1
|
Xiong X, Feng S, Ma X, Liu K, Gui Y, Chen B, Fan X, Wang F, Wang X, Yuan S. hnRNPC Functions with HuR to Regulate Alternative Splicing in an m6A-Dependent Manner and is Essential for Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412196. [PMID: 39921484 PMCID: PMC11967818 DOI: 10.1002/advs.202412196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/10/2025]
Abstract
N6-methyladenosine (m6A) and its reader proteins are involved in pre-mRNA processing and play a variety of roles in numerous biological processes. However, much remains to be understood about the regulation of m6A and the function of its specific readers during meiotic processes. Here, this study shows that the potential m6A reader protein hnRNPC is essential for both male and female meiosis in mice. Germ cell-specific knockout of Hnrnpc causes meiotic arrest at pachynema in male mice. Specifically, hnRNPC-deficient males show abnormal meiosis initiation and defective meiotic progression, ultimately leading to meiotic arrest at the pachytene stage. Interestingly, hnRNPC-null females show similar meiotic defects to males. Mechanistically, this study discovers that in male germ cells, hnRNPC works with HuR to directly bind and modulate alternative splicing of meiotic-related genes (e.g., Sycp1, Brca1, and Smc5) in an m6A-dependent manner during spermatogenesis. Collectively, these findings reveal hnRNPC as a critical factor for meiosis and contribute to a mechanistic understanding of the hnRNPC-HuR interaction in alternative splicing of mRNAs during germ cell development.
Collapse
Affiliation(s)
- Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Xixiang Ma
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bei Chen
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhen518057China
| |
Collapse
|
2
|
Wang S, Cai Y, Li T, Wang Y, Bao Z, Wang R, Qin J, Wang Z, Liu Y, Liu Z, Chan W, Chen X, Lu G, Chen Z, Huang T, Liu H. CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403866. [PMID: 38889293 PMCID: PMC11336944 DOI: 10.1002/advs.202403866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 06/20/2024]
Abstract
The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility. In germline conditional Cwf19l2 knockout mice exhibiting male sterility, impaired spermatogenesis characterized by increased apoptosis and decreased differentiated spermatogonia and spermatocytes is observed. That CWF19L2 interacted with several spliceosome proteins to participate in the proper assembly and stability of the spliceosome is discovered. By integrating RNA-seq and LACE-seq data, it is further confirmed CWF19L2 directly bound and regulated the splicing of genes related to spermatogenesis (Znhit1, Btrc, and Fbxw7) and RNA splicing (Rbfox1, Celf1, and Rbm10). Additionally, CWF19L2 can indirectly amplify its effect on splicing regulation through modulating RBFOX1. Collectively, this research establishes that CWF19L2 orchestrates a splicing factor network to ensure accurate pre-mRNA splicing during the early steps of spermatogenesis.
Collapse
|
3
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
4
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
5
|
Chen C, Tang X, Yan S, Yang A, Xiang J, Deng Y, Yin Y, Chen B, Gu J. Comprehensive Analysis of the Transcriptome-Wide m 6A Methylome in Shaziling Pig Testicular Development. Int J Mol Sci 2023; 24:14475. [PMID: 37833923 PMCID: PMC10572705 DOI: 10.3390/ijms241914475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.
Collapse
Affiliation(s)
- Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jiaojiao Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanhong Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Germline FOXJ2 overexpression causes male infertility via aberrant autophagy activation by LAMP2A upregulation. Cell Death Dis 2022; 13:665. [PMID: 35908066 PMCID: PMC9338950 DOI: 10.1038/s41419-022-05116-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Spermatogenesis is a complex biological process that produces haploid spermatozoa and requires precise regulation by many tissue-specific factors. In this study, we explored the role and mechanism of Fork head box J2 (FOXJ2, which is highly expressed in spermatocytes) in the regulation of spermatogenesis using a germline-specific conditional Foxj2 knock-in mouse model (Stra8-Cre; Foxj2 tg/tg mouse). Foxj2 overexpression in mouse testes led to spermatogenesis failure, which started at the initiation of meiosis, and resulted in male infertility. Lysosomes and autophagy-related genes were upregulated in Stra8-cre; Foxj2 tg/tg mouse testes and the number of autolysosomes in the spermatocytes in Stra8-cre; Foxj2 tg/tg mice was increased. Chromatin immunoprecipitation-PCR and Dual-luciferase reporter assays showed that Lamp2 (encoding lysosome-associated membrane protein-2) was a target of FOXJ2. Foxj2 overexpression increased the expression levels of Lamp2a and Hsc70 (70-kDa cytoplasmic heat shock protein) in the Stra8-cre; Foxj2 tg/tg mouse testes. Our results suggested that Foxj2 overexpression in the germ cells of mouse testes affects chaperone-mediated autophagy by upregulating LAMP2A, leading to spermatogenesis failure at the initiation of meiosis, thus resulting in male infertility. Our findings provide a new insight into the function of FOXJ2 in spermatogenesis and the significance of autophagy regulation in spermatogenesis.
Collapse
|
7
|
Wang X, Sang M, Gong S, Chen Z, Zhao X, Wang G, Li Z, Huang Y, Chen S, Xie G, Duan E, Sun F. BET bromodomain inhibitor JQ1 regulates spermatid development by changing chromatin conformation in mouse spermatogenesis. Genes Dis 2022; 9:1062-1073. [PMID: 35685458 PMCID: PMC9170580 DOI: 10.1016/j.gendis.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 11/01/2022] Open
Abstract
As a BET bromodomain inhibitor, JQ1 has been proven have efficacy against a number of different cancers. In terms of male reproduction, JQ1 may be used as a new type of contraceptive, since JQ1 treatment in male mice could lead to germ cell defects and a decrease of sperm motility, moreover, this effect is reversible. However, the mechanism of JQ1 acting on gene regulation in spermatogenesis remains unclear. Here, we performed single-cell RNA sequencing (scRNA-seq) on mouse testes treated with JQ1 or vehicle control to determine the transcriptional regulatory function of JQ1 in spermatogenesis at the single cell resolution. We confirmed that JQ1 treatment could increase the numbers of somatic cells and spermatocytes and decrease the numbers of spermatid cells. Gene Ontology (GO) analysis demonstrated that differentially expressed genes which were down-regulated after JQ1 injection were mainly enriched in "DNA conformation change" biological process in early developmental germ cells and "spermatid development" biological process in spermatid cells. ATAC-seq data further confirmed that JQ1 injection could change the open state of chromatin. In addition, JQ1 could change the numbers of accessible meiotic DNA double-stranded break sites and the types of transcription factor motif that functioned in pachytene spermatocytes and round spermatids. The multi-omics analysis revealed that JQ1 had the ability to regulate gene transcription by changing chromatin conformation in mouse spermatogenesis, which would potentiate the availability of JQ1 in male contraceptive.
Collapse
Affiliation(s)
- Xiaorong Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Shengnan Gong
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhichuan Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xi Zhao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yingying Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, PR China
| | - Gangcai Xie
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| |
Collapse
|
8
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells. Nat Commun 2022; 13:3588. [PMID: 35739118 PMCID: PMC9226075 DOI: 10.1038/s41467-022-31364-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the underlying molecular mechanism that controls alternative mRNA expression during germ cell development remains elusive. Herein, we show that hnRNPH1 is highly expressed in the reproductive system and recruits the PTBP2 and SRSF3 to modulate the alternative splicing in germ cells. Conditional knockout Hnrnph1 in spermatogenic cells causes many abnormal splicing events, thus affecting the genes related to meiosis and communication between germ cells and Sertoli cells. This is characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, which ultimately leads to male sterility. Markedly, Hnrnph1 germline-specific mutant female mice are also infertile, and Hnrnph1-deficient oocytes exhibit a similar defective synapsis and cell-cell junction as seen in Hnrnph1-deficient male germ cells. Collectively, our data support a molecular model wherein hnRNPH1 governs a network of alternative splicing events in germ cells via recruitment of PTBP2 and SRSF3. Coordinated regulation of alternative splicing is essential for germ cell development. Here, the authors report that hnRNPH1 interacts with alternative splicing factors PTBP2 and SRSF3 in the germline to regulate pre-mRNA alternative splicing.
Collapse
|
10
|
Li Y, Mi P, Chen X, Wu J, Liu X, Tang Y, Cheng J, Huang Y, Qin W, Cheng CY, Sun F. Tex13a Optimizes Sperm Motility via Its Potential Roles in mRNA Turnover. Front Cell Dev Biol 2021; 9:761627. [PMID: 34733855 PMCID: PMC8558480 DOI: 10.3389/fcell.2021.761627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
mRNAs have been found to undergo substantial selective degradation during the late stages of spermiogenesis. However, the mechanisms regulating this biological process are unknown. In this report, we have identified Tex13a, a spermatid-specific gene that interacts with the CCR4–NOT complex and is implicated in the targeted degradation of mRNAs encoding particular structural components of sperm. Deletion of Tex13a led to a delayed decay of these mRNAs, lowered the levels of house-keeping genes, and ultimately lowered several key parameters associated with the control of sperm motility, such as the path velocity (VAP, average path velocity), track speed (VCL, velocity curvilinear), and rapid progression.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Yingying Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, United States
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
11
|
Choi HJ, Jin SD, Rengaraj D, Kim JH, Pain B, Han JY. Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. J Anim Sci Biotechnol 2021; 12:40. [PMID: 33658075 PMCID: PMC7931612 DOI: 10.1186/s40104-021-00563-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. Results We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5′ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG. Conclusions We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.
Collapse
Affiliation(s)
- Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Dam Jin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Hwa Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Bertrand Pain
- Univ Lyon, Universite ́Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea. .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
12
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Wang X, Li ZT, Yan Y, Lin P, Tang W, Hasler D, Meduri R, Li Y, Hua MM, Qi HT, Lin DH, Shi HJ, Hui J, Li J, Li D, Yang JH, Lin J, Meister G, Fischer U, Liu MF. LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis in Mice. Mol Cell 2020; 77:999-1013.e6. [PMID: 32017896 DOI: 10.1016/j.molcel.2020.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/19/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Tong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Penghui Lin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Tang
- Animal Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daniele Hasler
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | | | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai 200032, China
| | - Hui-Tao Qi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di-Hang Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai 200032, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences - University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Taxiarchi C, Kranjc N, Kriezis A, Kyrou K, Bernardini F, Russell S, Nolan T, Crisanti A, Galizi R. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci Rep 2019; 9:14841. [PMID: 31619757 PMCID: PMC6795909 DOI: 10.1038/s41598-019-51181-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Although of high priority for the development of genetic tools to control malaria-transmitting mosquitoes, only a few germline-specific regulatory regions have been characterised to date and the presence of global regulatory mechanisms, such as dosage compensation and meiotic sex chromosome inactivation (MSCI), are mostly assumed from transcriptomic analyses of reproductive tissues or whole gonads. In such studies, samples include a significant portion of somatic tissues inevitably complicating the reconstruction of a defined transcriptional map of gametogenesis. By exploiting recent advances in transgenic technologies and gene editing tools, combined with fluorescence-activated cell sorting and RNA sequencing, we have separated four distinct cell lineages from the Anopheles gambiae male gonads: premeiotic, meiotic (primary and secondary spermatocytes) and postmeiotic. By comparing the overall expression levels of X-linked and autosomal genes across the four populations, we revealed a striking transcriptional repression of the X chromosome coincident with the meiotic phase, classifiable as MSCI, and highlighted genes that may evade silencing. In addition, chromosome-wide median expression ratios of the premeiotic population confirmed the absence of dosage compensation in the male germline. Applying differential expression analysis, we highlighted genes and transcript isoforms enriched at specific timepoints and reconstructed the expression dynamics of the main biological processes regulating the key stages of sperm development and maturation. We generated the first transcriptomic atlas of A. gambiae spermatogenesis that will expand the available toolbox for the genetic engineering of vector control technologies. We also describe an innovative and multidimensional approach to isolate specific cell lineages that can be used for the targeted analysis of other A. gambiae organs or transferred to other medically relevant species and model organisms.
Collapse
Affiliation(s)
- Chrysanthi Taxiarchi
- Department of Life Sciences, Imperial College London, London, UK
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, London, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, UK
| | - Roberto Galizi
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
15
|
Affiliation(s)
- Stephen Branden Van Oss
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
16
|
Drosophila melanogaster tPlus3a and tPlus3b ensure full male fertility by regulating transcription of Y-chromosomal, seminal fluid, and heat shock genes. PLoS One 2019; 14:e0213177. [PMID: 30845228 PMCID: PMC6405060 DOI: 10.1371/journal.pone.0213177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis in Drosophila melanogaster is characterized by a specific transcriptional program during the spermatocyte stage. Transcription of thousands of genes is regulated by the interaction of several proteins or complexes, including a tTAF-containing TFIID variant, tMAC, Mediator, and chromatin interactors, e.g., bromodomain proteins. We addressed how distinct subsets of target genes are selected. We characterized the highly similar proteins tPlus3a and tPlus3b, which contain a Plus3 domain and are enriched in the testis, mainly in spermatocytes. In tPlus3a and tplus3b deletion mutants generated using the CRISPR/Cas9 system, fertility was severely reduced and sperm showed defects during individualization. tPlus3a and tPlus3b heterodimerized with the bromodomain protein tBRD-1. To elucidate the role of the tPlus3a and tPlus3b proteins in transcriptional regulation, we determined the transcriptomes of tplus3a-tplus3b and tbrd-1 deletion mutants using next-generation sequencing (RNA-seq) and compared them to that of the wild-type. tPlus3a and tPlus3b positively or negatively regulated the expression of nearly 400 genes; tBRD-1 regulated 1,500 genes. Nearly 200 genes were regulated by both tPlus3a and tPlus3b and tBRD-1. tPlus3a and tPlus3b activated the Y-chromosomal genes kl-3 and kl-5, which indicates that tPlus3a and tPlus3b proteins are required for the function of distinct classes of genes. tPlus3a and tPlus3b and tBRD-1 repress genes relevant for seminal fluid and heat shock. We hypothesize that tPlus3a and tPlus3b proteins are required to specify the general transcriptional program in spermatocytes.
Collapse
|
17
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
18
|
Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster. PLoS One 2018; 13:e0203622. [PMID: 30192860 PMCID: PMC6128621 DOI: 10.1371/journal.pone.0203622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Spermatogenesis in many species including Drosophila melanogaster is accompanied by major reorganisation of chromatin in post-meiotic stages, involving a nearly genome-wide displacement of histones by protamines, Mst77F and Protamine-like 99C. A proposed prerequisite for the histone-to-protamine transition is massive histone H4 hyper-acetylation prior to the switch. Here, we investigated the pattern of histone H3 lysine acetylation and general lysine crotonylation in D. melanogaster spermiogenesis to elucidate a possible role of these marks in chromatin reorganisation. Lysine crotonylation was strongest prior to remodelling and the deposition of this mark depended on the acetylation status of the spermatid chromatin. In contrast to H4 acetylation, individual H3 acetylation marks displayed surprisingly distinct patterns during the histone-to-protamine transition. We observed that Nejire, a histone acetyl transferase, is expressed during the time of histone-to-protamine transition. Nejire knock down led to strongly reduced fertility, which correlated with misshaped spermatid nuclei and a lack of mature sperm. protA and prtl99C transcript levels were reduced after knocking down Nejire. ProtB-eGFP, Mst77F-eGFP and Prtl99C-eGFP were synthesized at the late canoe stage, while histones were often not detectable. However, in some cysts histones persist in parallel to protamines. Therefore, we hypothesize that complete histone removal requires multiple histone modifications besides H3K18ac and H3K27ac. In summary, H3K18 and H3K27 acetylation during Drosophila spermatogenesis is dependent on Nejire or a yet uncharacterized acetyl transferase. We show that Nejire is required for male fertility since Nejire contributes to efficient transcription of protA and prtl99C, but not Mst77F, in spermatocytes, and to maturation of sperm.
Collapse
|
19
|
Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong MH. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 2018; 28:879-896. [PMID: 30061742 PMCID: PMC6123400 DOI: 10.1038/s41422-018-0074-y] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
A systematic interrogation of male germ cells is key to complete understanding of molecular mechanisms governing spermatogenesis and the development of new strategies for infertility therapies and male contraception. Here we develop an approach to purify all types of homogeneous spermatogenic cells by combining transgenic labeling and synchronization of the cycle of the seminiferous epithelium, and subsequent single-cell RNA-sequencing. We reveal extensive and previously uncharacterized dynamic processes and molecular signatures in gene expression, as well as specific patterns of alternative splicing, and novel regulators for specific stages of male germ cell development. Our transcriptomics analyses led us to discover discriminative markers for isolating round spermatids at specific stages, and different embryo developmental potentials between early and late stage spermatids, providing evidence that maturation of round spermatids impacts on embryo development. This work provides valuable insights into mammalian spermatogenesis, and a comprehensive resource for future studies towards the complete elucidation of gametogenesis.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yun Gao
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suming Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tongtong Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nannan Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rong Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China.
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
20
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
21
|
Zhang J, Yan R, Wu C, Wang H, Yang G, Zhong Y, Liu Y, Wan L, Tang A. Spermatogenesis-associated 48 is essential for spermatogenesis in mice. Andrologia 2018; 50:e13027. [PMID: 29700843 DOI: 10.1111/and.13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 01/03/2023] Open
Abstract
Azoospermia, oligospermia and teratozoospermia all seriously impact male reproductive health. Spermatogenesis is a complex and precisely regulated process in which germ cells proliferate and differentiate and involves the regulation of multiple testis-specific genes. Here, we identified testis-specific gene spermatogenesis-associated 48 (SPATA48), the expression of which was age-dependent, indicating that it is involved in spermatogenesis. In humans and mice with azoospermia, expression of SPATA48 disappeared in the testis. Spata48-/- knockout male mice had smaller testis and defective spermatogenesis compared to wild-type (WT) mice. This study can help in the exploration of the genetic basis of male infertility and identify new targets for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- J Zhang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pharmacology and Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - R Yan
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - C Wu
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - H Wang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - G Yang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Y Zhong
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Y Liu
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - L Wan
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - A Tang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Esrp1 is a marker of mouse fetal germ cells and differentially expressed during spermatogenesis. PLoS One 2018; 13:e0190925. [PMID: 29324788 PMCID: PMC5764326 DOI: 10.1371/journal.pone.0190925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/24/2017] [Indexed: 01/15/2023] Open
Abstract
ESRP1 regulates alternative splicing, producing multiple transcripts from its target genes in epithelial tissues. It is upregulated during mesenchymal to epithelial transition associated with reprogramming of fibroblasts to iPS cells and has been linked to pluripotency. Mouse fetal germ cells are the founders of the adult gonadal lineages and we found that Esrp1 mRNA was expressed in both male and female germ cells but not in gonadal somatic cells at various stages of gonadal development (E12.5-E15.5). In the postnatal testis, Esrp1 mRNA was highly expressed in isolated cell preparations enriched for spermatogonia but expressed at lower levels in those enriched for pachytene spermatocytes and round spermatids. Co-labelling experiments with PLZF and c-KIT showed that ESRP1 was localized to nuclei of both Type A and B spermatogonia in a speckled pattern, but was not detected in SOX9+ somatic Sertoli cells. No co-localization with the nuclear speckle marker, SC35, which has been associated with post-transcriptional splicing, was observed, suggesting that ESRP1 may be associated with co-transcriptional splicing or have other functions. RNA interference mediated knockdown of Esrp1 expression in the seminoma-derived Tcam-2 cell line demonstrated that ESRP1 regulates alternative splicing of mRNAs in a non-epithelial cell germ cell tumour cell line.
Collapse
|
23
|
|
24
|
Zhao L, Begun DJ. Genomics of parallel adaptation at two timescales in Drosophila. PLoS Genet 2017; 13:e1007016. [PMID: 28968391 PMCID: PMC5638604 DOI: 10.1371/journal.pgen.1007016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/12/2017] [Accepted: 09/11/2017] [Indexed: 01/05/2023] Open
Abstract
Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus. Both local adaptation on short timescales and the long-term accumulation of adaptive differences between species have recently been investigated using comparative genomic and population genomic approaches in several species. However, the repeatability of adaptive evolution at the genetic level is poorly understood. Here we attack this problem by comparing patterns of long and short-term adaptation in Drosophila melanogaster to patterns of adaptation on two timescales in a highly diverged congener, Drosophila hydei. We found, despite the fact that these species diverged from a common ancestor roughly 50 million years ago, the population genomics of latitudinal allele frequency differentiation shows that there is a substantial shared set of genes likely playing a role in the short term adaptive divergence of populations in both species. Analyses of longer-term adaptive protein divergence for the D. hydei-D. mojavensis and D. melanogaster-D. simulans clades reveal a striking level of parallel adaptation. This parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences.
Collapse
Affiliation(s)
- Li Zhao
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - David J. Begun
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
25
|
SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ 2017; 24:1029-1044. [PMID: 28475176 PMCID: PMC5442469 DOI: 10.1038/cdd.2017.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023] Open
Abstract
Sperm differentiation requires unique transcriptional regulation and chromatin remodeling after meiosis to ensure proper compaction and protection of the paternal genome. Abnormal sperm chromatin remodeling can induce sperm DNA damage, embryo lethality and male infertility, yet, little is known about the factors which regulate this process. Deficiency in Sly, a mouse Y chromosome-encoded gene expressed only in postmeiotic male germ cells, has been shown to result in the deregulation of hundreds of sex chromosome-encoded genes associated with multiple sperm differentiation defects and subsequent male infertility. The underlying mechanism remained, to date, unknown. Here, we show that SLY binds to the promoter of sex chromosome-encoded and autosomal genes highly expressed postmeiotically and involved in chromatin regulation. Specifically, we demonstrate that Sly knockdown directly induces the deregulation of sex chromosome-encoded H2A variants and of the H3K79 methyltransferase DOT1L. The modifications prompted by loss of Sly alter the postmeiotic chromatin structure and ultimately result in abnormal sperm chromatin remodeling with negative consequences on the sperm genome integrity. Altogether our results show that SLY is a regulator of sperm chromatin remodeling. Finally we identified that SMRT/N-CoR repressor complex is involved in gene regulation during sperm differentiation since members of this complex, in particular TBL1XR1, interact with SLY in postmeiotic male germ cells.
Collapse
|
26
|
Akpınar M, Lesche M, Fanourgakis G, Fu J, Anasstasiadis K, Dahl A, Jessberger R. TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genet 2017; 13:e1006660. [PMID: 28263986 PMCID: PMC5358835 DOI: 10.1371/journal.pgen.1006660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022] Open
Abstract
Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner. In Tdrd6-/- diplotene spermatocytes PRMT5 association with SmB and arginine dimethylation of SmB are much reduced. TDRD6 deficiency impairs the assembly of spliceosomes, which feature 3.5-fold increased levels of U5 snRNPs. In the nucleus, these deficiencies in spliceosome maturation correlate with decreased numbers of SMN-positive bodies and Cajal bodies involved in nuclear snRNP maturation. Transcriptome analysis of TDRD6-deficient diplotene spermatocytes revealed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions. Together, this study demonstrates a novel function of TDRD6 in spliceosome maturation and mRNA splicing in prophase I spermatocytes.
Collapse
Affiliation(s)
- Müge Akpınar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morlé L, Durand B, Reith W. RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genet 2015; 11:e1005368. [PMID: 26162102 PMCID: PMC4498915 DOI: 10.1371/journal.pgen.1005368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/17/2015] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. Failure of spermatogenesis, which is presumed to often result from genetic defects, is a common cause of male sterility. Although numerous genes associated with defects in male spermatogenesis have been identified, numerous cases of genetic male infertility remain unelucidated. We report here that the transcription factor RFX2 is a master regulator of gene expression programs required for progression through the haploid phase of spermatogenesis. Male RFX2-deficient mice are completely sterile. Spermatogenesis progresses through meiosis, but haploid cells undergo a complete block in development just prior to spermatid elongation. Gene expression profiling and ChIP-Seq analysis revealed that RFX2 controls key pathways implicated in cilium/flagellum formation, as well as genes implicated in microtubule and vesicle associated transport. The set of genes activated by RFX2 in spermatids exhibits virtually no overlap with those controlled by other known transcriptional regulators of spermiogenesis, establishing RFX2 as an essential new player in this developmental process. RFX2-deficient mice should therefore represent a valuable new model for deciphering the regulatory networks that direct sperm formation, and thereby contribute to the identification of causes of human male infertility.
Collapse
Affiliation(s)
- W. Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (WSK); (BD)
| | - Dominique Baas
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Queralt Seguin-Estevez
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Wenli Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jean-Luc Duteyrat
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
- * E-mail: (WSK); (BD)
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| |
Collapse
|
29
|
tBRD-1 selectively controls gene activity in the Drosophila testis and interacts with two new members of the bromodomain and extra-terminal (BET) family. PLoS One 2014; 9:e108267. [PMID: 25251222 PMCID: PMC4177214 DOI: 10.1371/journal.pone.0108267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023] Open
Abstract
Multicellular organisms have evolved specialized mechanisms to control transcription in a spatial and temporal manner. Gene activation is tightly linked to histone acetylation on lysine residues that can be recognized by bromodomains. Previously, the testis-specifically expressed bromodomain protein tBRD-1 was identified in Drosophila. Expression of tBRD-1 is restricted to highly transcriptionally active primary spermatocytes. tBRD-1 is essential for male fertility and proposed to act as a co-factor of testis-specific TATA box binding protein-associated factors (tTAFs) for testis-specific transcription. Here, we performed microarray analyses to compare the transcriptomes of tbrd-1 mutant testes and wild-type testes. Our data confirmed that tBRD-1 controls gene activity in male germ cells. Additionally, comparing the transcriptomes of tbrd-1 and tTAF mutant testes revealed a subset of common target genes. We also characterized two new members of the bromodomain and extra-terminal (BET) family, tBRD-2 and tBRD-3. In contrast to other members of the BET family in animals, both possess only a single bromodomain, a characteristic feature of plant BET family members. Immunohistology techniques not only revealed that tBRD-2 and tBRD-3 partially co-localize with tBRD-1 and tTAFs in primary spermatocytes, but also that their proper subcellular distribution was impaired in tbrd-1 and tTAF mutant testes. Treating cultured male germ cells with inhibitors showed that localization of tBRD-2 and tBRD-3 depends on the acetylation status within primary spermatocytes. Yeast two-hybrid assays and co-immunoprecipitations using fly testes protein extracts demonstrated that tBRD-1 is able to form homodimers as well as heterodimers with tBRD-2, tBRD-3, and tTAFs. These data reveal for the first time the existence of single bromodomain BET proteins in animals, as well as evidence for a complex containing tBRDs and tTAFs that regulates transcription of a subset of genes with relevance for spermiogenesis.
Collapse
|
30
|
Drosophila RecQ5 is involved in proper progression of early spermatogenesis. Biochem Biophys Res Commun 2014; 452:1071-7. [PMID: 25245292 DOI: 10.1016/j.bbrc.2014.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
RecQ5, a member of the conserved RecQ DNA helicase family, is required for the maintenance of genome stability. The human RECQL5 gene is expressed ubiquitously in almost all tissues, with strong expression in the testes (Shimamoto et al., 2000). However, it remains to be elucidated in which cells RecQ5 is expressed and how RecQ5 functions in the testes. In this present study we analyzed the expression of RecQ5 in Drosophila testes. The RecQ5 protein was specifically expressed in germline cells in larval, pupal, and adult testes. Drosophila RecQ5 was localized in nuclei of male germline stem cells, spermatogoniablasts, spermatogonia, and early spermatocytes. As growth of the early spermatocyte proceeded, the amount of RecQ5 increased in the nuclei. However, before maturation of the spermatocyte, the level of RecQ5 declined. Thus, RecQ5 expression was regulated. Furthermore, we compared recq5 mutant testes with the wild-type ones. The most conspicuous alterations were swelling of the apical region of and an increase in the number of spermatocytes in the recq5 testis, suggesting a relative accumulation of spermatocytes in the recq5 mutant testes. Therefore, Drosophila RecQ5 may contribute to the proper progression from germline stem cells to spermatocytes for maintenance of genome stability.
Collapse
|
31
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
32
|
Evolutionarily conserved mechanisms of male germline development in flowering plants and animals. Biochem Soc Trans 2014; 42:377-82. [DOI: 10.1042/bst20130261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.
Collapse
|
33
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
34
|
Laktionov PP, White-Cooper H, Maksimov DA, Belyakin SN. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol Biol 2014. [DOI: 10.1134/s0026893314010087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Moore AJ, Bacigalupe LD, Snook RR. Integrated and independent evolution of heteromorphic sperm types. Proc Biol Sci 2013; 280:20131647. [PMID: 24004938 PMCID: PMC3768311 DOI: 10.1098/rspb.2013.1647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sperm are a simple cell type with few components, yet they exhibit tremendous between-species morphological variation in those components thought to reflect selection in different fertilization environments. However, within a species, sperm components are expected to be selected to be functionally integrated for optimal fertilization of eggs. Here, we take advantage of within-species variation in sperm form and function to test whether sperm components are functionally and genetically integrated both within and between sperm morphologies using a quantitative genetics approach. Drosophila pseudoobscura males produce two sperm types with different functions but which positively interact together in the same fertilization environment; the long eusperm fertilizes eggs and the short parasperm appear to protect eusperm from a hostile female reproductive tract. Our analysis found that all sperm traits were heritable, but short sperm components exhibited evolvabilities 10 times that of long sperm components. Genetic correlations indicated functional integration within, but not between, sperm morphs. These results suggest that sperm, despite sharing a common developmental process, can become developmentally and functionally non-integrated, evolving into separate modules with the potential for rapid and independent responses to selection.
Collapse
Affiliation(s)
- Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
36
|
Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B, Adeyemo A, Myers TG, Sattabongkot J, Su XZ, Williamson KC. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog 2012; 8:e1002964. [PMID: 23093935 PMCID: PMC3475683 DOI: 10.1371/journal.ppat.1002964] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria. As malaria control efforts move toward eradication it becomes increasingly important to develop interventions that block transmission. Consequently, advances are needed in our understanding of the production of gametocytes, which are required to transmit the disease. This report provides a first view of the initial stages of gametocytogenesis in vitro and in vivo and demonstrates that during each asexual replication cycle a subpopulation of parasites convert to gametocyte development providing a long transmission window. We also identify a gene that is critical for gametocyte production, P. falciparumgametocyte development 1 (Pfgdv1) and a set of genes specifically expressed during early gametocytogenesis in P. falciparum (Pfge genes). The expression profile and peri-nuclear location of Pfgdv1 in a subpopulation of schizonts is consistent with a role in an early step in gametocytogenesis. The RNA levels of Pfgdv1 and the Pfge genes accumulated gradually over several asexual cycles in vitro suggesting ongoing gametocyte formation during asexual growth. The further evaluation of these genes in a cohort of malaria infected patients indicated they are good candidates for markers to distinguish ring stage parasites committed to gametocyte production from circulating mature gametocytes, allowing direct analysis of the initiation of sexual differentiation in vivo.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Belinda J. Morahan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoseph Haile
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Omar Ali
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Huichun Xu
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirakorn Kiattibutr
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kim C. Williamson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Pellegrino J, Castrillon DH, David G. Chromatin associated Sin3A is essential for male germ cell lineage in the mouse. Dev Biol 2012; 369:349-55. [PMID: 22820070 DOI: 10.1016/j.ydbio.2012.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process that requires coordinated proliferation and differentiation of male germ cells. The molecular events that dictate this process are largely unknown, but are likely to involve highly regulated transcriptional control. In this study, we investigate the contribution of chromatin associated Sin3A in mouse germ cell lineage development. Genetic inactivation of Sin3A in the male germline leads to sterility that results from the early and penetrant apoptotic death observed in Sin3A-deleted germ cells, coincident with the reentry in mitosis. Sin3A-deleted testes exhibit a Sertoli-cell only phenotype, consistent with the absolute requirement for Sin3A in germ cells' development and/or viability. Interestingly, transcripts analysis revealed that the expression program of Sertoli cells is altered upon inactivation of Sin3A in germ cells. These studies identified a central role for the mammalian Sin3-HDAC complex in the germ cell lineage, and point to an exquisite transcriptional crosstalk between germ cells and their niche to support fertility in mammals.
Collapse
Affiliation(s)
- Jessica Pellegrino
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, NY, USA
| | | | | |
Collapse
|
38
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
39
|
Abstract
Sperm and egg production requires a robust stem cell system that balances self-renewal with differentiation. Self-renewal at the expense of differentiation can cause tumorigenesis, whereas differentiation at the expense of self-renewal can cause germ cell depletion and infertility. In most organisms, and sometimes in both sexes, germline stem cells (GSCs) often reside in a defined anatomical niche. Factors within the niche regulate a balance between GSC self-renewal and differentiation. Asymmetric division of the germline stem cell to form daughter cells with alternative fates is common. The exception to both these tendencies is the mammalian testis where there does not appear to be an obvious anatomical niche and where GSC homeostasis is likely accomplished by a stochastic balance of self-renewal and differentiation and not by regulated asymmetric cell division. Despite these apparent differences, GSCs in all organisms share many common mechanisms, although not necessarily molecules, to guarantee survival of the germline.
Collapse
Affiliation(s)
- Allan Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|