1
|
Foo IJ, Cabug AF, Gilbertson B, Fazakerley JK, Kedzierska K, Kedzierski L. Simultaneous coinfection with influenza virus and an arbovirus impedes influenza-specific but not Semliki Forest virus-specific responses. Immunol Cell Biol 2025; 103:383-400. [PMID: 39971320 PMCID: PMC11964787 DOI: 10.1111/imcb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Outbreaks of respiratory virus infections and arbovirus infections both pose a substantial threat to global public health. Clinically, both types of infection range from mild to severe and coinfections may occur more commonly than supposed. Our previous experimental coinfection study in mice demonstrated that prior infection with the arbovirus Semliki Forest virus (SFV) negatively impacted immune responses to influenza A virus (IAV). Here, we investigate whether simultaneous coinfection impacts the outcome of immune responses or disease. Simultaneous SFV and IAV infection did not lead to exacerbated or attenuated disease compared with the single virus infection control groups. SFV brain virus titers and brain pathology, including inflammation and immune responses, were comparable in the coinfection and single infection groups. By contrast, there was enhanced IAV replication, but no exacerbated lung pathology in coinfected mice. The magnitude of IAV-specific CD8+ T-cell responses in the lungs was lower compared with IAV-only infection. Considered along with our previous study, this study provides evidence that the timing of viral coinfection is pivotal in determining effects on immune responses, pathological changes and disease outcome.
Collapse
Affiliation(s)
- Isabelle Jia‐Hui Foo
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Aira F Cabug
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Brad Gilbertson
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - John K Fazakerley
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Department of Veterinary Biosciences, Faculty of ScienceUniversity of MelbourneMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Lukasz Kedzierski
- Department of Microbiology and ImmunologyThe University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
2
|
Foo IJH, Chua BY, Chang SY, Jia X, van der Eerden A, Fazakerley JK, Kedzierska K, Kedzierski L. Prior influenza virus infection alleviates an arbovirus encephalitis by reducing viral titer, inflammation, and cellular infiltrates in the central nervous system. J Virol 2025; 99:e0210824. [PMID: 39817772 PMCID: PMC11852871 DOI: 10.1128/jvi.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis. We used a model system in which mice were given influenza A virus (IAV) infection 8 days prior to Semliki Forest virus (SFV) infection (IAV→SFV). IAV infection clearly attenuated the subsequent SFV infection with reduced titers of infectious SFV and lower levels of cytokines and chemokines in the central nervous system (CNS). In contrast, the SFV viremia in both IAV→SFV and SFV-only mice was comparable. Increased type I interferon (IFN) levels in the CNS after IAV infection might have contributed to some level of protection towards SFV infection in the CNS, suggesting that early control of SFV replication in the CNS during IAV→SFV infection led to reduced adaptive response, given the lower number of CD8+ T cells recruited to the brain in IAV→SFV infection. In lungs, however, prior IAV infection elicited effector CD8+ T cells with highly activated CD38 and/or CD25 phenotypes, while SFV-only infection elicited distinct effector CD8+ T cells with increased frequencies of KLRG1 expression, a hallmark of short-lived effector T cells. Taken together, our findings demonstrate that prior IAV infection can confer protective immunity toward secondary SFV infection, confirmed by reduced disease severity and inflammatory immune responses in the brain. Our work provides important insights into therapies and vaccine regimens directed against unrelated pathogens. IMPORTANCE Influenza viruses are medically important human pathogens that caused epidemics and pandemics throughout history. Conversely, encephalitic arthropod-borne virus (arboviral) diseases affect both humans and domestic animals, creating massive public health issues. Influenza viruses circulate globally while arboviruses dominate tropical regions. Given both influenza virus and encephalitic arboviruses, such as alphaviruses, circulate in many regions globally, co-infections are likely to occur. In addition, arthropod-borne neurotropic infections are generally mild or asymptomatic, hence are likely to be unnoticed as a risk factor during influenza infection. However, the consequences of such co-infections are unclear. Our recent study showed that alphavirus infection preceding Influenza A virus (IAV) infection negatively impacted immune responses to the influenza virus in mice. Here, we aim to investigate the immune responses when the order of sequential infection with IAV and alphavirus are swapped. Altogether, our findings will provide key insights to improved diagnostics, preventative vaccines, and antiviral therapies.
Collapse
Affiliation(s)
- Isabelle J. H. Foo
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Alice van der Eerden
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John K. Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Veterinary Biosciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Xie S, Li F. Ependymal cells: roles in central nervous system infections and therapeutic application. J Neuroinflammation 2024; 21:255. [PMID: 39385253 PMCID: PMC11465851 DOI: 10.1186/s12974-024-03240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Ependymal cells are arranged along the inner surfaces of the ventricles and the central canal of the spinal cord, providing anatomical, physiological and immunological barriers that maintain cerebrospinal fluid (CSF) homeostasis. Based on this, studies have found that alterations in gene expression, cell junctions, cytokine secretion and metabolic disturbances can lead to dysfunction of ependymal cells, thereby participating in the onset and progression of central nervous system (CNS) infections. Additionally, ependymal cells can exhibit proliferative and regenerative potential as well as secretory functions during CNS injury, contributing to neuroprotection and post-injury recovery. Currently, studies on ependymal cell primarily focus on the basic investigations of their morphology, function and gene expression; however, there is a notable lack of clinical translational studies examining the molecular mechanisms by which ependymal cells are involved in disease onset and progression. This limits our understanding of ependymal cells in CNS infections and the development of therapeutic applications. Therefore, this review will discuss the molecular mechanism underlying the involvement of ependymal cells in CNS infections, and explore their potential for application in clinical treatment modalities.
Collapse
Affiliation(s)
- Shiqi Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, 130 Dong An Road, Xuhui District, Shanghai, China.
- Tuberculosis Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
| |
Collapse
|
4
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588743. [PMID: 38645187 PMCID: PMC11030350 DOI: 10.1101/2024.04.09.588743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
6
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
8
|
Anzaghe M, Kronhart S, Niles MA, Höcker L, Dominguez M, Kochs G, Waibler Z. Type I interferon receptor-independent interferon-α induction upon infection with a variety of negative-strand RNA viruses. J Gen Virol 2021; 102. [PMID: 34269676 DOI: 10.1099/jgv.0.001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFNs) are a first line of defence against viral infections. Upon infection, a first small wave of early type I IFN, mainly IFN-β and particularly IFN-α4, are induced and bind to the type I IFN receptor (IFNAR) to amplify the IFN response. It was shown for several viruses that robust type I IFN responses require this positive feedback loop via the IFNAR. Recently, we showed that infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus lacking the ML open reading frame (THOV(ML-)) results in the expression of unexpected high amounts of type I IFN. To investigate if IFNAR-independent IFN responses are unique for THOV(ML-), we performed infection experiments with several negative-strand RNA viruses using different routes and dosages for infection. A variety of these viruses induced type I IFN responses IFNAR-independently when using the intraperitoneal (i.p.) route for infection. In vitro studies demonstrated that myeloid dendritic cells (mDC) are capable of producing IFNAR-independent IFN-α responses that are dependent on the expression of the adaptor protein mitochondrial antiviral-signalling protein (MAVS) whereas pDC where entirely depending on the IFNAR feedback loop in vitro. Thus, depending on dose and route of infection, the IFNAR feedback loop is not strictly necessary for robust type I IFN expression and an IFNAR-independent type I IFN production might be the rule rather than the exception for infections with numerous negative-strand RNA viruses.
Collapse
Affiliation(s)
- Martina Anzaghe
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Stefanie Kronhart
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Marc A Niles
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Lena Höcker
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Monica Dominguez
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Zoe Waibler
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| |
Collapse
|
9
|
Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol 2021; 51:1039-1061. [PMID: 33729549 PMCID: PMC8900014 DOI: 10.1002/eji.202048793] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Type I IFNs are so-named because they interfere with viral infection in vertebrate cells. The study of cellular responses to type I IFNs led to the discovery of the JAK-STAT signaling pathway, which also governs the response to other cytokine families. We review here the outcome of viral infections in mice and humans with engineered and inborn deficiencies, respectively, of (i) IFNAR1 or IFNAR2, selectively disrupting responses to type I IFNs, (ii) STAT1, STAT2, and IRF9, also impairing cellular responses to type II (for STAT1) and/or III (for STAT1, STAT2, IRF9) IFNs, and (iii) JAK1 and TYK2, also impairing cellular responses to cytokines other than IFNs. A picture is emerging of greater redundancy of human type I IFNs for protective immunity to viruses in natural conditions than was initially anticipated. Mouse type I IFNs are essential for protection against a broad range of viruses in experimental conditions. These findings suggest that various type I IFN-independent mechanisms of human cell-intrinsic immunity to viruses have yet to be discovered.
Collapse
Affiliation(s)
- Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium, EU
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium, EU
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
- University of Paris, Imagine Institute, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
10
|
Saikh KU, Morazzani EM, Piper AE, Bakken RR, Glass PJ. A small molecule inhibitor of MyD88 exhibits broad spectrum antiviral activity by up regulation of type I interferon. Antiviral Res 2020; 181:104854. [PMID: 32621945 DOI: 10.1016/j.antiviral.2020.104854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023]
Abstract
Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-β and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-β, whereas MyD88 inhibition rescued IFN-β production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-β response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 μM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| |
Collapse
|
11
|
Schultz KLW, Troisi EM, Baxter VK, Glowinski R, Griffin DE. Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. J Gen Virol 2018; 100:46-62. [PMID: 30451651 DOI: 10.1099/jgv.0.001174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNβ and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNβ, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.
Collapse
Affiliation(s)
- Kimberly L W Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,†Present address: Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elizabeth M Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,‡Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,§Present address: Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Carpentier KS, Morrison TE. Innate immune control of alphavirus infection. Curr Opin Virol 2017; 28:53-60. [PMID: 29175515 DOI: 10.1016/j.coviro.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Alphaviruses are important human pathogens that cause diseases ranging from acute and chronic polyarthralgia to encephalitis. Transmitted by mosquito vectors, alphaviruses have high potential for emergence and have initiated several recent epidemics. The innate immune response is critical for controlling the acute phase of alphavirus disease, and the induction of type I interferon (IFN) is essential in this response. In this review, we discuss our current understanding of innate host sensors that initiate antiviral responses following alphavirus infection, and the IFN-induced effector proteins that limit alphavirus replication and dissemination.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
13
|
Insertion of the Type-I IFN Decoy Receptor B18R in a miRNA-Tagged Semliki Forest Virus Improves Oncolytic Capacity but Results in Neurotoxicity. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:67-75. [PMID: 29159280 PMCID: PMC5684435 DOI: 10.1016/j.omto.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022]
Abstract
Oncolytic Semliki Forest virus (SFV) has been suggested as a potential candidate for the treatment of glioblastoma and neuroblastoma. However, the oncolytic capacity of SFV is restricted by the anti-viral type-I interferon (IFN) response. The aim of this study was to increase the oncolytic capacity of a microRNA target tagged SFV against glioblastoma by arming it with the Vaccinia-virus-encoded type-I IFN decoy receptor B18R (SFV4B18RmiRT) to neutralize type-I IFN response. Expression of B18R by SFV4B18RmiRT aided neutralization of IFN-β, which was shown by reduced STAT-1 phosphorylation and improved virus spread in plaque assays. B18R expression by SFV4 increased its oncolytic capacity in vitro against murine glioblastoma (CT-2A), regardless of the presence of exogenous IFN-β. Both SFV4B18RmiRT and SFV4miRT treatments controlled tumor growth in mice with syngeneic orthotopic gliomablastoma (CT-2A). However, treatment with SFV4B18RmiRT induced severe neurological symptoms in some mice because of virus replication in the healthy brain. Neither neurotoxicity nor virus replication in the brain was observed when SFV4miRT was administered. In summary, our results indicate that the oncolytic capacity of SFV4 was improved in vitro and in vivo by incorporation of B18R, but neurotoxicity of the virus was increased, possibly due to loss of microRNA targets.
Collapse
|
14
|
Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol 2017; 33:645-657. [PMID: 28495485 DOI: 10.1016/j.pt.2017.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Mosquito-borne infections are increasing in number and are spreading to new regions at an unprecedented rate. In particular, mosquito-transmitted viruses, such as those that cause Zika, dengue, West Nile encephalitis, and chikungunya, have become endemic or have caused dramatic epidemics in many parts of the world. Aedes and Culex mosquitoes are the main culprits, spreading infection when they bite. Importantly, mosquitoes do not act as simple conduits that passively transfer virus from one individual to another. Instead, host responses to mosquito-derived factors have an important influence on infection and disease, aiding replication and dissemination within the host. Here, we discuss the latest research developments regarding this fascinating interplay between mosquito, virus, and the mammalian host.
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Michael A Schmid
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
15
|
Wang YM, Lu JW, Lin CC, Chin YF, Wu TY, Lin LI, Lai ZZ, Kuo SC, Ho YJ. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral Res 2016; 135:81-90. [PMID: 27742486 PMCID: PMC7126800 DOI: 10.1016/j.antiviral.2016.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/24/2016] [Accepted: 10/09/2016] [Indexed: 02/04/2023]
Abstract
Chikungunya disease results from an infection with the arbovirus, chikungunya virus (CHIKV). Symptoms of CHIKV include fever and persistent, severe arthritis. In recent years, several antiviral drugs have been evaluated in clinical trials; however, no registered antivirals have been approved for clinical therapy. In this study, we established a high-throughput screening (HTS) system based on CHIKV 26S mediated insect cell fusion inhibition assay. Our screening system was able to search potential anti-CHIKV drugs in vitro. Using this system, four compounds (niclosamide, nitazoxanide, niflumic acid, tolfenamic acid) were identified. These compounds were then further analyzed using a microneutralization assay. We determined that niclosamide and nitazoxanide exhibit ability to against CHIKV-induced CPE. The anti-CHIKV abilities of these compounds were further confirmed by RT-qPCR and IFA. Moreover, niclosamide and nitazoxanide were found to (1) limit virus entry, (2) inhibit both viral release and cell-to-cell transmission, and (3) possess broad anti-alphavius activities, including against two clinical CHIKV isolates and two alphaviruses: Sindbis virus (SINV) and Semliki forest virus (SFV). In conclusion, our findings suggested that niclosamide and nitazoxanide were able to inhibit CHIKV entry and transmission, which might provide a basis for the development of novel human drug therapies against CHIKV and other alphavirus infections. Fusion inhibition assay was successfully established an anti-CHIKV drugs HTS system. Niclosamide and nitazoxanide were found and verified their ability to against CHIKV entry and transmission. Both of niclosamide and nitazoxanide also possessed broad anti-alphavirus abilities.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC; Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuan-Fan Chin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Zheng-Zong Lai
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC; Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Yi-Jung Ho
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Bell-Sakyi L, Weisheit S, Rückert C, Barry G, Fazakerley J, Fragkoudis R. Microscopic Visualisation of Zoonotic Arbovirus Replication in Tick Cell and Organ Cultures Using Semliki Forest Virus Reporter Systems. Vet Sci 2016; 3:vetsci3040028. [PMID: 29056736 PMCID: PMC5606593 DOI: 10.3390/vetsci3040028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022] Open
Abstract
Ticks are vectors and reservoirs of many arboviruses pathogenic for humans or domestic animals; in addition, during bloodfeeding they can acquire and harbour pathogenic arboviruses normally transmitted by other arthropods such as mosquitoes. Tick cell and organ cultures provide convenient tools for propagation and study of arboviruses, both tick-borne and insect-borne, enabling elucidation of virus-tick cell interaction and yielding insight into the mechanisms behind vector competence and reservoir potential for different arbovirus species. The mosquito-borne zoonotic alphavirus Semliki Forest virus (SFV), which replicates well in tick cells, has been isolated from Rhipicephalus, Hyalomma, and Amblyomma spp. ticks removed from mammalian hosts in East Africa; however nothing is known about any possible role of ticks in SFV epidemiology. Here we present a light and electron microscopic study of SFV infecting cell lines and organ cultures derived from African Rhipicephalus spp. ticks. As well as demonstrating the applicability of these culture systems for studying virus-vector interactions, we provide preliminary evidence to support the hypothesis that SFV is not normally transmitted by ticks because the virus does not infect midgut cells.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Sabine Weisheit
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Claudia Rückert
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Gerald Barry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - John Fazakerley
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Rennos Fragkoudis
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
17
|
Ramachandran M, Yu D, Dyczynski M, Baskaran S, Zhang L, Lulla A, Lulla V, Saul S, Nelander S, Dimberg A, Merits A, Leja-Jarblad J, Essand M. Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clin Cancer Res 2016; 23:1519-1530. [PMID: 27637889 DOI: 10.1158/1078-0432.ccr-16-0925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/10/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
Background: Glioblastoma multiforme and high-risk neuroblastoma are cancers with poor outcome. Immunotherapy in the form of neurotropic oncolytic viruses is a promising therapeutic approach for these malignancies. Here we evaluate the oncolytic capacity of the neurovirulent and partly IFNβ-resistant Semliki Forest virus (SFV)-4 in glioblastoma multiformes and neuroblastomas. To reduce neurovirulence we constructed SFV4miRT, which is attenuated in normal central nervous system (CNS) cells through insertion of microRNA target sequences for miR124, miR125, miR134.Methods: Oncolytic activity of SFV4miRT was examined in mouse neuroblastoma and glioblastoma multiforme cell lines and in patient-derived human glioblastoma cell cultures (HGCC). In vivo neurovirulence and therapeutic efficacy was evaluated in two syngeneic orthotopic glioma models (CT-2A, GL261) and a syngeneic subcutaneous neuroblastoma model (NXS2). The role of IFNβ in inhibiting therapeutic efficacy was investigated.Results: The introduction of miRNA target sequences reduced neurovirulence of SFV4 in terms of attenuated replication in mouse CNS cells and ability to cause encephalitis when administered intravenously. A single intravenous injection of SFV4miRT prolonged survival and cured four of eight mice (50%) with NXS2 and three of 11 mice (27%) with CT-2A, but not for GL261 tumor-bearing mice. In vivo therapeutic efficacy in different tumor models inversely correlated to secretion of IFNβ by respective cells upon SFV4 infection in vitro Similarly, killing efficacy of HGCC lines inversely correlated to IFNβ response and interferon-α/β receptor-1 expression.Conclusions: SFV4miRT has reduced neurovirulence, while retaining its oncolytic capacity. SFV4miRT is an excellent candidate for treatment of glioblastoma multiforme and neuroblastoma with low IFN-β secretion. Clin Cancer Res; 23(6); 1519-30. ©2016 AACR.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matheus Dyczynski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sathishkumar Baskaran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lei Zhang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aleksei Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valeria Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sirle Saul
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Justyna Leja-Jarblad
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Atkins GJ, Sheahan BJ. Molecular determinants of alphavirus neuropathogenesis in mice. J Gen Virol 2016; 97:1283-1296. [PMID: 27028153 DOI: 10.1099/jgv.0.000467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses are enveloped viruses with a positive-stranded RNA genome, of the family Togaviridae. In mammals and birds they are mosquito-transmitted and are of veterinary and medical importance. They cause primarily two types of disease: encephalitis and polyarthritis. Here we review attempts to understand the molecular basis of encephalitis and virulence for the central nervous system (CNS) in mouse models. Sindbis virus (SINV) was the first virus to be studied in this way. Other viruses analysed are Semliki Forest virus (SFV), Venezuelan equine encephalitis virus, Eastern equine encephalitis virus and Western equine encephalitis virus. Neurovirulence was found to be associated with damage to neurons in the CNS. It mapped mainly to the E2 region of the genome, and to the nsP3 gene. Also, avirulent natural isolates of both SINV and SFV have been found to have more rapid cleavage of nonstructural proteins due to mutations in the nsP1-nsP2 cleavage site. Immune-mediated demyelination for avirulent SFV has been shown to be associated with infection of oligodendrocytes. For Chikungunya virus, an emerging alphavirus that uncommonly causes encephalitis, analysis of the molecular basis of CNS pathogenicity is beginning. Experiments on SINV and SFV have indicated that virulence may be related to the resistance of virulent virus to interferon action. Although the E2 protein may be involved in tropism for neurons and passage across the blood-brain barrier, the role of the nsP3 protein during infection of neurons is unknown. More information in these areas may help to further explain the neurovirulence of alphaviruses.
Collapse
Affiliation(s)
- Gregory J Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| | - Brian J Sheahan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
MicroRNA-Attenuated Clone of Virulent Semliki Forest Virus Overcomes Antiviral Type I Interferon in Resistant Mouse CT-2A Glioma. J Virol 2015; 89:10637-47. [PMID: 26269187 DOI: 10.1128/jvi.01868-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Glioblastoma is a terminal disease with no effective treatment currently available. Among the new therapy candidates are oncolytic viruses capable of selectively replicating in cancer cells, causing tumor lysis and inducing adaptive immune responses against the tumor. However, tumor antiviral responses, primarily mediated by type I interferon (IFN-I), remain a key problem that severely restricts viral replication and oncolysis. We show here that the Semliki Forest virus (SFV) strain SFV4, which causes lethal encephalitis in mice, is able to infect and replicate independent of the IFN-I defense in mouse glioblastoma cells and cell lines originating from primary human glioblastoma patient samples. The ability to tolerate IFN-I was retained in SFV4-miRT124 cells, a derivative cell line of strain SFV4 with a restricted capacity to replicate in neurons due to insertion of target sites for neuronal microRNA 124. The IFN-I tolerance was associated with the viral nsp3-nsp4 gene region and distinct from the genetic loci responsible for SFV neurovirulence. In contrast to the naturally attenuated strain SFV A7(74) and its derivatives, SFV4-miRT124 displayed increased oncolytic potency in CT-2A murine astrocytoma cells and in the human glioblastoma cell lines pretreated with IFN-I. Following a single intraperitoneal injection of SFV4-miRT124 into C57BL/6 mice bearing CT-2A orthotopic gliomas, the virus homed to the brain and was amplified in the tumor, resulting in significant tumor growth inhibition and improved survival. IMPORTANCE Although progress has been made in development of replicative oncolytic viruses, information regarding their overall therapeutic potency in a clinical setting is still lacking. This could be at least partially dependent on the IFN-I sensitivity of the viruses used. Here, we show that the conditionally replicating SFV4-miRT124 virus shares the IFN-I tolerance of the pathogenic wild-type SFV, thereby allowing efficient targeting of a glioma that is refractory to naturally attenuated therapy vector strains sensitive to IFN-I. This is the first evidence of orthotopic syngeneic mouse glioma eradication following peripheral alphavirus administration. Our findings indicate a clear benefit in harnessing the wild-type virus replicative potency in development of next-generation oncolytic alphaviruses.
Collapse
|
20
|
Autio KPM, Ruotsalainen JJ, Anttila MO, Niittykoski M, Waris M, Hemminki A, Vähä-Koskela MJV, Hinkkanen AE. Attenuated Semliki Forest virus for cancer treatment in dogs: safety assessment in two laboratory Beagles. BMC Vet Res 2015. [PMID: 26215394 PMCID: PMC4515883 DOI: 10.1186/s12917-015-0498-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Dogs suffer from spontaneous tumors which may be amenable to therapies developed for human cancer patients, and dogs may serve as large-animal cancer models. A non-pathogenic Semliki Forest virus vector VA7-EGFP previously showed promise in targeting human tumor xenografts in mice, but the oncolytic capacity of the virus in canine cancer cells and the safety of the virus in higher mammals such as dogs, are not known. We therefore assessed the oncolytic potency of VA7-EGFP against canine cancer cells by infectivity and viability assays in two dog solid tumor cell lines. Furthermore we performed a 3-week safety study in two adult Beagles which received a single intravenous injection of ~2 × 105 plaque forming units of parental A7(74) strain. Results VA7-EGFP was able to replicate in and kill both canine cancer cell lines tested. No adverse events were observed in either of the two virus-injected adult Beagles and no infective virus could be recovered from any of the biological samples collected over the course of the study. Neutralizing antibodies to Semliki Forest virus became detectable in the dogs at 5 days post infection and remained elevated until study termination. Conclusions Based on these results, testing of the oncolytic potential of attenuated Semliki Forest virus in canine cancer patients appears feasible. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0498-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karoliina P M Autio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014, Helsinki, Finland. .,Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | - Janne J Ruotsalainen
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Marjukka O Anttila
- Finnish Food Safety Authority Evira, Pathology Unit, Mustialankatu 3, 00790, Helsinki, Finland.
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Matti Waris
- Department of Virology, University of Turku, 20014, Turku, Finland.
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | | | - Ari E Hinkkanen
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
21
|
Ability of the Encephalitic Arbovirus Semliki Forest Virus To Cross the Blood-Brain Barrier Is Determined by the Charge of the E2 Glycoprotein. J Virol 2015; 89:7536-49. [PMID: 25972559 PMCID: PMC4505677 DOI: 10.1128/jvi.03645-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Semliki Forest virus (SFV) provides a well-characterized model system to study the pathogenesis of virus encephalitis. Several studies have used virus derived from the molecular clone SFV4. SFV4 virus does not have the same phenotype as the closely related L10 or the prototype virus from which its molecular clone was derived. In mice, L10 generates a high-titer plasma viremia, is efficiently neuroinvasive, and produces a fatal panencephalitis, whereas low-dose SFV4 produces a low-titer viremia, rarely enters the brain, and generally is avirulent. To determine the genetic differences responsible, the consensus sequence of L10 was determined and compared to that of SFV4. Of the 12 nucleotide differences, six were nonsynonymous; these were engineered into a new molecular clone, termed SFV6. The derived virus, SFV6, generated a high-titer viremia and was efficiently neuroinvasive and virulent. The phenotypic difference mapped to a single amino acid residue at position 162 in the E2 envelope glycoprotein (lysine in SFV4, glutamic acid in SFV6). Analysis of the L10 virus showed it contained different plaque phenotypes which differed in virulence. A lysine at E2 247 conferred a small-plaque avirulent phenotype and glutamic acid a large-plaque virulent phenotype. Viruses with a positively charged lysine at E2 162 or 247 were more reliant on glycosaminoglycans (GAGs) to enter cells and were selected for by passage in BHK-21 cells. Interestingly, viruses with the greatest reliance on binding to GAGs replicated to higher titers in the brain and more efficiently crossed an in vitro blood-brain barrier (BBB). IMPORTANCE Virus encephalitis is a major disease, and alphaviruses, as highlighted by the recent epidemic of chikungunya virus (CHIKV), are medically important pathogens. In addition, alphaviruses provide well-studied experimental systems with extensive literature, many tools, and easy genetic modification. In this study, we elucidate the genetic basis for the difference in phenotype between SFV4 and the virus stocks from which it was derived and correct this by engineering a new molecular clone. We then use this clone in one comprehensive study to demonstrate that positively charged amino acid residues on the surface of the E2 glycoprotein, mediated by binding to GAGs, determine selective advantage and plaque size in BHK-21 cells, level of viremia in mice, ability to cross an artificial BBB, efficiency of replication in the brain, and virulence. Together with studies on Sindbis virus (SINV), this study provides an important advance in understanding alphavirus, and probably other virus, encephalitis.
Collapse
|
22
|
Tumor Restrictions to Oncolytic Virus. Biomedicines 2014; 2:163-194. [PMID: 28548066 PMCID: PMC5423468 DOI: 10.3390/biomedicines2020163] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/17/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy has advanced since the days of its conception but therapeutic efficacy in the clinics does not seem to reach the same level as in animal models. One reason is premature oncolytic virus clearance in humans, which is a reasonable assumption considering the immune-stimulating nature of the oncolytic agents. However, several studies are beginning to reveal layers of restriction to oncolytic virotherapy that are present before an adaptive neutralizing immune response. Some of these barriers are present constitutively halting infection before it even begins, whereas others are raised by minute cues triggered by virus infection. Indeed, we and others have noticed that delivering viruses to tumors may not be the biggest obstacle to successful therapy, but instead the physical make-up of the tumor and its capacity to mount antiviral defenses seem to be the most important efficacy determinants. In this review, we summarize the constitutive and innate barriers to oncolytic virotherapy and discuss strategies to overcome them.
Collapse
|
23
|
Moniuszko A, Rückert C, Alberdi MP, Barry G, Stevenson B, Fazakerley JK, Kohl A, Bell-Sakyi L. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens. Ticks Tick Borne Dis 2014; 5:415-22. [PMID: 24685441 PMCID: PMC4058533 DOI: 10.1016/j.ttbdis.2014.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/10/2014] [Accepted: 01/29/2014] [Indexed: 11/30/2022]
Abstract
Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen-pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence.
Collapse
Affiliation(s)
- Anna Moniuszko
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK; Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, Żurawia 14, 15-540 Białystok, Poland
| | - Claudia Rückert
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - M Pilar Alberdi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Gerald Barry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS421 Chandler Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK; The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Alain Kohl
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Lesley Bell-Sakyi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK.
| |
Collapse
|
24
|
Encapsidation of host-derived factors correlates with enhanced infectivity of Sindbis virus. J Virol 2013; 87:12216-26. [PMID: 24006438 DOI: 10.1128/jvi.02437-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The genus Alphavirus consists of a group of enveloped, single-stranded RNA viruses, many of which are transmitted by arthropods to a wide range of vertebrate host species. Here we report that Sindbis virus (SINV) produced from a representative mammalian cell line consists of at least two unique particle subpopulations, separable on the basis of virion density. In contrast, mosquito-derived SINV consists of a homogeneous population of particles. Our findings indicate that the denser particle subpopulation, SINV(Heavy), is more infectious on a per-particle basis than SINV(Light). SINV produced in mosquito cell lines (SINV(C6/36)) exhibited particle-to-PFU ratios similar to those observed for SINV(Heavy). In mammalian cells, viral RNA was synthesized and accumulated more rapidly following infection with SINV(Heavy) or SINV(C6/36) than following infection with SINV(Light), due partly to enhanced translation of viral genomic RNA early in infection. Analysis of the individual particle subpopulations indicated that SINV(Heavy) and SINV(C6/36) contain host-derived factors whose presence correlates with the enhanced translation, RNA synthesis, and infectivity observed for these particles.
Collapse
|
25
|
van Knippenberg I, Fragkoudis R, Elliott RM. The transient nature of Bunyamwera orthobunyavirus NSs protein expression: effects of increased stability of NSs protein on virus replication. PLoS One 2013; 8:e64137. [PMID: 23667701 PMCID: PMC3648540 DOI: 10.1371/journal.pone.0064137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The NSs proteins of bunyaviruses are the viral interferon antagonists, counteracting the host's antiviral response to infection. During high-multiplicity infection of cultured mammalian cells with Bunyamwera orthobunyavirus (BUNV), NSs is rapidly degraded after reaching peak levels of expression at 12hpi. Through the use of inhibitors this was shown to be the result of proteasomal degradation. A recombinant virus (rBUN4KR), in which all four lysine residues in NSs were replaced by arginine residues, expresses an NSs protein (NSs4KR) that is resistant to degradation, confirming that degradation is lysine-dependent. However, despite repeated attempts, no direct ubiquitylation of NSs in infected cells could be demonstrated. This suggests that degradation of NSs, although lysine-dependent, may be achieved through an indirect mechanism. Infection of cultured mammalian cells or mice indicated no disadvantage for the virus in having a non-degradable NSs protein: in fact rBUN4KR had a slight growth advantage over wtBUNV in interferon-competent cells, presumably due to the increased and prolonged presence of NSs. In cultured mosquito cells there was no difference in growth between wild-type BUNV and rBUN4KR, but surprisingly NSs4KR was not stabilised compared to the wild-type NSs protein.
Collapse
Affiliation(s)
- Ingeborg van Knippenberg
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
| | - Rennos Fragkoudis
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Richard M. Elliott
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T. Antiviral type I and type III interferon responses in the central nervous system. Viruses 2013; 5:834-57. [PMID: 23503326 PMCID: PMC3705299 DOI: 10.3390/v5030834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Collapse
Affiliation(s)
- Frédéric Sorgeloos
- Université catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 avenue Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
27
|
Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology. Immunol Res 2012; 53:136-47. [PMID: 22418724 DOI: 10.1007/s12026-012-8266-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chikungunya virus (CHIKV), an alphavirus, has been responsible for large epidemic outbreaks with serious economic and social impact during the last 6 years. Transmitted by Aedes mosquitoes, it causes Chikungunya fever, an acute illness in patients with a stooped posture often associated with chronic and incapacitating arthralgia. The unprecedented re-emergence has stimulated renewed interest in CHIKV. This review discusses the advantages and disadvantages of different animal models for CHIKV infections and their importance to study the role of the immune system in different pathologies caused by CHIKV. We also reveal how such studies still present a difficult challenge, but are indispensible for mechanistic studies to further understand the pathophysiology of CHIKV infections.
Collapse
|
28
|
An attenuating mutation in a neurovirulent Sindbis virus strain interacts with the IPS-1 signaling pathway in vivo. Virology 2012; 435:269-80. [PMID: 23084425 DOI: 10.1016/j.virol.2012.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/27/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
Abstract
The AR86 strain of Sindbis virus causes lethal neurologic disease in adult mice. Previous studies have identified a virulence determinant at nonstructural protein (nsP) 1 position 538 that regulates neurovirulence, modulates clearance from the CNS, and interferes with the type I interferon pathway. The studies herein demonstrate that in the absence of type I interferon signaling, the attenuated mutant exhibited equivalent virulence to S300 virus. Furthermore, both S300 and nsP1 T538I viruses displayed similar neurovirulence and replication kinetics in IPS-1-/- mice. TRIF dependent signaling played a modest role in protecting against disease by both S300 and nsP1 T538I, but did not contribute to control of nsP1 T538I replication within the CNS, while MyD88 played no role in the disease process. These results indicate that the control of the nsP1 T538I mutant virus is largely mediated by IPS-1-dependent RLR signaling, with TRIF-dependent TLR signaling also contributing to protection from virus-induced neurologic disease.
Collapse
|
29
|
Neighbours LM, Long K, Whitmore AC, Heise MT. Myd88-dependent toll-like receptor 7 signaling mediates protection from severe Ross River virus-induced disease in mice. J Virol 2012; 86:10675-85. [PMID: 22837203 PMCID: PMC3457316 DOI: 10.1128/jvi.00601-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.
Collapse
Affiliation(s)
- Lauren M. Neighbours
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Interferon-β sensitivity of tumor cells correlates with poor response to VA7 virotherapy in mouse glioma models. Mol Ther 2012; 20:1529-39. [PMID: 22434140 DOI: 10.1038/mt.2012.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In our recent study, replicative alphaviral vector VA7 was found to be effective against orthotopic human U87-glioma xenografts in an athymic mouse model eradicating the tumors with single intravenous (i.v.) injection. Here, we tested the efficacy of VA7 in immunocompetent orthotopic GL261 and CT-2A glioma models of C57BL/6 mouse in vivo. The cell lines were susceptible to VA7 infection in vitro, but GL261 infection was highly restricted in confluent cell cultures, and mouse interferon-β (IFNβ) pretreatment prevented the replication of VA7 in both cell lines. When mice bearing orthotopic GL261 or CT-2A tumors were administered neurotropic VA7, either i.v. or intracranially (i.c.), the vector was unable to infect the tumor and no survival benefit was achieved. Pretreatments with immunosuppressive cyclophosphamide (CPA) and rapamycin markedly lowered serum-neutralizing antibodies (NAbs) but had no effect on tumor infection or survival. Intracranial GL261 tumors were refractory also in athymic C57BL/6 mice, which have serious defects in their adaptive immunity. Implanted VA7-infected GL261 cells formed tumors with only slightly delayed kinetics and without improving survival thus excluding the participation of physical barriers and indicating robust host IFN action. Mouse and human IFNβ do not seem be species cross-reactive, which might limit the translational relevance of xenograft models in oncolytic virotherapy.
Collapse
|
31
|
Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 2012; 425:103-12. [PMID: 22305131 DOI: 10.1016/j.virol.2011.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/12/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
Abstract
In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthralgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent.
Collapse
Affiliation(s)
- Christina L Gardner
- Center for Vaccine Research and Dept. of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
32
|
Dionne KR, Galvin JM, Schittone SA, Clarke P, Tyler KL. Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection. J Neurovirol 2011; 17:314-26. [PMID: 21671121 PMCID: PMC3163031 DOI: 10.1007/s13365-011-0038-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 12/24/2022]
Abstract
In vivo and ex vivo models of reoviral encephalitis were utilized to delineate the contribution of type I interferon (IFN) to the host's defense against local central nervous system (CNS) viral infection and systemic viral spread. Following intracranial (i.c.) inoculation with either serotype 3 (T3) or serotype 1 (T1) reovirus, increased expression of IFN-α, IFN-β, and myxovirus-resistance protein (Mx1; a prototypical IFN stimulated gene) was observed in mouse brain tissue. Type I IFN receptor deficient mice (IFNAR(-/-)) had accelerated lethality, compared to wildtype (B6wt) controls, following i.c. T1 or T3 challenge. Although viral titers in the brain and eyes of reovirus infected IFNAR(-/-) mice were significantly increased, these mice did not develop neurologic signs or brain injury. In contrast, increased reovirus titers in peripheral tissues (liver, spleen, kidney, heart, and blood) of IFNAR(-/-) mice were associated with severe intestinal and liver injury. These results suggest that reovirus-infected IFNAR(-/-) mice succumb to peripheral disease rather than encephalitis per se. To investigate the potential role of type I IFN in brain tissue, brain slice cultures (BSCs) were prepared from IFNAR(-/-) mice and B6wt controls for ex vivo T3 reovirus infection. Compared to B6wt controls, reoviral replication and virus-induced apoptosis were enhanced in IFNAR(-/-) BSCs indicating that a type I IFN response, initiated by resident CNS cells, mediates innate viral immunity within the brain. T3 reovirus tropism was extended in IFNAR(-/-) brains to include dentate neurons, ependymal cells, and meningeal cells indicating that reovirus tropism within the CNS is dependent upon type I interferon signaling.
Collapse
Affiliation(s)
- Kalen R. Dionne
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - John M. Galvin
- Department of Neurology, University of Colorado, Anschutz Medical Campus Research Complex 2, 12700 East 19th Ave, B182, Aurora, CO 80045 USA
| | - Stephanie A. Schittone
- Department of Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Penny Clarke
- Department of Neurology, University of Colorado, Anschutz Medical Campus Research Complex 2, 12700 East 19th Ave, B182, Aurora, CO 80045 USA
| | - Kenneth L. Tyler
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Department of Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Denver Veterans Affairs Medical Center, Denver, CO 80220 USA
- Department of Neurology, University of Colorado, Anschutz Medical Campus Research Complex 2, 12700 East 19th Ave, B182, Aurora, CO 80045 USA
| |
Collapse
|
33
|
Quetglas JI, Fioravanti J, Ardaiz N, Medina-Echeverz J, Baraibar I, Prieto J, Smerdou C, Berraondo P. A Semliki forest virus vector engineered to express IFNα induces efficient elimination of established tumors. Gene Ther 2011; 19:271-8. [PMID: 21734727 DOI: 10.1038/gt.2011.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Semliki Forest virus (SFV) represents a promising gene therapy vector for tumor treatment, because it produces high levels of recombinant therapeutic proteins while inducing apoptosis in infected cells. In this study, we constructed a SFV vector expressing murine interferon alpha (IFNα). IFNα displays antitumor activity mainly by enhancing an antitumor immune response, as well as by a direct antiproliferative effect. In spite of the antiviral activity of IFNα, SFV-IFN could be produced in BHK cells at high titers. This vector was able to infect TC-1 cells, a tumor cell line expressing E6 and E7 proteins of human papillomavirus, leading to high production of IFNα both in vitro and in vivo. When injected into subcutaneous TC-1 tumors implanted in mice, SFV-IFN was able to induce an E7-specific cytotoxic T lymphocyte response, and to modify tumor infiltrating immune cells, reducing the percentage of T regulatory cells and activating myeloid cells. As a consequence, SFV-IFN was able to eradicate 58% of established tumors treated 21 days after implantation with long-term tumor-free survival and very low toxicity. SFV-IFN was also able to induce significant antitumor responses in a subcutaneous tumor model of murine colon adenocarcimoma. These data suggest that local production of IFNα by intratumoral injection of recombinant SFV-IFN could represent a potent new strategy to treat tumors in patients.
Collapse
Affiliation(s)
- J I Quetglas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for a recent, unexpectedly severe epidemic in countries of the Indian Ocean region. Although many alphaviruses have been well studied, little was known about the biology and pathogenesis of CHIKV at the time of the 2005 outbreak. Over the past 5 years there has been a multidisciplinary effort aimed at deciphering the clinical, physiopathological, immunological and virological features of CHIKV infection. This Review highlights some of the most recent advances in our understanding of the biology of CHIKV and its interactions with the host.
Collapse
Affiliation(s)
- Olivier Schwartz
- Institut Pasteur, 28 rue du Dr Roux, Paris 75724 Cedex 15, France.
| | | |
Collapse
|
35
|
Menachery VD, Pasieka TJ, Leib DA. Interferon regulatory factor 3-dependent pathways are critical for control of herpes simplex virus type 1 central nervous system infection. J Virol 2010; 84:9685-94. [PMID: 20660188 PMCID: PMC2937762 DOI: 10.1128/jvi.00706-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/15/2010] [Indexed: 01/12/2023] Open
Abstract
The initiation of the immune response at the cellular level relies on specific recognition molecules to rapidly signal viral infection via interferon (IFN) regulatory factor 3 (IRF-3)-dependent pathways. The absence of IRF-3 would be expected to render such pathways inoperative and thereby significantly affect viral infection. Unexpectedly, a previous study found no significant change in herpes simplex virus (HSV) pathogenesis in IRF-3(-/-) mice following intravenous HSV type 1 (HSV-1) challenge (K. Honda, H. Yanai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi, Nature 434:772-777, 2005). In contrast, the present study demonstrated that IRF-3(-/-) mice are significantly more susceptible to HSV infection via the corneal and intracranial routes. Following corneal infection with 2 x 10(6) PFU of HSV-1 strain McKrae, 50% of wild-type mice survived, compared to 10% of IRF-3-deficient mice. Significantly increased viral replication and inflammatory cytokine production were observed in brain tissues of IRF-3(-/-) mice compared to control mice, with a concomitant deficit in production of both IFN-beta and IFN-alpha. These data demonstrate a critical role for IRF-3 in control of central nervous system infection following HSV-1 challenge. Furthermore, this work underscores the necessity to evaluate multiple routes of infection and animal models in order to fully determine the role of host resistance factors in pathogenesis.
Collapse
Affiliation(s)
- Vineet D. Menachery
- Department of Ophthalmology and Visual Sciences, Program in Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - Tracy Jo Pasieka
- Department of Ophthalmology and Visual Sciences, Program in Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - David A. Leib
- Department of Ophthalmology and Visual Sciences, Program in Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| |
Collapse
|
36
|
Neuropeptide Y has a protective role during murine retrovirus-induced neurological disease. J Virol 2010; 84:11076-88. [PMID: 20702619 DOI: 10.1128/jvi.01022-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral infections in the central nervous system (CNS) can lead to neurological disease either directly by infection of neurons or indirectly through activation of glial cells and production of neurotoxic molecules. Understanding the effects of virus-mediated insults on neuronal responses and neurotrophic support is important in elucidating the underlying mechanisms of viral diseases of the CNS. In the current study, we examined the expression of neurotrophin- and neurotransmitter-related genes during infection of mice with neurovirulent polytropic retrovirus. In this model, virus-induced neuropathogenesis is indirect, as the virus predominantly infects macrophages and microglia and does not productively infect neurons or astrocytes. Virus infection is associated with glial cell activation and the production of proinflammatory cytokines in the CNS. In the current study, we identified increased expression of neuropeptide Y (NPY), a pleiotropic growth factor which can regulate both immune cells and neuronal cells, as a correlate with neurovirulent virus infection. Increased levels of Npy mRNA were consistently associated with neurological disease in multiple strains of mice and were induced only by neurovirulent, not avirulent, virus infection. NPY protein expression was primarily detected in neurons near areas of virus-infected cells. Interestingly, mice deficient in NPY developed neurological disease at a faster rate than wild-type mice, indicating a protective role for NPY. Analysis of NPY-deficient mice indicated that NPY may have multiple mechanisms by which it influences virus-induced neurological disease, including regulating the entry of virus-infected cells into the CNS.
Collapse
|
37
|
Intravenously administered alphavirus vector VA7 eradicates orthotopic human glioma xenografts in nude mice. PLoS One 2010; 5:e8603. [PMID: 20066051 PMCID: PMC2799335 DOI: 10.1371/journal.pone.0008603] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 12/05/2009] [Indexed: 11/24/2022] Open
Abstract
Background VA7 is a neurotropic alphavirus vector based on an attenuated strain of Semliki Forest virus. We have previously shown that VA7 exhibits oncolytic activity against human melanoma xenografts in immunodeficient mice. The purpose of this study was to determine if intravenously administered VA7 would be effective against human glioma. Methodology/Principal Findings In vitro, U87, U251, and A172 human glioma cells were infected and killed by VA7-EGFP. In vivo, antiglioma activity of VA7 was tested in Balb/c nude mice using U87 cells stably expressing firefly luciferase in subcutaneous and orthotopic tumor models. Intravenously administered VA7-EGFP completely eradicated 100% of small and 50% of large subcutaneous U87Fluc tumors. A single intravenous injection of either VA7-EGFP or VA7 expressing Renilla luciferase (VA7-Rluc) into mice bearing orthotopic U87Fluc tumors caused a complete quenching of intracranial firefly bioluminescence and long-term survival in total 16 of 17 animals. In tumor-bearing mice injected with VA7-Rluc, transient intracranial and peripheral Renilla bioluminescence was observed. Virus was well tolerated and no damage to heart, liver, spleen, or brain was observed upon pathological assessment at three and ninety days post injection, despite detectable virus titers in these organs during the earlier time point. Conclusion VA7 vector is apathogenic and can enter and destroy brain tumors in nude mice when administered systemically. This study warrants further elucidation of the mechanism of tumor destruction and attenuation of the VA7 virus.
Collapse
|
38
|
Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol 2010; 119:55-73. [PMID: 20024659 DOI: 10.1007/s00401-009-0624-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The literature was reviewed to summarize the current understanding of the role of ciliated ependymal cells in the mammalian brain. Previous reviews were summarized. Publications from the past 10 years highlight interactions between ependymal cells and the subventricular zone and the possible role of restricted ependymal populations in neurogenesis. Ependymal cells provide trophic support and possibly metabolic support for progenitor cells. Channel proteins such as aquaporins may be important for determining water fluxes at the ventricle wall. The junctional and anchoring proteins are now fairly well understood, as are proteins related to cilia function. Defects in ependymal adhesion and cilia function can cause hydrocephalus through several different mechanisms, one possibility being loss of patency of the cerebral aqueduct. Ependymal cells are susceptible to infection by a wide range of common viruses; while they may act as a line of first defense, they eventually succumb to repeated attacks in long-lived organisms. Ciliated ependymal cells are almost certainly important during brain development. However, the widespread absence of ependymal cells from the adult human lateral ventricles suggests that they may have only regionally restricted value in the mature brain of large size.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
39
|
Burke CW, Gardner CL, Steffan JJ, Ryman KD, Klimstra WB. Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology 2009; 395:121-32. [PMID: 19782381 DOI: 10.1016/j.virol.2009.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 12/20/2022]
Abstract
We examined the characteristics of interferon alpha/beta (IFN-alpha/beta) induction after alphavirus or control Sendai virus (SeV) infection of murine fibroblasts (MEFs). As expected, SeV infection of wild-type (wt) MEFs resulted in strong dimerization of IRF3 and the production of high levels of IFN-alpha/beta. In contrast, infection of MEFs with multiple alphaviruses failed to elicit detectable IFN-alpha/beta. In more detailed studies, Sindbis virus (SINV) infection caused dimerization and nuclear migration of IRF3, but minimal IFN-beta promoter activity, although surprisingly, the infected cells were competent for IFN production by other stimuli early after infection. A SINV mutant defective in host macromolecular synthesis shutoff induced IFN-alpha/beta in the MEF cultures dependent upon the activities of the TBK1 IRF3 activating kinase and host pattern recognition receptors (PRRs) PKR and MDA5 but not RIG-I. These results suggest that wild-type alphaviruses antagonize IFN induction after IRF3 activation but also may avoid detection by host PRRs early after infection.
Collapse
Affiliation(s)
- Crystal W Burke
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
40
|
Raaben M, Groot Koerkamp MJA, Rottier PJM, de Haan CAM. Type I interferon receptor-independent and -dependent host transcriptional responses to mouse hepatitis coronavirus infection in vivo. BMC Genomics 2009; 10:350. [PMID: 19650917 PMCID: PMC2728740 DOI: 10.1186/1471-2164-10-350] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 08/03/2009] [Indexed: 12/24/2022] Open
Abstract
Background The role of type I IFNs in protecting against coronavirus (CoV) infections is not fully understood. While CoVs are poor inducers of type I IFNs in tissue culture, several studies have demonstrated the importance of the type I IFN response in controlling MHV infection in animals. The protective effectors against MHV infection are, however, still unknown. Results In order to get more insight into the antiviral gene expression induced in the brains of MHV-infected mice, we performed whole-genome expression profiling. Three different mouse strains, differing in their susceptibility to infection with MHV, were used. In BALB/c mice, which display high viral loads but are able to control the infection, 57 and 121 genes were significantly differentially expressed (≥ 1.5 fold change) upon infection at 2 and 5 days post infection, respectively. Functional association network analyses demonstrated a strong type I IFN response, with Irf1 and Irf7 as the central players. At 5 days post infection, a type II IFN response also becomes apparent. Both the type I and II IFN response, which were more pronounced in mice with a higher viral load, were not observed in 129SvEv mice, which are much less susceptible to infection with MHV. 129SvEv mice lacking the type I interferon receptor (IFNAR-/-), however, were not able to control the infection. Gene expression profiling of these mice identified type I IFN-independent responses to infection, with IFN-γ as the central player. As the BALB/c and the IFNAR-/- 129SvEv mice demonstrated very similar viral loads in their brains, we also compared their gene expression profiles upon infection with MHV in order to identify type I IFN-dependent transcriptional responses. Many known IFN-inducible genes were detected, several of which have previously been shown to play an important protective role against virus infections. We speculate that the additional type I IFN-dependent genes that we discovered may also be important for protection against MHV infection. Conclusion Transcriptional profiling of mice infected with MHV demonstrated the induction of a robust IFN response, which correlated with the viral load. Profiling of IFNAR-/- mice allowed us to identify type I IFN-independent and -dependent responses. Overall, this study broadens our present knowledge of the type I and II IFN-mediated effector responses during CoV infection in vivo.
Collapse
Affiliation(s)
- Matthijs Raaben
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J Virol 2009; 83:10036-47. [PMID: 19641001 DOI: 10.1128/jvi.01209-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is highly virulent in adult laboratory mice, while Sindbis virus (SINV) is avirulent regardless of dose or inoculation route, dependent upon functioning alpha/beta interferon (IFN-alpha/beta) responses. We have examined each virus' resistance to and/or antagonism of IFN-alpha/beta responses in neurons, a cell type targeted by both viruses in mice, by infecting IFN-alpha/beta-treated or untreated primary cultures with viruses or virus-derived replicons that lacked the structural proteins. Priming with IFN-alpha/beta prior to infection revealed that VEEV replication and progeny virion production were resistant to an established antiviral state while those of SINV were more sensitive. Postinfection IFN-alpha/beta treatment revealed that phosphorylation of STAT1 and STAT2 was partially blocked by infection with either virus, dependent upon expression of nonstructural proteins (nsP), but not structural proteins (sP). However, inhibition of STAT phosphorylation by VEEV replicons was not correlated with inhibition of IFN-stimulated gene (ISG) mRNA induction, yet ISG induction was inhibited when sP were present. Host translation was inhibited by VEEV nsP even when cells were pretreated with IFN-alpha/beta. SINV blocked ISG induction and translation, associated with nsP-mediated shutoff of macromolecular synthesis, but both activities were sensitive to IFN-alpha/beta pretreatment. We conclude that both VEEV and SINV limit ISG induction in infected neurons through shutoff of host transcription and translation but that inhibition by VEEV is more resistant to IFN-alpha/beta priming. Likewise, both viruses inhibit IFN receptor-initiated signaling, although the effect upon host responses is not clear. Finally, VEEV appears to be more resistant to effectors of the preestablished antiviral state.
Collapse
|
42
|
Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J, Kohl A, Fazakerley JK. PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J Gen Virol 2009; 90:1382-1391. [PMID: 19264662 PMCID: PMC2885058 DOI: 10.1099/vir.0.007336-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/03/2009] [Indexed: 12/20/2022] Open
Abstract
The double-stranded RNA-activated protein kinase (PKR) is a key regulator of protein translation, interferon (IFN) expression and cell survival. Upon infection of vertebrate cells in continuous culture, the alphavirus Semliki Forest virus (SFV) initiates apoptosis and IFN synthesis. To determine the effect of PKR on SFV infection, we studied the course of infection in wild-type (wt) mice, mice with a genetic deletion of PKR (PKR-/-) and mouse embryo fibroblasts (MEFs) derived from these mice. In MEFs, PKR delayed virus protein synthesis, production of infectious virus and caspase-3-activated cell death and reduced the yield of infectious virus by 90%. Small interfering RNA suppression of PKR levels in NIH-3T3 cells also reduced virus production and apoptosis. In MEFs, PKR was not required for initiation of IFN-beta gene transcription, but contributed strongly to the magnitude of this response. Levels of IFN-beta transcripts in PKR-/- MEFs at 8 h were 80% lower than those in wt MEFs and levels of functional IFN at 24 h were 95% lower. Following infection of wt and PKR-/- mice, SFV4 and SFV A7(74) were avirulent. PKR increased levels of serum IFN and the rate of clearance of infectious virus from the brain. In summary, in response to SFV, PKR exerts an early antiviral effect that delays virus protein production and release of infectious virus and, whilst PKR is not required for induction of apoptosis or activation of the type I IFN response, it strongly augments the type I IFN response and contributes to clearance of infectious virus from the mouse brain.
Collapse
Affiliation(s)
- Gerald Barry
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Lucy Breakwell
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Rennos Fragkoudis
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Ghassem Attarzadeh-Yazdi
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Julio Rodriguez-Andres
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Alain Kohl
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - John K Fazakerley
- The Roslin Institute and Royal School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
43
|
Whitman L, Zhou H, Perlman S, Lane TE. IFN-gamma-mediated suppression of coronavirus replication in glial-committed progenitor cells. Virology 2009; 384:209-15. [PMID: 19059617 PMCID: PMC2779567 DOI: 10.1016/j.virol.2008.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 11/04/2022]
Abstract
The neurotropic JHM strain of mouse hepatitis virus (JHMV) replicates primarily within glial cells following intracranial inoculation of susceptible mice, with relative sparing of neurons. This study demonstrates that glial cells derived from neural progenitor cells are susceptible to JHMV infection and that treatment of infected cells with IFN-gamma inhibits viral replication in a dose-dependent manner. Although type I IFN production is muted in JHMV-infected glial cultures, IFN-beta is produced following IFN-gamma-treatment of JHMV-infected cells. Also, direct treatment of infected glial cultures with recombinant mouse IFN-alpha or IFN-beta inhibits viral replication. IFN-gamma-mediated control of JHMV replication is dampened in glial cultures derived from the neural progenitor cells of type I receptor knock-out mice. These data indicate that JHMV is capable of infecting glial cells generated from neural progenitor cells and that IFN-gamma-mediated control of viral replication is dependent, in part, on type I IFN secretion.
Collapse
Affiliation(s)
- Lucia Whitman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Haixia Zhou
- Department of Microbiology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E. Lane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
44
|
Fragkoudis R, Tamberg N, Siu R, Kiiver K, Kohl A, Merits A, Fazakerley JK. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J Neurovirol 2008; 15:57-70. [PMID: 19115134 DOI: 10.1080/13550280802482583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Semliki Forest virus (SFV) provides an experimental model of acute virus encephalitis and virus-induced demyelinating disease. Two marker viruses expressing fluorescent proteins as part of the replicase or the structural open reading frame were used to evaluate virus replication in cells of the adult mouse brain. Both marker viruses established a high-titer infection in the adult mouse brain. As determined by location, morphology, and immunostaining with neural cell type-specific phenotypic markers, both viruses infected neurons and oligodendrocytes but not astrocytes. Determination of eGFP expression from either the replicase or the structural open-reading frame coupled with immunostaining for either the virus structural protein or the virus nonstructural protein-3 readily distinguished cells at early and late stages of infection. Neurons but not oligodendrocytes rapidly down-regulated virus replication. Rapid down-regulation of virus replication was also observed in mature but not immature primary cultures of rat hippocampal neurons. This study demonstrates for the first time that in vivo central nervous system (CNS) cells differ in their ability to suppress alphavirus replication.
Collapse
Affiliation(s)
- Rennos Fragkoudis
- The Roslin Institute and Royal School of Veterinary Studies College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|