1
|
Yasui F, Munekata K, Fujiyuki T, Kuraishi T, Yamaji K, Honda T, Gomi S, Yoneda M, Sanada T, Ishii K, Sakoda Y, Kida H, Hattori S, Kai C, Kohara M. Single Dose of Attenuated Vaccinia Viruses Expressing H5 Hemagglutinin Affords Rapid and Long-Term Protection Against Lethal Infection with Highly Pathogenic Avian Influenza A H5N1 Virus in Mice and Monkeys. Vaccines (Basel) 2025; 13:74. [PMID: 39852853 PMCID: PMC11769126 DOI: 10.3390/vaccines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved. METHODS To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors. RESULTS rLC16m8-mcl2.2 hemagglutinin (HA) and rLC16m8-mcl2.3.4 HA consisted of a recombinant LC16m8 vector encoding the HA protein from clade 2.2 or clade 2.3.4 viruses (respectively); rDIs-mcl2.2 HA consisted of a recombinant DIs vector encoding the HA protein from clade 2.2. A single dose of rLC16m8-mcl2.2 HA showed rapid (1 week after vaccination) and long-term protection (20 months post-vaccination) in mice against the HPAI H5N1 virus. Moreover, cynomolgus macaques immunized with rLC16m8-mcl2.2 HA exhibited long-term protection when challenged with a heterologous clade of the HPAI H5N1 virus. Although the DIs strain is unable to grow in most mammalian cells, rDIs-mcl2.2 HA also showed rapid and long-lasting effects against HPAI H5N1 virus infection. Notably, the protective efficacy of rDIs-mcl2.2 HA was comparable to that of rLC16m8-mcl2.2 HA. Furthermore, these vaccines protected animals previously immunized with VACVs from a lethal challenge with the HPAI H5N1 virus. CONCLUSIONS These results suggest that both rLC16m8-mcl2.2 HA and rDIs-mcl2.2 HA are effective in preventing HPAI H5N1 virus infection, and rDIs-mcl2.2 HA is a promising vaccine candidate against H5 HA-subtype viruses.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takeshi Kuraishi
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sumiko Gomi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Misako Yoneda
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Koji Ishii
- Center for Quality Management Systems, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Shosaku Hattori
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
2
|
Abidi S, Elhazaz Fernandez A, Seehase N, Hanisch L, Karlas A, Sandig V, Jordan I. Expression of an Efficient Selection Marker Out of a Duplicated Site in the ITRs of a Modified Vaccinia Virus Ankara (MVA). Vaccines (Basel) 2024; 12:1377. [PMID: 39772039 PMCID: PMC11680203 DOI: 10.3390/vaccines12121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs). With this expansion, a site in wildtype MVA, called deletion site (DS) IV, has been duplicated at both ends of the genome and now occupies an almost central position in the newly formed ITRs. Methods: We inserted various reporter genes into this site and found that the ITRs can be used for transgene expression. However, ITRs are genomic structures that can rapidly adapt to selective pressure through transient duplication and contraction. To test the potential utility of insertions into viral telomers, we inserted a factor from the cellular innate immune system that interferes with viral replication as an example of a difficult transgene. Results: A site almost in the centre of the ITRs can be used for transgene expression, and both sides are mirrored into identical copies. The example of a challenging transgene, tetherin, proved to be surprisingly efficient in selecting candidate vectors against the large background of parental viruses. Conclusions: Insertion of transgenes into ITRs automatically doubles the gene doses. The functionalisation of viruses with tetherin may accelerate the identification and generation of recombinant vectors for personalised medicine and pandemic preparedness.
Collapse
Affiliation(s)
- Sirine Abidi
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Aurora Elhazaz Fernandez
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Nicole Seehase
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Tentamus Pharma & Med Deutschland GmbH, 76149 Karlsruhe, Germany
| | - Lina Hanisch
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Alexander Karlas
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Volker Sandig
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Ingo Jordan
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| |
Collapse
|
3
|
Rojas JJ, Van Hoecke L, Conesa M, Bueno-Merino C, Del Canizo A, Riederer S, Barcia M, Brosinski K, Lehmann MH, Volz A, Saelens X, Sutter G. A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses. Mol Ther 2024; 32:2406-2422. [PMID: 38734899 PMCID: PMC11286824 DOI: 10.1016/j.ymthe.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.
Collapse
Affiliation(s)
- Juan J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain; Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany.
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Miquel Conesa
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Carmen Bueno-Merino
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Stephanie Riederer
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Maria Barcia
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Katrin Brosinski
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Michael H Lehmann
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Asisa Volz
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Gerd Sutter
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| |
Collapse
|
4
|
Yll-Pico M, Park Y, Martinez J, Iniguez A, Kha M, Kim T, Medrano L, Nguyen VH, Kaltcheva T, Dempsey S, Chiuppesi F, Wussow F, Diamond DJ. Highly stable and immunogenic CMV T cell vaccine candidate developed using a synthetic MVA platform. NPJ Vaccines 2024; 9:68. [PMID: 38555379 PMCID: PMC10981716 DOI: 10.1038/s41541-024-00859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production. Using a recently developed fully synthetic MVA (sMVA) platform, we developed a new generation Triplex vaccine candidate, T10-F10, with different sequence modifications for enhanced vaccine stability. T10-F10 demonstrated genetic and expression stability during extensive virus passaging. In addition, we show that T10-F10 confers comparable immunogenicity to the original Triplex vaccine to elicit antigen-specific T cell responses in HLA-transgenic mice. These results demonstrate improvements in translational vaccine properties of an sMVA-based CMV vaccine candidate designed as a therapeutic treatment for transplant recipients.
Collapse
Affiliation(s)
- Marcal Yll-Pico
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA.
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Taehyun Kim
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonard Medrano
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Shannon Dempsey
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
5
|
Seo D, Brito Oliveira S, Rex EA, Ye X, Rice LM, da Fonseca FG, Gammon DB. Poxvirus A51R proteins regulate microtubule stability and antagonize a cell-intrinsic antiviral response. Cell Rep 2024; 43:113882. [PMID: 38457341 PMCID: PMC11023057 DOI: 10.1016/j.celrep.2024.113882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.
Collapse
Affiliation(s)
- Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabrynna Brito Oliveira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
7
|
Genetic ancestry and population structure of vaccinia virus. NPJ Vaccines 2022; 7:92. [PMID: 35953491 PMCID: PMC9372083 DOI: 10.1038/s41541-022-00519-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccinia virus (VACV) was used for smallpox eradication, but its ultimate origin remains unknown. The genetic relationships among vaccine stocks are also poorly understood. We analyzed 63 vaccine strains with different origin, as well horsepox virus (HPXV). Results indicated the genetic diversity of VACV is intermediate between variola and cowpox viruses, and that mutation contributed more than recombination to VACV evolution. STRUCTURE identified 9 contributing subpopulations and showed that the lowest drift was experienced by the ancestry components of Tian Tan and HPXV/Mütter/Mulford genomes. Subpopulations that experienced very strong drift include those that contributed the ancestry of MVA and IHD-W, in good agreement with the very long passage history of these vaccines. Another highly drifted population contributed the full ancestry of viruses sampled from human/cattle infections in Brazil and, partially, to IOC clones, strongly suggesting that the recurrent infections in Brazil derive from the spillback of IOC to the feral state.
Collapse
|
8
|
Hood AJM, Sumner RP, Maluquer de Motes C. Disruption of the cGAS/STING axis does not impair sensing of MVA in BHK21 cells. J Gen Virol 2022; 103. [PMID: 35584007 DOI: 10.1099/jgv.0.001755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is an attenuated strain of vaccinia virus (VACV), a dsDNA virus that replicates its genome in the cytoplasm and as a result is canonically sensed by the cyclic GMP-AMP synthase (cGAS) and its downstream stimulator of interferon genes (STING). MVA has a highly restricted host range due to major deletions in its genome including inactivation of immunomodulatory genes, only being able to grow in avian cells and the hamster cell line BHK21. Here we studied the interplay between MVA and the cGAS/STING DNA in this permissive cell line and determined whether manipulation of this axis could impact MVA replication and cell responses. We demonstrate that BHK21 cells retain a functional cGAS/STING axis that responds to canonical DNA sensing agonists, upregulating interferon stimulated genes (ISGs). BHK21 cells also respond to MVA, but with a distinct ISG profile. This profile remains unaltered after CRISPR/Cas9 knock-out editing of STING and ablation of cytosolic DNA responses, indicating that MVA responses are independent of the cGAS/STING axis. Furthermore, infection by MVA diminishes the ability of BHK21 cells to respond to exogenous DNA suggesting that MVA still encodes uncharacterised inhibitors of DNA sensing. This suggests that using attenuated strains in permissive cell lines may assist in identification of novel host-virus interactions that may be of relevance to disease or the therapeutic applications of poxviruses.
Collapse
Affiliation(s)
- Alasdair J M Hood
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
9
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
10
|
García-Arriaza J, Esteban M, López D. Modified Vaccinia Virus Ankara as a Viral Vector for Vaccine Candidates against Chikungunya Virus. Biomedicines 2021; 9:biomedicines9091122. [PMID: 34572308 PMCID: PMC8466845 DOI: 10.3390/biomedicines9091122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
There is a need to develop a highly effective vaccine against the emerging chikungunya virus (CHIKV), a mosquito-borne Alphavirus that causes severe disease in humans consisting of acute febrile illness, followed by chronic debilitating polyarthralgia and polyarthritis. In this review, we provide a brief history of the development of the first poxvirus vaccines that led to smallpox eradication and its implications for further vaccine development. As an example, we summarize the development of vaccine candidates based on the modified vaccinia virus Ankara (MVA) vector expressing different CHIKV structural proteins, paying special attention to MVA-CHIKV expressing all of the CHIKV structural proteins: C, E3, E2, 6K and E1. We review the characterization of innate and adaptive immune responses induced in mice and nonhuman primates by the MVA-CHIKV vaccine candidate and examine its efficacy in animal models, with promising preclinical findings needed prior to the approval of human clinical trials.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
- Correspondence: (J.G.-A.); (M.E.); (D.L.)
| |
Collapse
|
11
|
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021; 13:v13061146. [PMID: 34203773 PMCID: PMC8232671 DOI: 10.3390/v13061146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.
Collapse
Affiliation(s)
- Carla Mavian
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany;
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
- Correspondence:
| |
Collapse
|
12
|
Volkmann A, Williamson AL, Weidenthaler H, Meyer TPH, Robertson JS, Excler JL, Condit RC, Evans E, Smith ER, Kim D, Chen RT. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39:3067-3080. [PMID: 33077299 PMCID: PMC7568176 DOI: 10.1016/j.vaccine.2020.08.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara (MVA) vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebolavirus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence to replicate in human cells. MVA has six major deletions and other mutations of genes outside these deletions, which all contribute to the replication deficiency in human and other mammalian cells. Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines. MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vaccinees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has undergone clinical testing including Phase III in West Africa and is currently in use in large scale vaccination studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to provide solutions to prevent disease from high-consequence human pathogens.
Collapse
Affiliation(s)
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine at the University of Cape Town, South Africa
| | | | | | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric Evans
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
13
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
14
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park Y, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt ND, Kang TH, Wu X, Rogers TF, Manuel ER, Shostak Y, Diamond DJ, Wussow F. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 2020; 11:6121. [PMID: 33257686 PMCID: PMC7705736 DOI: 10.1038/s41467-020-19819-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. We show that mice immunized with these sMVA vectors develop robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Marcela d'Alincourt Salazar
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Qiao Zhou
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Roman Levytskyy
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Tae Hyuk Kang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Thomas F Rogers
- Division of Infectious Diseases and Global Public Health, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Scripps Research, Department of Immunology and Microbiology, 10550N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yuriy Shostak
- Research Business Development, City of Hope, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
16
|
Inactivation of Genes by Frameshift Mutations Provides Rapid Adaptation of an Attenuated Vaccinia Virus. J Virol 2020; 94:JVI.01053-20. [PMID: 32669330 DOI: 10.1128/jvi.01053-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios.IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.
Collapse
|
17
|
Zinc-finger antiviral protein (ZAP) is a restriction factor for replication of modified vaccinia virus Ankara (MVA) in human cells. PLoS Pathog 2020; 16:e1008845. [PMID: 32866210 PMCID: PMC7485971 DOI: 10.1371/journal.ppat.1008845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is an approved smallpox vaccine and a promising vaccine vector for other pathogens as well as for cancer therapeutics with more than 200 current or completed clinical trials. MVA was derived by passaging the parental Ankara vaccine virus hundreds of times in chick embryo fibroblasts during which it lost the ability to replicate in human and most other mammalian cells. Although this replication deficiency is an important safety feature, the genetic basis of the host restriction is not understood. Here, an unbiased human genome-wide RNAi screen in human A549 cells revealed that the zinc-finger antiviral protein (ZAP), previously shown to inhibit certain RNA viruses, is a host restriction factor for MVA, a DNA virus. Additional studies demonstrated enhanced MVA replication in several human cell lines following knockdown of ZAP. Furthermore, CRISPR-Cas9 knockout of ZAP in human A549 cells increased MVA replication and spread by more than one log but had no effect on a non-attenuated strain of vaccinia virus. The intact viral C16 protein, which had been disrupted in MVA, antagonized ZAP by binding and sequestering the protein in cytoplasmic punctate structures. Studies aimed at exploring the mechanism by which ZAP restricts MVA replication in the absence of C16 showed that knockout of ZAP had no discernible effect on viral DNA or individual mRNA or protein species as determined by droplet digital polymerase chain reaction, deep RNA sequencing and mass spectrometry, respectively. Instead, inactivation of ZAP reduced the number of aberrant, dense, spherical particles that typically form in MVA-infected human cells, suggesting that ZAP has a novel role in interfering with a late step in the assembly of infectious MVA virions in the absence of the C16 protein. The attenuated vaccine vector known as modified vaccinia virus Ankara (MVA) was derived by extensively passaging the parental strain of vaccinia virus Ankara in chick embryo fibroblasts and is unable to replicate in most mammalian cells. The MVA host range restriction is exceptional in that synthesis of the abundant viral proteins appears unaffected but morphogenesis of virus particles is abortive. Despite the importance of the host range restriction for vaccine safety, the basis for this antiviral effect has remained an enigma. Here we demonstrate that the zinc finger antiviral protein (ZAP), previously shown to be an inhibitor of RNA viruses, is a specific host restriction factor for replication of MVA in human cells. Moreover, the intact vaccinia virus C16 protein, which was disrupted during the attenuation of MVA, sequesters ZAP in cytoplasmic punctae and effectively counteracts the inhibitory effects of ZAP.
Collapse
|
18
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen V, Martinez J, Park S, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt N, Kang T, Wu X, Rogers T, Manuel E, Shostak Y, Diamond D, Wussow F. Development of a Multi-Antigenic SARS-CoV-2 Vaccine Using a Synthetic Poxvirus Platform. RESEARCH SQUARE 2020:rs.3.rs-40198. [PMID: 32702732 PMCID: PMC7373143 DOI: 10.21203/rs.3.rs-40198/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Tae Kang
- Beckman Research Institute of City of Hope
| | - Xiwei Wu
- Beckman Research Institute of City of Hope
| | | | | | | | | | | |
Collapse
|
19
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park S, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt ND, Kang TH, Wu X, Rogers T, Manuel ER, Shostak Y, Diamond DJ, Wussow F. Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.01.183236. [PMID: 32637957 PMCID: PMC7337387 DOI: 10.1101/2020.07.01.183236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | | | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Soojin Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Qiao Zhou
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Roman Levytskyy
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Tae Hyuk Kang
- Department of Genomic core facility, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Xiwei Wu
- Department of Genomic core facility, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Thomas Rogers
- University of California San Diego, School of Medicine, Division of Infectious Diseases and Global Public Health, 9500 Gilman Dr, La Jolla, CA 92093; Scripps Research, Department of Immunology and Microbiology, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Yuriy Shostak
- Research Business Development, City of Hope, Duarte CA 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| |
Collapse
|
20
|
Esparza J, Lederman S, Nitsche A, Damaso CR. Early smallpox vaccine manufacturing in the United States: Introduction of the "animal vaccine" in 1870, establishment of "vaccine farms", and the beginnings of the vaccine industry. Vaccine 2020; 38:4773-4779. [PMID: 32473878 PMCID: PMC7294234 DOI: 10.1016/j.vaccine.2020.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
For the first 80-90 years after Jenner's discovery of vaccination in 1796, the main strategy used to disseminate and maintain the smallpox vaccine was arm-to-arm vaccination, also known as Jennerian or humanized vaccination. A major advance occurred after 1860 with the development of what was known as "animal vaccine", which referred to growing vaccine material from serial propagation in calves before use in humans. The use of "animal vaccine" had several advantages over arm-to-arm vaccination: it would not transmit syphilis or other human diseases, it ensured a supply of vaccine even in the absence of the spontaneous occurrence of cases of cowpox or horsepox, and it allowed the production of large amounts of vaccine. The "animal vaccine" concept was introduced in the United States in 1870 by Henry Austin Martin. Very rapidly a number of "vaccine farms" were established in the U.S. and produced large quantities of "animal vaccine". These "vaccine farms" were mostly established by medical doctors who saw an opportunity to respond to an increasing demand of smallpox vaccine from individuals and from health authorities, and to make a profit. The "vaccine farms" evolved from producing only smallpox "animal vaccine" to manufacturing several other biologics, including diphtheria- and other antitoxins. Two major incidents of tetanus contamination happened in 1901, which led to the promulgation of the Biologics Control Act of 1902. The US Secretary of the Treasury issued licenses to produce and sell biologicals, mainly vaccines and antitoxins. Through several mergers and acquisitions, the initial biologics licensees eventually evolved into some of the current major American industrial vaccine companies. An important aspect that was never clarified was the source of the vaccine stocks used to manufacture the smallpox "animal vaccines". Most likely, different smallpox vaccine stocks were repeatedly introduced from Europe, resulting in polyclonal vaccines that are now recognized as "variants" more appropriately than "strains". Further, clonal analysis of modern "animal vaccines" indicate that they are probably derived from complex recombinational events between different strains of vaccinia and horsepox. Modern sequencing technologies are now been used by us to study old smallpox vaccine specimens in an effort to better understand the origin and evolution of the vaccines that were used to eradicate the smallpox.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Targeting of the cGAS-STING system by DNA viruses. Biochem Pharmacol 2020; 174:113831. [DOI: 10.1016/j.bcp.2020.113831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
|
22
|
Repair of a previously uncharacterized second host-range gene contributes to full replication of modified vaccinia virus Ankara (MVA) in human cells. Proc Natl Acad Sci U S A 2020; 117:3759-3767. [PMID: 32019881 DOI: 10.1073/pnas.1921098117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA), a widely used vaccine vector for expression of genes of unrelated pathogens, is safe, immunogenic, and can incorporate large amounts of added DNA. MVA was derived by extensively passaging the chorioallantois vaccinia virus Ankara (CVA) vaccine strain in chicken embryo fibroblasts during which numerous mutations and deletions occurred with loss of replicative ability in most mammalian cells. Restoration of the deleted C12L gene, encoding serine protease inhibitor 1, enhances replication of MVA in human MRC-5 cells but only slightly in other human cells. Here we show that repair of the inactivated C16L/B22R gene of MVA enhances replication in numerous human cell lines. This previously uncharacterized gene is present at both ends of the genome of many orthopoxviruses and is highly conserved in most, including smallpox and monkeypox viruses. The C16L/B22R gene is expressed early in infection from the second methionine of the previously annotated Copenhagen strain open reading frame (ORF) as a 17.4-kDa protein. The C16/B22 and C12 proteins together promote MVA replication in human cells to levels that are comparable to titers in chicken embryo fibroblasts. Both proteins enhance virion assembly, but C16/B22 increases proteolytic processing of core proteins in A549 cells consistent with higher infectious virus titers. Furthermore, human A549 cells expressing codon-optimized C16L/B22R and C12L genes support higher levels of MVA replication than cell lines expressing neither or either alone. Identification of the genes responsible for the host-range defect of MVA may allow more rational engineering of vaccines for efficacy, safety, and propagation.
Collapse
|
23
|
Jordan I, Horn D, Thiele K, Haag L, Fiddeke K, Sandig V. A Deleted Deletion Site in a New Vector Strain and Exceptional Genomic Stability of Plaque-Purified Modified Vaccinia Ankara (MVA). Virol Sin 2019; 35:212-226. [PMID: 31833037 PMCID: PMC7198643 DOI: 10.1007/s12250-019-00176-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.
| | - Deborah Horn
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Kristin Thiele
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.,Sartorius Stedim Cellca GmbH, Erwin-Rentschler-Str 21, 88471, Laupheim, Germany
| | - Lars Haag
- Vironova AB, Gävlegatan 22, 113 30, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Universitetsjukhuset i Huddinge, 14152, Huddinge, Sweden
| | | | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| |
Collapse
|
24
|
Steigerwald R, Brake DA, Barrera J, Schutta CJ, Kalla M, Wennier ST, Volkmann A, Hurtle W, Clark BA, Zurita M, Pisano M, Kamicker BJ, Puckette MC, Rasmussen MV, Neilan JG. Evaluation of modified Vaccinia Ankara-based vaccines against foot-and-mouth disease serotype A24 in cattle. Vaccine 2019; 38:769-778. [PMID: 31718901 DOI: 10.1016/j.vaccine.2019.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
To prepare foot-and-mouth disease (FMD) recombinant vaccines in response to newly emerging FMD virus (FMDV) field strains, we evaluated Modified Vaccinia virus Ankara-Bavarian Nordic (MVA-BN®) as an FMD vaccine vector platform. The MVA-BN vector has the capacity to carry and express numerous foreign genes and thereby has the potential to encode antigens from multiple FMDV strains. Moreover, this vector has an extensive safety record in humans. All MVA-BN-FMD constructs expressed the FMDV A24 Cruzeiro P1 capsid polyprotein as antigen and the FMDV 3C protease required for processing of the polyprotein. Because the FMDV wild-type 3C protease is detrimental to mammalian cells, one of four FMDV 3C protease variants were utilized: wild-type, or one of three previously reported mutants intended to dampen protease activity (C142T, C142L) or to increase specificity and thereby reduce adverse effects (L127P). These 3C coding sequences were expressed under the control of different promoters selected to reduce 3C protease expression. Four MVA-BN-FMD constructs were evaluated in vitro for acceptable vector stability, FMDV P1 polyprotein expression, processing, and the potential for vaccine scale-up production. Two MVA-BN FMD constructs met the in vitro selection criteria to qualify for clinical studies: MVA-mBN360B (carrying a C142T mutant 3C protease and an HIV frameshift for reduced expression) and MVA-mBN386B (carrying a L127P mutant 3C protease). Both vaccines were safe in cattle and elicited low to moderate serum neutralization titers to FMDV following multiple dose administrations. Following FMDV homologous challenge, both vaccines conferred 100% protection against clinical FMD and viremia using single dose or prime-boost immunization regimens. The MVA-BN FMD vaccine platform was capable of differentiating infected from vaccinated animals (DIVA). The demonstration of the successful application of MVA-BN as an FMD vaccine vector provides a platform for further FMD vaccine development against more epidemiologically relevant FMDV strains.
Collapse
Affiliation(s)
- Robin Steigerwald
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - David A Brake
- BioQuest Associates, LLC, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - José Barrera
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Christopher J Schutta
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Sonia T Wennier
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - William Hurtle
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Benjamin A Clark
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Mariceny Zurita
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Melia Pisano
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Barbara J Kamicker
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Michael C Puckette
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Max V Rasmussen
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - John G Neilan
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| |
Collapse
|
25
|
Kugler F, Drexler I, Protzer U, Hoffmann D, Moeini H. Generation of recombinant MVA-norovirus: a comparison study of bacterial artificial chromosome- and marker-based systems. Virol J 2019; 16:100. [PMID: 31399106 PMCID: PMC6688233 DOI: 10.1186/s12985-019-1212-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant Modified Vaccinia Virus Ankara has been employed as a safe and potent viral vector vaccine against infectious diseases and cancer. We generated recMVAs encoding norovirus GII.4 genotype capsid protein by using a marker-based approach and a BAC-based system. In the marker-based approach, the capsid gene together with a reporter gene was introduced into the MVA genome in DF-1 cells. Several rounds of plaque purification were carried out to get rid of the WT-MVA. In the BAC-based approach, recMVA-BAC was produced by en passant recombineering in E. coli. Subsequently, the recMVAs were rescued in DF-1 cells using a helper rabbit fibroma virus. The BAC backbone and the helper virus were eliminated by passaging in DF-1 cells. Biochemical characteristics of the recMVAs were studied. RESULTS We found the purification of the rare spontaneous recombinants time-consuming in the marker-based system. In contrast, the BAC-based system rapidly inserted the gene of interest in E. coli by en passant recombineering before virion production in DF-1 cells. The elimination of the reporter gene was found to be faster and more efficient in the BAC-based approach. With Western blotting and electron microscopy, we could prove successful capsid protein expression and proper virus-assembly, respectively. The MVA-BAC produced higher recombinant virus titers and infected DF-1 cells more efficiently. CONCLUSIONS Comparing both methods, we conclude that, in contrast to the tedious and time-consuming traditional method, the MVA-BAC system allows us to quickly generate high titer recMVAs.
Collapse
Affiliation(s)
- Franziska Kugler
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Ingo Drexler
- Institute for Virology, Universitätklinikum Düsseldorf, Heinrich Heine Universität, Düsseldorf, Germany
| | - Ulrike Protzer
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany.
| | - Hassan Moeini
- Institute of Virology, Faculty of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
26
|
Liu R, Mendez-Rios JD, Peng C, Xiao W, Weisberg AS, Wyatt LS, Moss B. SPI-1 is a missing host-range factor required for replication of the attenuated modified vaccinia Ankara (MVA) vaccine vector in human cells. PLoS Pathog 2019; 15:e1007710. [PMID: 31145755 PMCID: PMC6542542 DOI: 10.1371/journal.ppat.1007710] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the leading poxvirus vector for development of vaccines against diverse infectious diseases. This distinction is based on high expression of proteins and good immunogenicity despite an inability to assemble infectious progeny in human cells, which together promote efficacy and safety. Nevertheless, the basis for the host-range restriction is unknown despite past systematic attempts to identify the relevant missing viral gene(s). The search for host-range factors is exacerbated by the large number of deletions, truncations and mutations that occurred during the long passage history of MVA in chicken embryo fibroblasts. By whole genome sequencing of a panel of recombinant host-range extended (HRE) MVAs generated by marker rescue with 40 kbp segments of vaccinia virus DNA, we identified serine protease inhibitor 1 (SPI-1) as one of several candidate host-range factors present in those viruses that gained the ability to replicate in human cells. Electron microscopy revealed that the interruption of morphogenesis in human cells infected with MVA occurred at a similar stage as that of a vaccinia virus strain WR SPI-1 deletion mutant. Moreover, the introduction of the SPI-1 gene into the MVA genome led to more than a 2-log enhancement of virus spread in human diploid MRC-5 cells, whereas deletion of the gene diminished the spread of HRE viruses by similar extents. Furthermore, MRC-5 cells stably expressing SPI-1 also enhanced replication of MVA. A role for additional host range genes was suggested by the restoration of MVA replication to a lower level relative to HRE viruses, particularly in other human cell lines. Although multiple sequence alignments revealed genetic changes in addition to SPI-1 common to the HRE MVAs, no evidence for their host-range function was found by analysis thus far. Our finding that SPI-1 is host range factor for MVA should simplify use of high throughput RNAi or CRISPR/Cas single gene methods to identify additional viral and human restriction elements. Poxvirus vectors have outstanding properties for development of vaccines against a myriad of infectious agents due to their ability to retain long segments of foreign DNA and high-level gene expression. Safety concerns led to a preference for attenuated poxviruses that lost the ability to produce infectious progeny in human cells. The most widely used poxvirus vector is modified vaccinia virus Ankara (MVA), which exhibits an extreme host-range restriction in most mammalian cells. MVA was attenuated by passaging more than 500 times in chicken embryo fibroblasts during which large deletions and numerous additional genetic changes occurred. Despite ongoing clinical testing of MVA-vectored vaccines, the basis for its host-range restriction remained unknown. Here we show that re-introduction of the SPI-1 gene into MVA or host cells increased virus spread by more than 100-fold in a human diploid cell line, providing an important insight into the mechanism responsible for the host-range restriction. This information could help design improved vectors and develop non-avian cell lines for propagation of candidate MVA vaccines.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jorge D. Mendez-Rios
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chen Peng
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Xiao
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea S. Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Linda S. Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Virulent Poxviruses Inhibit DNA Sensing by Preventing STING Activation. J Virol 2018; 92:JVI.02145-17. [PMID: 29491158 PMCID: PMC5923072 DOI: 10.1128/jvi.02145-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerizes and translocates from the endoplasmic reticulum (ER) to a perinuclear region to mediate IRF-3 activation. Poxviruses are double-stranded DNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here, we investigated the activation of innate immune signaling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerized and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerization and phosphorylation during infection and in response to transfected DNA and cyclic GMP-AMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence.IMPORTANCE Poxviruses are double-stranded DNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as efficient oncolytics in virotherapy. The successful therapeutic use of VACV depends on a detailed understanding of its ability to modulate host innate immune responses. DNA sensing is a critical cellular mechanism for pathogen detection and activation of innate immunity that is centrally coordinated by the endoplasmic reticulum-resident protein STING. Here, STING is shown to mediate immune activation in response to MVA, but not in response to virulent VACV strains or other virulent poxviruses, which prevent STING activation and DNA sensing during infection and after DNA transfection. These results provide new insights into poxvirus immune evasion and have implications in the rational design of VACV-based therapeutics.
Collapse
|
28
|
Yuan X, Lin H, Li B, He K, Fan H. Swinepox virus vector-based vaccines: attenuation and biosafety assessments following subcutaneous prick inoculation. Vet Res 2018; 49:14. [PMID: 29415767 PMCID: PMC5804073 DOI: 10.1186/s13567-018-0510-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Swinepox virus (SPV) has several advantages as a potential clinical vector for a live vector vaccine. In this study, to obtain a safer and more efficient SPV vector, three SPV mutants, Δ003, Δ010, and ΔTK were successfully constructed. A virus replication experiment showed that these SPV mutants had lower replication abilities compared to wtSPV in 10 different host-derived cell lines. Animal experiments with mouse and rabbit models demonstrate that these three mutants and wtSPV did not cause any clinical signs of dermatitis. No fatalities were observed during a peritoneal challenge assay with these mutants and wtSPV in a mouse model. Additionally, the three mutants and wtSPV were not infectious at 60 h after vaccination in rabbit models. Furthermore, we evaluated biosafety, immunogenicity and effectiveness of the three mutants in 65 1-month-old piglets. The results show that there were no clinical signs of dermatitis in the Δ003 and ΔTK vaccination groups. However, mild signs were observed in the Δ010 vaccination groups when virus titres were high, and apparent clinical signs were observed at the sites of inoculation. Samples from all experimental pig groups were assessed by qPCR, and no SPV genomic DNA was found in five organs, faeces or blood. This suggests that the infectious abilities of wtSPV and the SPV mutants were poor and limited. In summary, this study indicates that two mutants of SPV, Δ003 and ΔTK, may be promising candidates for an attenuated viral vector in veterinary medicine.
Collapse
Affiliation(s)
- Xiaomin Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
29
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
30
|
Tissue plasminogen activator (tPA) signal sequence enhances immunogenicity of MVA-based vaccine against tuberculosis. Immunol Lett 2017; 190:51-57. [DOI: 10.1016/j.imlet.2017.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 02/02/2023]
|
31
|
Kadoki M, Patil A, Thaiss CC, Brooks DJ, Pandey S, Deep D, Alvarez D, von Andrian UH, Wagers AJ, Nakai K, Mikkelsen TS, Soumillon M, Chevrier N. Organism-Level Analysis of Vaccination Reveals Networks of Protection across Tissues. Cell 2017; 171:398-413.e21. [PMID: 28942919 DOI: 10.1016/j.cell.2017.08.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/24/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
A fundamental challenge in immunology is to decipher the principles governing immune responses at the whole-organism scale. Here, using a comparative infection model, we observe immune signal propagation within and between organs to obtain a dynamic map of immune processes at the organism level. We uncover two inter-organ mechanisms of protective immunity mediated by soluble and cellular factors. First, analyzing ligand-receptor connectivity across tissues reveals that type I IFNs trigger a whole-body antiviral state, protecting the host within hours after skin vaccination. Second, combining parabiosis, single-cell analyses, and gene knockouts, we uncover a multi-organ web of tissue-resident memory T cells that functionally adapt to their environment to stop viral spread across the organism. These results have implications for manipulating tissue-resident memory T cells through vaccination and open up new lines of inquiry for the analysis of immune responses at the organism level.
Collapse
Affiliation(s)
- Motohiko Kadoki
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ashwini Patil
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cornelius C Thaiss
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Donald J Brooks
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Surya Pandey
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deeksha Deep
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Alvarez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tarjei S Mikkelsen
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Magali Soumillon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nicolas Chevrier
- Faculty of Arts & Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. J Virol 2017; 91:JVI.00343-17. [PMID: 28331098 DOI: 10.1128/jvi.00343-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 12/29/2022] Open
Abstract
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant.IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines.
Collapse
|
33
|
Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:648-51. [PMID: 27146001 DOI: 10.1128/cvi.00216-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 02/08/2023]
Abstract
Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination.
Collapse
|
34
|
Holgado MP, Falivene J, Maeto C, Amigo M, Pascutti MF, Vecchione MB, Bruttomesso A, Calamante G, Del Médico-Zajac MP, Gherardi MM. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses. Viruses 2016; 8:E139. [PMID: 27223301 PMCID: PMC4885094 DOI: 10.3390/v8050139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b⁺/IFN-γ⁺) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| | - Juliana Falivene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| | - Cynthia Maeto
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| | - Micaela Amigo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| | - María Fernanda Pascutti
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| | - María Belén Vecchione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Andrea Bruttomesso
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Gabriela Calamante
- Instituto de Biotecnología, CICVyA-INTA Castelar, Buenos Aires 1686, Argentina.
| | | | - María Magdalena Gherardi
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Facultad de Medicina, Ciudad de Buenos Aires 1121, Argentina.
| |
Collapse
|
35
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
36
|
Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses. J Virol 2014; 88:14396-411. [PMID: 25297997 DOI: 10.1128/jvi.02082-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. IMPORTANCE Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral transcription. We found that inhibition of cellular dsRNA recognition established by the virus-encoded proteins E3 and K3 can be overcome by directing viral overexpression of dsRNA early in infection without compromising replication of MVA in permissive cells. Early dsRNA induced transient activation of the cellular dsRNA sensor protein kinase R (PKR), resulting in enhanced production of interferons and cytokines in cells and mice. Enhancing the capacity of MVA to activate the innate immune system is an important approach to further improve the immunogenicity of this promising vaccine vector.
Collapse
|
37
|
Goossens M, Pauwels K, Willemarck N, Breyer D. Environmental risk assessment of clinical trials involving modified vaccinia virus Ankara (MVA)-based vectors. Curr Gene Ther 2014; 13:413-20. [PMID: 24397528 PMCID: PMC4031919 DOI: 10.2174/156652321306140103221941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 12/05/2022]
Abstract
The modified vaccinia virus Ankara (MVA) strain, which has been developed as a vaccine against smallpox, is
since the nineties widely tested in clinical trials as recombinant vector for vaccination or gene therapy applications. Although
MVA is renowned for its safety, several biosafety aspects need to be considered when performing the risk assessment
of a recombinant MVA (rMVA). This paper presents the biosafety issues and the main lessons learned from the
evaluation of the clinical trials with rMVA performed in Belgium. Factors such as the specific characteristics of the
rMVA, the inserted foreign sequences/transgene, its ability for reconversion, recombination and dissemination in the
population and the environment are the main points of attention. Measures to prevent or manage identified risks are also
discussed.
Collapse
Affiliation(s)
| | | | | | - Didier Breyer
- Scientific Institute of Public Health, Biosafety and Biotechnology Unit, Rue J. Wytsmanstraat 14, B- 1050 Brussels, Belgium.
| |
Collapse
|
38
|
Gammon DB, Duraffour S, Rozelle DK, Hehnly H, Sharma R, Sparks ME, West CC, Chen Y, Moresco JJ, Andrei G, Connor JH, Conte D, Gundersen-Rindal DE, Marshall WL, Yates JR, Silverman N, Mello CC. A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection. eLife 2014; 3:e02910. [PMID: 24966209 PMCID: PMC4112549 DOI: 10.7554/elife.02910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022] Open
Abstract
Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | | | - Daniel K Rozelle
- Department of Microbiology, Boston University, Boston, United States
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Rita Sharma
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Michael E Sparks
- Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
| | - Cara C West
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Ying Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - John H Connor
- Department of Microbiology, Boston University, Boston, United States
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Dawn E Gundersen-Rindal
- Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
| | - William L Marshall
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Neal Silverman
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
39
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
40
|
Dai P, Wang W, Cao H, Avogadri F, Dai L, Drexler I, Joyce JA, Li XD, Chen Z, Merghoub T, Shuman S, Deng L. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway. PLoS Pathog 2014; 10:e1003989. [PMID: 24743339 PMCID: PMC3990710 DOI: 10.1371/journal.ppat.1003989] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/26/2014] [Indexed: 11/23/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.
Collapse
Affiliation(s)
- Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Weiyi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Hua Cao
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Francesca Avogadri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Lianpan Dai
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johanna A. Joyce
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Xiao-Dong Li
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Taha Merghoub
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
41
|
Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, Carroll MW. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One 2014; 9:e91516. [PMID: 24621656 PMCID: PMC3951450 DOI: 10.1371/journal.pone.0091516] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15-70% of reported cases are fatal. There is no approved vaccine available, and preclinical protection in vivo by an experimental vaccine has not been demonstrated previously. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus glycoproteins. Cellular and humoral immunogenicity was confirmed in two mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. This vaccine protected all recipient animals from lethal disease in a challenge model adapted to represent infection via a tick bite. Histopathology and viral load analysis of protected animals confirmed that they had been exposed to challenge virus, even though they did not exhibit clinical signs. This is the first demonstration of efficacy of a CCHF vaccine.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- DNA, Recombinant/genetics
- Disease Models, Animal
- Female
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/physiology
- Hemorrhagic Fever, Crimean/immunology
- Hemorrhagic Fever, Crimean/metabolism
- Hemorrhagic Fever, Crimean/pathology
- Hemorrhagic Fever, Crimean/prevention & control
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Plasmids/genetics
- Receptor, Interferon alpha-beta/deficiency
- Receptors, Interferon/deficiency
- Viral Load
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Karen R. Buttigieg
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Stuart D. Dowall
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Stephen Findlay-Wilson
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Aleksandra Miloszewska
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Emma Rayner
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Roger Hewson
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Miles W. Carroll
- Microbiology Services Research, Public Health England, Porton Down, Wiltshire, United Kingdom
| |
Collapse
|
42
|
Quinan BR, Daian DSO, Coelho FM, da Fonseca FG. Modified vaccinia virus Ankara as vaccine vectors in human and veterinary medicine. Future Virol 2014. [DOI: 10.2217/fvl.13.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT: Disease prevention through vaccination is one of the most important achievements of medicine. Today, we have a substantial number of vaccines against a variety of pathogens. In this context, poxviruses and vaccinology are closely related, as the birth of modern vaccinology was marked by the use of poxviruses as immunogens and so was the eradication of smallpox, one of the world's most feared diseases ever. Nowadays, poxviruses continue to notoriously contribute to vaccinology since their use as vaccine vectors has become popular and widespread. One of the most promising vectors is the modified vaccinia ankara. In this review we provide an overview of the contribution of poxvirus to vaccine immunology, particularly focusing on modified vaccinia ankara-based vaccines developed to date.
Collapse
Affiliation(s)
- Bárbara R Quinan
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle SO Daian
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana M Coelho
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratory of Basic & Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil
- Av. Antônio Carlos 6627, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia. Belo Horizonte, MG, Brazil, 31270-901
| |
Collapse
|
43
|
Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J Virol 2014; 88:3392-410. [PMID: 24390336 DOI: 10.1128/jvi.02723-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED A modified vaccinia virus Ankara poxvirus vector expressing the HIV-1 Env, Gag, Pol, and Nef antigens from clade B (MVA-B) is currently being tested in clinical trials. To improve its immunogenicity, we have generated and characterized the immune profile of MVA-B containing a deletion of the vaccinia viral gene N2L, which codes for an inhibitor of IRF3 (MVA-B ΔN2L). Deletion of N2L had no effect on virus growth kinetics or on the expression of HIV-1 antigens; hence, the N2 protein is not essential for MVA replication. The innate immune responses triggered by MVA-B ΔN2L revealed an increase in beta interferon, proinflammatory cytokines, and chemokines. Mouse prime-boost protocols showed that MVA-B ΔN2L improves the magnitude and polyfunctionality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, with most of the HIV-1 responses mediated by CD8(+) T cells. In the memory phase, HIV-1-specific CD8(+) T cells with an effector phenotype were predominant and in a higher percentage with MVA-B ΔN2L than with MVA-B. In both immunization groups, CD4(+) and CD8(+) T cell responses were directed mainly against Env. Furthermore, MVA-B ΔN2L in the memory phase enhanced levels of antibody against Env. For the vector immune responses, MVA-B ΔN2L induced a greater magnitude and polyfunctionality of VACV-specific CD8(+) T memory cells than MVA-B, with an effector phenotype. These results revealed the immunomodulatory role of N2L, whose deletion enhanced the innate immunity and improved the magnitude and quality of HIV-1-specific T cell adaptive and memory immune responses. These findings are relevant for the optimization of poxvirus vectors as vaccines. IMPORTANCE On the basis of the limited efficacy of the RV144 phase III clinical trial, new optimized poxvirus vectors as vaccines against HIV/AIDS are needed. Here we have generated and characterized a new HIV/AIDS vaccine candidate on the basis of the poxvirus MVA vector expressing HIV-1 Env, Gag, Pol, and Nef antigens (MVA-B) and containing a deletion in the vaccinia virus N2L gene. Our findings revealed the immunomodulatory role of N2L and proved that its deletion from the MVA-B vector triggered an enhanced innate immune response in human macrophages and monocyte-derived dendritic cells. Furthermore, in immunized mice, MVA-B ΔN2L induced improvements in the magnitude and quality of adaptive and memory HIV-1-specific CD4(+) and CD8(+) T cell immune responses, together with an increase in the memory phase of levels of antibody against Env. Thus, the selective deletion of the N2L viral immunomodulatory gene is important for the optimization of MVA vectors as HIV-1 vaccines.
Collapse
|
44
|
Jordan I, Lohr V, Genzel Y, Reichl U, Sandig V. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara. Microorganisms 2013; 1:100-121. [PMID: 27694766 PMCID: PMC5029493 DOI: 10.3390/microorganisms1010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Verena Lohr
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
45
|
Dobson BM, Tscharke DC. Truncation of gene F5L partially masks rescue of vaccinia virus strain MVA growth on mammalian cells by restricting plaque size. J Gen Virol 2013; 95:466-471. [PMID: 24145605 DOI: 10.1099/vir.0.058495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a candidate vaccine vector that is severely attenuated due to mutations acquired during several hundred rounds of serial passage in vitro. A previous study used marker rescue to produce a set of MVA recombinants with improved replication on mammalian cells. Here, we extended the characterization of these rescued MVA strains and identified vaccinia virus (VACV) gene F5L as a determinant of plaque morphology but not replication in vitro. F5 joins a growing group of VACV proteins that influence plaque formation more strongly than virus replication and which are disrupted in MVA. These defective genes in MVA confound the interpretation of marker rescue experiments designed to map mutations responsible for the attenuation of this important VACV strain.
Collapse
Affiliation(s)
- Bianca M Dobson
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
46
|
Wennier ST, Brinkmann K, Steinhäußer C, Mayländer N, Mnich C, Wielert U, Dirmeier U, Hausmann J, Chaplin P, Steigerwald R. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses. PLoS One 2013; 8:e73511. [PMID: 23951355 PMCID: PMC3741161 DOI: 10.1371/journal.pone.0073511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/22/2013] [Indexed: 01/06/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.
Collapse
Affiliation(s)
- Sonia T. Wennier
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Kay Brinkmann
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | | | - Nicole Mayländer
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Claudia Mnich
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Ursula Wielert
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Ulrike Dirmeier
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Jürgen Hausmann
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Paul Chaplin
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
| | - Robin Steigerwald
- Infectious Disease Division, Bavarian Nordic GmbH, Martinsried, Germany
- * E-mail:
| |
Collapse
|
47
|
Melamed S, Wyatt LS, Kastenmayer RJ, Moss B. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. Vaccine 2013; 31:4569-77. [PMID: 23928462 DOI: 10.1016/j.vaccine.2013.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/17/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.
Collapse
Affiliation(s)
- Sharon Melamed
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
48
|
Walsh SR, Wilck MB, Dominguez DJ, Zablowsky E, Bajimaya S, Gagne LS, Verrill KA, Kleinjan JA, Patel A, Zhang Y, Hill H, Acharyya A, Fisher DC, Antin JH, Seaman MS, Dolin R, Baden LR. Safety and immunogenicity of modified vaccinia Ankara in hematopoietic stem cell transplant recipients: a randomized, controlled trial. J Infect Dis 2013; 207:1888-97. [PMID: 23482644 PMCID: PMC3654753 DOI: 10.1093/infdis/jit105] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/03/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Modified vaccinia Ankara (MVA-BN, IMVAMUNE) is emerging as a primary immunogen and as a delivery system to treat or prevent a wide range of diseases. Defining the safety and immunogenicity of MVA-BN in key populations is therefore important. METHODS We performed a dose-escalation study of MVA-BN administered subcutaneously in 2 doses, one on day 0 and another on day 28. Twenty-four hematopoietic stem cell transplant recipients were enrolled sequentially into the study, and vaccine or placebo was administered under a randomized, double-blind allocation. Ten subjects received vaccine containing 10(7) median tissue culture infective doses (TCID50) of MVA-BN, 10 subjects received vaccine containing 10(8) TCID50 of MVA-BN, and 4 subjects received placebo. RESULTS MVA-BN was generally well tolerated at both doses. No vaccine-related serious adverse events were identified. Transient local reactogenicity was more frequently seen at the higher dose. Neutralizing antibodies (NAb) to Vaccinia virus (VACV) were elicited by both doses of MVA-BN and were greater for the higher dose. Median peak anti-VACV NAb titers were 1:49 in the lower-dose group and 1:118 in the higher-dose group. T-cell immune responses to VACV were detected by an interferon γ enzyme-linked immunosorbent spot assay and were higher in the higher-dose group. CONCLUSIONS MVA-BN is safe, well tolerated, and immunogenic in HSCT recipients. These data support the use of 10(8) TCID50 of MVA-BN in this population. CLINICAL TRIALS REGISTRATION NCT00565929.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Clinical development of Modified Vaccinia virus Ankara vaccines. Vaccine 2013; 31:4241-6. [PMID: 23523410 DOI: 10.1016/j.vaccine.2013.03.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.
Collapse
|
50
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|