1
|
Zhu F, Lei M, Song Y, Xu D, Du S, Meng Q, Jia C, Yin S, Chen S, Zhao C. Transcriptome analysis unveils adaptation strategies in silver pomfret (Pampus argenteus) gills under hypoxic conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:79. [PMID: 40195168 DOI: 10.1007/s10695-025-01492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
The silver pomfret (Pampus argenteus) is an economically valuable and highly sought-after table fish in China. In recent years, commercial farming of silver pomfret has been successfully developed in the country. However, silver pomfret is highly sensitive to environmental stress, and hypoxia-induced stress can lead to significant economic losses in aquaculture. This study investigated the transcriptomic response of silver pomfret gills under normal oxygen conditions (G0) and after hypoxic exposure for 6 h (G6) and 24 h (G24). Hypoxia exposure induced gill remodeling, characterized by increased gill lamellar height and a reduction in interlamellar cell mass (ILCM). Oxidative stress and antioxidant responses were significantly upregulated after 24 h of hypoxia exposure. Additionally, many downregulated genes were significantly enriched in pathways related to cardiac muscle contraction and calcium signaling, leading to impaired gill musculature contraction and reduced oxygen uptake under hypoxic conditions. Key signal transduction pathways, including HIF- 1, Apelin, and MAPK signaling, were identified as critical pathways in response to hypoxia. Furthermore, hypoxia tended to suppress the immune system and disrupted endoplasmic reticulum homeostasis and protein processing in the gills of silver pomfret. In summary, this study demonstrates that hypoxia disrupts gill function in silver pomfret and provides insights into hypoxia adaptation mechanisms in teleosts.
Collapse
Affiliation(s)
- Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China
| | - Meixuan Lei
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yufeng Song
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China
| | - Shuran Du
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, China.
| | - Cheng Zhao
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang Z, Liu L, Pu Y, Fang Y, Lv W, Liu W. Distinct but Redundant Roles of ER Cargo Receptors p24 and Erv29 in Facilitating Proper Secretion of Cellulases in Trichoderma reesei. Mol Microbiol 2025; 123:344-361. [PMID: 39895577 DOI: 10.1111/mmi.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Trichoderma reesei represents an important industrial workhorse for (hemi)cellulase production. However, relatively little is known about the details of its secretory pathway ensuring the extremely high-level enzyme secretion and how they might be leveraged for engineering improved protein production. Here, the functions of T. reesei ER cargo receptors p24 and Erv29 in trafficking cellulase were characterised. Whereas individual deletion of p24 or erv29 resulted in only a marginal effect on extracellular cellulase secretion, distinct intracellular trafficking pathways exist for individual hydrolytic enzyme in T. reesei. Notably, the simultaneous absence of p24 and Erv29 abolished the secreted production of cellulases but not xylanases. The secretion defect was accompanied by an apparent intracellular accumulation of cellulases. Mutations of residues on the cytosolic side of p24 and Erv29 supposed to mediate COPII coat recognition also compromised cellulase secretion although the overall ER exit sites (ERES) formation did not seem to be affected. We further revealed that a VPL motif following the signal peptide of CBH2 necessitates its efficient secretion mediated by Erv29. These results indicate that two specific ER cargo receptors complement each other to mediate the proper intracellular trafficking of cellulases and thus ensuring their extracellular secretion.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Yi Pu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Wenhao Lv
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Downes KW, Zanetti G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00839-y. [PMID: 40133632 PMCID: PMC7617623 DOI: 10.1038/s41580-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
Collapse
Affiliation(s)
- Katie W Downes
- Institute of Structural and Molecular Biology, UCL, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, UCL, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Ravi S, Sharma T, Yip M, Yang H, Xie J, Gao G, Tai PL. A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences. Nucleic Acids Res 2025; 53:gkaf233. [PMID: 40156867 PMCID: PMC11954528 DOI: 10.1093/nar/gkaf233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025] Open
Abstract
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result in higher expression levels and can lead to protein misfolding and reduced expression. Here, we aimed to develop a novel deep learning (DL) tool using a recurrent neural network (RNN) to define cell type-dependent codon biases. Using gene expression data from three different tissue types (brain, liver, and muscle) and all secretory genes, we trained DL models to predict optimal codon usage. Codon-optimized sequences for test reporter genes exhibited enhanced protein expression compared to their original sequences and those optimized using a publicly available tool. Interestingly, DL models trained on genes expressed in liver cells (hepatocytes) resulted in the highest levels of expression when tested in vitro, irrespective of the cell type. Our findings also demonstrate that DL-based codon optimization algorithms can significantly enhance protein translation, particularly for secretory proteins, which are crucial for therapeutic applications. This research represents a novel approach to codon optimization with broader implications for protein-based pharmaceuticals, vaccine manufacturing, gene therapy, and other recombinant DNA products.
Collapse
Affiliation(s)
- Sandhiya Ravi
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Tapan Sharma
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Mitchell Yip
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Huiya Yang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Jun Xie
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Guangping Gao
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Phillip W L Tai
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
5
|
Saadeldin IM, Ehab S, Alshammari MEF, Abdelazim AM, Assiri AM. The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness. Stem Cells Cloning 2025; 18:15-34. [PMID: 39991743 PMCID: PMC11846613 DOI: 10.2147/sccaa.s513982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Seif Ehab
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Aaser M Abdelazim
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
6
|
Jia H, Han J, Qi Y, Liu J, Ting Leung Y, Tung YH, Chu Y, Wang T, Fung YME, Wang Y, Li Y. Small-Molecule Benzo-Phenoselenazine Derivatives for Multi-Subcellular Biomolecule Profiling. Angew Chem Int Ed Engl 2025; 64:e202419904. [PMID: 39613726 DOI: 10.1002/anie.202419904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Elucidating the subcellular localization of RNAs and proteins is fundamental to understanding their biological functions. Genetically encoded proteins/enzymes provide an attractive approach to target many proteins of interest, but are limited to specific cell lines. Although small-molecule-based methods have been explored, a comprehensive system for profiling multiple locations in living cells, comparable to fusion-protein techniques, is yet to be established. In this study, we introduce a novel proximity labeling strategy employing a suite of small molecules derived from benzo-phenoselenazine (e.g., selenium-containing Nile Blue [SeNB]), which achieves proximity labeling through singlet oxygen generation upon near-infrared light activation in the presence of propargylamine. These SeNB compounds allow for selective labeling of RNAs and proteins within living cells, exhibiting a distinct preference for organelle membranes, which are systematically investigated via in vitro, computational, and in cellulo examinations. Our findings highlight the capabilities of SeNB derivatives as wash-free and genetics-free approaches to illuminate the subcellular localization of biological molecules with deep penetration and high spatial resolution. Moreover, SeNB derivatives are capable of elucidating inter-organelle interactions at the molecular level, as evidenced by proteomic and transcriptomic analyses, thus holding significant potential for advancing our understanding of cellular processes related to disease progression and therapeutic development.
Collapse
Affiliation(s)
- Han Jia
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yajing Qi
- Department of Physics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuen Ting Leung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yau Hei Tung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanyuan Chu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited New Territories, Hong Kong SAR, China
| |
Collapse
|
7
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Arrari F, Ortiz-Flores RM, Lhamyani S, Garcia-Fuentes E, Jabri MA, Sebai H, Bermudez-Silva FJ. Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin. Nutrients 2024; 16:4074. [PMID: 39683467 DOI: 10.3390/nu16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. OBJECTIVES This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. METHODS In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina's bioactive compound, phycocyanobilin. RESULTS Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. CONCLUSIONS Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Rodolfo-Matias Ortiz-Flores
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Said Lhamyani
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Eduardo Garcia-Fuentes
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, UGC de Aparato Digestivo, 29010 Malaga, Spain
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Francisco-Javier Bermudez-Silva
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| |
Collapse
|
9
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Moustaka K, Stergiopoulos A, Tenta R, Havaki S, Katsiougiannis S, Skopouli FN. Beta-adrenergic stimulation promotes an endoplasmic reticulum stress-dependent inflammatory program in salivary gland epithelial cells. Clin Exp Immunol 2024; 218:65-74. [PMID: 38912838 PMCID: PMC11404117 DOI: 10.1093/cei/uxae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
The effect of beta-adrenergic stimulation on human labial minor salivary gland epithelial cells (LMSGEC) on IL-6 production and its dependency on endoplasmic reticulum (ER) stress were investigated. Primary LMSGEC from Sjögren's syndrome (SS) patients and controls in culture were stimulated with epinephrine and IL-6 expression was evaluated by qPCR and ELISA. The expression of β-ARs in cultured LMSGEC was tested by qPCR, while adrenoceptors and cAMP levels were examined in LMSGs by immunofluorescence. ER evaluation was performed by transmission electron microscopy (TEM) and ER stress by western blot. Epinephrine-induced IL-6 production by cultured LMSGEC was evaluated after alleviation of the ER stress by applying tauroursodeoxycholic acid (TUDCA) and silencing of PKR-like ER kinase (PERK) and activating transcription factor 4 (ATF4) RNAs. Expression of IL-6 by LMSGEC was upregulated after β-adrenergic stimulation, while the silencing of adrenoreceptors downregulated IL-6. The amelioration of ER stress, as well as the silencing of PERK/ATF4, prevented epinephrine-induced upregulation of IL-6. Adrenergic stimulation led to higher and sustained IL-6 levels secreted by LMSGEC of SS patients compared to controls. Adrenergic signaling was endogenously enhanced in LMSGEC of SS patients (expression of β-ARs in situ, intracellular cAMP in cultured LMSGEC). In parallel, SS-LMSGEC expressed dilated ER (TEM) and higher levels of GRP78/BiP. PERK/ATF4 pathway of the ER stress emerged as a considerable mediator of adrenergic stimulation for IL-6 production by the LMSGEC. An enhanced endogenous adrenergic activation and a stressed ER observed in SS-LMSGEC may contribute to a sustained IL-6 production by these cells after adrenergic stimulation.
Collapse
Affiliation(s)
- Kalliopi Moustaka
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Athanasios Stergiopoulos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Roxane Tenta
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Sophia Havaki
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Katsiougiannis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Laboratory of Autoimmunity, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Fotini N Skopouli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Internal Medicine and Autoimmune Diseases, Euroclinic of Athens, Athens, Greece
| |
Collapse
|
11
|
Gong K, Xue C, Feng Z, Pan R, Wang M, Chen S, Chen Y, Guan Y, Dai L, Zhang S, Jiang L, Li L, Wang B, Yin Z, Ma L, Iwakiri Y, Tang J, Liao C, Chen H, Duan Y. Intestinal Nogo-B reduces GLP1 levels by binding to proglucagon on the endoplasmic reticulum to inhibit PCSK1 cleavage. Nat Commun 2024; 15:6845. [PMID: 39122737 PMCID: PMC11315690 DOI: 10.1038/s41467-024-51352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Chao Xue
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zian Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruru Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Shasha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yudong Guan
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lingyun Dai
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Junming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Houzao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Seldeslachts A, Maurstad MF, Øyen JP, Undheim EAB, Peigneur S, Tytgat J. Exploring oak processionary caterpillar induced lepidopterism (Part 1): unveiling molecular insights through transcriptomics and proteomics. Cell Mol Life Sci 2024; 81:311. [PMID: 39066932 PMCID: PMC11335235 DOI: 10.1007/s00018-024-05330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium
| | - Marius F Maurstad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Philip Øyen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Division of biotechnology and plant health & viruses, bacteria and nematodes in forestry, agriculture and horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Oslo, Norway
| | | | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
13
|
Hamel L, Comeau M, Tardif R, Poirier‐Gravel F, Paré M, Lavoie P, Goulet M, Michaud D, D'Aoust M. Heterologous expression of influenza haemagglutinin leads to early and transient activation of the unfolded protein response in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1146-1163. [PMID: 38038125 PMCID: PMC11022800 DOI: 10.1111/pbi.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | | |
Collapse
|
14
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
15
|
Wang T, Zhou Y. A PASS for protein secretion. Nat Chem Biol 2024; 20:396-398. [PMID: 37872401 DOI: 10.1038/s41589-023-01444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Affiliation(s)
- Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
16
|
Wang L, Xu Y, Fukushige T, Saidi L, Wang X, Yu C, Lee JG, Krause M, Huang L, Ye Y. Mono-UFMylation promotes misfolding-associated secretion of α-synuclein. SCIENCE ADVANCES 2024; 10:eadk2542. [PMID: 38489364 PMCID: PMC10942102 DOI: 10.1126/sciadv.adk2542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Stressed cells secret misfolded proteins lacking signaling sequence via an unconventional protein secretion (UcPS) pathway, but how misfolded proteins are targeted selectively in UcPS is unclear. Here, we report that misfolded UcPS clients are subject to modification by a ubiquitin-like protein named ubiquitin-fold modifier 1 (UFM1). Using α-synuclein (α-Syn) as a UcPS model, we show that mutating the UFMylation sites in α-Syn or genetic inhibition of the UFMylation system mitigates α-Syn secretion, whereas overexpression of UFBP1, a component of the endoplasmic reticulum-associated UFMylation ligase complex, augments α-Syn secretion in mammalian cells and in model organisms. UFM1 itself is cosecreted with α-Syn, and the serum UFM1 level correlates with that of α-Syn. Because UFM1 can be directly recognized by ubiquitin specific peptidase 19 (USP19), a previously established UcPS stimulator known to associate with several chaperoning activities, UFMylation might facilitate substrate engagement by USP19, allowing stringent and regulated selection of misfolded proteins for secretion and proteotoxic stress alleviation.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Jin-Gu Lee
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Tarallo D, Martínez J, Leyva A, Mónaco A, Perroni C, Tassano M, Gambini JP, Cappetta M, Durán R, Moreno M, Quijano C. Mitofusin 1 silencing decreases the senescent associated secretory phenotype, promotes immune cell recruitment and delays melanoma tumor growth after chemotherapy. Sci Rep 2024; 14:909. [PMID: 38195762 PMCID: PMC10776601 DOI: 10.1038/s41598-024-51427-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.
Collapse
Affiliation(s)
- Doménica Tarallo
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Alejandro Leyva
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Perroni
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcos Tassano
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Gambini
- Centro Uruguayo de Imagenología Molecular (CUDIM) and Centro de Medicina Nuclear (CMN), Hospital de Clínicas Dr. Manuel Quintela, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
18
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
19
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Alharake J, Bidard F, Aouam T, Sénamaud-Beaufort C, Margeot A, Heiss-Blanquet S. Effect of the res2 transcription factor gene deletion on protein secretion and stress response in the hyperproducer strain Trichoderma reesei Rut-C30. BMC Microbiol 2023; 23:374. [PMID: 38036984 PMCID: PMC10687790 DOI: 10.1186/s12866-023-03125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The fungus Trichoderma reesei is one of the most used industrial cellulase producers due to its high capacity of protein secretion. Strains of T. reesei with enhanced protein secretion capacity, such as Rut-C30, have been obtained after several rounds of random mutagenesis. The strain was shown to possess an expanded endoplasmic reticulum, but the genetic factors responsible for this phenotype remain still unidentified. Recently, three new transcription factors were described in Neurospora crassa which were demonstrated to be involved in protein secretion. One of them, RES2, was involved in upregulation of secretion-related genes. The aim of our present study was therefore to analyze the role of RES2, on protein secretion in the T. reesei Rut-C30 strain. RESULT Deletion of the res2 gene in Rut-C30 resulted in slightly slower growth on all substrates tested, and lower germination rate as well as lower protein secretion compared to the parental strain Rut-C30. Transcriptomic analysis of the Rut-C30 and the Δres2 mutant strain in secretion stress conditions showed remarkably few differences : 971 genes were differentially expressed (DE) in both strains while 192 genes out of 1163 (~ 16.5%) were DE in Rut-C30 only and 693 out of 1664 genes (~ 41.6%) displayed differential expression solely in Δres2. Notably, induction of protein secretion by cultivating on lactose and addition of secretion stress inducer DTT induced many genes of the secretion pathway similarly in both strains. Among the differentially expressed genes, those coding for amino acid biosynthesis genes, transporters and genes involved in lipid metabolism were found to be enriched specifically in the Δres2 strain upon exposure to lactose or DTT. Besides, redox homeostasis and DNA repair genes were specifically upregulated in the Δres2 strain, indicating an altered stress response. CONCLUSION These results indicate that in the T. reesei Rut-C30 strain, RES2 does not act as a master regulator of the secretion pathway, but it contributes to a higher protein secretion by adjusting the expression of genes involved in different steps of protein synthesis and the secretion pathway.
Collapse
Affiliation(s)
- Jawad Alharake
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Thiziri Aouam
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Catherine Sénamaud-Beaufort
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, École normale supérieure, Paris, 75005, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Senta Heiss-Blanquet
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France.
| |
Collapse
|
21
|
Chinchankar MN, Taylor WB, Ko SH, Apple EC, Rodriguez KA, Chen L, Fisher AL. A novel endoplasmic reticulum adaptation is critical for the long-lived Caenorhabditis elegans rpn-10 proteasomal mutant. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194957. [PMID: 37355092 PMCID: PMC10528105 DOI: 10.1016/j.bbagrm.2023.194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.
Collapse
Affiliation(s)
- Meghna N Chinchankar
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - William B Taylor
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Ellen C Apple
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Karl A Rodriguez
- Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.
| |
Collapse
|
22
|
Amioka N, Wu CH, Sawada H, Ito S, Pettey AC, Wu C, Moorleghen JJ, Howatt DA, Graf GA, Vander Kooi CW, Daugherty A, Lu HS. Functional Exploration of Conserved Sequences in the Distal Face of Angiotensinogen-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:1524-1532. [PMID: 37345525 PMCID: PMC10527926 DOI: 10.1161/atvbaha.122.318930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Angiotensinogen (AGT) is an essential component in the renin-angiotensin system. AGT has highly conserved sequences in the loop and β-sheet regions among species; however, their functions have not been studied. METHODS Adeno-associated viral vector (AAV) serotype 2/8 encoding mouse AGT with mutations of conserved sequences in the loop (AAV.loop-Mut), β-sheet (AAV.βsheet-Mut), or both regions (AAV.loop/βsheet-Mut) was injected into male hepatocyte-specific AGT-deficient (hepAGT-/-) mice in an LDL (low-density lipoprotein) receptor-deficient background. AAV containing mouse wild-type AGT (AAV.mAGT) or a null vector (AAV.null) were used as controls. Two weeks after AAV administration, all mice were fed a western diet for 12 weeks. To determine how AGT secretion is regulated in hepatocytes, AAVs containing the above mutations were transducted into HepG2 cells. RESULTS In hepAGT-/- mice infected with AAV.loop-Mut or βsheet-Mut, plasma AGT concentrations, systolic blood pressure, and atherosclerosis were comparable to those in AAV.mAGT-infected mice. Interestingly, plasma AGT concentrations, systolic blood pressure, and atherosclerotic lesion size in hepAGT-/- mice infected with AAV.loop/βsheet-Mut were not different from mice infected with AAV.null. In contrast, hepatic Agt mRNA abundance was elevated to a comparable magnitude as AAV.mAGT-infected mice. Immunostaining showed that AGT protein was accumulated in hepatocytes of mice infected with AAV.loop/βsheet-Mut or HepG2 cells transducted with AAV.loop/βsheet-Mut. Accumulated AGT was not located in the endoplasmic reticulum. CONCLUSIONS The conserved sequences in either the loop or β-sheet region individually have no effect on AGT regulation, but the conserved sequences in both regions synergistically contribute to the secretion of AGT from hepatocytes.
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Chia-Hua Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Alex C. Pettey
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
- Department of Microbiology, Immunology, and Molecular Genetics University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Gregory A. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
23
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
Zhang Y, Liang X, Zhao M, Qi T, Guo H, Zhao J, Zhao J, Zhan G, Kang Z, Zheng L. A novel ambigrammatic mycovirus, PsV5, works hand in glove with wheat stripe rust fungus to facilitate infection. PLANT COMMUNICATIONS 2023; 4:100505. [PMID: 36527233 DOI: 10.1016/j.xplc.2022.100505] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 05/11/2023]
Abstract
Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (RdRp) and a reverse-frame ORF (rORF) with unknown function. Protein translations of both ORFs were demonstrated by immune technology. Transgenic wheat lines overexpressing PsV5 (RdRp-rORF), RdRp ORF, or rORF were more susceptible to Pst infection, whereas PsV5-RNA interference (RNAi) lines were more resistant. Overexpression of PsV5 (RdRp-rORF), RdRp ORF, or rORF in Fusarium graminearum also boosted fungal virulence. We thus report a novel ambigrammatic mycovirus that promotes the virulence of its fungal host. The results are a significant addition to our understanding of virosphere diversity and offer insights for sustainable wheat rust disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuo Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Li Zheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
25
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
26
|
Endothelial METRNL determines circulating METRNL level and maintains endothelial function against atherosclerosis. Acta Pharm Sin B 2022; 13:1568-1587. [PMID: 37139425 PMCID: PMC10149902 DOI: 10.1016/j.apsb.2022.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
METRNL is a recently identified secreted protein with emerging functions. This study is to find major cellular source of circulating METRNL and to determine METRNL novel function. Here, we show METRNL is abundant in human and mouse vascular endothelium and released by endothelial cells using endoplasmic reticulum-Golgi apparatus pathway. By creating endothelial cell-specific Metrnl knockout mice, combined with bone marrow transplantation to produce bone marrow-specific deletion of Metrnl, we demonstrate that most of circulating METRNL (approximately 75%) originates from the endothelial cells. Both endothelial and circulating METRNL decrease in atherosclerosis mice and patients. By generating endothelial cell-specific Metrnl knockout in apolipoprotein E-deficient mice, combined with bone marrow-specific deletion of Metrnl in apolipoprotein E-deficient mice, we further demonstrate that endothelial METRNL deficiency accelerates atherosclerosis. Mechanically, endothelial METRNL deficiency causes vascular endothelial dysfunction including vasodilation impairment via reducing eNOS phosphorylation at Ser1177 and inflammation activation via enhancing NFκB pathway, which promotes the susceptibility of atherosclerosis. Exogenous METRNL rescues METRNL deficiency induced endothelial dysfunction. These findings reveal that METRNL is a new endothelial substance not only determining the circulating METRNL level but also regulating endothelial function for vascular health and disease. METRNL is a therapeutic target against endothelial dysfunction and atherosclerosis.
Collapse
|
27
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
28
|
Márton M, Bánhegyi G, Gyöngyösi N, Kálmán EÉ, Pettkó‐Szandtner A, Káldi K, Kapuy O. A systems biological analysis of the ATF4-GADD34-CHOP regulatory triangle upon endoplasmic reticulum stress. FEBS Open Bio 2022; 12:2065-2082. [PMID: 36097827 PMCID: PMC9623533 DOI: 10.1002/2211-5463.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-dependent accumulation of incorrectly folded proteins leads to activation of the unfolded protein response. The role of the unfolded protein response (UPR) is to avoid cell damage and restore the homeostatic state by autophagy; however, excessive ER stress results in apoptosis. Here we investigated the ER stress-dependent feedback loops inside one of the UPR branches by focusing on PERK-induced ATF4 and its two targets, called CHOP and GADD34. Our goal was to qualitatively describe the dynamic behavior of the system by exploring the key regulatory motifs using both molecular and theoretical biological techniques. Using the HEK293T cell line as a model system, we confirmed that the life-or-death decision is strictly regulated. We investigated the dynamic characteristics of the crucial elements of the PERK pathway at both the RNA and protein level upon tolerable and excessive levels of ER stress. Of particular note, inhibition of GADD34 or CHOP resulted in various phenotypes upon high levels of ER stress. Our computer simulations suggest the existence of two new feedback loops inside the UPR. First, GADD34 seems to have a positive effect on ATF4 activity, while CHOP inhibits it. We claim that these newly described feedback loops ensure the fine-tuning of the ATF4-dependent stress response mechanism of the cell.
Collapse
Affiliation(s)
- Margita Márton
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Gábor Bánhegyi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Norbert Gyöngyösi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Eszter Éva Kálmán
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | | | - Krisztina Káldi
- Department of PhysiologySemmelweis UniversityBudapestHungary
| | - Orsolya Kapuy
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
29
|
Cheng B, Wang Q, Wei Z, He Y, Li R, Liu G, Zeng S, Meng Z. MHBSt 167 induced autophagy promote cell proliferation and EMT by activating the immune response in L02 cells. Virol J 2022; 19:110. [PMID: 35761331 PMCID: PMC9235077 DOI: 10.1186/s12985-022-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hepatitis B virus can induce hepatocellular carcinoma (HCC) by inducing a host immune response against infected hepatocytes. C-terminally truncated middle surface protein (MHBSt) has been reported to contribute to HCC through transcriptional activation in epidemiology studies, while the underlying mechanism of MHBSt-induced HCC is unknown. METHODS In this study, a premature stop at codon 167 in MHBS (MHBSt167) was investigated into eukaryotic expression plasmid pcDNA3.1(-). MHBSt167 expressed plasmid was transfected into the L02 cell line, cell proliferation was analyzed by CCK-8 and high-content screening assays, the cell cycle was analyzed by flow cytometry, and epithelial-to-mesenchymal transition and autophagy were analyzed by immunoblotting and immunofluorescence. NF-κB activation and the MHBSt167-induced immune response were analyzed by immunoblotting and immunofluorescence. IFN-α, IFN-β and IL-1α expression were analyzed by qPCR. Autophagy inhibitors were used to analyze the relationship between the immune response and autophagy. RESULTS The results showed that MHBSt167 promoted L02 cell proliferation, accelerated cell cycle progression from the S to G2 phase and promoted epithelial-to-mesenchymal transition through ER-stress, leading to autophagy and NF-κB activation and increased immune-related factor expression. The MHBSt167-induced acceleration of cell proliferation and the cell cycle was abolished by autophagy or NF-κB inhibitors. CONCLUSION In summary, MHBSt167 could promote cell proliferation, accelerate cell cycle progression, induce EMT and activate autophagy through ER-stress to induce the host immune response, supporting a potential role of MHBSt167 in contributing to carcinogenesis.
Collapse
Affiliation(s)
- Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Qiong Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Ruiming Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Shaobo Zeng
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| |
Collapse
|
30
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
31
|
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, Qiang L, Qiu J, Gao Y, Wang Y, Song F, Wang Y, Shao X, Zhang Y, Han L. High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Adv Healthc Mater 2022; 11:e2102800. [PMID: 35368151 DOI: 10.1002/adhm.202102800] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Wu
- Obstetrics and Gynecology Department Peking University Third Hospital Beijing 100191 China
| | - Jianwei Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yingkuan Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yujin Chu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Le Qiang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yakun Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yanhao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Fangteng Song
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yihe Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| |
Collapse
|
32
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
33
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
34
|
Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat Commun 2022; 13:1323. [PMID: 35260576 PMCID: PMC8904541 DOI: 10.1038/s41467-022-28971-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Response of protein secretion based on transcriptional control is rather slow, as it requires transcription, translation and transport from the endoplasmic reticulum (ER) to the plasma membrane via the conventional protein secretion (CPS) pathway. An alternative regulation to provide faster response would be valuable. Here we present two genetically encoded orthogonal regulatory secretion systems, which rely on the retention of pre-synthesized proteins on the ER membrane (membER, released by a cytosolic protease) or inside the ER lumen (lumER, released by an ER-luminal protease), respectively, and their release by the chemical signal-regulated proteolytic removal of an ER-retention signal, without triggering ER stress due to protein aggregates. Design of orthogonal chemically-regulated split proteases enables the combination of signals into logic functions. Its application was demonstrated on a chemically regulated therapeutic protein secretion and regulated membrane translocation of a chimeric antigen receptor (CAR) targeting cancer antigen. Regulation of the ER escape represents a platform for the design of fast-responsive and tightly-controlled modular and scalable protein secretion system for mammalian cells. Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Here the authors present two genetically encoded orthogonal regulatory secretion systems that enables inducible protein release and construction of logic gates.
Collapse
|
35
|
Li J, Gao E, Xu C, Wang H, Wei Y. ER-Phagy and Microbial Infection. Front Cell Dev Biol 2021; 9:771353. [PMID: 34912806 PMCID: PMC8667338 DOI: 10.3389/fcell.2021.771353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle in cells that synthesizes, folds and modifies membrane and secretory proteins. It has a crucial role in cell survival and growth, thus requiring strict control of its quality and homeostasis. Autophagy of the ER fragments, termed ER-phagy or reticulophagy, is an essential mechanism responsible for ER quality control. It transports stress-damaged ER fragments as cargo into the lysosome for degradation to eliminate unfolded or misfolded protein aggregates and membrane lipids. ER-phagy can also function as a host defense mechanism when pathogens infect cells, and its deficiency facilitates viral infection. This review briefly describes the process and regulatory mechanisms of ER-phagy, and its function in host anti-microbial defense during infection.
Collapse
Affiliation(s)
- Jiahui Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Enfeng Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Chenguang Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Hongna Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
36
|
Li X, Wang Z, Fu Y, Cheng X, Zhang Y, Fan B, Zhu C, Chen Z. Two ubiquitin-associated ER proteins interact with COPT copper transporters and modulate their accumulation. PLANT PHYSIOLOGY 2021; 187:2469-2484. [PMID: 34618061 PMCID: PMC8644684 DOI: 10.1093/plphys/kiab381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 06/02/2023]
Abstract
The endoplasmic reticulum (ER) contains an elaborate protein quality control network that promotes protein folding and prevents accumulation of misfolded proteins. Evolutionarily conserved UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2) is involved in ER-associated protein degradation in metazoans. We have previously reported that two close UBAC2 homologs from Arabidopsis (Arabidopsis thaliana) not only participate in selective autophagy of ER components but also interact with plant-specific PATHOGEN-ASSOCIATED MOLECULAR PATTERN (PAMP)-INDUCED COILED COIL (PICC) protein to increase the accumulation of POWDERY MILDEW-RESISTANT 4 callose synthase. Here, we report that UBAC2s also interacted with COPPER (Cu) TRANSPORTER 1 (COPT1) and plasma membrane-targeted members of the Cu transporter family. The ubac2 mutants were significantly reduced in both the accumulation of COPT proteins and Cu content, and also displayed increased sensitivity to a Cu chelator. Therefore, UBAC2s positively regulate the accumulation of COPT transporters, thereby increasing Cu uptake by plant cells. Unlike with POWDERY MILDEW RESISTANCE 4, however, the positive role of UBAC2s in the accumulation of COPT1 is not dependent on PICC or the UBA domain of UBAC2s. When COPT1 was overexpressed under the CaMV 35S promoter, the increased accumulation of COPT1 was strongly UBAC2-dependent, particularly when a signal peptide was added to the N-terminus of COPT1. Further analysis using inhibitors of protein synthesis and degradation strongly suggested that UBAC2s stabilize newly synthesized COPT proteins against degradation by the proteasome system. These results indicate that plant UBAC2s are multifunctional proteins that regulate the degradation and accumulation of specific ER-synthesized proteins.
Collapse
Affiliation(s)
- Xifeng Li
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yunting Fu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Xi Cheng
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yan Zhang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
- College of Ecology, Lishui University, Lishui, Zhejiang 323000,
China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Zhixiang Chen
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
37
|
Powell G, Pavlovic Djuranovic S, Djuranovic S. Gene dosage effects of poly(A) track-engineered hypomorphs. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:865-878. [PMID: 34729253 PMCID: PMC8536507 DOI: 10.1016/j.omtn.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Manipulation of gene activity through creation of hypomorphic mutants has been a long-standing tool in examining gene function. Our previous studies have indicated that hypomorphic mutants could be created by inserting cis-regulatory sequences composed of consecutive adenosine nucleotides called poly(A) tracks. Here we use poly(A) tracks to create hypomorphic mutants and functional characterization of membrane, secretory, and endogenous proteins. Insertion of poly(A) tracks into the sequences of interleukin-2 and membrane protein CD20 results in a programmable reduction of mRNA stability and attenuation of protein expression regardless of the presence of a signaling sequence. Likewise, CRISPR-Cas9 targeted insertion of poly(A) tracks into the coding sequence of the endogenous human genes AUF1 and TP53 results in a programmable reduction of targeted protein and mRNA levels. Functional analyses of AUF1-engineered hypomorphs indicate a direct correlation between AUF1 gene levels and the stability of AUF1-regulated mRNAs. Hypomorphs of TP53 affect expression of the target genes differentially depending on the severity of the hypomorphic mutation. Finally, decreases in TP53 protein affect the same cellular pathways in poly(A) track-engineered cells as in cancer cells, indicating these variants’ biological relevance. These results highlight this technology’s power to create predictable, stable hypomorphs in recombinant or endogenous genes in combination with CRISPR-Cas9 engineering tools.
Collapse
Affiliation(s)
- Geralle Powell
- Department of Cell Biology and Physiology, Washington University School of Medicine, 600 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, 600 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, 600 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
- Correspondence: Sergej Djuranovic, Department of Cell Biology and Physiology, Washington University School of Medicine, 600 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Activation of TREM-1 induces endoplasmic reticulum stress through IRE-1α/XBP-1s pathway in murine macrophages. Mol Immunol 2021; 135:294-303. [PMID: 33957479 DOI: 10.1016/j.molimm.2021.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Increasing evidence suggests that endoplasmic reticulum (ER) stress activates several pro-inflammatory signaling pathways in many diseases, including acute lung injury (ALI). We have reported that blocking triggering receptor expressed on myeloid cells 1 (TREM-1) protects against ALI by suppressing pulmonary inflammation in mice with ALI induced by lipopolysaccharides (LPS). However, the molecular mechanism underlying the TREM-1-induced pro-inflammatory microenvironment in macrophages remains unclearly. Herein, we aimed to determine whether TREM-1 regulates the inflammatory responses induced by LPS associated with ER stress activation. We found that the activation of TREM-1 by a monoclonal agonist antibody (anti-TREM-1) increased the mRNA and protein levels of IL-1β, TNF-α, and IL-6 in primary macrophages. Treatment of the anti-TREM-1 antibody increased the expression of ER stress markers (ATF6, PERK, IRE-1α, and XBP-1s) in primary macrophages. While pretreatment with 4-PBA, an inhibitor of ER stress, significantly inhibited the expression of ER stress markers and pro-inflammatory cytokines and reduced LDH release. Furthermore, inhibiting the activity of the IRE-1α/XBP-1s pathway by STF-083010 significantly mitigated the increased levels of IL-1β, TNF-α, and IL-6 in macrophages treated by the anti-TREM-1 antibody. XBP-1 silencing attenuated pro-inflammatory microenvironment evoked by activation of TREM-1. Besides, we found that blockade of TREM-1 with LR12 ameliorated ER stress induced by LPS in vitro and in vivo. In conclusion, we conclude that TREM-1 activation induces ER stress through the IRE-1α/XBP-1s pathway in macrophages, contributing to the pro-inflammatory microenvironment.
Collapse
|
39
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
40
|
Turnšek J, Brunson JK, Viedma MDPM, Deerinck TJ, Horák A, Oborník M, Bielinski VA, Allen AE. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 2021; 10:e52770. [PMID: 33591270 PMCID: PMC7972479 DOI: 10.7554/elife.52770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
Collapse
Affiliation(s)
- Jernej Turnšek
- Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard UniversityCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Center for Research in Biological Systems, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| | - John K Brunson
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San DiegoLa JollaUnited States
| | - Aleš Horák
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Miroslav Oborník
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy, J. Craig Venter InstituteLa JollaUnited States
| | - Andrew Ellis Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| |
Collapse
|
41
|
Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 2020; 66:116-128. [PMID: 31838023 PMCID: PMC7325862 DOI: 10.1016/j.semcancer.2019.11.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells encounter numerous stresses that pose a threat to their survival. Tumor microenviroment stresses that perturb protein homeostasis can produce endoplasmic reticulum (ER) stress, which can be counterbalanced by triggering the unfolded protein response (UPR) which is considered the canonical ER stress response. The UPR is characterized by three major proteins that lead to specific changes in transcriptional and translational programs in stressed cells. Activation of the UPR can induce apoptosis, but also can induce cytoprotective programs such as autophagy. There is increasing appreciation for the role that UPR-induced autophagy plays in supporting tumorigenesis and cancer therapy resistance. More recently several new pathways that connect cell stresses, components of the UPR and autophagy have been reported, which together can be viewed as non-canonical ER stress responses. Here we review recent findings on the molecular mechanisms by which canonical and non-canonical ER stress responses can activate cytoprotective autophagy and contribute to tumor growth and therapy resistance. Autophagy has been identified as a druggable pathway, however the components of autophagy (ATG genes) have proven difficult to drug. It may be the case that targeting the UPR or non-canonical ER stress programs can more effectively block cytoprotective autophagy to enhance cancer therapy. A deeper understanding of these pathways could provide new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci U S A 2020; 117:27481-27492. [PMID: 33060291 DOI: 10.1073/pnas.2011120117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.
Collapse
|
43
|
Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, Malik SS. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens 2020; 9:E677. [PMID: 32825438 PMCID: PMC7558349 DOI: 10.3390/pathogens9090677] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic, in the first seven months, has led to more than 15 million confirmed infected cases and 600,000 deaths. SARS-CoV-2, the causative agent for COVID-19, has proved to be a great challenge for its ability to spread in asymptomatic stages and the diverse disease spectrum it has generated. This has created a challenge of unimaginable magnitude, not only affecting human health and life but also potentially generating a long-lasting socioeconomic impact. Both medical sciences and biomedical research have also been challenged, consequently leading to a large number of clinical trials and vaccine initiatives. While known proteins of pathobiological importance are targets for these therapeutic approaches, it is imperative to explore other factors of viral significance. Accessory proteins are one such trait that have diverse roles in coronavirus pathobiology. Here, we analyze certain genomic characteristics of SARS-CoV-2 accessory protein ORF8 and predict its protein features. We have further reviewed current available literature regarding its function and comparatively evaluated these and other features of ORF8 and ORF8ab, its homolog from SARS-CoV. Because coronaviruses have been infecting humans repeatedly and might continue to do so, we therefore expect this study to aid in the development of holistic understanding of these proteins. Despite low nucleotide and protein identity and differentiating genome level characteristics, there appears to be significant structural integrity and functional proximity between these proteins pointing towards their high significance. There is further need for comprehensive genomics and structural-functional studies to lead towards definitive conclusions regarding their criticality and that can eventually define their relevance to therapeutics development.
Collapse
Affiliation(s)
- Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Bothina Mohammad Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Mamoon Rashid
- Bioinformatics and Biostatistics Department, King Abdullah International Medical Research Center, King~Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia;
| | - Tanveer Saleem Khatlani
- Stem Cells Unit, Department of Cellular Therapy, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia;
| | - Nusaibah S. Gaber
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| |
Collapse
|
44
|
Tong M, Suttapitugsakul S, Wu R. Effective Method for Accurate and Sensitive Quantitation of Rapid Changes of Newly Synthesized Proteins. Anal Chem 2020; 92:10048-10057. [PMID: 32531160 PMCID: PMC7425198 DOI: 10.1021/acs.analchem.0c01823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein synthesis is quickly and tightly regulated in cells to adapt to the ever-changing extracellular and intracellular environment. Accurate quantitation of rapid protein synthesis changes can provide insights into protein functions and cellular activities, but it is very challenging to achieve because of the lack of effective analysis methods. Here, we developed an effective mass spectrometry-based method named quantitative O-propargyl-puromycin tagging (QOT) by integrating O-propargyl-puromycin (OPP) labeling, bioorthogonal chemistry, and multiplexed proteomics for global and quantitative analysis of rapid protein synthesis. The current method enables us to accurately quantitate rapid changes of newly synthesized proteins because, unlike amino acids and their analogs, OPP can be utilized by the ribosome immediately without being activated and conjugated to tRNA, and thus cell starvation or pretreatment is not required. This method was applied to quantitate rapid changes of protein synthesis in THP-1 macrophages treated with lipopolysaccharide (LPS). For 15-min labeling, >3000 proteins were quantitated, and the synthesis of 238 proteins was significantly altered, including transcription factors and cytokines. The results demonstrated that protein synthesis was modulated to facilitate protein secretion in macrophages in response to LPS. Considering the importance of protein synthesis, this method can be extensively applied to investigate rapid changes of protein synthesis in the biological and biomedical research fields.
Collapse
Affiliation(s)
- Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Xu L, Cai Y, Wang Y, Xu C. Meteorin-Like (METRNL) Attenuates Myocardial Ischemia/Reperfusion Injury-Induced Cardiomyocytes Apoptosis by Alleviating Endoplasmic Reticulum Stress via Activation of AMPK-PAK2 Signaling in H9C2 Cells. Med Sci Monit 2020; 26:e924564. [PMID: 32594095 PMCID: PMC7343023 DOI: 10.12659/msm.924564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Myocardial ischemia mediates the progression of multiple cardiovascular diseases and leads to serious damage to the morphology, function, and metabolism of cardiomyocytes. The serum level of the hormone Meteorin-like (METRNL) was lower in patients with coronary artery disease and was negatively correlated with inflammatory cytokines. The aim of the present study was to determine the relationship between METRNL and myocardial ischemia/reperfusion (MI/R) injury, and investigate the molecular mechanisms implicated the pathogenesis of myocardial ischemia. MATERIAL AND METHODS In the present study, H9C2 cells underwent oxygen-glucose deprivation and reperfusion (OGD/R) treatment to establish a MI/R cell model. Quantitative real-time polymerase chain reaction was performed to analyze the expression of target gene. Western blot was used to evaluate the protein expression. Cell Counting Kit-8 assay was employed to detect the cell viability. Enzyme-linked immunosorbent assay was carried out to determine the levels of inflammatory cytokines. Finally, flow cytometry and TUNEL staining were used to detect the apoptotic levels of cardiomyocytes. RESULTS The results showed that the expression of METRNL was downregulated in H9C2 cells during OGD/R. Interestingly, METRNL overexpression inhibited the inflammation, apoptosis and endoplasmic reticulum stress in H9C2 cells during OGD/R, which were totally reversed by PAK2 silencing. In addition, METRNL overexpression induced activation of AMPK-PAK2 signaling cascade. CONCLUSIONS METRNL attenuates MI/R injury-induced cardiomyocytes apoptosis by alleviating endoplasmic reticulum stress via activation of AMPK-PAK2 signaling in H9C2 cells. Our findings support that METRNL might be a promising target for treatment of myocardial ischemia in the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yinlian Cai
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yaoguo Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Chaoxiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
46
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
47
|
Huang Y, Situ B, Huang L, Cao Y, Sui H, Ye X, Jiang X, Liang A, Tao M, Luo S, Zhang Y, Zhong M, Zheng L. Nondestructive Identification of Rare Trophoblastic Cells by Endoplasmic Reticulum Staining for Noninvasive Prenatal Testing of Monogenic Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903354. [PMID: 32274316 PMCID: PMC7141004 DOI: 10.1002/advs.201903354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Indexed: 05/06/2023]
Abstract
Noninvasive prenatal detection of monogenic diseases based on cell-free DNA is hampered by challenges in obtaining a sufficient fraction and adequate quality of fetal DNA. Analyzing rare trophoblastic cells from Papanicolaou smears carrying the entire fetal genome provides an alternative method for noninvasive detection of monogenic diseases. However, intracellular labeling for identification of target cells can affect the quality of DNA in varying degrees. Here, a new approach is developed for nondestructive identification of rare fetal cells from abundant maternal cells based on endoplasmic reticulum staining and linear discriminant analysis (ER-LDA). Compared with traditional methods, ER-LDA has little effect on cell quality, allowing trophoblastic cells to be analyzed on the single-cell level. Using ER-LDA, high-purity of trophoblastic cells can be identified and isolated at single cell resolution from 60 pregnancies between 4 and 38 weeks of gestation. Pathogenic variants, including -SEA/ deletion mutation and point mutations, in 11 fetuses at risk for α- or β-thalassemia can be accurately detected by this test. The detection platform can also be extended to analyze the mutational profiles of other monogenic diseases. This simple, low-cost, and noninvasive test can provide valuable fetal cells for fetal genotyping and holds promise for prenatal detection of monogenic diseases.
Collapse
Affiliation(s)
- Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Liping Huang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yingsi Cao
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Hong Sui
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Xiujuan Jiang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Aifen Liang
- Department of Laboratory MedicineDongguan Kanghua HospitalDongguan523080P. R. China
| | - Maliang Tao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Shihua Luo
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| | - Mei Zhong
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515P. R. China
| |
Collapse
|
48
|
Chauhan AS, Zhuang L, Gan B. Spatial control of AMPK signaling at subcellular compartments. Crit Rev Biochem Mol Biol 2020; 55:17-32. [PMID: 32069425 DOI: 10.1080/10409238.2020.1727840] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson UT, Houston, TX, USA
| |
Collapse
|
49
|
Martínez J, Marmisolle I, Tarallo D, Quijano C. Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Front Endocrinol (Lausanne) 2020; 11:319. [PMID: 32528413 PMCID: PMC7256191 DOI: 10.3389/fendo.2020.00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
Collapse
|
50
|
Therapeutic anti-cancer activity of antibodies targeting sulfhydryl bond constrained epitopes on unglycosylated RON receptor tyrosine kinase. Oncogene 2019; 38:7342-7356. [PMID: 31417186 DOI: 10.1038/s41388-019-0946-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023]
Abstract
Recepteur d'origine nantais (RON) receptor tyrosine kinase (RTK) and its ligand, serum macrophage-stimulating protein (MSP), are well-established oncogenic drivers for tumorigenesis and metastasis. RON is often found to be alternatively spliced resulting in various isoforms that are constitutively active. RON is therefore an attractive target for cancer therapeutics, including small molecular inhibitors and monoclonal antibodies. While small molecule inhibitors of RON may inhibit other protein kinases including the highly similar MET kinase, monoclonal antibodies targeting RON are more specific, potentially inducing fewer side effects. Although anti-RON monoclonal antibody therapies have been developed and tested in clinical trials, they were met with limited success. Cancer cells have been associated with aberrant glycosylation mechanisms. Notably for RON, the loss of N-bisected glycosylation is a direct cause for tumorigenesis and poorer prognosis in cancer patients. Particularly in gastric cancer, aberrant RON glycosylation augments RON activation. Here, we present a novel panel of monoclonal antibodies which potentially widens the specific targeting of not only the glycosylated RON, but also unglycosylated and aberrantly glycosylated RON. Our antibodies can bind strongly to deglycosylated RON from tunicamycin treated cells, recognise RON in IHC/IF and possess superior therapeutic efficacy in RON expressing xenograft tumours. Our most potent antibody in xenograft assays, is directed to the RON alpha chain and targets a sulfhydryl bond constrained epitope that appears to be cryptic in the crystal structure. This establishes the paradigm that such constrained and cryptic epitopes represent good targets for therapeutic antibodies.
Collapse
|