1
|
Ghasemi M, Nowroozzadeh MH, Ghorat F, Iraji A, Hashempur MH. Piperine and its nanoformulations: A mechanistic review of their anti-cancer activities. Biomed Pharmacother 2025; 187:118075. [PMID: 40273688 DOI: 10.1016/j.biopha.2025.118075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Piperine, an active compound found in black pepper, exhibits promising anti-cancer properties by targeting critical signaling pathways involved in cancer cell proliferation, migration, and invasion. This review explores the diverse mechanisms through which piperine exerts its effects, including inhibition of the PI3K/Akt/mTOR and ERK1/2 pathways, activation of p38 and JNK pathways, and suppression of NF-kB/AP-1 signaling. Piperine disrupts Wnt/β-catenin signaling by inhibiting β-catenin nuclear translocation and TCF binding, thereby impairing cancer cell growth and metastasis. Additionally, piperine demonstrates anti-inflammatory actions by reducing CXCL8 expression and modulating the p38 MAPK and JNK pathways. To overcome the issues of low solubility and bioavailability, several nanoformulations of piperinewere developed, such as polymer nanoparticles, nanoemulsion, liposomes, micelles, metal-organic frameworks and inorganic carriers, establishing promising cytotoxicity, prolonged-release, enhanced cellular influx, and directed drug delivery. The mechanisms involve G₀ and G₂/M arrest of the cell cycle, mitochondria-mediated apoptosis (involving Bax/Bcl-2 modulation and caspase activation), and cancer celldeath. In vivo studies underscore the efficacy of piperine, while synergistic effects with other natural products and chemotherapy highlight its potential as a versatile therapeutic agent as an anticancer agent. These findings underscore piperine's potential as a multifaceted therapeutic agent for cancer treatment, emphasizing its diverse mechanisms of action and promising role in oncology.
Collapse
Affiliation(s)
- Mahshad Ghasemi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Ghorat
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Haider L, Blank-Landeshammer B, Reiter N, Heckmann M, Iken M, Weghuber J, Röhrl C. Enhanced in-vitro bioavailability of curcumin, lutein and isoflavones through interaction with spearmint (Mentha spicata) via its bioactive component (R)-(-)-carvone. J Nutr Biochem 2025; 139:109868. [PMID: 39984059 DOI: 10.1016/j.jnutbio.2025.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Numerous dietary phytochemicals such as curcumin, lutein and isoflavones are associated with health beneficial activities, however their application is often limited by their low bioavailability. Therefore, bioenhancers represent a feasible approach to increase the absorption efficiency of bioactive compounds. Here, we combined uptake and transport studies in differentiated Caco-2 cells with high resolution analytics and fractionation to evaluate the impact of spearmint (Mentha spicata) on the cellular uptake of curcumin. Additionally, we utilized mechanistic studies in native and overexpressing cell systems to assess P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) efflux transporter activity as well as in-silico molecular docking simulations. We found significantly elevated intracellular curcuminoid levels mediated by spearmint. Fractionation and functional assays identified (R)-(-)-carvone as a putative candidate for the biologically active compound mediating increased curcumin uptake via BCRP inhibition. Inhibition of P-gp-mediated efflux might additionally be involved. Molecular docking simulations suggest a common binding site of curcumin and (R)-(-)-carvone in BCRP. Further, spearmint significantly increased cellular uptake of lutein and transintestinal transport of isoflavones in-vitro. In summary, spearmint was identified as a novel bioenhancer for curcumin, lutein and isoflavones. Our findings suggest that spearmint increases bioavailability of a wide range of nutrients and drugs at least partially due to interference with BCRP via its active compound (R)-(-)-carvone.
Collapse
Affiliation(s)
- Lisa Haider
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Bernhard Blank-Landeshammer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria; Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Nadine Reiter
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Mara Heckmann
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Marcus Iken
- PM International AG, 5445, Schengen, Luxembourg
| | - Julian Weghuber
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria; Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.
| | - Clemens Röhrl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.
| |
Collapse
|
3
|
Gidwani B, Bhairam M, Shukla SS, Verma H, Pandey RK. Herbal Bioenhancers in Pharmaceutical Drug Delivery: Mechanisms, Challenges, and Future Innovations. Chem Biodivers 2025:e00760. [PMID: 40213934 DOI: 10.1002/cbdv.202500760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025]
Abstract
Bioenhancers are compounds derived from herbal sources that enhance the bioavailability of pharmaceutical drugs, thereby improving their effectiveness and reducing the required dosage. These bioenhancers are becoming increasingly important in modern pharmacology for their ability to optimize drug delivery and minimize the side effects. This review explores the basics of bioenhancers, their classification, significance, mechanisms of action, benefits, challenges, and potentials in various applications of drug delivery. The review aims to identify and discuss the advantages and limitations of bioenhancers, evaluate current research trends, and outline the future prospects for integrating these compounds. Herbal bioenhancers enhance the bioavailability of pharmaceutical drugs by improving absorption, modulating drug metabolism, and interacting with drug transporters. Key examples include piperine, which inhibits CYP3A4 and P-glycoprotein to boost drug plasma levels; quercetin, which modulates Phase II enzymes and transporters; curcumin, which enhances intestinal absorption through membrane fluidity alteration, and so forth. These mechanisms lead to improved therapeutic outcomes and reduced drug dosage. Despite their promise, challenges such as variability in herbal composition, regulatory concerns, and potential drug-herb interactions persist. Recent innovations such as nanoformulations, lipid-based carriers, and targeted delivery systems are actively addressing these barriers by enhancing stability, specificity, and efficacy. Data for this review were sourced from comprehensive searches of academic databases, including ScienceDirect, PubMed, and Google Scholar. Relevant literature was identified using search terms such as "herbal bioenhancers," "mechanisms of action," "drug delivery systems," and "phytochemicals." Studies, clinical trials, and recent research articles were reviewed to gather information on the efficacy, applications, and challenges associated with herbal bioenhancers. Current research is addressing these issues through innovative formulations and clinical trials. The scope of this review includes an examination of current knowledge on herbal bioenhancers and their application in drug delivery. The future of herbal bioenhancers is promising, with potential advancements in discovering new compounds, understanding their mechanisms, and applying personalized medicine approaches. Ongoing research is expected to resolve existing challenges and further integrate herbal bioenhancers into drug therapies, enhancing their effectiveness and safety in future pharmaceutical applications.
Collapse
Affiliation(s)
- Bina Gidwani
- Department of Pharmaceutical Quality Assurance, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India
| | - Monika Bhairam
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India
| | - Shiv Shankar Shukla
- Department of Pharmaceutical Quality Assurance, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India
| | - Harsh Verma
- Department of Pharmacognosy, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India
| | - Ravindra Kumar Pandey
- Department of Pharmacognosy, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
Adlia A, Aslan CC, Safitri L, Adnyana IK. Turmeric-black pepper-honey nanoemulsion formulation and antiulcerogenic effect evaluation against ethanol-induced gastric ulcers in rats. PLoS One 2025; 20:e0317899. [PMID: 39841672 PMCID: PMC11753650 DOI: 10.1371/journal.pone.0317899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Gastric ulcer is a common disorder of the digestive system. The combination of turmeric and honey is known to treat stomach ulcers. However, curcumin, an active component in turmeric, has limitations, i.e., poor water solubility and low oral bioavailability. Therefore, turmeric and honey were formulated into a nanoemulsion with black pepper to enhance curcumin bioavailability. The study followed a systematic approach to optimize the nanoemulsion formula, determine stability, and evaluate ulcer healing activity in rats with ethanol-induced gastric ulcers. Nanoemulsion was prepared using a low-energy emulsification method called emulsion phase inversion (EPI). Two stability evaluations were carried out, i.e., storage and freeze-thaw stability tests. The organoleptic, droplet size, polydispersity index, pH, viscosity, and curcumin content of the nanoemulsion were evaluated. Male Wistar albino rats were induced with 96% ethanol for six days. The rats were divided into six groups, i.e., healthy control, ulcerated control, omeprazole, two different doses of turmeric, honey, and black pepper nanoemulsion (NTBH1 and NTBH2), and turmeric and honey nanoemulsion (NTH). The antiulcer activity was determined by measuring the ulcer area, ulcer index, curative index, ulcer severity score, and histology. The best formula with the smallest droplet size, i.e., 144.6±3.8 nm, was obtained from the nanoemulsion using Tween 80 as surfactant, glycerin as cosolvent, and sodium alginate as viscosity enhancer. The result showed that the nanoemulsion was stable after being stored at 25 and 40°C for four weeks and after six cycles of freeze-thaw test. The ulcer index of the ulcerated rats from the lowest to the highest, i.e., NTBH2, omeprazole, NTH, and NTBH1. In conclusion, the nanoemulsion developed in this study containing turmeric, honey, and black pepper holds promising potential in treating gastric ulcers, offering a hopeful outlook for future treatments.
Collapse
Affiliation(s)
- Amirah Adlia
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | | | - Lia Safitri
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - I. Ketut Adnyana
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
5
|
Songvut P, Boonyarattanasoonthorn T, Nuengchamnong N, Junsai T, Kongratanapasert T, Supannapan K, Khemawoot P. Enhancing oral bioavailability of andrographolide using solubilizing agents and bioenhancer: comparative pharmacokinetics of Andrographis paniculata formulations in beagle dogs. PHARMACEUTICAL BIOLOGY 2024; 62:183-194. [PMID: 38351624 PMCID: PMC10868414 DOI: 10.1080/13880209.2024.2311201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The therapeutic potential of andrographolide is hindered by its poor oral bioavailability and unpredictable pharmacokinetics, primarily due to its limited water solubility. OBJECTIVE This work aimed to enhance the solubility and pharmacokinetics of andrographolide, a bioactive compound in Andrographis paniculata (Burm. f.) Nees (Acanthaceae), using solubilizing agents and a bioenhancer. MATERIALS AND METHODS Four groups of beagles were compared: (1) A. paniculata powder alone (control), (2) A. paniculata powder with 50% weight/weight (w/w) β-cyclodextrin solubilizer, (3) A. paniculata powder with 1% w/w sodium dodecyl sulfate (SDS) solubilizer, and (4) A. paniculata powder co-administered with 1% w/w SDS solubilizer and 10% piperine bioenhancer. All groups received a consistent oral dose of 3 mg/kg of andrographolide, administered both as a single dose and multiple doses over seven consecutive days. RESULTS Thirteen chemical compounds were identified in A. paniculata powder, including 7 diterpenoids, 5 flavonoids, and 1 phenolic compound. A. paniculata co-administration with either 50% w/w β-cyclodextrin or 1% w/w SDS, alone or in combination with 10% w/w piperine, significantly increased systemic andrographolide exposure by enhancing bioavailability (131.01% to 196.05%) following single and multiple oral co-administration. Glucuronidation is one possible biotransformation pathway for andrographolide, as evidenced by the excretion of glucuronide conjugates in urine and feces. CONCLUSION The combination of solubilizing agents and a bioenhancer improved the oral bioavailability and pharmacokinetics of andrographolide, indicating potential implications for A. paniculata formulations and clinical therapeutic benefits. Further investigation in clinical studies is warranted.
Collapse
Affiliation(s)
- Phanit Songvut
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Thammaporn Junsai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Teetat Kongratanapasert
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
6
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
7
|
Ramos PS, Ferreira C, Passos CLA, Silva JL, Fialho E. Effect of quercetin and chrysin and its association on viability and cell cycle progression in MDA-MB-231 and MCF-7 human breast cancer cells. Biomed Pharmacother 2024; 179:117276. [PMID: 39146763 DOI: 10.1016/j.biopha.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pharmacological properties of flavonoids have been reported, with an anticancer role amongst them, however, its mechanisms are not fully elucidated. In this study, the activity of quercetin and chrysin towards MCF-7 and MDA-MB-231 breast cancer cells was investigated. Cellular viability was determined after treatment with the compounds in different concentrations for 24 h. Secondly, cells were treated with fixed concentration of chrysin and different concentrations of quercetin with preincubation for 1 h. Both compounds inhibited cellular proliferation in dose-dependent manner. The association showed improvement in their cytotoxicity, more expressively with preincubation of quercetin. Quercetin and chrysin association induced cell cycle arrest in sub-G0/G1 phase in MDA-MB-231 cells, modified the expression of caspases-3 and -8,-8, inducing late apoptosis cell death. Taken together, our results demonstrate that both flavonoids inhibited cells growth in a dose-dependent manner and the association of quercetin improved chrysin's toxic effect over the cell lines.
Collapse
Affiliation(s)
- Patrícia Severo Ramos
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Christian Ferreira
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Carlos Luan Alves Passos
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Eliane Fialho
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
8
|
Patil PH, Desai MP, Rao RR, Mutalik S, Puralae Channabasavaiah J. Strategy to Improve the Oral Pharmacokinetics of Cyclin-Dependent Kinase 4/6 Inhibitors: Enhancing Permeability and CYP450 Inhibition by a Natural Bioenhancer. AAPS PharmSciTech 2024; 25:181. [PMID: 39117933 DOI: 10.1208/s12249-024-02899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Palbociclib and ribociclib an orally bioavailable, potent cyclin-dependent kinase 4/6 inhibitors, with low oral bioavailability due to substrate specificity towards CYP3A and P-glycoprotein. Thus, current research aims to examine the effect of a bioenhancer (naringin), on oral pharmacokinetics of palbociclib and ribociclib. Naringin's affinity for CYP3A4 and P-glycoprotein was studied using molecular docking; its impact on palbociclib/ribociclib CYP3A metabolism and P-glycoprotein-mediated efflux was examined using in vitro preclinical models; and its oral pharmacokinetics in rats were assessed following oral administration of palbociclib/ribociclib in presence of naringin (50 and 100 mg/kg). Naringin binds optimally to both proteins with the highest net binding energy of - 1477.23 and - 1607.47 kcal/mol, respectively. The microsomal intrinsic clearance of palbociclib and ribociclib was noticeably reduced by naringin (5-100 µM), by 3.0 and 2.46-folds, respectively. Similarly, naringin had considerable impact on the intestinal transport and efflux of both drugs. The pre-treatment with 100 mg/kg naringin increased significantly (p < 0.05) the oral exposure of palbociclib (2.0-fold) and ribociclib (1.95-fold). Naringin's concurrent administration of palbociclib and ribociclib increased their oral bioavailability due to its dual inhibitory effect on CYP3A4 and P-glycoprotein; thus, concurrent naringin administration may represent an innovative strategy for enhancing bioavailability of cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
- Prajakta Harish Patil
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mrunal Pradeep Desai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajat Radhakrishna Rao
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jagadish Puralae Channabasavaiah
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Dolsophon K, Nak-On S, Chontananarth T. Tegumental surface change in Paramphistomum epiclitum caused by Bombax ceiba flowers and black pepper seed extract. Exp Parasitol 2024; 260:108724. [PMID: 38431114 DOI: 10.1016/j.exppara.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Rumen flukes, parasites of the superfamily Paramphistomoidea, are found in cattle rumen. Heavy infections can cause symptoms such as diarrhea, weight loss, and poor body condition, resulting in a decrease in milk and meat production. This study compares the tegumental surface change of Paramphistomum epiclitum as a response to ethanolic extracts of Bombax ceiba flowers and black pepper seeds. Adult flukes were subjected to various concentrations of crude extracts, including 12.5, 25, 50, 100, and 200 μg/mL for 12, 18, and 24 h incubation. Scanning electron microscopy (SEM) exhibited that the ethanolic extracts of both Bombax ceiba flowers and black pepper seeds caused tegumental surface changes in adult P. epiclitum. Based on the results, Bombax ceiba flower extract has anthelmintic activity, compared with black pepper seed extract, towards adult P. epiclitum due to the deformation of the tegument at lower concentrations than black pepper extract.
Collapse
Affiliation(s)
- Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sirapat Nak-On
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
10
|
Darwish AB, Mohsen AM, ElShebiney S, Elgohary R, Younis MM. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci Rep 2024; 14:8247. [PMID: 38589438 PMCID: PMC11002014 DOI: 10.1038/s41598-024-58601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Shaimaa ElShebiney
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mostafa Mohamed Younis
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
11
|
Ordóñez YF, Miranda E, López MF, Ordóñez PE. Antibacterial activity of plant extracts against Streptococcus equi subsp. zooepidemicus isolates from guinea pigs with lymphadenitis in Ecuador. Heliyon 2024; 10:e25226. [PMID: 38352743 PMCID: PMC10862515 DOI: 10.1016/j.heliyon.2024.e25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Lymphadenitis is a commonly occurring and contagious disease in guinea pigs caused by different pathogens, including Streptococcus sp., Staphylococcus sp., and Corynebacterium sp. This study aimed to characterize the bacteria isolated from pus extracted from abscessed mandibular lymph nodes of diseased guinea pigs in Ecuador in 2019 and evaluate the in vitro antibacterial activity of the total extracts of three plant species. Isolates were recovered from three diseased guinea pigs with Lymphadenitis on a farm in Imbabura, Ecuador province. The bacteria were characterized through microbiological, biochemical, and molecular tests as Streptococcus equi subsp. zooepidemicus. Furthermore, the susceptibility of S. equi subsp. zooepidemicus to three plant extracts belonging to the Asteraceae family, Acmella ciliata, Bidens andicola, and Gazania splendens collected in Ecuador, were assessed in vitro by the microdilution method. Our data indicate that all the evaluated extracts showed activity, with a Minimum Inhibitory Concentration (MIC) of 22.50 mg/mL for Acmella ciliata, 11.25 mg/mL for Bidens andicola, and 5.60 mg/mL for Gazania splendens. Bidens andicola extract showed the highest efficacy with a % inhibition of 63.90 at the highest tested concentration (45 mg/mL). This is the first report on the bioactivity of these plant species against S. equi subsp. zooepidemicus.
Collapse
Affiliation(s)
- Yadira F. Ordóñez
- Grupo de Investigación Productos Naturales Bioactivos, Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - Estefanía Miranda
- Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - María Fernanda López
- Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - Paola E. Ordóñez
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119, Urcuquí, Ecuador
| |
Collapse
|
12
|
Bhimanwar RS, Kothapalli LP, Khawshi A. Evaluation of Quercetin's Bioenhancing Effect on Oral Pharmacokinetics of Rosuvastatin in Wistar Rats Using RP-HPLC Method. Cardiovasc Hematol Agents Med Chem 2024; 22:456-465. [PMID: 39431375 DOI: 10.2174/0118715257258735231016112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND The absolute oral bioavailability of rosuvastatin (RST), a secondgeneration statin, is low i.e. 20% and only 10% is recovered as metabolite N-desmethy l rosuvistatin. Since it is a hydrophilic statin, RST relies on the organic anion transporting polypeptide- 1B1 (OATP-1B1), as the key mechanism for active transport into hepatocytes. Quercetin (QUE) being a bio enhancer and inhibitor of OATP1B1 can augment the bioavailability and pharmacokinetics of RST. OBJECTIVES The present study includes the development of a simple and validated bioanalytical Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for the estimation of RST and to study the effect of co-administration of QUE as a bio enhancer on its bioavailability. METHODS An analytical column of Kromasil 100, C18 (250 mm × 4.6 mm, 5 μm), was used for chromatographic separationand acetonitrile (ACN): acetic acid buffer pH 3.0 adjusted with glacial acetic acid (55:45 Vol. %) as mobile phase with flow rate 1.0 ml/min monitored at 242 nm. The ACN: methanol (50:50 Vol. %) was employed as the final solvent for extraction. The developed method has been successfully applied in a study on the pharmacokinetics of the drug RST in rats after co-administration of QUE, which was carried out using non-compartmental analysis in order to estimate the blood concentration of the drug. RESULTS The pharmacokinetics of RST was found to be altered significantly (highest concentration of RST in the blood (Cmax) = 67.3 ng/ml to 122.2 ng/ml) (p < 0.001), area under curve (AUC)0-t (p < 0.0001) and AUC0-inf (p = 0.0005) when co-administered with QUE at 120 min (tmax). CONCLUSION The results are in accordance with the fact that QUE increases plasma levels in rats through herb-drug interactions.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Lata P Kothapalli
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Akshay Khawshi
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
13
|
Jadhav PV, Prasath NJ, Gajbhiye SG, Rane UA, Agnihotri TG, Gomte SS, Jain A. Empowering the Battle: Bioenhancers as Allies Against Cancer Drug Resistance. Curr Pharm Biotechnol 2024; 25:1552-1563. [PMID: 37957922 DOI: 10.2174/0113892010192038231107051715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Drug resistance has been a great hindrance in the path of counteracting diseases like cancer and is driven by drugs misuse and overuse. In terms of cancer, resistance has been developed due to cellular changes, altered growth activation pathways, increased expression of efflux proteins, and changes in the local physiology of cancer (blood supply, tissue hydrodynamics, increased mutation rate/epigenetics, tumor cell heterogeneity). One of the approaches to address these challenges is the use of bioenhancers, which can overcome drug resistance, thereby improving bioavailability (BA). CONCLUSION Bioenhancers when combined with drugs can elicit pharmacological activity. They are generally combined with therapeutic agents at low doses, which increase the BA or therapeutic activity of active pharmaceutical ingredient (API). This review sheds light on the synthesis and classification of bio-enhancers. It also discusses different applications of bio-enhancers like piperine, ginger, quercetin, curcumin, etc. in the treatment of cancer. The review also presents some of the recent advancements in terms of nanocarriers for delivering API combined with bioenhancers.
Collapse
Affiliation(s)
- Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Naga Jothi Prasath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Saurabh Ghannil Gajbhiye
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Utkarsha Arun Rane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
14
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
15
|
Kumari D, Gautam J, Sharma V, Gupta SK, Sarkar S, Jana P, Singhal V, Babele P, Kamboj P, Bajpai S, Tandon R, Kumar Y, Dikshit M. Effect of herbal extracts and Saroglitazar on high-fat diet-induced obesity, insulin resistance, dyslipidemia, and hepatic lipidome in C57BL/6J mice. Heliyon 2023; 9:e22051. [PMID: 38027691 PMCID: PMC10663915 DOI: 10.1016/j.heliyon.2023.e22051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
We evaluated the effects of select herbal extracts (Tinospora cordifolia [TC], Tinospora cordifolia with Piper longum [TC + PL], Withania somnifera [WS], Glycyrrhiza glabra [GG], AYUSH-64 [AY-64], and Saroglitazar [S]) on various parameters in a diet-induced obesity mouse model. After 12 weeks of oral administration of the herbal extracts in high-fat diet (HFD)-fed C57BL/6J mice, we analyzed plasma biochemical parameters, insulin resistance (IR), liver histology, and the expression of inflammatory and fibrosis markers, along with hepatic lipidome. We also used a 3D hepatic spheroid model to assess their impact on profibrotic gene expression. Among the extracts, TC + PL showed a significant reduction in IR, liver weight, TNF-α, IL4, IL10 expression, and hepatic lipid levels (saturated triglycerides, ceramides, lysophosphocholines, acylcarnitines, diglycerides, and phosphatidylinositol levels). Saroglitazar reversed changes in body weight, IR, plasma triglycerides, glucose, insulin, and various hepatic lipid species (fatty acids, phospholipids, glycerophospholipids, sphingolipids, and triglycerides). With the exception of GG, Saroglitazar, and other extracts protected against palmitic acid-induced fibrosis marker gene expression in the 3D spheroids. TC + PL and Saroglitazar also effectively prevented HFD-induced insulin resistance, inflammation, and specific harmful lipid species in the liver.
Collapse
Affiliation(s)
- Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Vipin Sharma
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Soumalya Sarkar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Pradipta Jana
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Vikas Singhal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Prabhakar Babele
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Parul Kamboj
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | | | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, Haryana, India
| | - Madhu Dikshit
- Central Drug Research Institute, Sitapur Rd, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
16
|
Denison HJ, Schwikkard SL, Khoder M, Kelly AF. Review: The Chemistry, Toxicity and Antibacterial Activity of Curcumin and Its Analogues. PLANTA MEDICA 2023. [PMID: 37604207 DOI: 10.1055/a-2157-8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance is a global challenge that is already exacting a heavy price both in terms of human health and financial cost. Novel ways of approaching this crisis include the investigation of natural products. Curcumin is the major constituent in turmeric, and it is commonly used in the preparation of Asian cuisine. In addition, it possesses a wide range of pharmacological properties. This review provides a detailed account of curcumin and its analogues' antibacterial activity against both gram-positive and gram-negative isolates, including its potential mechanism(s) of action and the safety and toxicity in human and animal models. We also highlight the key challenges in terms of solubility/bioavailability associated with the use of curcumin and include research on how these challenges have been overcome.
Collapse
Affiliation(s)
- Hannah J Denison
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Sianne L Schwikkard
- Department of Chemical and Pharmaceutical Science, Kingston University, London, UK
| | | | - Alison F Kelly
- Department of Applied and Human Sciences, Kingston University, London, UK
| |
Collapse
|
17
|
Mishra AK, Neha S, Rani L, Jain A, Dewangan HK, Sahoo PK. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model. J Drug Deliv Sci Technol 2023; 86:104580. [DOI: 10.1016/j.jddst.2023.104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
18
|
Nemadodzi LE, Prinsloo G. A New Proposed Symbiotic Plant-Herbivore Relationship between Burkea africana Trees, Cirina forda Caterpillars and Their Associated Fungi Pleurostomophora richardsiae and Aspergillus nomius. Microorganisms 2023; 11:1864. [PMID: 37513036 PMCID: PMC10383216 DOI: 10.3390/microorganisms11071864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Burkea africana is a tree found in savannah and woodland in southern Africa, as well as northwards into tropical African regions as far as Nigeria and Ethiopia. It is used as fuel wood, medicinally to treat various conditions, such as toothache, headache, migraine, pain, inflammation, and sexually transmitted diseases, such as gonorrhoea, but also an ornamental tree. The current study investigated the possible symbiotic relationship between B. africana trees and the C. forda caterpillars and the mutual role played in ensuring the survival of B. africana trees/seedlings in harsh natural conditions and low-nutrient soils. Deoxyribonucleic acid isolation and sequencing results revealed that the fungal species Pleurostomophora richardsiae was highly predominant in the leaves of B. africana trees and present in the caterpillars. The second most prominent fungal species in the caterpillars was Aspergillus nomius. The latter is known to be related to a Penicillium sp. which was found to be highly prevalent in the soil where B. africana trees grow and is suggested to play a role in enhancing the effective growth of B. africana trees in their natural habitat. To support this, a phylogenetic analysis was conducted, and a tree was constructed, which shows a high percentage similarity between Aspergillus and Penicillium sp. The findings of the study revealed that B. africana trees not only serve as a source of feed for the C. forda caterpillar but benefit from C. forda caterpillars which, after dropping onto the soil, is proposed to inoculate the soil surrounding the trees with the fungus A. nomius which suggests a symbiotic and/or synergistic relationship between B. africana trees and C. forda caterpillars.
Collapse
Affiliation(s)
- Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
- ABBERU, Science Campus, University of South Africa, Johannesburg 1710, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
- ABBERU, Science Campus, University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
19
|
Bonvicini F, Mandrone M, Cosa S. Editorial: Pathoblockers and antivirulence agents of plant-origin for the management of multidrug resistant pathogens. Front Microbiol 2023; 14:1201495. [PMID: 37180278 PMCID: PMC10167285 DOI: 10.3389/fmicb.2023.1201495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sekelwa Cosa
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Thorat SS, Gujar KN, Karale CK. Bioenhancers from mother nature: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Abstract
Background
The concept of bioenhancer comes from Ayurveda. Many ways have been documented in the literature to boost the bioavailability of poorly bioavailable medications, and one of the most recent techniques is the use of bioavailability enhancers.
Main body of the abstract
Herbal bioenhancers are a choice of bioenhancer in modern medicine because of their easy absorption, safety, and lack of side effects. They also reduce drug toxicity, decrease treatment times, and lower treatment costs. Increasing drug bioavailability after oral administration is medically relevant since bioavailability has a direct impact on plasma drug concentrations and therapeutic bioefficacy. When medicine is coupled with a suitable bioenhancer, the bioavailability of the drug is increased. The drug and bioenhancers have no synergistic effect. They reduce the dosage, cost, toxicity, and other side effects, as well as the amount of time it takes to act.
Short conclusion
The objective of these survey is that to investigate the thought of the bioavailability to get a superior therapeutic response within the right portion with natural pharmaceuticals containing product, as well as the classification of bioenhancers, mechanism of action, commercial formulation, and future prospects.
Collapse
|
21
|
Hosseini H, Ghavidel F, Panahi G, Majeed M, Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effect of the curcumin and piperine combination on lipid profile in patients with metabolic syndrome and related disorders. Phytother Res 2023; 37:1212-1224. [PMID: 36649934 DOI: 10.1002/ptr.7730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Metabolic syndrome is characterized by multiple metabolic disorders. Several studies indicated that curcumin plus piperine could affect lipids profiles in various diseases. The present meta-analysis aims to assess the effect of curcumin plus piperine on lipid profiles in patients with MetS and associated disorders using a systematic review and meta-analysis of randomized controlled trials. Trials were searched by several electronic databases up to May 2022. The Comprehensive Meta-Analysis (CMA) version3 software carried out this systematic review and meta-analysis. Random-effects model and the inverse variance method were used to conduct the meta-analysis. We evaluated the publication bias and heterogeneity of all eligible studies. In addition, subgroup analyses and sensitivity assessments were performed to assess potential sources of heterogeneity. The combined results by the random-effects model demonstrated that curcumin plus piperine significantly decreased total cholesterol and LDL-C in patients suffering from metabolic syndrome. In comparison, the results of the overall effect size did not show any significant change in triglyceride concentrations. Our results were robust in sensitivity analysis and were not dependent on the dose of curcumin, the dose of piperine, and the duration of treatment. Our results showed that co-administration of piperine and curcumin supplementation improves the lipid profile in metabolic syndrome. However, further long-term RCTs are required to ascertain their clinical benefit.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farideh Ghavidel
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomeical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Bioenhancing effects of piperine and curcumin on triterpenoid pharmacokinetics and neurodegenerative metabolomes from Centella asiatica extract in beagle dogs. Sci Rep 2022; 12:20789. [PMID: 36456663 PMCID: PMC9715946 DOI: 10.1038/s41598-022-24935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Centell-S is a water-soluble extract of Centella asiatica containing more than 80% w/w triterpenoid glycosides. Madecassoside and asiaticoside are two major components of the extract and can be converted into active metabolites, triterpenic acids in large mammal species. In this study, the pharmacokinetic profiles and metabolomic changes generated by the bioactive triterpenoids of Centell-S alone, and in combination with the bioenhancers piperine and curcumin, were investigated in beagle dogs. The test substances were orally administered over multiple doses for 7 consecutive days. At day 1 and 7 after receiving the test compounds, the level of major bioactive triterpenoids and related metabolites were measured using triple quadrupole and high-resolution accurate mass orbitrap models of LCMS to determine pharmacokinetic and metabolomic profiles, respectively. Centell-S was well tolerated, alone and in all combination groups. The combination of Centell-S and piperine significantly increased (p < 0.05) the systemic exposure of madecassoside on day 1 and asiatic acid on day 7, by approximately 1.5 to 3.0-fold of Cmax and AUC values as compared to the Centell-S alone, while the addition of curcumin did not provide a significant improvement. Several metabolomic changes were observed from pre-dose to 4 h post-dose, with some biomarkers of neurodegenerative diseases including L-glutamine, lysophosphatidylcholine (17:0), taurochenodeoxycholic acid, uric acid, stearic acid, palmitic acid, and lactic acid showing good correlation with the systemic exposure of the bioactive triterpenoids (asiatic acid). Thus, the combining of piperine to Centell-S exhibits the improvement of bioactive triterpenoids which are related to the biomarkers of neurodegenerative diseases. These promising results might be useful for the development of this standardised extract to become a more effective phytomedicine for neurodegenerative diseases.
Collapse
|
23
|
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des 2022; 28:3212-3224. [PMID: 36281868 DOI: 10.2174/1381612829666221021152354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intravenous route of drug administration has maximum bioavailability, which shows 100% of the drug reaches blood circulation, whereas the oral administration of drugs, are readily undergoing pre-systemic metabolism, which means the poor bioavailability of the drug and limited amount of drug reaches the target site. INTRODUCTION Bioenhancers are substances having medicinal entities which enhance the bioavailability and efficacy of the active constituents of drugs. The enhanced bioavailability of drugs may lead to dose reduction, which may further reduce the cost and undesired side effects associated with the drugs. METHODS The solid lipid nanoparticles (SLNs) loaded with ketoprofen made from carnauba wax and beeswax. It was discovered that when the drug-loaded SLNs were mixed with egg-lecithin and Tween-80, as well as when the total surfactant concentration was increased, the average particle size of the drug-loaded SLNs decreased. RESULTS The drug-loaded nanoparticles, when given in combination with bio-enhancers such as piperine and quercetin, enhanced the drug's effectiveness. The Area Under Curve (AUC) was increased when the drug was coupled with bio-enhancers. Based on the findings, it can be concluded that piperine and quercetin when used with drug-loaded nanoparticles improve their therapeutic effectiveness. CONCLUSION Bioenhancers are crucial to amplifying the bioavailability of many synthetic drugs. These attributes are useful to reduce the dose of drugs and increase the therapeutic efficacy of drugs with poor bioavailability.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Sumant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
24
|
Sharma P, Pathak P, Tyagi V, Khan F, Shanker K, Darokar MP, Pal A. Investigation of the potential of Glycyrrhiza glabra as a bioavailability enhancer of Vitamin B12. Front Nutr 2022; 9:1038902. [PMID: 36386946 PMCID: PMC9650095 DOI: 10.3389/fnut.2022.1038902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Vitamin B12 deficiency is prevalent among individuals globally. Inadequate consumption of B12 rich diet and low bioavailability (due to diet based/physiological factors) are linked to the deficiency of Vitamin B12 inside the body. Bioavailability enhancers augment the bioavailability of an ingested substance (drug/nutrient) thus increasing their concentration inside the body and maximizing their therapeutic benefits. In traditional medicine, Licorice (Glycyrrhiza glabra) finds utility in the treatment of various health conditions. Thus, the present study aimed to examine the potential of ethanolic extract obtained from G. glabra roots to enhance the bioavailability of Vitamin B12. The effect of ethanolic extract of G. glabra (GgEtOH) on intestinal absorption enhancement of B12 was assessed in vitro on Caco-2 and ex-vivo everted gut sac models. The influence of extract on the pharmacokinetics of Vitamin B12 was determined in vivo in Swiss albino mice. GgEtOH significantly enhanced the permeation (Papp) of B12 by 2-5 fold in vitro (25, 50, and 100 μg/ml concentrations) and ex-vivo (250 and 500 μg/ml concentrations). The pharmacokinetic parameters of B12 such as Cmax, AUC, Tmax, etc. were also significantly elevated in vivo upon oral administration of B12 (1 mg/kg dose) in combination with GgEtOH (100 and 1,000 mg/kg dose). These preliminary findings indicate that the ethanolic extract of G. glabra is capable of enhancing the bioavailability of Vitamin B12. To the best of our knowledge, this is the first report to demonstrate herbal extract-mediated enhancement of Vitamin B12 bioavailability through in vitro, ex vivo, and in vivo assays.
Collapse
Affiliation(s)
- Priyanka Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Priyanka Pathak
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Vidushi Tyagi
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Feroz Khan
- Computational Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Karuna Shanker
- Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Mahendra Pandurang Darokar
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Anirban Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Elucidating the Beneficial Effects of Ginger ( Zingiber officinale Roscoe) in Parkinson's Disease. ACS Pharmacol Transl Sci 2022; 5:838-848. [PMID: 36268117 PMCID: PMC9578130 DOI: 10.1021/acsptsci.2c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease (AD), and its pathogenesis remains obscure. Current treatment approaches mainly including levodopa and dopamine agonists provide symptomatic relief but fail to halt disease progression, and they are often accompanied by severe side effects. In this context, natural phytochemicals have received increasing attention as promising preventive or therapeutic candidates for PD, given their multitarget pharmaceutical mechanisms of actions and good safety profile. Ginger (Zingiber officinale Roscoe, Zingiberaceae) is a very popular spice used as a medicinal herb throughout the world since the ancient years, for a wide range of conditions, including nausea, diabetes, dyslipidemia, and cancer. Emerging in vivo and in vitro evidence supports the neuroprotective effects of ginger and its main pharmaceutically active compounds (zingerone, 6-shogaol, and 6-gingerol) in PD, mainly via the regulation of neuroinflammation, oxidative stress, intestinal permeability, dopamine synaptic transmission, and possibly mitochondrial dysfunction. The regulation of several transcription factors and signaling pathways, including nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Ak strain transforming (Akt), extracellular signal-regulated kinase (ERK) 1/2, and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) have been shown to contribute to the protective effects of ginger. Herein, we discuss recent findings on the beneficial role of ginger in PD as a preventive agent or potential supplement to current treatment strategies, focusing on potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology
Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500Bandar Sunway, Malaysia
| | - Sokratis G. Papageorgiou
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Christina Piperi
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| |
Collapse
|
26
|
Racz LZ, Racz CP, Pop LC, Tomoaia G, Mocanu A, Barbu I, Sárközi M, Roman I, Avram A, Tomoaia-Cotisel M, Toma VA. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022; 27:molecules27206854. [PMID: 36296447 PMCID: PMC9608994 DOI: 10.3390/molecules27206854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, β-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein–curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Collapse
Affiliation(s)
- Levente Zsolt Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Lucian-Cristian Pop
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., RO-400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Aurora Mocanu
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Ioana Barbu
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
| | | | - Ioana Roman
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
| | - Alexandra Avram
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
27
|
Jafari DA, Baspinar Y, Ustundas M, Bayraktar O, Kara HG, Sezgin C. Cytotoxicity and Gene Expression Studies of Curcumin and Piperine Loaded Nanoparticles on Breast Cancer Cells. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Acute Effect of Caffeine-Based Multi-Ingredient Supplement on Reactive Agility and Jump Height in Recreational Handball Players. Nutrients 2022; 14:nu14081569. [PMID: 35458131 PMCID: PMC9025764 DOI: 10.3390/nu14081569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pre-exercise caffeine and guarana-based multi-ingredient supplement (MS) consumption may be more effective for physical performance improvement than caffeine and guarana alone due to the synergistic effect of biologically active ingredients in multi-ingredient supplements. This study aimed to examine the acute effect of MS on the reactive agility and jump performance in recreational handball male players. A randomized, double-blind, crossover study involved twenty-four male handball players (body mass 74.6 ± 8.8 kg; body height 179 ± 7 cm; age 23.8 ± 1.4 years). Participants were tested under three conditions: placebo, caffeine + guarana (CAF + GUA), or MS ingestion 45 min before exercise tests. Participants performed a reactive agility test (Y-shaped test) and countermovement jump (CMJ). None of the supplements improved countermovement jump height (p = 0.06). The time needed to complete the agility test was significantly (p = 0.02) shorter in the MS condition than in the placebo. The differences in agility between PL vs. CAF + GUA and MS vs. CAF + GUA conditions were not statistically significant (p = 0.88 and p = 0.07, respectively). The results of this study indicate that the caffeine-based multi-ingredient performance was effective in improvement in reactive agility but not in jump height in recreational handball male players. A similar effect was not observed with CAF + GUA ingestion alone.
Collapse
|
29
|
Mitra S, Anand U, Jha NK, Shekhawat MS, Saha SC, Nongdam P, Rengasamy KRR, Proćków J, Dey A. Anticancer Applications and Pharmacological Properties of Piperidine and Piperine: A Comprehensive Review on Molecular Mechanisms and Therapeutic Perspectives. Front Pharmacol 2022; 12:772418. [PMID: 35069196 PMCID: PMC8776707 DOI: 10.3389/fphar.2021.772418] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Lawspet, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, India
| | | | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Sovenga, South Africa
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
30
|
Somayajulu M, McClellan SA, Bessert DA, Pitchaikannu A, Hazlett LD. Ocular Effects of Glycyrrhizin at Acidic and Neutral pH. Front Cell Infect Microbiol 2022; 11:782063. [PMID: 35127554 PMCID: PMC8814321 DOI: 10.3389/fcimb.2021.782063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose To test the effects of acidic vs. neutral pH glycyrrhizin (GLY) on the unwounded and wounded normal mouse cornea and after infection with Pseudomonas aeruginosa isolates KEI 1025 and multidrug-resistant MDR9. Methods Acidic or neutral GLY vs. phosphate-buffered saline (PBS) was topically applied to normal or wounded corneas of C57BL/6 mice. In unwounded corneas, goblet cells and corneal nerves were stained and quantitated. After wounding, corneas were fluorescein stained and photographed using a slit lamp. Mice also were infected with KEI 1025 or MDR9 and the protective effects of GLY pH evaluated comparatively. Results In the unwounded cornea, application of acidic or neutral GLY vs. PBS reduced the number of bulbar conjunctival goblet cells but did not alter corneal nerve density. Similar application of GLY to scarified corneas delayed wound closure. After KEI 1025 infection, none of the GLY vs. PBS-treated corneas perforated; GLY treatment also decreased plate count (neutral pH more effective) and reduced MPO and several cytokines. Similarly, for MDR9, GLY at either pH was protective and also enhanced the effects of moxifloxacin to which MDR9 is resistant. Conclusion Acidic or neutral pH GLY decreased goblet cell number but had no effect on nerve density. After corneal wounding, GLY at either pH (1) delayed wound closure and, (2) after infection, decreased keratitis when used alone or in combination with moxifloxacin. Neutral pH did not alter the therapeutic effect of GLY and would be preferred if used clinically.
Collapse
|
31
|
Patel S, Chopra S, Chaurasia S, Sarwat M. PLANT BASED BIOAVAILABILITY ENHANCERS. Curr Pharm Des 2022; 28:642-654. [PMID: 35023453 DOI: 10.2174/1381612828666220112141355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Many of the synthetic as well as herbal drugs despite of their notable in vitro finding demonstrate insignificant in vivo activity majority of times due to poor bioavailability. As per Biopharmaceutical Classification System (BCS) one of the main concern is low solubility and/or permeation of drugs resulting in reduced absorption and poor bioavailability. To overcome these issues the various strategies have been adopted including use of permeation enhancers which are also known as bioenhancers. Bioenhancers are synthetic or natural compounds that increases the bioavailability of drugs and nutrients such as vitamins, amino acids, minerals, etc. into the systemic circulation and at the site of action for exhibiting improved therapeutic action. By improving bioavailability, bioenhancers can lead to reduction in drug dose, decrease in the treatment period and can circumvent the problem of drug resistance. Numerous studies have reported application of synthetic bioenhancers. On the other hand, owing to the natural origin, plant based bioenhancer can serve as better alternative. Literature review have revealed that the plant-based bioenhancers have been used in with a wide varieties of drugs including antibiotics, antiviral and anti-cancer. These can be categorized based on their sources and the mechanism of activity. This review will provide a systematic and detailed overview of the various plant based bioenhancers and applications.
Collapse
Affiliation(s)
- Sweta Patel
- Department of Hematology and Oncology, University of Albama, Birmingham AL 35294, USA
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh - 201313, India
| | - Simran Chaurasia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab -151001, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh - 201313, India
| |
Collapse
|
32
|
Azam S, Park JY, Kim IS, Choi DK. Piperine and Its Metabolite's Pharmacology in Neurodegenerative and Neurological Diseases. Biomedicines 2022; 10:154. [PMID: 35052833 PMCID: PMC8773267 DOI: 10.3390/biomedicines10010154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
Piperine (PIP) is an active alkaloid of black and long peppers. An increasing amount of evidence is suggesting that PIP and its metabolite's could be a potential therapeutic to intervene different disease conditions including chronic inflammation, cardiac and hepatic diseases, neurodegenerative diseases, and cancer. In addition, the omnipresence of PIP in food and beverages made this compound an important investigational material. It has now become essential to understand PIP pharmacology and toxicology to determine its merits and demerits, especially its effect on the central nervous system (CNS). Although several earlier reports documented that PIP has poor pharmacokinetic properties, such as absorption, bioavailability, and blood-brain barrier permeability. However, its interaction with metabolic enzyme cytochrome P450 superfamily and competitive hydrophobic interaction at Monoamine oxide B (MAO-B) active site have made PIP both a xenobiotics bioenhancer and a potential MAO-B inhibitor. Moreover, recent advancements in pharmaceutical technology have overcome several of PIP's limitations, including bioavailability and blood-brain barrier permeability, even at low doses. Contrarily, the structure activity relationship (SAR) study of PIP suggesting that its several metabolites are reactive and plausibly responsible for acute toxicity or have pharmacological potentiality. Considering the importance of PIP and its metabolites as an emerging drug target, this study aims to combine the current knowledge of PIP pharmacology and biochemistry with neurodegenerative and neurological disease therapy.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - In-Su Kim
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
33
|
Ergin Kızılçay G, Ertürk Toker S. Effect of glycyrrhizic acid on the bioavailability of resveratrol after oral administration in rabbit plasma using HPLC with fluorescence detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Tripathi D, Koora S, Satyanarayana K, Saleem Basha S, Jayaraman S. Molecular docking analysis of COX-2 with compounds from Piper longum. Bioinformation 2021; 17:623-627. [PMID: 35173384 PMCID: PMC8819790 DOI: 10.6026/97320630017623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Piper longum (Indian long pepper) is known for its use as an anti inflammatory agent in Indian Ayurvedic System of medicine. Therefore, it is of interest to document the molecular docking analysis of compounds from Piper longum with COX-2 using the Autodock Vina PyRx tool. Molecular docking results show that asarinine, sesamine, fargesin, and piperlonguminine have optimal binding energy of 10, 10, -9.5 and 9.4 Kcal/mol, respectively for further consideration.
Collapse
Affiliation(s)
- Dhirendra Tripathi
- Department of Otorhinolaryngology, Government Medical College, Shivpuri, Shivpuri - 473638
| | - Sravanthi Koora
- Department of Pharmacology, Government Medical College Siddipet 502103, Siddipet, Telangana
| | - K Satyanarayana
- Department of Biochemistry, Government Medical College Siddipet,Siddipet 502103, Telangana India
| | - S Saleem Basha
- Department of Medical Biochemistry, School of Medicine, Haramaya university, Harar Campus,Ethiopia
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences,Chennai-600 077, Indi
| |
Collapse
|
35
|
Ashokkumar K, Murugan M, Dhanya MK, Pandian A, Warkentin TD. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: a review. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00292-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Black pepper [Piper nigrum (L.), Family: Piperaceae] is used traditionally for the treatment of various diseases including; cough, cold, dyspnea throat diseases, intermittent fever, dysentery, stomachache, worms and piles. The pharmacological potential of black pepper is due to the presence of metabolites like phenolic compounds, alkaloids, flavonoids, carotenoids, terpenoids, etc. The multipurpose use of black pepper dried seeds has several other beneficial health effects that also received in the light of traditional as well as current medicine perspectives. The review aims to discuss the botany, phytochemical constituents, and pharmacological properties of piperine and black pepper essential oil (BPEO).
Results
Phytochemical analyses have described the main chemical constituents of black pepper, including carbohydrates, proteins, calcium, magnesium, potassium, iron, vitamin C, tannins, flavonoids and carotenoids. The volatile oil content ranges from 0.4 to 7 % in dried berries. The major constituents of BPEO are sabinene, 3-carene, D-limonene, α-pinene, caryophyllene, β-phellandrene, α-phellandrene, α-thujene, and β-bisabolene. Additionally, piperine is the naturally occurring and principal bioactive alkaloid constituent of black pepper owing to its potential therapeutic properties, including cerebral brain functioning and increased nutrient absorption. The BPEO has several biological roles, including antioxidant, anti-inflammatory, anticancer, anti-obesity, antidepressant, antidiabetic, antimicrobial, gastroprotective, and insecticidal activities.
Conclusions
This review examines and presents the appropriate evidence on black pepper and its traditional uses as well as biological activities of BPEO and piperine. Although several previous reports showed diverse biological effects for piperine and bioactive constitutes of BPEO. Thus, minimal investigations were conducted using animal models, and many of these studies also lacked appropriate experimental setting like doses, control details. Hence, future studies are necessary to understand the mechanism of piperine, BPEO, bioactive constituents and their effects upon their use by animal models and humans with the proper experimental procedure which we can facilitate the protection of human health from several diseases.
Collapse
|
36
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
37
|
Piperine: Chemical, biological and nanotechnological applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:185-213. [PMID: 33151173 DOI: 10.2478/acph-2021-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2020] [Indexed: 01/19/2023]
Abstract
Piperine (PIP) is an alkaloid present in several species of piper, mainly Piper nigrum Linn. and P. longum, among other species. The present article provides a comprehensive review of PIP research in the last years concerning its chemical properties, synthesis, absorption, metabolism, bioavailability and toxicity. The reviewed PIP literature has shown many pharmacological properties, such as antidiabetic, antidiarrheal, antioxidant, antibacterial, and anti-parasitic activity of PIP. However, its low solubility and absorption make its application challenging. This review also includes advances in the development of nanosystems containing PIP, including liposomes, micelles, metal nanoparticles, nanofibers, polymeric nanoparticles, and solid-lipid nanoparticles. Finally, we discuss different in vitro and in vivo studies to evaluate the biological activity of this drug, as well as some methods for the synthesis of nanosystems and their physical characteristics.
Collapse
|
38
|
A safety assessment of hot aqueous mycelium extracts from Trametes versicolor and Lepista nuda as a food supplement. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00761-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
40
|
Rolta R, Sharma A, Sourirajan A, Mallikarjunan PK, Dev K. Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113420. [PMID: 32998023 DOI: 10.1016/j.jep.2020.113420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. is a traditional Chinese medicine used for the treatment of malaria, jaundice and intense fever. AIM OF THE STUDY The aim of the present study was to investigate the phytochemicals, antioxidants, antimicrobial and synergistic potential of methanolic and petroleum ether extracts of A. annua against bacterial and fungal pathogens. METHOD Antioxidant activity of different concentrations of methanolic and petroleum ether extracts of A. annua was determined by DPPH free radical scavenging assay. Antimicrobial activity was determined by agar well diffusion, whereas MIC and synergistic activity was done by broth dilution method.TLC and GC-MS were done to identify active phytocompounds present in methanolic and petroleum ether extracts. RESULTS Methanolic extract of A. annua showed higher antioxidant potential (IC50 37 0.75 ± 0.34 μg ml-1) as compared to petroleum ether extract. In antimicrobial analysis, methanolic and petroleum ether extracts of A. annua produced potent inhibitory activity against Candida strains as compared to bacterial strains. Methanolic and petroleum ether extracts of A. annua produced synergistic potential with decrease in MIC from 4 to 264 folds against bacterial (S. aureus and E. coli) and Candida strains in combination with antibacterial and antifungal antibiotics. Sub fraction I of methanolic and petroleum ether extracts was isolated through silica TLC and showed 10-fold more antimicrobial activity as compared to crude extract. GC-MS analysis of sub-fraction I of A. annua revealed 13 major phytocompounds with area more than 1%. Interestingly, 2-Propenoic acid and ridecyl ester (25.88%) were the major phytocompounds. CONCLUSION Phytocompounds of A. annua can be used as bioenhancer of antibacterial and antifungal agents to control drug resistance.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anshika Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | | | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
41
|
Vijayarani KR, Govindarajulu M, Ramesh S, Alturki M, Majrashi M, Fujihashi A, Almaghrabi M, Kirubakaran N, Ren J, Babu RJ, Smith F, Moore T, Dhanasekaran M. Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study. Front Pharmacol 2020; 11:551911. [PMID: 33384596 PMCID: PMC7770183 DOI: 10.3389/fphar.2020.551911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is a key culprit factor in the onset and progression of several diseases. Novel and pharmacologically effective therapeutic approaches are needed for new treatment remedy or improved pharmacokinetics and pharmacodynamics for existing synthetic drugs, in particular natural products. Boswellic acids are well-known natural products, with capacity to effectively retard inflammation without severe adverse effects. However, the therapeutic use of Boswellic acids are greatly hindered by its poor pharmacokinetic properties. Co-administration strategies that facilitate the oral absorption and distribution of Boswellic acids should lead to a safe and more effective use of this product prophylactically and therapeutically in inflammatory disorders. In this study, we examined the effect of Piper longum extract on the absorption and bioavailability of Boswellic acid in rabbits. In addition, we further explored computational pharmacodynamic interactions between Piper longum and Boswellic acid. Piper longum extract at 2.5 and 10 mg/kg, increased the bioavailability of Boswellic acid (p < 0.05). Based on our drug-based computational modeling, cytochrome P450 (CYP450)-mediated mechanism was involved in increased bioavailability. These findings confirmed that Piper longum with Boswellic acid may be administered orally together for effective therapeutic efficacy. Thus, our studies support the application of Piper longum with Boswellic acid as a novel therapeutic avenue in diseases associated with inflammation.
Collapse
Affiliation(s)
- K. Reeta Vijayarani
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mansour Alturki
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Medicinal Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - N. Kirubakaran
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
42
|
Ali B, Jamal QMS, Mir SR, Shams S, Kamal MA. Molecular docking studies of tea ( Thea sinensis Linn.) polyphenols inhibition pattern with Rat P-glycoprotein. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Since 3000 B.C., evergreen plant Thea sinensis (Theaceae) is used both as a social and medicinal beverage. Leaves of T. sinensis contain amino acids, vitamins, caffeine, polysaccharides and polyphenols. Most of the natural medicinal actions of tea are due to the availability and abundance of polyphenols mainly catechins. It has also been stated that some catechins were absorbed more rapidly than other compounds after the oral administration of tea and could increase the bio-enhancing activities of anticancer drugs by inhibiting P-glycoprotein (P-gp). The results of the molecular docking showed that polyphenols bind easily to the active P-gp site. All compounds exhibited fluctuating binding affinity ranged from −11.67 to −8.36 kcal/mol. Observed binding energy required for theaflavin to bind to P-gp was lowest (−11.67 kcal/mol). The obtained data that supports all the selected polyphenols inhibited P-gp and therefore may enhance the bioavailability of drugs. This study may play a vital role in finding hotspots in P-gp and eventually may be proved useful in designing compounds with high affinity and specificity to the protein.
Collapse
Affiliation(s)
- Babar Ali
- College of Pharmacy and Dentistry , Buraydah Colleges , Buraydah , Al-Qassim , Kingdom of Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics , Qassim University , Al Bukayriyah , Saudi Arabia
- Novel Global Community Educational Foundation , Hebersham , Australia
| | - Showkat R. Mir
- Department of Pharmacognosy and Phytochemistry , Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , New Delhi 110062 , India
| | - Saiba Shams
- Siddhartha Institute of Pharmacy , Dehra Dun 248001 , Uttarakhand , India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
- West China School of Nursing / Institutes for Systems Genetics , Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University , Chengdu 610041 , Sichuan , China
- Enzymoics, 7 Peterlee Place , Hebersham , NSW 2770, Novel Global Community Educational Foundation , Australia
| |
Collapse
|
43
|
Kaczka P, Batra A, Kubicka K, Maciejczyk M, Rzeszutko-Bełzowska A, Pezdan-Śliż I, Michałowska-Sawczyn M, Przydział M, Płonka A, Cięszczyk P, Humińska-Lisowska K, Zając T. Effects of Pre-Workout Multi-Ingredient Supplement on Anaerobic Performance: Randomized Double-Blind Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8262. [PMID: 33182295 PMCID: PMC7664913 DOI: 10.3390/ijerph17218262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The purpose of this research was to investigate the acute effects of a pre-workout supplement on anaerobic performance in resistance-trained men. METHODS Twenty-three men underwent three randomized, double-blind testing sessions separated by a seven-day break. The participants performed three tests: isokinetic strength, three repetition maximum (3-RM) strength and Wingate. Statistical analysis was conducted in R environment. Linear mixed models were estimated via R package lme4. RESULTS Mean T@0.2 s was significantly greater in supplemented condition for right and left knee flexors (PL: 103.2 ± 37.6 Nm; supplemented condition: 131.8 ± 29.3 Nm (p = 0.001)), and PL: 103.7 ± 39.3; supplemented condition: 129.4 ± 28.4 (p = 0.001)). T@0.2 s for right and left knee extensors (PL: 202.6 ± 58.6 Nm; supplemented condition: 237.2 ± 54.7 Nm (p = 0.001); PL: 203.3 ± 63.2 Nm, supplemented condition: 229.8 ± 50.8 Nm (p = 0.002)). Significant difference was in mean anaerobic power between supplemented and PL condition for right and left knee flexors (p = 0.002, p = 0.005) and for right and left knee extensors (p = 0.001 and p = 0.002). TTP was significantly shorter in supplemented condition for both sides knee flexors (p = 0.002). There was a significant difference for mean power in the Wingate test (placebo: 8.5 ± 0.6 W/kg; supplemented condition: 8.7 ± 0.5 W/kg (p = 0.038)). Mean 3-RM was significantly greater in supplemented condition (p = 0.001). CONCLUSIONS The supplement significantly improves upper and lower body strength and power output in resistance-trained men.
Collapse
Affiliation(s)
- Piotr Kaczka
- Department of Sport Nutrition, Academy of Physical Education in Katowice, ul. Mikołowska 72a, 40-065 Katowice, Poland; (A.B.); (K.K.); (T.Z.)
| | - Amit Batra
- Department of Sport Nutrition, Academy of Physical Education in Katowice, ul. Mikołowska 72a, 40-065 Katowice, Poland; (A.B.); (K.K.); (T.Z.)
| | - Katarzyna Kubicka
- Department of Sport Nutrition, Academy of Physical Education in Katowice, ul. Mikołowska 72a, 40-065 Katowice, Poland; (A.B.); (K.K.); (T.Z.)
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, al. Jana Pawła II 78, 31-571 Kraków, Poland;
| | - Agata Rzeszutko-Bełzowska
- Faculty of Physical Education, University of Rzeszow, ul. Towarnickiego 3, 35-010 Rzeszów, Poland; (A.R.-B.); (I.P.-Ś.); (M.P.); (A.P.)
| | - Iwona Pezdan-Śliż
- Faculty of Physical Education, University of Rzeszow, ul. Towarnickiego 3, 35-010 Rzeszów, Poland; (A.R.-B.); (I.P.-Ś.); (M.P.); (A.P.)
| | - Monika Michałowska-Sawczyn
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, ul. Kazimierza Górskiego, 80-336 Gdańsk, Poland; (M.M.-S.); (P.C.); (K.H.-L.)
| | - Marta Przydział
- Faculty of Physical Education, University of Rzeszow, ul. Towarnickiego 3, 35-010 Rzeszów, Poland; (A.R.-B.); (I.P.-Ś.); (M.P.); (A.P.)
| | - Artur Płonka
- Faculty of Physical Education, University of Rzeszow, ul. Towarnickiego 3, 35-010 Rzeszów, Poland; (A.R.-B.); (I.P.-Ś.); (M.P.); (A.P.)
| | - Paweł Cięszczyk
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, ul. Kazimierza Górskiego, 80-336 Gdańsk, Poland; (M.M.-S.); (P.C.); (K.H.-L.)
| | - Kinga Humińska-Lisowska
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, ul. Kazimierza Górskiego, 80-336 Gdańsk, Poland; (M.M.-S.); (P.C.); (K.H.-L.)
| | - Tomasz Zając
- Department of Sport Nutrition, Academy of Physical Education in Katowice, ul. Mikołowska 72a, 40-065 Katowice, Poland; (A.B.); (K.K.); (T.Z.)
| |
Collapse
|
44
|
Piperine: A comprehensive review of methods of isolation, purification, and biological properties. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100027] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Spectroscopic studies on the molecular interactions of curcumin and piperine. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
The diarylheptanoid curcumin is the yellow coloring agent accumulated in the rhizome of the common spice turmeric (Curcuma longa L.). It has gathered a lot of pharmaceutical interest over the last decades due to some positive effects on human health. However, the use of curcumin as a drug is prevented by its low bioavailability and solubility in water. Interestingly, piperine, the pungent constituent of household pepper (Piper nigrum L.) is able to increase the bioavailability of curcumin up to 20-fold without any known adverse effects. The mechanism responsible for this piperine-based increase of curcumin bioavailability is, however, not fully understood. In a recent publication, a quantum chemical study suggested the formation of a molecular complex between curcumin and piperine being responsible for this effect. The present work now revealed that indeed a 1:1 complex formation can be observed in NMR titration experiments and by mass spectrometry, but the complex strength is rather low (K ~ 1.5 dm3/mol). Furthermore, it is shown that the presence of piperine does not increase the water solubility of curcumin, which makes it rather improbable that such a complex is the main reason for an enhanced curcumin bioavailability.
Graphic abstract
Collapse
|
46
|
Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: Old Spice and New Nutraceutical? Curr Pharm Des 2020; 25:1729-1739. [PMID: 31267856 DOI: 10.2174/1381612825666190701150803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many of the activities associated with pepper fruits have been attributed to piperine, the most active compound present in these spices. OBJECTIVE This paper aims to provide an overview of the known properties of piperine, i.e. piperine's chemistry, its physiological activity, documented interactions as a bioenhancer and reported data concerning its toxicity, antioxidant properties and anticancer activity. DISCUSSION It is known that piperine possesses several properties. In its interaction with other drugs, it can act as a bioavailability enhancer; this effect is also manifested in combination with other nutraceuticals, e.g. with curcumin, i.e. piperine can modify curcumin's antioxidant, anti-inflammatory, antimicrobial and anticancer effects. Piperine displays significant immunomodulating, antioxidant, chemopreventive and anticancer activity; these effects have been shown to be dose-dependent and tissue-specific. However, the main limitation associated with piperine seems to be its low bioavailability, a disadvantage that innovative formulations are overcoming. CONCLUSION It is predicted that an increasing number of studies will focus on piperine, especially those directed towards unraveling its properties at molecular level. The current knowledge about the action of piperine will form a foundation for ways to improve piperine's bioavailability e.g. exploitation of different carrier systems. The therapeutical applications of this compound will be clarified, and piperine will be recognized as an important nutraceutical.
Collapse
Affiliation(s)
- Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Aleksandar Cvetkovski
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Tatjana Ruskovska
- Department of General Medicine, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Bojana Vidovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
47
|
Kotwal P, Dogra A, Sharma A, Bhatt S, Gour A, Sharma S, Wazir P, Singh PP, Kumar A, Nandi U. Effect of Natural Phenolics on Pharmacokinetic Modulation of Bedaquiline in Rat to Assess the Likelihood of Potential Food-Drug Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1257-1265. [PMID: 31927919 DOI: 10.1021/acs.jafc.9b06529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bedaquiline (TMC-207) is a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB). Moreover, there is a present and growing concern for natural-product-mediated drug interaction, as these are inadvertently taken by patients as a dietary supplement, food additive, and medicine. In the present study, we investigated the impact of 20 plant-based natural products, typically phenolics, on in vivo oral bedaquiline pharmacokinetics, as previous studies are lacking. Three natural phenolics were identified that can significantly enhance the oral exposure of bedaquiline upon coadministration. We further investigated the possible role of all of the phytochemicals on in vitro P-glycoprotein (P-gp) induction and inhibition and CYP3A4 inhibition in a single platform as bedaquiline is the substrate for both P-gp and CYP3A4. In conclusion, curcumin, CC-I (3',5-dihydroxyflavone-7-O-β-d-galacturonide-4'-O-β-d-glucopyranoside), and 6-gingerol should not be coadministered with bedaquiline to avoid untoward drug interactions and, subsequently, its dose-dependent adverse effects.
Collapse
Affiliation(s)
- Pankul Kotwal
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Ashish Dogra
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Ankita Sharma
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Shipra Bhatt
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Abhishek Gour
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Sumit Sharma
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Priya Wazir
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Parvinder Pal Singh
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Ajay Kumar
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Utpal Nandi
- PK-PD, Toxicology and Formulation Division , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| |
Collapse
|
48
|
El-Ghazaly MA, Fadel NA, Abdel-Naby DH, Abd El-Rehim HA, Zaki HF, Kenawy SA. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: Effect on pro-inflammatory cytokines and oxidative stress biomarkers. EGYPTIAN RHEUMATOLOGIST 2020. [DOI: 10.1016/j.ejr.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Orona-Ortiz A, Medina-Torres L, Velázquez-Moyado JA, Pineda-Peña EA, Balderas-López JL, Bernad-Bernad MJ, Tavares Carvalho JC, Navarrete A. Mucoadhesive effect of Curcuma longa extract and curcumin decreases the ranitidine effect, but not bismuth subsalicylate on ethanol-induced ulcer model. Sci Rep 2019; 9:16622. [PMID: 31719599 PMCID: PMC6851106 DOI: 10.1038/s41598-019-53089-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The study of pharmacological interactions between herbal remedies and conventional drugs is important because consuming traditional herbal remedies as supplements or alternative medicine is fairly common and their concomitant administration with prescribed drugs could either have a favorable or unfavorable effect. Therefore, this work aims to determine the pharmacological interactions of a turmeric acetone extract (TAE) and its main metabolite (curcumin) with common anti-ulcer drugs (ranitidine and bismuth subsalicylate), using an ethanol-induced ulcer model in Wistar rats. The analysis of the interactions was carried out via the Combination Index-Isobologram Equation method. The combination index (CI) calculated at 0.5 of the affected fraction (fa) indicated that the TAE or curcumin in combination with ranitidine had a subadditive interaction. The results suggest that this antagonistic mechanism is associated to the mucoadhesion of curcumin and the TAE, determined by rheological measurements. Contrastingly, both the TAE and curcumin combined with bismuth subsalicylate had an additive relationship, which means that there is no pharmacological interaction. This agrees with the normalized isobolograms obtained for each combination. The results of this study suggest that mucoadhesion of curcumin and the TAE could interfere in the effectiveness of ranitidine, and even other drugs.
Collapse
Affiliation(s)
- Alejandra Orona-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - Josué A Velázquez-Moyado
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - Elizabeth A Pineda-Peña
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - José Luis Balderas-López
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - María Josefa Bernad-Bernad
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico
| | - José Carlos Tavares Carvalho
- Laboratorio de Pesquisa em Farmacos, Curso de Farmacia, Departamento de Ciências Biólogicas e da Saúde, Universidade Federal do Amapá, Macapá, AP, Brazil
| | - Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México. Ciudad Universitaria Coyoacán, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
50
|
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019; 9:E258. [PMID: 31683833 PMCID: PMC6918160 DOI: 10.3390/metabo9110258] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
The war on multidrug resistance (MDR) has resulted in the greatest loss to the world's economy. Antibiotics, the bedrock, and wonder drug of the 20th century have played a central role in treating infectious diseases. However, the inappropriate, irregular, and irrational uses of antibiotics have resulted in the emergence of antimicrobial resistance. This has resulted in an increased interest in medicinal plants since 30-50% of current pharmaceuticals and nutraceuticals are plant-derived. The question we address in this review is whether plants, which produce a rich diversity of secondary metabolites, may provide novel antibiotics to tackle MDR microbes and novel chemosensitizers to reclaim currently used antibiotics that have been rendered ineffective by the MDR microbes. Plants synthesize secondary metabolites and phytochemicals and have great potential to act as therapeutics. The main focus of this mini-review is to highlight the potential benefits of plant derived multiple compounds and the importance of phytochemicals for the development of biocompatible therapeutics. In addition, this review focuses on the diverse effects and efficacy of herbal compounds in controlling the development of MDR in microbes and hopes to inspire research into unexplored plants with a view to identify novel antibiotics for global health benefits.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Molecular and Cellular Engineering (MCE), Jacob Institute of Biotechnology and Bioengineering (JIBB), Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007, India.
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Av. Vasco de Quiroga 15. Col. Belisario Domínguez Sección XVI. C.P. Tlalpan, Ciudad de México 14080, Mexico.
| | - Ammar Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq.
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|