1
|
Bidoudan Y, Fellahi S, Fihri OF, Bollo E, Khayli M, Mouahid M, Tligui N. Ornithobacterium rhinotracheale in Moroccan Poultry: Antimicrobial Susceptibility Profiles, Characterization of Recent Isolates, and Retrospective Study (2019-23) of Its Occurrence in Different Poultry Production Systems. Avian Dis 2025; 68:469-480. [PMID: 40249588 DOI: 10.1637/aviandiseases-d-24-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/30/2024] [Indexed: 04/19/2025]
Abstract
Ornithobacterium rhinotracheale (ORT) is one of the most important respiratory pathogens of poultry, notably in turkeys, while Riemerella anatipestifer (RA) is the etiologic agent of infectious serositis, the most economically significant disease of domestic ducks and, to a lesser extent, geese and turkeys. Currently, little is known about ORT and RA infections in Moroccan poultry. Thus, the main aim of this study was to describe ORT incidence in Moroccan poultry flocks during the period from 2019 to 2023 and gain better insights into genetic characteristics in combination with assessment of antimicrobial susceptibility of Moroccan ORT isolates during 2023 outbreaks. In addition, we report the first detection of RA in Moroccan turkeys and caged layer chickens. For this purpose, poultry flocks exhibiting elevated mortality rates along with respiratory clinical signs were necropsied. Additionally, the birds presenting fibrinous pleuropneumonia were investigated for ORT infection during the period from January to December 2023. Samples of the lungs, air sacs, and tracheas were collected for bacteriology testing, and the antimicrobial susceptibility testing was conducted on the isolates. Furthermore, trachea and lung samples were subjected to real-time quantitative polymerase chain reaction (qPCR), and positive qPCR samples were then selected for further amplification of the rpoB gene, followed by sequencing. Moreover, a retrospective study of the incidence of ORT from 2019 to 2023 was carried out. The results showed a significant increase of ORT cases (p , 0.001); additionally, age was identified as the sole significant risk factor associated with ORT diagnosis in the multivariable logistic regression analysis (odds ratio = 4.87, 95% confidence interval = 2.54-9.37, p , 0.001). Bacteriology confirmed 10 ORT isolates. Additionally, antimicrobial susceptibility testing revealed complete resistance to several antibiotics, with varying levels of resistance and sensitivity across isolates, including 100% sensitivity to florfenicol in broilers and turkeys. Sequencing of the rpoB gene revealed that 10 ORT isolates had nucleotide similarity ranging from 98% to 100% with other known ORT isolates from chickens and turkeys reported in the U.K., Chile, China, Portugal, and the United States. On the other hand, two ORT isolates were found to be genetically very close to known RA strains, despite testing positive for ORT by real-time qPCR. Amino acid sequence comparisons for these isolates reached 83.10% similarity with Riemerella sp. strain WJ4 isolated in China and 98.79% similarity with strain IPDH 98/90 isolated in Germany. In conclusion, the prevalence of ORT in Moroccan poultry flocks increased over the 5-yr period covered by this retrospective study, contributing significantly to recent respiratory disease outbreaks. Additionally, RA may also contribute to polyserositis in poultry; however, further studies are needed to determine its pathogenicity.
Collapse
Affiliation(s)
- Yassmina Bidoudan
- Mouahid's Veterinary Clinic, Temara 12000, Morocco,
- Anatomic Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Ouafaa Fassi Fihri
- Infectious Diseases Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Enrico Bollo
- Anatomic Pathology Unit, Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Mounir Khayli
- National Office of Food Safety (ONSSA), Rabat-Instituts, Rabat, Morocco
| | | | - Noursaid Tligui
- Anatomic Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| |
Collapse
|
2
|
Hassan MSH, Sharif S. Immune responses to avian influenza viruses in chickens. Virology 2025; 603:110405. [PMID: 39837219 DOI: 10.1016/j.virol.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines. These inflammatory mediators induce the expression of antiviral proteins and recruit immune system cells, such as macrophages and dendritic cells, to the infection site. AIV evades these antiviral responses primarily through its non-structural protein 1, which suppresses type I IFNs, influencing viral pathogenicity. The uncontrolled release of pro-inflammatory cytokines may contribute to the pathogenicity and high mortality associated with HPAIV infections. AIV modulates apoptosis in chicken cells to enhance its replication, with variations in apoptosis pathways influenced by viral strain and host cell type. The presentation of AIV antigens to T and B cells leads to the production of neutralizing antibodies and the targeted destruction of infected cells by CD8+ T cells, respectively, which enhances protection and establishes immunological memory. This review explores the diverse innate and adaptive immune responses in chickens to different AIVs, focusing on the dynamics of these responses relative to protection, susceptibility, and potential immunopathology. By understanding these immune mechanisms, informed strategies for controlling AIV infection and improving chicken health can be developed.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Hossain I, Shila RA, Uddin MM, Chowdhury EH, Parvin R, Begum JA. Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. BMC Vet Res 2024; 20:500. [PMID: 39482682 PMCID: PMC11529290 DOI: 10.1186/s12917-024-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. METHODS Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. RESULTS Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. CONCLUSION This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rupaida Akter Shila
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mohi Uddin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
4
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Bertram H, Wilhelmi S, Rajavel A, Boelhauve M, Wittmann M, Ramzan F, Schmitt AO, Gültas M. Comparative Investigation of Coincident Single Nucleotide Polymorphisms Underlying Avian Influenza Viruses in Chickens and Ducks. BIOLOGY 2023; 12:969. [PMID: 37508399 PMCID: PMC10375970 DOI: 10.3390/biology12070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Avian influenza is a severe viral infection that has the potential to cause human pandemics. In particular, chickens are susceptible to many highly pathogenic strains of the virus, resulting in significant losses. In contrast, ducks have been reported to exhibit rapid and effective innate immune responses to most avian influenza virus (AIV) infections. To explore the distinct genetic programs that potentially distinguish the susceptibility/resistance of both species to AIV, the investigation of coincident SNPs (coSNPs) and their differing causal effects on gene functions in both species is important to gain novel insight into the varying immune-related responses of chickens and ducks. By conducting a pairwise genome alignment between these species, we identified coSNPs and their respective effect on AIV-related differentially expressed genes (DEGs) in this study. The examination of these genes (e.g., CD74, RUBCN, and SHTN1 for chickens and ABCA3, MAP2K6, and VIPR2 for ducks) reveals their high relevance to AIV. Further analysis of these genes provides promising effector molecules (such as IκBα, STAT1/STAT3, GSK-3β, or p53) and related key signaling pathways (such as NF-κB, JAK/STAT, or Wnt) to elucidate the complex mechanisms of immune responses to AIV infections in both chickens and ducks.
Collapse
Affiliation(s)
- Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Selina Wilhelmi
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Marc Boelhauve
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
| | - Margareta Wittmann
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Dutta AK, Gazi MS, Uddin SJ. A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis. Heliyon 2023; 9:e14386. [PMID: 36925514 PMCID: PMC10011005 DOI: 10.1016/j.heliyon.2023.e14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background Avian influenza or more commonly known as bird flu is a widespread infectious disease in poultry. This review aims to accumulate information of different natural plant sources that can aid in combating this disease. Influenza virus (IV) is known for its ability to mutate and infect different species (including humans) and cause fatal consequences. Methods Total 33 plants and 4 natural compounds were identified and documented. Molecular docking was performed against the target viral protein neuraminidase (NA), with some plant based natural compounds and compared their results with standard drugs Oseltamivir and Zanamivir to obtain novel drug targets for influenza in chickens. Results It was seen that most extracts exhibit their action by interacting with viral hemagglutinin or neuraminidase and inhibit viral entry or release from the host cell. Some plants also interacted with the viral RNA replication or by reducing proinflammatory cytokines. Ethanol was mostly used for extraction. Among all the plants Theobroma cacao, Capparis Sinaica Veil, Androgarphis paniculate, Thallasodendron cillatum, Sinularia candidula, Larcifomes officinalis, Lenzites betulina, Datronia molis, Trametes gibbose exhibited their activity with least concentration (below 10 μg/ml). The dockings results showed that some natural compounds (5,7- dimethoxyflavone, Aloe emodin, Anthocyanins, Quercetin, Hemanthamine, Lyocrine, Terpenoid EA showed satisfactory binding affinity and binding specificity with viral neuraminidase compared to the synthetic drugs. Conclusion This review clusters up to date information of effective herbal plants to bolster future influenza treatment research in chickens. The in-silico analysis also suggests some potential targets for future drug development but these require more clinical analysis.
Collapse
Affiliation(s)
- Ashit Kumar Dutta
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
7
|
Comparative Analysis of Different Inbred Chicken Lines Highlights How a Hereditary Inflammatory State Affects Susceptibility to Avian Influenza Virus. Viruses 2023; 15:v15030591. [PMID: 36992300 PMCID: PMC10052641 DOI: 10.3390/v15030591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αβ+ γδ and CD4+CD8αα+ αVβ1 T cells, and a significantly higher proportion of the CD8αβ+ γδ and CD8αβ+ αVβ1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.
Collapse
|
8
|
Zhao B, Wang W, Song Y, Wen X, Feng S, Li W, Ding Y, Chen Z, He Z, Wang S, Jiao P. Genetic characterization and pathogenicity of H7N9 highly pathogenic avian influenza viruses isolated from South China in 2017. Front Microbiol 2023; 14:1105529. [PMID: 36960283 PMCID: PMC10027924 DOI: 10.3389/fmicb.2023.1105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 03/09/2023] Open
Abstract
Since 2017, the new H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for more than 200,000 cases of chicken infection and more than 120,000 chicken deaths in China. Our previous study found that the Q26 was chicken-origin H7N9 HPAIV. In this study, we analyzed the genetic characterization of Q24, Q65, Q66, Q85, and Q102 H7N9 avian influenza viruses isolated from Guangdong, China in 2017. Our results showed that these viruses were highly pathogenic and belonged to two different genotypes, which suggested they occurred genetic reassortant. To investigate the pathogenicity, transmission, and host immune responses of H7N9 virus in chickens, we selected Q24 and Q26 viruses to inoculate chickens. The Q24 and Q26 viruses killed all inoculated chickens within 3 days and replicated effectively in all tested tissues. They were efficiently transmitted to contact chickens and killed them within 4 days through direct contact. Furthermore, we found that the expressions of several immune-related genes (e.g., TLR3, TLR7, MDA5, MAVS, IFN-β, IL-6, IL-8, OAS, Mx1, MHC I, and MHC II) were upregulated obviously in the lungs and spleen of chickens inoculated with the two H7N9 viruses at 24 h post-inoculation (HPI). Among these, IL-6 and IFN-β in lungs were the most upregulated (by 341.02-381.48-fold and 472.50-500.56-fold, respectively). These results suggest that the new H7N9 viruses isolated in 2017, can replicate and transmit effectively and trigger strong immune responses in chickens, which helps us understand the genetic and pathogenic variations of H7N9 HPAIVs in China.
Collapse
Affiliation(s)
- Bingbing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- Animal Influenza Laboratory of the Ministry of Agriculture and Rural Affairs, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yating Song
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangyang Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| | - Peirong Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| |
Collapse
|
9
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
10
|
Sagong M, Lee KN, Lee EK, Kang H, Choi YK, Lee YJ. Current situation and control strategies of H9N2 avian influenza in South Korea. J Vet Sci 2023; 24:e5. [PMID: 36560837 PMCID: PMC9899936 DOI: 10.4142/jvs.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.
Collapse
Affiliation(s)
- Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyunmi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
11
|
Qin T, Chen Y, Huangfu D, Miao X, Yin Y, Yin Y, Chen S, Peng D, Liu X. PA-X protein of H9N2 subtype avian influenza virus suppresses the innate immunity of chicken bone marrow-derived dendritic cells. Poult Sci 2022; 102:102304. [PMID: 36436371 PMCID: PMC9700306 DOI: 10.1016/j.psj.2022.102304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
H9N2 subtype avian influenza (AI) is an infectious disease associated with immunosuppression in poultry. Here, the regulation function of PA-X protein was determined on the host innate immune response of H9N2-infected chicken bone marrow-derived DCs (chBM-DCs). Based on 2 mutated viruses expressing PA-X protein (rTX) or deficient PA-X protein (rTX-FS), and the established culture system of chBM-DCs, results showed PA-X protein inhibited viral replication in chBM-DCs but not in non-immune chicken cells (DF-1). Moreover, PA-X protein downregulated the expression of phenotypic markers (CD40, CD86, and MHCII) and proinflammatory cytokine (IL-12 and IL-1β) of chBM-DCs. The mixed lymphocyte reaction between chBM-DCs and chicken T cells showed PA-X protein significantly decreased H9N2-infected chBM-DCs to induce T cell proliferation, implying a suppression of the DC-induced downstream T cell response. Taken together, these findings indicated that PA-X protein is a key viral protein to help H9N2 subtype AIVs escape the innate immunity of chBM-DCs.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dandan Huangfu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, P.R. China,Corresponding author:
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
12
|
Han M, Gao S, Hu W, Zhou Q, Li H, Lin W, Chen F. Inhibitory effects of cedar pine needle extract on H9N2 avian influenza virus in vitro and in vivo. Virology 2022; 574:25-36. [PMID: 35878455 DOI: 10.1016/j.virol.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
H9N2 avian influenza virus causes significant economic losses to the poultry industry, due to its wide-spread prevalence and propensity to induce secondary and mixed infections. Antigenic drift limits vaccine efficacy. New anti-viral therapies are needed to complement existing control measures. At the maximum non-cytotoxic concentration (25 mg/mL), cedar pine needle extract inhibited H9N2 avian influenza virus proliferation in vitro and in vivo. Cedar pine needle extract reduced the haemagglutinin titre, inhibited H9N2 avian influenza virus nucleocapsid protein expression, and indirectly regulate type I and II interferon expression. Interleukin-6 expression increased during the pre-infection period but decreased during the mid-to-late stages of infection. Cedar pine needle extract may inhibit the proliferation of pathogens, regulate the immune response, and reduce host tissue damage and may serve as a potential target for drug development against H9N2 avian influenza virus.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Animal Science, South China Agricultural University, Guangzhou, China; Bioforte Biotechnology Co., Ltd., Shenzhen, China; Wen's Research Institute, Yunfu, Guangdong, China
| | - Shuang Gao
- College of Animal Science, South China Agricultural University, Guangzhou, China; Wen's Research Institute, Yunfu, Guangdong, China
| | - Wenfeng Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China; Bioforte Biotechnology Co., Ltd., Shenzhen, China; Wen's Research Institute, Yunfu, Guangdong, China
| | | | - Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China; Bioforte Biotechnology Co., Ltd., Shenzhen, China; Wen's Research Institute, Yunfu, Guangdong, China.
| |
Collapse
|
13
|
Ngunjiri JM, Taylor KJM, Ji H, Abundo MC, Ghorbani A, Kc M, Lee CW. Influenza A virus infection in turkeys induces respiratory and enteric bacterial dysbiosis correlating with cytokine gene expression. PeerJ 2021; 9:e11806. [PMID: 34327060 PMCID: PMC8310620 DOI: 10.7717/peerj.11806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Turkey respiratory and gut microbiota play important roles in promoting health and production performance. Loss of microbiota homeostasis due to pathogen infection can worsen the disease or predispose the bird to infection by other pathogens. While turkeys are highly susceptible to influenza viruses of different origins, the impact of influenza virus infection on turkey gut and respiratory microbiota has not been demonstrated. In this study, we investigated the relationships between low pathogenicity avian influenza (LPAI) virus replication, cytokine gene expression, and respiratory and gut microbiota disruption in specific-pathogen-free turkeys. Differential replication of two LPAI H5N2 viruses paralleled the levels of clinical signs and cytokine gene expression. During active virus shedding, there was significant increase of ileal and nasal bacterial contents, which inversely corresponded with bacterial species diversity. Spearman’s correlation tests between bacterial abundance and local viral titers revealed that LPAI virus-induced dysbiosis was strongest in the nasal cavity followed by trachea, and weakest in the gut. Significant correlations were also observed between cytokine gene expression levels and relative abundances of several bacteria in tracheas of infected turkeys. For example, interferon γ/λ and interleukin-6 gene expression levels were correlated positively with Staphylococcus and Pseudomonas abundances, and negatively with Lactobacillus abundance. Overall, our data suggest a potential relationship where bacterial community diversity and enrichment or depletion of several bacterial genera in the gut and respiratory tract are dependent on the level of LPAI virus replication. Further work is needed to establish whether respiratory and enteric dysbiosis in LPAI virus-infected turkeys is a result of host immunological responses or other causes such as changes in nutritional uptake.
Collapse
Affiliation(s)
- John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America
| | - Kara J M Taylor
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Biology, University of Florida, Gainesville, FL, United States of America
| | - Hana Ji
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| | - Michael C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America
| | - Amir Ghorbani
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| | - Mahesh Kc
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America.,Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Chang-Won Lee
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
14
|
Badry A, Jaspers VLB, Waugh CA. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms. J Immunotoxicol 2021; 17:86-93. [PMID: 32233818 DOI: 10.1080/1547691x.2020.1740838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many persistent organic pollutants, such as polychlorinated biphenyls (PCBs), have high immunomodulating potentials. Exposure to them, in combination with virus infections, has been shown to aggravate outcomes of the infection, leading to increased viral titers and host mortality. Expression of immune-related microRNA (miR) signaling pathways (by host and/or virus) have been shown to be important in determining these outcomes; there is some evidence to suggest pollutants can cause dysregulation of miRNAs. It was thus hypothesized here that modulation of miRNAs (and associated cytokine genes) by pollutants exerts negative effects during viral infections. To test this, an in vitro study on chicken embryo fibroblasts (CEF) exposed to a PCB mixture (Aroclor 1260) and then stimulated with a synthetic RNA virus (poly(I:C)) or infected with a lymphoma-causing DNA virus (Gallid Herpes Virus 2 [GaHV-2]) was conducted. Using quantitative real-time PCR, expression patterns for mir-155, pro-inflammatory TNFα and IL-8, transcription factor NF-κB1, and anti-inflammatory IL-4 were investigated 8, 12, and 18 h after virus activation. The study showed that Aroclor1260 modulated mir-155 expression, such that a down-regulation of mir-155 in poly(I:C)-treated CEF was seen up to 12 h. Aroclor1260 exposure also increased the mRNA expression of pro-inflammatory genes after 8 h in poly(I:C)-treated cells, but levels in GaHV-2-infected cells were unaffected. In contrast to with Aroclor1260/poly(I:C), Aroclor1260/GaHV-2-infected cells displayed an increase in mir-155 levels after 12 h compared to levels seen with either individual treatment. While after 12 h expression of most evaluated genes was down-regulated (independent of treatment regimen), by 18 h, up-regulation was evident again. In conclusion, this study added evidence that mir-155 signaling represents a sensitive pathway to chemically-induced immunomodulation and indicated that PCBs can modulate highly-regulated innate immune system signaling pathways important in determining host immune response outcomes during viral infections.
Collapse
Affiliation(s)
- Alexander Badry
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Courtney A Waugh
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
15
|
Khan A, Jahejo AR, Qiao ML, Han XY, Cheng QQ, Mangi RA, Qadir MF, Zhang D, Bi YH, Wang Y, Gao GF, Tian WX. NF-кB pathway genes expression in chicken erythrocytes infected with avian influenza virus subtype H9N2. Br Poult Sci 2021; 62:666-671. [PMID: 33843365 DOI: 10.1080/00071668.2021.1902478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Chicken erythrocytes in blood vessels are the most abundant circulating cells, which participate in the host's immune responses. The transcription factor nuclear factor-kappa B (NF-κB) plays a vital role in the inflammatory response following viral infections. However, the expression of the NF-κB pathway, and other immune-related genes in chicken erythrocytes infected with low pathogenic avian influenza virus (LPAIV H9N2), has not been extensively studied.2. The following study determined the interaction of LPAIV H9N2 with chicken erythrocytes using indirect immunofluorescence microscopy. This was followed by investigating myeloid differentiation primary response 88 (MyD88), C-C motif chemokine ligand 5 (CCL5), melanoma differentiation-associated protein 5 (MDA5), the inhibitor of nuclear factor-kappa B kinase subunit epsilon (IKBKE), NF-κB inhibitor alpha (NFKBIA), NF-κB inhibitor epsilon (NFKBIE), interferon-alpha (IFN-α), colony-stimulating factor 3 (CSF3) and tumour necrosis factor receptor-associated factor 6 (TRAF6) by mRNA expression using quantitative real-time PCR (qRT-PCR) at four different time intervals (0, 2, 6 and 10 h).3. There was a significant interaction between erythrocytes and LPAIV H9N2 virus. Furthermore, the mRNA expression of the NF-κB pathway and other immune-related genes were significantly up-regulated at 2 h post-infection in infected chicken erythrocytes, except for TRAF6, which were significantly downregulated. While at 0 h post-infection, IFN-α and CSF3 were significantly upregulated, whereas NFKBIA was significantly downregulated. Further expression of MDA5, CCL5 and NFKBIA was upregulated, while TRAF6 was downregulated at 6 h post-infection. In infected erythrocytes, expression of MyD88, CCL5 and IKBKE was upregulated. However, IFN-α and TRAF6 were downregulated at 10 h post-infection.4. These results give initial evidence that the NF-κB pathway, and other genes related to immunity, in chicken erythrocytes may contribute to LPAIV subtype H9N2 and induce host immune responses.
Collapse
Affiliation(s)
- A Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Q Q Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - R A Mangi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M F Qadir
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center of Infectious Diseases, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - G F Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
16
|
Lukosaityte D, Sadeyen JR, Shrestha A, Sealy JE, Bhat S, Chang P, Digard P, Iqbal M. Engineered Recombinant Single Chain Variable Fragment of Monoclonal Antibody Provides Protection to Chickens Infected with H9N2 Avian Influenza. Vaccines (Basel) 2020; 8:vaccines8010118. [PMID: 32138253 PMCID: PMC7157677 DOI: 10.3390/vaccines8010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Passive immunisation with neutralising antibodies can be a potent therapeutic strategy if used pre- or post-exposure to a variety of pathogens. Herein, we investigated whether recombinant monoclonal antibodies (mAbs) could be used to protect chickens against avian influenza. Avian influenza viruses impose a significant economic burden on the poultry industry and pose a zoonotic infection risk for public health worldwide. Traditional control measures including vaccination do not provide rapid protection from disease, highlighting the need for alternative disease mitigation measures. In this study, previously generated neutralizing anti-H9N2 virus monoclonal antibodies were converted to single-chain variable fragment antibodies (scFvs). These recombinant scFv antibodies were produced in insect cell cultures and the preparations retained neutralization capacity against an H9N2 virus in vitro. To evaluate recombinant scFv antibody efficacy in vivo, chickens were passively immunized with scFvs one day before, and for seven days after virus challenge. Groups receiving scFv treatment showed partial virus load reductions measured by plaque assays and decreased disease manifestation. These results indicate that antibody therapy could reduce clinical disease and shedding of avian influenza virus in infected chicken flocks.
Collapse
Affiliation(s)
- Deimante Lukosaityte
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Angita Shrestha
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Joshua E. Sealy
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Sushant Bhat
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Pengxiang Chang
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
- Correspondence:
| |
Collapse
|
17
|
Liu Q, Yang J, Huang X, Liu Y, Han K, Zhao D, Zhang L, Li Y. Transcriptomic profile of chicken bone marrow-derive dendritic cells in response to H9N2 avian influenza A virus. Vet Immunol Immunopathol 2019; 220:109992. [PMID: 31846798 DOI: 10.1016/j.vetimm.2019.109992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022]
Abstract
Avian influenza subtype H9N2 infection is a mild but highly contagious disease that is associated with a decrease in the efficacy of vaccine interventions, and an increase in susceptibility to secondary infections in poultry. However, the immune evasion mechanism of H9N2 avian influenza viruses (AIVs) in chickens is poorly understood. Dendritic cells (DCs) are immune cells of major importance, involved in innate immune responses against viruses, but also in the setting of adaptive immune response due to their high ability to present viral antigen. Therefore, in the present study we used high-throughput RNA-sequencing technology at the transcriptome level to identify the differentially expressed genes (DEGs) between chicken DCs infected with H9N2 virus and mock-infected DCs. We identified 4151 upregulated DEGs and 2138 downregulated DEGs. Further enrichment analysis showed that the upregulated DEGs were enriched in the biological processes mainly involved in signal transduction, transmembrane transport, and innate immune/inflammatory responses. In contrast, the downregulated DEGs were associated with the biological processes mainly including metabolic process, and MHC class I antigen processing and presentation. In addition, 49 of these immune-related DEGs were validated by reverse transcription quantitative PCR (RT-qPCR). Collectively, these data suggest that H9N2 virus infection may enhance the signal transduction, and innate immune responses in chicken DCs, but impair their metabolic functions and antigen-presenting responses, which provide helpful insight into the pathogenesis of H9N2 AIVs in chickens and managing this infection in poultry farms.
Collapse
Affiliation(s)
- Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China.
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, and Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 50 Zhongling Street, 210014, China.
| |
Collapse
|
18
|
Functional genomics in chicken (Gallus gallus) - status and implications in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391400004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
|
20
|
Wu S, Zhang J, Huang J, Li W, Liu Z, He Z, Chen Z, He W, Zhao B, Qin Z, Jiao P, Liao M. Immune-Related Gene Expression in Ducks Infected With Waterfowl-Origin H5N6 Highly Pathogenic Avian Influenza Viruses. Front Microbiol 2019; 10:1782. [PMID: 31428075 PMCID: PMC6687855 DOI: 10.3389/fmicb.2019.01782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Clade 2.3.4.4 H5 avian influenza viruses (AIVs) are widely prevalent and of significant concern to the poultry industry and public health in China. Nowadays, the clade 2.3.4.4 H5N6 virus has become a dominant AIV subtype among domestic ducks in southern China. We found that waterfowl-origin clade 2.3.4.4 H5N6 viruses (A/goose/Guangdong/16568/2016, GS16568 and A/duck/Guangdong/16873/2016, DK16873) isolated from southern China in 2016 could replicate in multiple organs of inoculated ducks. DK16873 virus caused mild infections and killed 2/5 of inoculated ducks, and GS16568 virus did not kill inoculated ducks. In addition, the two viruses could be transmitted via direct contact between ducks. DK16873 and GS16568 viruses killed 2/5 and 1/5 of contact ducks, respectively. Furthermore, ducks inoculated with the two H5N6 viruses exhibited different expressions of immune-related genes in their lungs. The expression of RIG-I, TLR3 and IL6 was significantly upregulated at 12 h post-inoculation (HPI) and most of the tested immune-related genes were significantly upregulated at 3 days post-inoculation (DPI). Notably, the expression of RIG-I and IL-6 in response to DK16873 virus was significantly higher than for GS16568 virus at 12 HPI and 3 DPI. Our research have provided helpful information about the pathogenicity, transmission and immune-related genes expression in ducks infected with new H5N6 AIVs.
Collapse
Affiliation(s)
- Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wanting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhifeng Qin
- Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Nguyen GT, Rauw F, Steensels M, Ingrao F, Bonfante F, Davidson I, Lambrecht B. Study of the underlying mechanisms and consequences of pathogenicity differences between two in vitro selected G1-H9N2 clones originating from a single isolate. Vet Res 2019; 50:18. [PMID: 30823888 PMCID: PMC6397504 DOI: 10.1186/s13567-019-0635-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 01/10/2023] Open
Abstract
The G1-H9N2 avian influenza virus (AIV) has caused significant economic losses in the commercial poultry industry due to reduced egg production and increased mortality. The field observations have shown that H9N2 viruses circulate and naturally mix with other pathogens and these simultaneous infections can exacerbate disease. To avoid an incorrect virus characterization, due to co-infection, isolates were purified by in vitro plaque assays. Two plaque purified G1-H9N2 clones, selected on different cell types, named MDCK-and CEF-clone in regards to the cell culture used, were studied in vivo, revealing two different virulence phenotypes. Subsequently, the underlying mechanisms were studied. Specifically, the phenotypical outcome of SPF bird infection by the two clones resulted in completely different clinical outcomes. These differences in clinical outcome were used to study the factors behind this output in more detail. Further studies demonstrated that the more severe disease outcome associated with the MDCK-clone involves a strong induction of pro-inflammatory cytokines and a lack of type I interferon production, whereas the mild disease outcome associated with the CEF-clone is related to a greater antiviral cytokine response. The immunosuppressive effect of the MDCK-clone on splenocytes was further demonstrated via ChIFN-γ lack production after ex vivo mitogenic stimulation. Genome sequencing of the two clones identified only four amino acid differences including three in the HA sequence (HA-E198A, HA-R234L, HA-E502D-H9 numbering) and one in the NA sequence (NA-V33M). In the present study, valuable insights on the mechanisms responsible for AI pathogenicity and molecular mechanisms of H9N2 infections in chicken were obtained while highlighting the impact of the cells viruses are grown on their virulence.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fabienne Rauw
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Mieke Steensels
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fiona Ingrao
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | | | - Irit Davidson
- Division of Avian and Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Bénédicte Lambrecht
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| |
Collapse
|
22
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
23
|
Chaudhari AA, Kim WH, Lillehoj HS. Interleukin-4 (IL-4) may regulate alternative activation of macrophage-like cells in chickens: A sequential study using novel and specific neutralizing monoclonal antibodies against chicken IL-4. Vet Immunol Immunopathol 2018; 205:72-82. [DOI: 10.1016/j.vetimm.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
|
24
|
Prakoso YA, Puspitasari, Rini CS, Aliviameita A, Salasia SIO, Kurniasih, Ikram AFD, Walalangi B, Utama KP, Al Huda MF, Su'udiyah NA. The Role of Sauropus androgynus (L.) Merr. Leaf Powder in the Broiler Chickens Fed a Diet Naturally Contaminated with Aflatoxin. J Toxicol 2018; 2018:2069073. [PMID: 30364039 PMCID: PMC6188729 DOI: 10.1155/2018/2069073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Aflatoxin (AF) is the secondary metabolite of Aspergillus flavus and commonly contaminates feed during storage. AF causes lowered growth rate, stress, and increased mortality in the poultry, especially for broiler industries. The aims of this study are to determine the effects of Sauropus androgynus (L.) Merr. leaf powder (SAP) in the chickens fed a diet naturally contaminated with AF. A total of 108 chickens are divided into 6 group: group I fed with basal diet (AF not detectable); group II fed with basal diet (AF not detectable) + 5% SAP; group III with AF (>1 ppb <50 ppb); group IV with AF (>1 ppb <50 ppb) + 5% SAP; group V with AF (>51 ppb <100 ppb) + 5% SAP; group VI with AF (>101 ppb <150 ppb) + 5% SAP. The data of the body weight, feed intake and efficiency, the relative weight of liver, kidney, spleen, bursa of Fabricius (BF), histopathology, haematological profile, haemagglutination inhibition (HI) titer, AF residue, and immunohistochemistry are collected on days 7, 14, and 21. All the data were analysed using SPSS 16. The supplementation of 5% SAP in the chickens fed a diet naturally contaminated with AF showed the potential effects of the body weight performance, haematological profile protection, increase in the cellular and humoral immune responses, reduction of AF residue in the organ, protection of liver, kidney, spleen, and BF histopathology, and increase in the immune-expression of CD4+/CD8+ lymphocytes ratio (P < 0.05). It shows that 5% SAP can be used as the alternative herbal supplementation to depress the impacts of aflatoxicosis in the broiler chickens.
Collapse
Affiliation(s)
- Yos Adi Prakoso
- Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Puspitasari
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Chylen Setiyo Rini
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Andika Aliviameita
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Kurniasih
- Department of Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Fadhli Dzil Ikram
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Baristha Walalangi
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Kukuh Priya Utama
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Muhammad Fajar Al Huda
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Neneng Ayu Su'udiyah
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| |
Collapse
|
25
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
26
|
Toll-Like Receptors and RIG-I-Like Receptors Play Important Roles in Resisting Flavivirus. J Immunol Res 2018; 2018:6106582. [PMID: 29888293 PMCID: PMC5977009 DOI: 10.1155/2018/6106582] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023] Open
Abstract
Flaviviridae family is a class of single-stranded RNA virus, which is fatal to human and animals and mainly prevalent in subtropic and tropic countries. Even though people and animals are barraged with flavivirus infection every year, we have not invented either vaccines or antiviral for most flavivirus infections yet. Innate immunity is the first line of defense in resisting pathogen invasion, serving an important role in a resisting virus. Toll-like receptors (TLRs) and retinoic acid-inducible gene I- (RIG-I-) like receptors (RLRs) are crucial pattern recognition receptors (PRRs) that play essential roles in recognizing and clearing pathogens, including resisting flavivirus. In the present review, we provide a significant reference for further research on the function of innate immunity in resisting flavivirus.
Collapse
|
27
|
Fernandez CP, Afrin F, Flores RA, Kim WH, Jeong J, Kim S, Lillehoj HS, Min W. Identification of duck IL-4 and its inhibitory effect on IL-17A expression in R. anatipestifer- stimulated splenic lymphocytes. Mol Immunol 2018; 95:20-29. [DOI: 10.1016/j.molimm.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/29/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
|
28
|
Schilling MA, Katani R, Memari S, Cavanaugh M, Buza J, Radzio-Basu J, Mpenda FN, Deist MS, Lamont SJ, Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Front Genet 2018. [PMID: 29535762 PMCID: PMC5835104 DOI: 10.3389/fgene.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.
Collapse
Affiliation(s)
- Megan A Schilling
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,Applied Biological Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Sahar Memari
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Meredith Cavanaugh
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Joram Buza
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jessica Radzio-Basu
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Fulgence N Mpenda
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
29
|
Critical Role of HAX-1 in Promoting Avian Influenza Virus Replication in Lung Epithelial Cells. Mediators Inflamm 2018; 2018:3586132. [PMID: 29576744 PMCID: PMC5822872 DOI: 10.1155/2018/3586132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/21/2017] [Accepted: 09/17/2017] [Indexed: 02/04/2023] Open
Abstract
The PB1-F2 protein of influenza A virus has been considered a virulence factor, but its function in inducing apoptosis may be of disadvantage to viral replication. Host mechanisms to regulate PB1-F2-induced apoptosis remain unknown. We generated a PB1-F2-deficient avian influenza virus (AIV) H9N2 and found that the mutant virus replicated less efficiently in human lung epithelial cells. The PB1-F2-deficient virus produced less apoptotic cells, indicating that PB1-F2 of the H9N2 virus promotes apoptosis, occurring at the early stage of infection, in the lung epithelial cells. To understand how host cells regulate PB1-F2-induced apoptosis, we explored to identify cellular proteins interacting with PB1-F2 and found that HCLS1-associated protein X-1 (HAX-1), located mainly in the mitochondria as an apoptotic inhibitor, interacted with PB1-F2. Increased procaspase-9 activations, induced by PB1-F2, could be suppressed by HAX-1. In HAX-1 knockdown A549 cells, the replication of AIV H9N2 was suppressed in parallel to the activation of caspase-3 activation, which increased at the early stage of infection. We hypothesize that HAX-1 promotes AIV replication by interacting with PB1-F2, resulting in the suppression of apoptosis, prolonged cell survival, and enhancement of viral replication. Our data suggest that HAX-1 may be a promoting factor for AIV H9N2 replication through desensitizing PB1-F2 from its apoptotic induction in human lung epithelial cells.
Collapse
|
30
|
He Y, Wang A, Chen S, Wu Z, Zhang J, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Sun K, Chen X, Cheng A. Differential immune-related gene expression in the spleens of duck Tembusu virus-infected goslings. Vet Microbiol 2017; 212:39-47. [PMID: 29173586 DOI: 10.1016/j.vetmic.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Flaviviruses pose a significant threat to public health worldwide. Recently, a novel flavivirus, duck Tembusu virus (TMUV), was identified as the causative agent of a serious duck viral disease in Asia. Its rapid spread and expanded host range have raised substantial concerns regarding its potential threat to non-avian hosts, including humans. However, the specific molecular host responses to this virus are poorly understood. In this study, we used the RNA-sequencing technique to analyse the differential gene expression in the spleens of infected goslings 5days post-infection. In total, 2878 upregulated unigenes and 2943 downregulated unigenes were identified. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that different pattern recognition receptor (PRR) signalling pathways simultaneously participated in the sensing of the pathogen-associated molecular patterns (PAMPs) of TMUV, and the antigen presentation pathway and acquired immunity were activated. Then, the signals were transduced by the NF-kappa B (NF-κB) or the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways, resulting in the enormous production of various cytokines and interferon-stimulated genes (ISGs). We further investigated the immune response patterns in the liver and brain tissue using RT-qPCR. The bacterial peptidoglycan sensor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) receptor was significantly upregulated, especially in the brain tissue, suggesting that NOD1 likely induces an inflammatory response by interacting with dsRNA, which is similar to its actions during hepatitis C viral (HCV) infection. However, major histocompatibility complex II (MHCII) was downregulated only in the spleen, indicating that the downregulation of MHCII in the spleen may be an immune evasion strategy of TMUV to facilitate pathogenesis during infection. Here, we are the first to report a transcriptome analysis of the host immune response to TMUV infection, and the data reported herein may help elucidate the molecular mechanisms of the gosling-TMUV interaction.
Collapse
Affiliation(s)
- Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anqi Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
31
|
Bonfante F, Cattoli G, Leardini S, Salomoni A, Mazzetto E, Davidson I, Haddas R, Terregino C. Synergy or interference of a H9N2 avian influenza virus with a velogenic Newcastle disease virus in chickens is dose dependent. Avian Pathol 2017; 46:488-496. [DOI: 10.1080/03079457.2017.1319904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Francesco Bonfante
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Sofia Leardini
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Angela Salomoni
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Eva Mazzetto
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Ruth Haddas
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Calogero Terregino
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
32
|
Qi X, Liu C, Li R, Zhang H, Xu X, Wang J. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation. Res Vet Sci 2017; 111:36-42. [DOI: 10.1016/j.rvsc.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
|
33
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
34
|
Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. Int J Mol Sci 2016; 17:ijms17121990. [PMID: 27916934 PMCID: PMC5187790 DOI: 10.3390/ijms17121990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 01/10/2023] Open
Abstract
Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV) or a RNA virus (H9N2), RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.
Collapse
|
35
|
TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1403984. [PMID: 27995135 PMCID: PMC5138445 DOI: 10.1155/2016/1403984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 10/09/2016] [Indexed: 12/24/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein play a critical role in the interferon (IFN) response during RNA virus infection. The tripartite motif containing 25 proteins (TRIM25) was reported to modify caspase activation and RIG-I recruitment domains (CARDs) via ubiquitin. These modifications allow TRIM25 to interact with mitochondrial antiviral signaling molecules (MAVs) and form CARD-CARD tetramers. Goose TRIM25 was cloned from gosling lungs, which possess a 1662 bp open reading flame (ORF). This ORF encodes a predicted 554 amino acid protein consisting of a B-box domain, a coiled-coil domain, and a PRY/SPRY domain. The protein sequence has 89.25% sequence identity with Anas platyrhynchos TRIM25, 78.57% with Gallus gallus TRIM25, and 46.92% with Homo sapiens TRIM25. TRIM25 is expressed in all gosling and adult goose tissues examined. QRT-PCR revealed that goose TRIM25 transcription could be induced by goose IFN-α, goose IFN-γ, and goose IFN-λ, as well as a35 s polyinosinic-polycytidylic acid (poly(I:C)), oligodeoxynucleotides 2006 (ODN 2006), and resiquimod (R848) in vitro; however, it is inhibited in H9N2 infected goslings for unknown reasons. These data suggest that goose TRIM25 might play a positive role in the regulation of the antiviral immune response.
Collapse
|
36
|
Yan B, Zhang J, Zhang W, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Sun K, Chen X, Cheng A, Chen S. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection. Immunol Lett 2016; 181:6-15. [PMID: 27832963 DOI: 10.1016/j.imlet.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022]
Abstract
Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl.
Collapse
Affiliation(s)
- Bing Yan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
37
|
Wang J, Cao Z, Guo X, Zhang Y, Wang D, Xu S, Yin Y. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities. Avian Pathol 2016; 45:630-639. [PMID: 27215697 DOI: 10.1080/03079457.2016.1193665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.
Collapse
Affiliation(s)
- Jianlin Wang
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Zhiwei Cao
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Xuejin Guo
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yi Zhang
- b China Animal Health and Epidemiology Center , Qingdao , People's Republic of China
| | - Dongdong Wang
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Shouzheng Xu
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yanbo Yin
- a College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| |
Collapse
|
38
|
Kaiser A, Willer T, Sid H, Petersen H, Baumgärtner W, Steinberg P, Rautenschlein S. Susceptibility of primary chicken intestinal epithelial cells for low pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus. Virus Res 2016; 225:50-63. [DOI: 10.1016/j.virusres.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/01/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
|
39
|
Umar S, Munir MT, Kaboudi K, Rehman A, Asif S, Usman M, Ali A, Shahzad M, Subhan S, Shah MAA. Effect of route of inoculation on replication of avian influenza virus (H9N2) and interferon gene expression in guinea fowl (Numida meleagridis). Br Poult Sci 2016; 57:451-61. [PMID: 27057651 DOI: 10.1080/00071668.2016.1174979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study was designed to investigate the replication of a re-assortant H9N2 avian influenza virus (AIV) and induction of the interferon (IFNγ) response after aerosol or intranasal inoculation with the virus in guinea fowl. To determine virus shedding pattern, oropharyngeal and cloacal swabs and tissue specimens of trachea, lungs, spleen and caecal tonsils were collected post-inoculation (pi). Infected guinea fowl showed mild clinical signs, while negative control guinea fowl remained healthy and active throughout the experiment irrespective of the inoculation route. However, the clinical signs were more prominent in guinea fowl infected through the aerosol route. Virus was detected in all oropharyngeal and cloacal swabs up to 7 d pi in guinea fowl from both inoculation groups. However, virus was detected more frequently and in higher titres in oropharyngeal swabs and specimens of trachea and lungs from the group exposed to aerosols than in the group given intranasal drops. In accordance with viral replication findings, expression of IFNγ was up-regulated on 1, 2 and 4 d pi to a significantly higher level in lung tissue specimens from the group exposed to virus aerosol than from controls treated with PBS intranasally. On the other hand, IFNγ was up-regulated above that of controls in lung tissue specimens from the group treated with intranasal drops of virus only on 4 d pi. These findings indicate that virus administered in aerosols was more efficient in infecting the lower respiratory tract and in inducing activity of the IFNγ gene than virus administered as intranasal drops. The results of this study suggest that virus aerosols cause more intense respiratory infection and increase the shedding of the H9N2 AIV in guinea fowl, highlighting the potential role of guinea fowl as a mixing bowl for transmission and maintenance of H9N2 AIV between poultry premises.
Collapse
Affiliation(s)
- S Umar
- a Department of Pathobiology, Faculty of Veterinary Sciences , University of Arid Agriculture , Rawalpindi , Pakistan
| | - M T Munir
- a Department of Pathobiology, Faculty of Veterinary Sciences , University of Arid Agriculture , Rawalpindi , Pakistan
| | - K Kaboudi
- b Department of Poultry Farming and Pathology, National Veterinary School , Sidi Thabet Ariana , Tunisia
| | - A Rehman
- c Department of Epidemiology and Public Health , University of Veterinary and Animal Sciences Lahore , Pakistan
| | - S Asif
- d Department of Microbiology , University of Veterinary & Animal Sciences Lahore , Pakistan
| | - M Usman
- e Department of Poultry Production , Poultry Research Institute (PRI) Rawalpindi , Pakistan
| | - A Ali
- f Department of Livestock & Dairy Development , Punjab , Pakistan
| | - M Shahzad
- g Department of Pathology , University of Veterinary & Animal Sciences Lahore , Pakistan
| | - S Subhan
- d Department of Microbiology , University of Veterinary & Animal Sciences Lahore , Pakistan
| | - M A A Shah
- a Department of Pathobiology, Faculty of Veterinary Sciences , University of Arid Agriculture , Rawalpindi , Pakistan
| |
Collapse
|
40
|
Feng M, Dai M, Cao W, Tan Y, Li Z, Shi M, Zhang X. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages. Poult Sci 2016; 96:42-50. [PMID: 27486255 PMCID: PMC5161024 DOI: 10.3382/ps/pew229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.
Collapse
Affiliation(s)
- Min Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
41
|
Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, Lee JB, Park SY, Choi IS, Song CS. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts. Virol J 2016; 13:71. [PMID: 27121613 PMCID: PMC4847267 DOI: 10.1186/s12985-016-0527-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/17/2016] [Indexed: 12/27/2022] Open
Abstract
Background Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. Methods We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. Results The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Conclusions Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Yuk
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Keun Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Erdene-Ochir Tseren-Ochir
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jung-Hoon Kwon
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin-Yong Noh
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea.
| |
Collapse
|
42
|
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 2016; 11:e0153671. [PMID: 27071061 PMCID: PMC4829244 DOI: 10.1371/journal.pone.0153671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.
Collapse
|
43
|
Zhou H, Chen S, Yan B, Chen H, Wang M, Jia R, Zhu D, Liu M, Liu F, Yang Q, Wu Y, Sun K, Chen X, Jing B, Cheng A. LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies. Front Microbiol 2016; 7:166. [PMID: 26925041 PMCID: PMC4756125 DOI: 10.3389/fmicb.2016.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/01/2016] [Indexed: 01/03/2023] Open
Abstract
Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Bing Yan
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Fei Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
44
|
CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology 2015; 221:454-61. [PMID: 26621545 DOI: 10.1016/j.imbio.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) recognize components of pathogens and mediate the host innate immune response. TLR21 is a TLR that specifically recognizes exogenous double-stranded DNA and rapidly signals to downstream innate immune factors. This study reports the cDNA of goose TLR21 and identifies its immune characteristics. The goose TLR21 is 3161 base pairs and encodes a 975 amino acid protein. As predicted, the goose transmembrane protein TLR21 has a signal peptide, leucine-rich repeat regions, a transmembrane domain, and a Toll/interleukin-1 receptor domain. Multiple sequence alignments and phylogenetic analyses showed that goose TLR21 has homology to chicken TLR21. The tissue distribution of TLR21 suggested that it has high transcript levels in immune-associated tissues, especially in the bursa of Fabricius, the Hadrian gland, and the thymus. After challenge with agonist ODN2006 and new type gosling viral enteritis virus (NGVEV), significant induction of TLR21 production, pro-inflammatory cytokines IL-1β and IL-6, and interferons were observed in peripheral blood mononuclear cells. Both synthetic DNA (ODN2006) and viral DNA (NGVEV) can be recognized by goose TLR21, which leads to a rapid up-regulation of pro-inflammatory cytokines and anti-viral molecules. In vivo, avian influenza A virus H9N2 and NGVEV were used to infect goslings, which was followed by a significant up-regulation of TLR21 mRNA transcripts in multiple tissues of NGVEV-infected geese. In general, goose TLR21 plays an important role in binding invading pathogenic DNA viruses, which subsequently triggers an innate immune response; furthermore, it acts as a functional homologue of mammalian TLR9, as TLR21 recognizes a mammalian TLR9 agonist.
Collapse
|
45
|
Guan J, Fu Q, Sharif S. Replication of an H9N2 Avian Influenza Virus and Cytokine Gene Expression in Chickens Exposed by Aerosol or Intranasal Routes. Avian Dis 2015; 59:263-8. [DOI: 10.1637/10972-110714-reg] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Kim S, Cox CM, Jenkins MC, Fetterer RH, Miska KB, Dalloul RA. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:319-326. [PMID: 25086294 DOI: 10.1016/j.dci.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line
- Cells, Cultured
- Chickens/genetics
- Chickens/immunology
- Chickens/parasitology
- Coccidiosis/genetics
- Coccidiosis/immunology
- Coccidiosis/parasitology
- Eimeria/immunology
- Eimeria/metabolism
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/parasitology
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Host-Parasite Interactions
- Immunity, Innate
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/parasitology
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Protein Binding
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chasity M Cox
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ray H Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
47
|
Cornelissen JBWJ, Post J, Peeters B, Vervelde L, Rebel JMJ. Differential innate responses of chickens and ducks to low-pathogenic avian influenza. Avian Pathol 2014; 41:519-29. [PMID: 23237364 DOI: 10.1080/03079457.2012.732691] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ducks and chickens are hosts of avian influenza virus, each with distinctive responses to infection. To understand these differences, we characterized the innate immune response to low-pathogenicity avian influenza virus H7N1 infection in chickens and ducks. Viral RNA was detected in the lungs of chickens from day 0.8 to 7, in ducks mainly at day 4. In both species, viral RNA was detected in the bursa and gut. Infection in chickens resulted in up-regulation of interferon (IFN)-α and IFN-β mRNA, while in the ducks IFN-γ mRNA was strongly up-regulated in the lung and bursa. In chickens and ducks, all investigated pathogen recognition receptor (PRR) mRNAs were up-regulated; however, in the chicken lung Toll-like receptor (TLR)7 and melanoma differentiation-associated protein (MDA)-5 mRNA were strongly induced. TLR3, TLR7 and MDA-5 responses correlated with IFN-α and IFN-β responses in chickens, but in ducks a correlation between IFN-α and TLR7, retinoic acid-inducible gene-I and MDA-5 was absent. We studied the responses of duck and chicken splenocytes to poly(I:C) and R848 analogues to analyse the regulation of PRRs without the interfering mechanisms of the influenza virus. This revealed IFN-α and IFN-γ responses in both species. MDA-5 was only strongly up-regulated in chicken splenocytes, in which time-related PRR responses correlated with the IFN-α and IFN-β response. This correlation was absent in duck splenocytes. In conclusion, chickens and ducks differ in induction of MDA-5, TLR7 and IFN-α mRNA after an influenza virus infection in vivo and after in vitro stimulation with TLR antagonists.
Collapse
Affiliation(s)
- J B W J Cornelissen
- Central Veterinary Institute of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, the Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Barjesteh N, Behboudi S, Brisbin JT, Villanueva AI, Nagy É, Sharif S. TLR ligands induce antiviral responses in chicken macrophages. PLoS One 2014; 9:e105713. [PMID: 25165812 PMCID: PMC4148336 DOI: 10.1371/journal.pone.0105713] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022] Open
Abstract
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.
Collapse
Affiliation(s)
- Neda Barjesteh
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | | | | | - Éva Nagy
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Fassbinder-Orth CA, Barak VA, Rainwater EL, Altrichter AM. Buggy Creek virus (Togaviridae: Alphavirus) upregulates expression of pattern recognition receptors and interferons in House Sparrows (Passer domesticus). Vector Borne Zoonotic Dis 2014; 14:439-46. [PMID: 24866749 DOI: 10.1089/vbz.2013.1531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Birds serve as reservoirs for at least 10 arthropod-borne viruses, yet specific immune responses of birds to arboviral infections are relatively unknown. Here, adult House Sparrows were inoculated with an arboviral alphavirus, Buggy Creek virus (BCRV), or saline, and euthanized between 1 and 3 days postinoculation. Virological dynamics and gene expression dynamics were investigated. Birds did not develop viremia postinoculation, but cytopathic virus was found in the skeletal muscle and spleen of birds 1 and 3 days postinoculation (DPI). Viral RNA was detected in the blood of BCRV-infected birds 1 and 2 DPI, in oral swabs 1-3 DPI, and in brain, heart, skeletal muscle, and spleen 1-3 DPI. Multiple genes were significantly upregulated following BCRV infection, including pattern recognition receptors (TLR7, TLR15, RIG-1), type I interferon (IFN-α), and type II interferon (IFN-γ). This is the first study to report avian immunological gene expression profiles following an arboviral infection.
Collapse
|
50
|
Aksenov AA, Sandrock CE, Zhao W, Sankaran S, Schivo M, Harper R, Cardona CJ, Xing Z, Davis CE. Cellular scent of influenza virus infection. Chembiochem 2014; 15:1040-8. [PMID: 24719290 DOI: 10.1002/cbic.201300695] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 01/07/2023]
Abstract
Volatile organic compounds (VOCs) emanating from humans have the potential to revolutionize non-invasive diagnostics. Yet, little is known about how these compounds are generated by complex biological systems, and even less is known about how these compounds are reflective of a particular physiological state. In this proof-of-concept study, we examined VOCs produced directly at the cellular level from B lymphoblastoid cells upon infection with three live influenza virus subtypes: H9N2 (avian), H6N2 (avian), and H1N1 (human). Using a single cell line helped to alleviate some of the complexity and variability when studying VOC production by an entire organism, and it allowed us to discern marked differences in VOC production upon infection of the cells. The patterns of VOCs produced in response to infection were unique for each virus subtype, while several other non-specific VOCs were produced after infections with all three strains. Also, there was a specific time course of VOC release post infection. Among emitted VOCs, production of esters and other oxygenated compounds was particularly notable, and these may be attributed to increased oxidative stress resulting from infection. Elucidating VOC signatures that result from the host cells response to infection may yield an avenue for non-invasive diagnostics and therapy of influenza and other viral infections.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (USA)
| | | | | | | | | | | | | | | | | |
Collapse
|