruses of the species Enterovirus C is more important
than previously reported. Interestingly, 50 of the 54 cVDPVs featured
recombinant genomes containing exogenous sequences of the 2C ATPase and/or 3D
polymerase coding genes acquired from co-circulating Coxsackieviruses A13, A17
and A20. Coxsackieviruses A20 strains were identified for the first time as
major partners of genetic recombination with co-circulating live-attenuated
polio vaccine strains. Our findings highlight the need to reinforce and maintain high quality
surveillance of PVs and efficient immunization activities in order to ensure
early detection and control of emerging cVDPVs in all settings where high
frequency and diversity of Coxsackieviruses A13, A17 and A20 have been
documented.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
- * E-mail: ,
| | - Hugo Kavunga-Membo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | - Marie-Line Joffret
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Riziki Yogolelo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | | | - Maël Bessaud
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Richard Njouom
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
| | | | - Francis Delpeyroux
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| |
Collapse
|
10
|
Hu L, Zhang Y, Hong M, Fan Q, Yan D, Zhu S, Wang D, Xu W. Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains. Virol J 2019; 16:40. [PMID: 30922336 PMCID: PMC6439968 DOI: 10.1186/s12985-019-1151-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00-10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. METHODS Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a 'primer-walking' strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. RESULTS Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1-3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. CONCLUSIONS There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus.
Collapse
Affiliation(s)
- Lan Hu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Department of the Laboratory, Guanghua Hospital of Traditional and Western Medicine, Changning District, Shanghai, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Qin Fan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Zhejiang Center for Disease Control and Prevention, Hangzhou city, Zhejiang Province, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China. .,Anhui University of Science and Technology, Hefei city, Anhui Province, People's Republic of China.
| |
Collapse
|
11
|
Nikolaidis M, Mimouli K, Kyriakopoulou Z, Tsimpidis M, Tsakogiannis D, Markoulatos P, Amoutzias GD. Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses. Virology 2019; 526:72-80. [DOI: 10.1016/j.virol.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
|
12
|
Tiwari S, Dhole TN. Assessment of enteroviruses from sewage water and clinical samples during eradication phase of polio in North India. Virol J 2018; 15:157. [PMID: 30326921 PMCID: PMC6192295 DOI: 10.1186/s12985-018-1075-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/04/2018] [Indexed: 11/14/2022] Open
Abstract
Background The Enterovirus (EV) surveillance system is inadequate in densely populated cities in India. EV can be shed in feces for several weeks; these viruses are not easily inactivated and may persist in sewage for long periods. Surveillance and epidemiological study of EV-related disease is necessary. Methods In this study, we compare the EV found in sewage with clinically isolated samples. Tissue culture was used for isolation of the virus and serotype confirmed by enterovirus neutralization tests. Results We found positive cases for enterovirus from clinical and sewage samples and identified additional isolates as echovirus 9, 11, 25 & 30 by sequencing. Conclusion There is a close relation among the serotypes of enterovirus shed in stools and isolated from the environment but few serotypes which were detected in sewage samples were not found clinically and the few which were detected clinically not found in sewage because some viruses are difficult to detect by the cell culture method.This study will be helpful for the researchers who are working on polio and nonpolio enterovirus especially in the countries which are struggling for polio eradication.
Collapse
Affiliation(s)
- Sarika Tiwari
- Department of Microbiology (Virology Section), Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India. .,Department of Microbiology (Virology lab), Rajendra Institute of Medical Sciences (RIMS), Ranchi, JH, India.
| | - Tapan N Dhole
- Department of Microbiology (Virology Section), Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
13
|
Isaacs SR, Kim KW, Cheng JX, Bull RA, Stelzer-Braid S, Luciani F, Rawlinson WD, Craig ME. Amplification and next generation sequencing of near full-length human enteroviruses for identification and characterisation from clinical samples. Sci Rep 2018; 8:11889. [PMID: 30089864 PMCID: PMC6082906 DOI: 10.1038/s41598-018-30322-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
More than 100 different enterovirus (EV) genotypes infect humans and contribute to substantial morbidity. However, current methods for characterisation of full-length genomes are based on Sanger sequencing of short genomic regions, which are labour-intensive and do not enable comprehensive characterisation of viral populations. Here, we describe a simple and sensitive protocol for the amplification and sequencing of near full-length genomes of human EV species using next generation sequencing. EV genomes were amplified from 89% of samples tested, with Ct values ranging between 15.7 and 39.3. These samples included 7 EV-A genotypes (CVA2, 5–7, 10, 16 and EV71), 19 EV-B genotypes (CVA9, CVB1-6, ECHO3, 4, 6, 7, 9, 11, 16, 18, 25, 29, 30, and EV69), 3 EV-C genotypes (CVA19 and PV2, 3) and 1 EV-D genotype (EV70). We characterised 70 EVs from 58 clinical stool samples and eight reference strains, with a minimum of 100X depth. We found evidence of co-infection in four clinical specimens, each containing two distinct EV genotypes (CVB3/ECHO7, CVB3/ECHO18 and ECHO9/30). Characterisation of the complete genome provided conclusive genotyping of EVs, which can be applied to investigate the intra-host virus evolution of EVs, and allows further identification and investigation of EV outbreaks.
Collapse
Affiliation(s)
- Sonia R Isaacs
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Ki Wook Kim
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Junipearl X Cheng
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sacha Stelzer-Braid
- Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fabio Luciani
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - William D Rawlinson
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia. .,Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia. .,Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
14
|
Antigenic characteristics and genomic analysis of novel EV-A90 enteroviruses isolated in Xinjiang, China. Sci Rep 2018; 8:10247. [PMID: 29980696 PMCID: PMC6035207 DOI: 10.1038/s41598-018-28469-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A90 (EV-A90) is a novel serotype of enterovirus A species that is rarely reported. Here, we isolated five enteroviruses from patients with acute flaccid paralysis in Hotan and Kashgar cities in Xinjiang, China that were identified as EV-A90 by molecular typing. The VP1 sequences of these Xinjiang EV-A90 strains showed 88.4–89% nucleotide sequence identity to the prototype EV-A90 strain; however, genome analysis indicated complex recombination events in P2 and P3 regions. Next, the seroprevalence of EV-A90 was examined in 49 serum specimens collected in Hotan and Kashgar, and 37.5% were EV-A90 antibody positive (>1:8), with a geometric mean titre (GMT) of 1:10.47. The low positive rate and GMT suggest a low-level EV-A90 epidemic in Xinjiang. Two of the five Xinjiang EV-A90 strains were temperature sensitive, and three were temperature resistant, and a comparative genomics analysis suggested that an amino acid substitution (H1799Y) in the 3Dpol region was related to temperature sensitivity. Although the epidemic strength is low, some EV-A90 strains were temperature resistant, which is suggestive of strong virulence and transmission capacity. This study expanded the number of EV-A90 in GenBank and provided basic data that may be useful for studying the molecular epidemiology of EV-A90.
Collapse
|
15
|
Abstract
Picornaviruses are small, nonenveloped, icosahedral RNA viruses with positive-strand polarity. Although the vast majority of picornavirus infections remain asymptomatic, many picornaviruses are important human and animal pathogens and cause diseases that affect the central nervous system, the respiratory and gastrointestinal tracts, heart, liver, pancreas, skin and eye. A stunning increase in the number of newly identified picornaviruses in the past decade has shown that picornaviruses are globally distributed and infect vertebrates of all classes. Moreover, picornaviruses exhibit a surprising diversity of both genome sequences and genome layouts, sometimes challenging the definition of taxonomic relevant criteria. At present, 35 genera comprising 80 species and more than 500 types are acknowledged. Fifteen species within five new and three existing genera have been proposed in 2017, but more than 50 picornaviruses still remain unassigned.
Collapse
Affiliation(s)
- Roland Zell
- Division of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
16
|
A novel Enterovirus 96 circulating in China causes hand, foot, and mouth disease. Virus Genes 2017; 53:352-356. [DOI: 10.1007/s11262-017-1431-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
|
17
|
Deshpande JM, Sharma DK, Saxena VK, Shetty SA, Qureshi THIH, Nalavade UP. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121. J Med Microbiol 2016; 65:1465-1471. [PMID: 27902407 DOI: 10.1099/jmm.0.000380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.
Collapse
Affiliation(s)
- Jagadish M Deshpande
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Deepa K Sharma
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Vinay K Saxena
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Sushmitha A Shetty
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Tarique Husain I H Qureshi
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Uma P Nalavade
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| |
Collapse
|
18
|
Circulation of multiple serotypes of highly divergent enterovirus C in the Xinjiang Uighur Autonomous Region of China. Sci Rep 2016; 6:33595. [PMID: 27642136 PMCID: PMC5027535 DOI: 10.1038/srep33595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Poliomyelitis associated with circulating vaccine-derived polioviruses (cVDPVs) is a serious public health issue in the post-eradication era, and the occurrence of recombinant cVDPVs emphasizes the need to elucidate enterovirus C (EV-C) epidemiology. Stool samples were collected from 826 healthy children in Southern Xinjiang in 2011 to investigate EV-C circulation and epidemiology. Thirty-six EV-Cs were isolated and assigned to eight EV-C serotypes by molecular serotyping, suggesting the circulation of diverse EV-Cs in Xinjiang. Phylogenetic analysis showed that the Xinjiang EV-C strains had larger variation compared to the prototype and other modern strains. Additionally, the results showed unique characteristics of Xinjiang EV-Cs, such as the cytopathicity of CV-A1 strains to RD cells; the high divergence in CV-A11, CV-A13, CV-A17, and CV-A20 strains; the divergence of Xinjiang CV-A24 from AHC-related CV-A24 variant stains distributed worldwide; and the circulation of two novel EV-C serotypes (EV-C96 and EV-C99). Evaluations of this dense and diverse EV-C ecosystem will help elucidate the processes shaping enteroviral biodiversity. This study will improve our understanding of the evolution of enteroviruses and the recombination potential between polioviruses and other EV-Cs.
Collapse
|
19
|
Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus Genes 2014; 50:177-88. [PMID: 25537948 DOI: 10.1007/s11262-014-1152-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.
Collapse
|
20
|
Sadeuh-Mba SA, Bessaud M, Joffret ML, Endegue Zanga MC, Balanant J, Mpoudi Ngole E, Njouom R, Reynes JM, Delpeyroux F, Rousset D. Characterization of Enteroviruses from non-human primates in cameroon revealed virus types widespread in humans along with candidate new types and species. PLoS Negl Trop Dis 2014; 8:e3052. [PMID: 25079078 PMCID: PMC4117447 DOI: 10.1371/journal.pntd.0003052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/14/2014] [Indexed: 12/28/2022] Open
Abstract
Enteroviruses (EVs) infecting African Non-Human Primates (NHP) are still poorly documented. This study was designed to characterize the genetic diversity of EVs among captive and wild NHP in Cameroon and to compare this diversity with that found in humans. Stool specimens were collected in April 2008 in NHP housed in sanctuaries in Yaounde and neighborhoods. Moreover, stool specimens collected from wild NHP from June 2006 to October 2008 in the southern rain forest of Cameroon were considered. RNAs purified directly from stool samples were screened for EVs using a sensitive RT-nested PCR targeting the VP1 capsid coding gene whose nucleotide sequence was used for molecular typing. Captive chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) were primarily infected by EV types already reported in humans in Cameroon and elsewhere: Coxsackievirus A13 and A24, Echovirus 15 and 29, and EV-B82. Moreover EV-A119, a novel virus type recently described in humans in central and west Africa, was also found in a captive Chimpanzee. EV-A76, which is a widespread virus in humans, was identified in wild chimpanzees, thus suggesting its adaptation and parallel circulation in human and NHP populations in Cameroon. Interestingly, some EVs harbored by wild NHP were genetically distinct from all existing types and were thus assigned as new types. One chimpanzee-derived virus was tentatively assigned as EV-J121 in the EV-J species. In addition, two EVs from wild monkeys provisionally registered as EV-122 and EV-123 were found to belong to a candidate new species. Overall, this study indicates that the genetic diversity of EVs among NHP is more important than previously known and could be the source of future new emerging human viral diseases.
Collapse
Affiliation(s)
| | - Maël Bessaud
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | | - Jean Balanant
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | | - Richard Njouom
- Service de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Jean-Marc Reynes
- Service de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM, U994, Paris, France
| | | |
Collapse
|
21
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genetic diversity of human enterovirus 68 strains isolated in Kenya using the hypervariable 3'-end of VP1 gene. PLoS One 2014; 9:e102866. [PMID: 25054861 PMCID: PMC4108357 DOI: 10.1371/journal.pone.0102866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Reports of increasing worldwide circulation of human enterovirus-68 (EV68) are well documented. Despite health concerns posed by resurgence of these viruses, little is known about EV68 strains circulating in Kenya. In this study, we characterized 13 EV68 strains isolated in Kenya between 2008 and 2011 based on the Hypervariable 3'-end of the VP1 gene. Viral RNA was extracted from the isolates and partial VP1 gene amplified by RT-PCR, followed by nucleotide sequencing. Alignment of deduced amino acid sequences revealed substitutions in Kenyan EV68 isolates absent in the prototype reference strain (Fermon). The majority of these changes were present in the BC and DE-loop regions, which are associated with viral antigenicity and virulence. The Kenyan strains exhibited high sequence homology with respect to those from other countries. Natural selection analysis based on the VP1 region showed that the Kenyan EV68 isolates were under purifying selection. Phylogenetic analysis revealed that majority (84.6%) of the Kenyan strains belonged to clade A, while a minority belonged to clades B and C. Overall, our results illustrate that although EV68 strains isolated in Kenya were genetically and antigenically divergent from the prototype strain (Fermon), they were closely related to those circulating in other countries, suggesting worldwide transmissibility. Further, the presence of shared mutations by Kenyan EV68 strains and those isolated in other countries, indicates evolution in the VP1 region may be contributing to increased worldwide detection of the viruses. This is the first study to document circulation of EV68 in Kenya.
Collapse
Affiliation(s)
- Silvanos M. Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
- College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology, (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
| | - Wallace D. Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
- * E-mail:
| |
Collapse
|
22
|
Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates. PLoS Pathog 2014; 10:e1004191. [PMID: 24945141 PMCID: PMC4055744 DOI: 10.1371/journal.ppat.1004191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/02/2014] [Indexed: 01/29/2023] Open
Abstract
Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. The rapid evolution of most positive-sense RNA viruses enables them to escape immune surveillance and adapt to new hosts. Genetic variation arises due to their error-prone RNA polymerases and by recombination of viral genomes in co-infected cells. We have developed a novel approach to analyse the poorly understood mechanism of recombination using a poliovirus model system. We characterised the initial viable recombinants and demonstrate the majority are longer than genome length due to an imprecise crossover event that duplicates part of the genome. These viruses are unfit, but rapidly lose the duplicated material and regain full fitness upon serial passage, a process we term resolution. We show this is a replicative recombination process by modifying the fidelity of the viral polymerase, or replication complex coalescence, using methods that have no influence on a previously reported, less efficient, non-replicative recombination mechanism. We conclude that recombination is a biphasic process involving separate generation and resolution events. These new insights into an important evolutionary mechanism have implications for our understanding of virus evolution through partial genome duplication, they suggest ways in which recombination might be modified and provides an approach that may be exploited to analyse recombination in other RNA viruses.
Collapse
Affiliation(s)
- Kym Lowry
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andrew Woodman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Zhu L, Xing Z, Gai X, Li S, San Z, Wang X. Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases. PLoS One 2014; 9:e97730. [PMID: 24830424 PMCID: PMC4022658 DOI: 10.1371/journal.pone.0097730] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/04/2022] Open
Abstract
In this study, a virus strain designated as HY12 was isolated from cattle with a disease of high morbidity and mortality in Jilin province. Biological and physiochemical properties showed that HY12 isolates is cytopathic with an extremely high infectivity. HY12 is resistant to treatment of organic solvent and acid, and unstable at 60°C for 1 h. Electron microscopy observation revealed the virus is an approximately 22–28 nm in diameter. The complete genome sequence of HY12 consists of 7416 nucleotides, with a typical picornavirus genome organization including a 5′-untranslated region (UTR), a large single ORF encoding a polyprotein of 2176 amino acids, and a 3′-UTR. Phylogenetic analysis clustered HY12 isolates to a new serotype/genotype within the clade of enterovirus E (formerly BEV-A). Alignment analysis revealed a unique insertion of 2 amino acid residues (NF) at the C-terminal of VP1 protein between aa 825 and 826, and several rare mutations in VP1 and VP4 of HY12 isolates in relation to known bovine enterovirus (BEV) strains. This is the first report of an enterovirus E in China, which is potentially associated with an outbreak in cattle with severe respiratory and enteric diseases.
Collapse
Affiliation(s)
- Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zeli Xing
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Sujing Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhihao San
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
24
|
Smura T, Blomqvist S, Vuorinen T, Ivanova O, Samoilovich E, Al-Hello H, Savolainen-Kopra C, Hovi T, Roivainen M. Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99. PLoS One 2014; 9:e94579. [PMID: 24722726 PMCID: PMC3983234 DOI: 10.1371/journal.pone.0094579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/17/2014] [Indexed: 01/16/2023] Open
Abstract
Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A–C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5′UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.
Collapse
Affiliation(s)
- Teemu Smura
- National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Soile Blomqvist
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Tytti Vuorinen
- Department of Virology, University of Turku, Turku, Finland
| | - Olga Ivanova
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow, Russia
| | - Elena Samoilovich
- Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Republic of Belarus
| | - Haider Al-Hello
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Tapani Hovi
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
25
|
The evolution of Vp1 gene in enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99. PLoS One 2014; 9:e93737. [PMID: 24695547 PMCID: PMC3973639 DOI: 10.1371/journal.pone.0093737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/17/2022] Open
Abstract
Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.
Collapse
|
26
|
High rates of infection with novel enterovirus variants in wild populations of mandrills and other old world monkey species. J Virol 2014; 88:5967-76. [PMID: 24623420 DOI: 10.1128/jvi.00088-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Enteroviruses (EVs) are a genetically and antigenically diverse group of viruses infecting humans. A mostly distinct set of EV variants have additionally been documented to infect wild apes and several, primarily captive, Old World monkey (OWM) species. To investigate the prevalence and genetic characteristics of EVs infecting OWMs in the wild, fecal samples from mandrills (Mandrillus sphinx) and other species collected in remote regions of southern Cameroon were screened for EV RNA. Remarkably high rates of EV positivity were detected in M. sphinx (100 of 102 screened), Cercocebus torquatus (7/7), and Cercopithecus cephus (2/4), with high viral loads indicative of active infection. Genetic characterization in VP4/VP2 and VP1 regions allowed EV variants to be assigned to simian species H (EV-H) and EV-J (including one or more new types), while seven matched simian EV-B variants, SA5 and EV110 (chimpanzee). Sequences from the remaining 70 formed a new genetic group distinct in VP4/2 and VP1 region from all currently recognized human or simian EV species. Complete genome sequences were obtained from three to determine their species assignment. In common with EV-J and the EV-A A13 isolate, new group sequences were chimeric, being most closely related to EV-A in capsid genes and to EV-B in the nonstructural gene region. Further recombination events created different groupings in 5' and 3' untranslated regions. While clearly a distinct EV group, the hybrid nature of new variants prevented their unambiguous classification as either members of a new species or as divergent members of EV-A using current International Committee on Taxonomy of Viruses (ICTV) assignment criteria. IMPORTANCE This study is the first large-scale investigation of the frequency of infection and diversity of enteroviruses (EVs) infecting monkeys (primarily mandrills) in the wild. Our findings demonstrate extremely high frequencies of active infection (95%) among mandrills and other Old World monkey species inhabiting remote regions of Cameroon without human contact. EV variants detected were distinct from those infecting human populations, comprising members of enterovirus species B, J, and H and a large novel group of viruses most closely related to species A in the P1 region. The viral sequences obtained contribute substantially to our growing understanding of the genetic diversity of EVs and the existence of interspecies chimerism that characterizes the novel variants in the current study, as well as in previously characterized species A and J viruses infecting monkeys. The latter findings will contribute to future development of consensus criteria for species assignments in enteroviruses and other picornavirus genera.
Collapse
|
27
|
Zhang Y, Hong M, Sun Q, Zhu S, Tsewang, Li X, Yan D, Wang D, Xu W. Molecular typing and characterization of a new serotype of human enterovirus (EV-B111) identified in China. Virus Res 2014; 183:75-80. [PMID: 24503225 DOI: 10.1016/j.virusres.2014.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
Abstract
Molecular methods, based on sequencing the region encoding the complete VP1 or P1 protein, have enabled the rapid identification of new enterovirus serotypes. In the present study, the complete genome of a newly discovered enterovirus serotype, strain Q0011/XZ/CHN/2000 (hereafter referred to as Q0011), was sequenced and analyzed. The virus, isolated from a stool sample from a patient with acute flaccid paralysis in the Tibet region of China in 2000, was characterized by amplicon sequencing and comparison to a GenBank database of enterovirus nucleotide sequences. The nucleotide sequence encoding the complete VP1 capsid protein is most closely related to the sequences of viruses within the species enterovirus B (EV-B), but is less than 72.1% identical to the homologous sequences of the recognized human enterovirus serotypes, with the greatest homology to EV-B101 and echovirus 32. Moreover, the deduced amino acid sequence of the complete VP1 region is less than 84.7% identical to those of the recognized serotypes, suggesting that the strain is a new serotype of enterovirus within EV-B. The virus was characterized as a new enterovirus type, named EV-B111, by the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses. Low positive rate and titer of neutralizing antibody against EV-B111 were found in the Tibet region of China. Nearly 50% of children ≤5 years had no neutralizing antibody against EV-B111. So the extent of transmission and the exposure of the population to this new EV are very limited. This is the first identification of a new serotype of human enterovirus in China, and strain Q0011 was designated the prototype strain of EV-B111.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tsewang
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Xiaolei Li
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Lu J, Zheng H, Zhang Y, Guo X, Wu D, Li H, Liu L, Zeng H, Yi L, Fang L, Mo Y, Xu W, Ke C. Whole genomic sequence and replication kinetics of a new enterovirus C96 isolated from Guangdong, China with a different cell tropism. PLoS One 2014; 9:e86877. [PMID: 24497989 PMCID: PMC3907579 DOI: 10.1371/journal.pone.0086877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 96 (EV-C96) is a newly described serotype within the enterovirus C (EV-C) species, and its biological and pathological characters are largely unknown. In this study, we sequenced the whole genome of a novel EV-C96 strain that was isolated in 2011 from a patient with acute flaccid paralysis (AFP) in Guangdong province, China and characterized the properties of its infection. Sequence analysis revealed the close relationship between the EV-C96 strains isolated from the Guangdong and Shandong provinces of China, and suggested that recombination events occurred both between these EV-C96 strains and with other EV-C viruses. Moreover, the virus replication kinetics showed EV-C96 Guangdong strain replicated at a high rate in RD cells and presented a different cell tropism to other strains isolated from Shandong recently. These findings gave further insight into the evolutionary processes and extensive biodiversity of EV-C96.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- * E-mail:
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Leng Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hanri Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yanling Mo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
29
|
Identification of Recombinant Human Rhinovirus A and C in Circulating Strains from Upper and Lower Respiratory Infections. PLoS One 2013; 8:e68081. [PMID: 23826363 PMCID: PMC3695095 DOI: 10.1371/journal.pone.0068081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/24/2013] [Indexed: 01/15/2023] Open
Abstract
Human rhinoviruses (HRVs), in the Enterovirus genus within the family Picornaviridae, are a highly prevalent cause of acute respiratory infection (ARI). Enteroviruses are genetically highly variable, and recombination between serotypes is known to be a major contribution to their diversity. Recently it was reported that recombination events in HRVs cause the diversity of HRV-C. This study analyzed parts of the viral genes spanning the 5′ non- coding region (NCR) through to the viral protein (VP) encoding sequences of 105 HRV field isolates from 51 outpatient cases of Acute Respiratory Infectious Network (ARINET) and 54 inpatient cases of severe lower respiratory infection (SLRI) surveillance, in order to identify recombination in field samples. When analyzing parts of the 5′NCR and VP4/VP2 encoding sequences, we found intra- and interspecies recombinants in field strains of HRV-A and -C. Nineteen cases of recombination events (18.1%) were found among 105 field strains. For HRV-A, there were five cases (4.8%) of intraspecies recombination events and three cases (2.8%) of interspecies recombination events. For HRV-C, there were four cases (3.8%) of intraspecies recombination events and seven cases (6.7%) of interspecies recombination events. Recombination events were significantly more frequently observed in the ARINET samples (18 cases) than in the SLRI samples (1 case; P< 0.0001). The recombination breakpoints were located in nucleotides (nt) 472–554, which comprise stem-loop 5 in the internal ribosomal entry site (IRES), based on the HRV-B 35 sequence (accession no. FJ445187). Our findings regarding genomic recombination in circulating HRV-A and -C strains suggest that recombination might play a role in HRV fitness and could be a possible determinant of disease severity caused by various HRV infections in patients with ARI.
Collapse
|
30
|
Tokarz R, Haq S, Sameroff S, Howie SRC, Lipkin WI. Genomic analysis of coxsackieviruses A1, A19, A22, enteroviruses 113 and 104: viruses representing two clades with distinct tropism within enterovirus C. J Gen Virol 2013; 94:1995-2004. [PMID: 23761409 DOI: 10.1099/vir.0.053462-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coxsackieviruses (CV) A1, CV-A19 and CV-A22 have historically comprised a distinct phylogenetic clade within Enterovirus (EV) C. Several novel serotypes that are genetically similar to these three viruses have been recently discovered and characterized. Here, we report the coding sequence analysis of two genotypes of a previously uncharacterized serotype EV-C113 from Bangladesh and demonstrate that it is most similar to CV-A22 and EV-C116 within the capsid region. We sequenced novel genotypes of CV-A1, CV-A19 and CV-A22 from Bangladesh and observed a high rate of recombination within this group. We also report genomic analysis of the rarely reported EV-C104 circulating in the Gambia in 2009. All available EV-C104 sequences displayed a high degree of similarity within the structural genes but formed two clusters within the non-structural genes. One cluster included the recently reported EV-C117, suggesting an ancestral recombination between these two serotypes. Phylogenetic analysis of all available complete genome sequences indicated the existence of two subgroups within this distinct Enterovirus C clade: one has been exclusively recovered from gastrointestinal samples, while the other cluster has been implicated in respiratory disease.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Saddef Haq
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Stephen R C Howie
- Child Survival Theme, Medical Research Council Unit, Banjul, Fajara, Gambia
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| |
Collapse
|
31
|
Wu W, Xu WB, Chen L, Chen HL, Liu Q, Wang DL, Chen YJ, Yao W, Li G, Feng B, Shu BH, Zhou YK, He YQ. Molecular identification and analysis of human enteroviruses isolated from healthy children in Shenzhen, China from 2010 to 2011. PLoS One 2013; 8:e64889. [PMID: 23762262 PMCID: PMC3675095 DOI: 10.1371/journal.pone.0064889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/19/2013] [Indexed: 01/09/2023] Open
Abstract
Objective To determine the prevalence and distribution of human enteroviruses (HEVs) among healthy children in Shenzhen, China. Method Clinical specimens were obtained from 320 healthy children under 5 years old in Shenzhen, China from 2010 to 2011. The specimens were evaluated using real-time PCR and cell cultures. The positive specimens were further tested using reverse transcription-seminested PCR (RT-snPCR). Molecular typing and phylogenetic analysis were based on the sequence determined. Results Among the 320 samples, 34 were tested positive for HEVs (10.6%) and 22 different serotypes were identified using RT-snPCR. PV1 and PV2 were also detected. The predominant serotype observed was EV71 (17.6%), followed by CV-B4 (14.7%). HEV-B was detected most frequently, with an overall prevalence of 47.1%. HEV-A and HEV-C were found in 32.3% and 20.6% of the samples, respectively. No HEV-D was identified. Molecular phylogeny indicated that all EV71 strains were of C4 genotype. Conclusion Although a variety of HEVs was detected in healthy children, HEV-B was relatively more prevalent than other HEV species. Considering HEV-A is more prevalent than HEV-B among patients with hand-foot-mouth disease, additional long-term surveillance of HEV is warranted in both asymptomatic and symptomatic populations.
Collapse
Affiliation(s)
- Wei Wu
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Bo Xu
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Long Chen
- School of Life Sciences, Shenzhen University, Shenzhen, China
| | - Hui-Ling Chen
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qu Liu
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Dong-Li Wang
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Ying-Jian Chen
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Wei Yao
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Gang Li
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Bin Feng
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Bai-Hua Shu
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Kai Zhou
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (YKZ); (YQH)
| | - Ya-Qing He
- Shenzhen Center for Disease Control and Prevention, Major Infectious Disease Control Key Laboratory, Shenzhen, China
- * E-mail: (YKZ); (YQH)
| |
Collapse
|
32
|
McIntyre CL, Knowles NJ, Simmonds P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J Gen Virol 2013; 94:1791-1806. [PMID: 23677786 PMCID: PMC3749525 DOI: 10.1099/vir.0.053686-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human rhinoviruses (HRVs) frequently cause mild upper respiratory tract infections and more severe disease manifestations such as bronchiolitis and asthma exacerbations. HRV is classified into three species within the genus Enterovirus of the family Picornaviridae. HRV species A and B contain 75 and 25 serotypes identified by cross-neutralization assays, although the use of such assays for routine HRV typing is hampered by the large number of serotypes, replacement of virus isolation by molecular methods in HRV diagnosis and the poor or absent replication of HRV species C in cell culture. To address these problems, we propose an alternative, genotypic classification of HRV-based genetic relatedness analogous to that used for enteroviruses. Nucleotide distances between 384 complete VP1 sequences of currently assigned HRV (sero)types identified divergence thresholds of 13, 12 and 13 % for species A, B and C, respectively, that divided inter- and intra-type comparisons. These were paralleled by 10, 9.5 and 10 % thresholds in the larger dataset of >3800 VP4 region sequences. Assignments based on VP1 sequences led to minor revisions of existing type designations (such as the reclassification of serotype pairs, e.g. A8/A95 and A29/A44, as single serotypes) and the designation of new HRV types A101–106, B101–103 and C34–C51. A protocol for assignment and numbering of new HRV types using VP1 sequences and the restriction of VP4 sequence comparisons to type identification and provisional type assignments is proposed. Genotypic assignment and identification of HRV types will be of considerable value in the future investigation of type-associated differences in disease outcomes, transmission and epidemiology.
Collapse
Affiliation(s)
- Chloe L McIntyre
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH15 9RG, UK
| | - Nick J Knowles
- Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH15 9RG, UK
| |
Collapse
|
33
|
Zhao HB, Yin GY, Zhao GP, Huang AH, Wang JH, Yang SF, Gao HS, Kang WJ. Development of Loop-Mediated Isothermal Amplification (LAMP) for Universal Detection of Enteroviruses. Indian J Microbiol 2013; 54:80-6. [PMID: 24426171 DOI: 10.1007/s12088-013-0399-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/26/2013] [Indexed: 12/18/2022] Open
Abstract
Enteroviruses are found in most environments and cause several diseases in humans. Loop-mediated isothermal amplification (LAMP) was adapted and evaluated for the rapid detection of enteroviruses. Based on the highly conserved 5' untranslated region (5'-UTR) of the human enteroviruses (HEVs), particularly human enterovirus A (HEV-A) and HEV-B, a set of universal primers was designed. The LAMP amplification was carried out under isothermal conditions at 61 °C, depending on the template concentration results were obtained within 45-90 min. The detection limits were found to be 10(1) copies of cloned enterovirus 71 fragments, more sensitive than conventional PCR. Nine water samples collected from drinking water sources during three seasons and 19 stool specimens collected from HFMD patients were analyzed. By using the LAMP assay, the majority of samples was tested positive, 9/9 (100 %) and 18/19 (94.7 %), respectively. LAMP is a practical method for the rapid detection of enteroviruses in environmental and clinical samples.
Collapse
Affiliation(s)
- Hua-Bing Zhao
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Guang-Ya Yin
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Guo-Ping Zhao
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Ai-Hua Huang
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Jun-Hong Wang
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Shuang-Feng Yang
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Hong-Sheng Gao
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162 China
| | - Wei-Jun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050031 China
| |
Collapse
|
34
|
Identification and manipulation of the molecular determinants influencing poliovirus recombination. PLoS Pathog 2013; 9:e1003164. [PMID: 23408891 PMCID: PMC3567174 DOI: 10.1371/journal.ppat.1003164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
The control and prevention of communicable disease is directly impacted by the genetic mutability of the underlying etiological agents. In the case of RNA viruses, genetic recombination may impact public health by facilitating the generation of new viral strains with altered phenotypes and by compromising the genetic stability of live attenuated vaccines. The landscape of homologous recombination within a given RNA viral genome is thought to be influenced by several factors; however, a complete understanding of the genetic determinants of recombination is lacking. Here, we utilize gene synthesis and deep sequencing to create a detailed recombination map of the poliovirus 1 coding region. We identified over 50 thousand breakpoints throughout the genome, and we show the majority of breakpoints to be concentrated in a small number of specific "hotspots," including those associated with known or predicted RNA secondary structures. Nucleotide base composition was also found to be associated with recombination frequency, suggesting that recombination is modulated across the genome by predictable and alterable motifs. We tested the predictive utility of the nucleotide base composition association by generating an artificial hotspot in the poliovirus genome. Our results imply that modification of these motifs could be extended to whole genome re-designs for the development of recombination-deficient, genetically stable live vaccine strains.
Collapse
|
35
|
Transmission of human enterovirus 85 recombinants containing new unknown serotype HEV-B donor sequences in Xinjiang Uighur autonomous region, China. PLoS One 2013; 8:e55480. [PMID: 23383202 PMCID: PMC3561255 DOI: 10.1371/journal.pone.0055480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human enterovirus 85 (HEV85), whose prototype strain (Strain BAN00-10353/BAN/2000) was isolated in Bangladesh in 2000, is a recently identified serotype within the human enterovirus B (HEV-B) species. At present, only one nucleotide sequence of HEV85 (the complete genome sequence of the prototype strain) is available in the GenBank database. PRINCIPAL FINDINGS In this study, we report the genetic characteristics of 33 HEV85 isolates that circulated in the Xinjiang Uighur autonomous region of China in 2011. Sequence analysis revealed that all these Chinese HEV85 isolates belong to 2 transmission chains, and intertypic recombination was found with the new unknown serotype HEV-B donor sequences. Two HEV85 isolates recovered from a patient presenting acute flaccid paralysis and one of his contacts were temperature-insensitive strains, and some nucleotide substitutions in the non-coding regions and in the 2C or 3D coding regions may have affected the temperature sensitivity of HEV85 strains. CONCLUSIONS The Chinese HEV85 recombinant described in this study trapped a new unknown serotype HEV-B donor sequence, indicating that new unknown HEV-B serotypes exist or circulate in Xinjiang of China. Our study also indicated that HEV85 is a prevalent and common enterovirus serotype in Xinjiang.
Collapse
|
36
|
High frequency and diversity of species C enteroviruses in Cameroon and neighboring countries. J Clin Microbiol 2012; 51:759-70. [PMID: 23254123 DOI: 10.1128/jcm.02119-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human enteroviruses (HEVs) are endemic worldwide and among the most common viruses infecting humans. Nevertheless, there are very limited data on the circulation and genetic diversity of HEVs in developing countries and sub-Saharan Africa in particular. We investigated the circulation and genetic diversity of HEVs among 436 healthy children in a limited area of the far north region of Cameroon in 2008 and 2009. We also characterized the genetic biodiversity of 146 nonpolio enterovirus (NPEV) isolates obtained throughout the year 2008 from stool specimens of patients with acute flaccid paralysis (AFP) in Cameroon, Chad, and Gabon. We found a high rate of NPEV infections (36.9%) among healthy children in the far north region of Cameroon. Overall, 45 different HEV types were found among healthy children and AFP patients. Interestingly, this study uncovered a high rate of HEVs of species C (HEV-C) among all typed NPEVs: 63.1% (94/149) and 39.5% (49/124) in healthy children and AFP cases, respectively. Besides extensive circulation, the most prevalent HEV-C type, coxsackievirus A-13, featured a tremendous intratypic diversity. Africa-specific HEV lineages were discovered, including HEV-C lineages and the recently reported EV-A71 "genogroup E." Virtually all pathogenic circulating vaccine-derived polioviruses (cVDPVs) that have been fully characterized were recombinants between oral poliovaccine (OPV) strains and cocirculating HEV-C strains. The extensive circulation of diverse HEV-C types and lineages in countries where OPV is massively used constitutes a major viral factor that could promote the emergence of recombinant cVDPVs in the Central African subregion.
Collapse
|
37
|
Isolation and genomic characterization of three enterovirus 90 strains in Shandong, China. Arch Virol 2012; 158:479-83. [PMID: 23081679 DOI: 10.1007/s00705-012-1517-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Enterovirus 90 (EV90) is a newly identified serotype of the species Human enterovirus A, and few nucleotide sequences of EV90 are available. In this study, three EV90 strains were isolated from acute flaccid paralysis (AFP) cases in Shandong Province, China, in 2001 and 2003. Sequence analysis revealed 96.7-98.0 % VP1 nucleotide identity among themselves and 77.7-92.3 % to other EV90 strains. Complete genome analysis provided evidence of recombination in the non-capsid coding region of strain 01421. This is the first report of EV90 in China, and the low isolation rate suggests that it has not been a prevalent serotype in China.
Collapse
|
38
|
Evolutionary pattern of 5'-UTR of enteroviruses and primer update for the detection of enteroviral RNA in environmental samples. ASIAN PAC J TROP MED 2012; 5:703-8. [PMID: 22805721 DOI: 10.1016/s1995-7645(12)60110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/25/2012] [Accepted: 05/20/2012] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To study the recombination events among enterovirus strains and the development of specific primers for the detection of enteroviruses in environmental samples. METHODS Nucleotide sequence analysis of enteroviruses deposited in the international database GenBank (www.ncbi.nlm.nih.gov/Genbank) was conducted to develop specific primers for the detection of these viruses. The specificity and sensitivity of the method were tested using coxackievirus B3 strain Nancy, environmental isolate of human hepatitis A virus and human rotavirus strain WA. Seventy sewage samples were analyzed. RESULTS Enterovirus genome was detected in all positive samples. The genome of enterovirus was not detected in negative samples. The level of detection of these viruses was 10(2) TCID(50)/mL. CONCLUSIONS The development of new primers is an important issue for the detection of enteroviruses in the environment and the assessment of risk factors to human health.
Collapse
|
39
|
Boros Á, Pankovics P, Knowles NJ, Reuter G. Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 2012; 93:1941-1951. [DOI: 10.1099/vir.0.041335-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5′ UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5′ UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Nick J. Knowles
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| |
Collapse
|
40
|
Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, Gmyl AP, Grard G, Taty Taty R, Trotsenko OE, Leroy EM, Drosten C. Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. J Gen Virol 2012; 93:2357-2362. [PMID: 22894922 DOI: 10.1099/vir.0.043216-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The full coding sequences of two novel human enterovirus (HEV)-C serotypes 105 and 116, sampled in the Republic of the Congo in 2010 and in Russia in 2011, were identified in this study. Enterovirus (EV)-105 was closest to EV-104 in the 5' NTR and to EV-109 in the coding genome region. It had the same unconventional 5' NTR as EV-104 and EV-109. The non-cytopathogenic EV-116 was phylogenetically close to coxsackievirus (CV)-A1, CV-A19 and CV-A22, which also cannot be propagated in routinely used cell cultures. There were signs of recombination within this subgroup of HEV-C; however, recombination with conventional HEV-C was restricted, implying partial reproductive isolation. As there is also evidence of different permissive replication systems and distinct genetic properties of these subgroups, they may represent subspecies of the HEV-C species or different stages of speciation.
Collapse
Affiliation(s)
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeria O Kotova
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Elena N Amjaga
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Vadim I Reznik
- Center of Hygiene and Epidemiology in Khabarovsk Region, Khabarovsk, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Gilda Grard
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Raphael Taty Taty
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Olga E Trotsenko
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
41
|
Harvala H, McIntyre CL, Imai N, Clasper L, Djoko CF, LeBreton M, Vermeulen M, Saville A, Mutapi F, Tamoufé U, Kiyang J, Biblia TG, Midzi N, Mduluza T, Pépin J, Njouom R, Njoum R, Smura T, Fair JN, Wolfe ND, Roivainen M, Simmonds P. High seroprevalence of enterovirus infections in apes and old world monkeys. Emerg Infect Dis 2012; 18:283-6. [PMID: 22305156 PMCID: PMC3310466 DOI: 10.3201/eid1802.111363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To estimate population exposure of apes and Old World monkeys in Africa to enteroviruses (EVs), we conducted a seroepidemiologic study of serotype-specific neutralizing antibodies against 3 EV types. Detection of species A, B, and D EVs infecting wild chimpanzees demonstrates their potential widespread circulation in primates.
Collapse
Affiliation(s)
- Heli Harvala
- Royal Infirmary of Edinburgh, Edinburgh, Scotland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang J, Zhang Y, Hong M, Li X, Zhu S, Yan D, Wang D, An H, Tsewang, Han J, Xu W. Isolation and characterization of a Chinese strain of human enterovirus 74 from a healthy child in the Tibet Autonomous Region of China. Arch Virol 2012; 157:1593-8. [PMID: 22576315 DOI: 10.1007/s00705-012-1332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Human enterovirus 74 (HEV74) is a recently described serotype within the species Human enterovirus B (HEV-B). Few nucleotide sequences of HEV74 are available, and only one complete genome sequence (the prototype strain) has been published. In this study, we report the complete genome sequence of an HEV74 strain isolated from a healthy child during a stool survey in the Tibet Autonomous Region of China. The results indicated that HEV74 may be a prevalent and common enterovirus type, and that HEV74 is globally distributed, especially in Asia. Sequence analysis revealed high variability among HEV74 strains and indicated frequent recombination within HEV-B.
Collapse
Affiliation(s)
- Jitao Wang
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Molecular identification of an enterovirus 99 strain in Spain. Arch Virol 2011; 157:551-4. [PMID: 22193975 DOI: 10.1007/s00705-011-1207-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Enterovirus 99 is a recently described genotype of virus belonging to the species Human enterovirus C. So far, only a few sequences of this enterovirus type have been available. In 2010, during Spanish enterovirus surveillance, an enterovirus 99 strain was found in an acute flaccid paralysis patient. The virus was detected and typed in the clinical samples using molecular methods. Phylogenetic analysis in the 3Dpol region revealed recombination events with other species-C enteroviruses. This is the first finding of this unusual type in Spain.
Collapse
|
44
|
A distinct class of internal ribosomal entry site in members of the Kobuvirus and proposed Salivirus and Paraturdivirus genera of the Picornaviridae. J Virol 2011; 86:1468-86. [PMID: 22114340 DOI: 10.1128/jvi.05862-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The 5'-untranslated regions (5' UTRs) of picornavirus genomes contain an internal ribosomal entry site (IRES) that promotes the end-independent initiation of translation. Picornavirus IRESs are classified into four structurally distinct groups, each with different initiation factor requirements. Here, we identify a fifth IRES class in members of Kobuvirus, Salivirus, and Paraturdivirus genera of Picornaviridae: Aichi virus (AV), bovine kobuvirus (BKV), canine kobuvirus (CKoV), mouse kobuvirus (MKoV), sheep kobuvirus (SKV), salivirus A (SV-A), turdivirus 2 (TV2), and TV3. The 410-nucleotide (nt)-long AV IRES comprises four domains (I to L), including a hairpin (L) that overlaps a Yn-Xm-AUG (pyrimidine tract/spacer/initiation codon) motif. SV-A, CKoV, and MKoV also contain these four domains, whereas BKV, SKV, and TV2/TV3 5' UTRs contain domains that are related to domain I and equivalent to domains J and K but lack an AV-like domain L. These IRESs are located at different relative positions between a conserved 5'-terminal origin of replication and divergent coding sequences. Elements in these IRESs also occur elsewhere: domain J's apical subdomain, which contains a GNRA tetraloop, matches an element in type 1 IRESs, and eIF4G-binding motifs in domain K and in type 2 IRESs are identical. Other elements are unique, and their presence leads to unique initiation factor requirements. In vitro reconstitution experiments showed that like AV, but in contrast to other currently characterized IRESs, SV-A requires the DExH-box protein DHX29 during initiation, which likely ensures that the initiation codon sequestered in domain L is properly accommodated in the ribosomal mRNA-binding cleft.
Collapse
|
45
|
Schibler M, Gerlach D, Martinez Y, Van Belle S, Turin L, Kaiser L, Tapparel C. Experimental human rhinovirus and enterovirus interspecies recombination. J Gen Virol 2011; 93:93-101. [PMID: 21940413 DOI: 10.1099/vir.0.035808-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human rhinoviruses (HRVs) and enteroviruses (HEVs), two important human pathogens, are non-enveloped, positive-sense RNA viruses of the genus Enterovirus within the family Picornaviridae. Intraspecies recombination is known as a driving force for enterovirus and, to a lesser extent, rhinovirus evolution. Interspecies recombination is much less frequent among circulating strains, and supporting evidence for such recombination is limited to ancestral events, as shown by recent phylogenetic analyses reporting ancient HRV-A/HRV-C, HEV-A/HEV-C and HEV-A/HEV-D recombination mainly at the 5'-untranslated region (5' UTR)-polyprotein junction. In this study, chimeric genomes were artificially generated using the 5' UTR from two different clinical HRV-C strains (HRV-Ca and HRV-Cc), an HRV-B strain (HRV-B37) and an HEV-A strain (HEV-A71), and the remaining part of the genome from an HRV-A strain (HRV-A16). Whilst the chimeric viruses were easily propagated in cell culture, the wild-type HRV-A16 retained a replication advantage, both individually and in competition experiments. Assessment of protein synthesis ability did not show a correlation between translation and replication efficiencies. These results reflect the interchangeability of the 5' UTR, including its functional RNA structural elements implicated in both genome translation and replication among different enterovirus species. The 5' UTR-polyprotein junction therefore represents a theoretic interspecies recombination breakpoint. This recombination potential is probably restricted by the need for co-infection opportunities and the requirement for the progeny chimera to outcompete the parental genomes' fitness, explaining the rare occurrence of such events in vivo.
Collapse
Affiliation(s)
- Manuel Schibler
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Daniel Gerlach
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Yannick Martinez
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Van Belle
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Lara Turin
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland
| |
Collapse
|
46
|
Xu A, Tao Z, Wang H, Zhang Y, Song L, Li Y, Liu G, Liu Y, Yang H, Fan Q, Ji F, Zhang Y, Yang J, Feng L, Xu W, Zhao Z. The complete genome analysis of two enterovirus 96 strains isolated in China in 2005 and 2009. Virus Genes 2011; 42:323-30. [PMID: 21318238 DOI: 10.1007/s11262-011-0584-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/31/2011] [Indexed: 11/26/2022]
Abstract
Enterovirus 96 (EV96) is a new member of species Human Enterovirus C (HEV-C). In this report, genomic characterization of two EV96 strains isolated from acute flaccid paralysis surveillance in Shandong province of China in 2005 and 2009 is described. The two strains, designated 05517 and 09228C1, had 82.7% genomic similarity with each other and 75.1-84.2% with other three strains available from GenBank in complete genome sequences. In VP1 coding region, they had 77.6-86.6% nucleotide similarity with other EV96 strains. Interestingly, deletions of 3 nucleotides in the VP3 coding region of strain 09228C1, and of 3 nucleotides in the 3A region of both Shandong strains were observed. Simplot and bootscanning analysis on HEV-C genome sequences were performed, and evidence of recombination in P3 region for Shandong EV96 strains was found. In conclusion, these strains had distant genetic relationship with each other and with other EV96 strains.
Collapse
Affiliation(s)
- Aiqiang Xu
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Several new enterovirus serotypes and a new human rhinovirus species have been characterized in the Enterovirus genus recently, raising a question about the origin of the new viruses. In this article we attempt to outline the general patterns of enterovirus evolution, ultimately leading to the emergence of new serotypes or species. Different evolutionary and epidemiological patterns can be deduced between different enterovirus species, between entero- and rhino-viruses and between different serotypes within a species. This article presents a hypothesis that the divergent evolution leading to a new serotype is likely to involve adaptation to a new ecological niche either within a single host species or due to interspecies transmission. By contrast, evolution within a serotype appears to occur primarily by genetic drift.
Collapse
Affiliation(s)
| | - Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
48
|
Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol 2010; 84:9047-58. [PMID: 20592079 DOI: 10.1128/jvi.00698-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Enteroviruses (Picornaviridae family) are a common cause of human illness worldwide and are associated with diverse clinical syndromes, including asymptomatic infection, respiratory illness, gastroenteritis, and meningitis. In this study, we report the identification and complete genome sequence of a novel enterovirus isolated from a case of acute respiratory illness in a Nicaraguan child. Unbiased deep sequencing of nucleic acids from a nose and throat swab sample enabled rapid recovery of the full-genome sequence. Phylogenetic analysis revealed that human enterovirus 109 (EV109) is most closely related to serotypes of human enterovirus species C (HEV-C) in all genomic regions except the 5' untranslated region (5' UTR). Bootstrap analysis indicates that the 5' UTR of EV109 is likely the product of an interspecies recombination event between ancestral members of the HEV-A and HEV-C groups. Overall, the EV109 coding region shares 67 to 72% nucleotide sequence identity with its nearest relatives. EV109 isolates were detected in 5/310 (1.6%) of nose and throat swab samples collected from children in a pediatric cohort study of influenza-like illness in Managua, Nicaragua, between June 2007 and June 2008. Further experimentation is required to more fully characterize the pathogenic role, disease associations, and global distribution of EV109.
Collapse
|
49
|
Tao Z, Cui N, Xu A, Wang H, Song L, Li Y, Liu G, Liu Y, Feng L. Genomic characterization of an enterovirus 97 strain isolated in Shandong, China. Virus Genes 2010; 41:158-64. [PMID: 20532813 DOI: 10.1007/s11262-010-0496-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
The genomic characterization of human enterovirus 97 (EV97) strain isolated from an acute flaccid paralysis case in Shandong province, China in 1999, is described. The strain, designated as 99188/SD/CHN/1999/EV97 (abbreviated as 99188), had a genome of 7394 nucleotides. Compared with other EV97 strains, it had 81.3-83.3% nucleotide similarity and 94.0-95.4% amino acid similarity in VP1 coding region, and it had 81.4% complete genomic similarity with prototype strain BAN99-10355. The most striking feature was the deletion of 18 nucleotides in the 3' end of VP1 coding region, combined with two deletions and one insertion in 5' and 3' untranslated regions. All these findings demonstrated the strain 99188 had a distant genetic relationship with other EV97 strains. In the phylogenetic trees generated from VP1 and 3D sequences of human enterovirus species B (HEV-B), the lineages of strain 99188 were not congruent, suggesting the event of recombination. Similarity plot analysis further provided the evidence of recombination with other strains of HEV-B in P2 and P3 coding region. This is the first finding of EV97 in China and the third genomic sequence of EV97 reported.
Collapse
Affiliation(s)
- Zexin Tao
- Division of EPI, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo L, Xu X, Song J, Wang W, Wang J, Hung T. Molecular characterization of astrovirus infection in children with diarrhea in Beijing, 2005-2007. J Med Virol 2010; 82:415-23. [PMID: 20087940 PMCID: PMC7166319 DOI: 10.1002/jmv.21729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human astroviruses (HAstVs) have been recognized as one of the major causes of acute gastroenteritis in children. To provide more insight into the prevalence of HAstV gastroenteritis in China, 664 fecal samples were collected from children affected with acute gastroenteritis in Beijing from March 2005 to November 2007. The samples were analyzed genetically. All eight serotypes (genotypes) of HAstVs were screened using RT-PCR assays targeting the ORF2 region in the study. The assays detected HAstVs in 52 (7.8%) of the patients, with HAstV-1 (50/52) being the dominant genotype during the study period. Two minor genotypes, HAstV-6 and HAstV-3, were also detected. Partial sequencing of the 50 HAstV-1 strains showed that the homology of the nucleotide sequence of the ORF1a region between these strains was 88.4-100%, whereas the homology of the amino acid sequences was 95.6-100%. In the ORF2 partial region, the nucleotide identities ranged from 91.5% to 100%, and amino acid identities ranged from 97.3% to 100%. The identity of the whole genome sequence between four randomly examined HAstV-1 strains was 91-99%. No recombination events were observed in HAstVs in this study. The findings of this study will provide baseline data for HAstVs surveillance and control. J. Med. Virol. 82:415-423, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|