1
|
Sen S. HPV infection and its correlation with p53 and Bcl-2 among pregnant mothers and their infants. Virus Genes 2024; 60:263-274. [PMID: 38664293 DOI: 10.1007/s11262-024-02070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
The investigation of perinatal transmission of HPV is vital for early screening of cervical/oral cancers. Here, transmission of HPV from the pregnant women to their infants was studied. p53 and Bcl-2 expressions and their correlations with HPV infection were examined. HPV infection was detected in the cervical and oral swabs of 135 mother-baby pairs employing both PCR and HC-II methods. 1 year follow-up with an interim visit at 3 months for mothers and 6 months for babies was performed. Immunocytochemistry of p53 and Bcl-2 using the streptavidin-biotin peroxidase method was performed. Prevalence of HPV infection in the mothers was 28.14%, (38/135) and 30.37% (41/135) determined by the PCR and HC-II methods respectively. HPV 16 and/or 18 was identified in 81.57% (31/38) and 82.92% (34/41) of the HPV + women estimated by PCR and HC-II methods respectively. Prevalence rate of HPV 16 among the HPV + pregnant women was 63.15% (24/38) and 65.85% (27/41) determined by PCR and HC-II methods respectively. The frequency of perinatal transmission was 21.05% (8/38) and 21.95% (9/41) determined by PCR and HC-II methods respectively at birth. The HPV + infants in the follow up study cleared the infection within 6 weeks. An abnormal nuclear expression of p53 and cytoplasmic expression of Bcl-2 were observed in the HPV + mother-baby pairs. Cesarean section did not protect the infants against perinatal HPV transmission. The detection of p53 and Bcl-2 proteins in the HPV + mother-baby pairs suggests that these biomarkers may be important in the early screening of oral/cervix cancers in positive cases.
Collapse
Affiliation(s)
- Subhrojit Sen
- Department of Viral Associated Human Cancer, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
2
|
Lee HB, Lee SE, Park MJ, Han DH, Lim ES, Ryu B, Kim EY, Park SP. Ellagic acid treatment during in vitro maturation of porcine oocytes improves development competence after parthenogenetic activation and somatic cell nuclear transfer. Theriogenology 2024; 215:214-223. [PMID: 38100993 DOI: 10.1016/j.theriogenology.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Ellagic acid (EA) is a natural polyphenol and a free radical scavenger with antioxidant properties. This study investigated the protective effects of EA during in vitro maturation (IVM) of porcine oocytes. To determine the optimal concentration, IVM medium was supplemented with various concentrations of EA. Treatment with 10 μM EA (10 EA) resulted in the highest cleavage rate, blastocyst formation rate, and total cell number per blastocyst and the lowest percentage of apoptotic cell in parthenogenetic blastocysts. In the 10 EA group, abnormal spindle and chromosome misalignment were rescued and the ratio of phosphorylated p44/42 to total p44/42 was increased. Furthermore, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, and antioxidant genes (Nrf2, HO-1, CAT, and SOD1) were significantly upregulated in the 10 EA group. mRNA expression of developmental-related (CDX2, POU5F1, and SOX2) and anti-apoptotic (BCL2L1) genes was significantly upregulated in the 10 EA group, while mRNA expression of pro-apoptotic genes (BAK, FAS, and CASP3) was significantly downregulated. Ultimately, following somatic cell nuclear transfer, the blastocyst formation rate was significantly increased and the percentage of apoptotic cell in blastocysts was significantly decreased in the 10 EA group. In conclusion, addition of 10 EA to IVM medium improved oocyte maturation and the subsequent embryo development capacity through antioxidant mechanisms. These findings suggest that EA can enhance the efficiencies of assisted reproductive technologies.
Collapse
Affiliation(s)
- Han-Bi Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Seung-Eun Lee
- Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea
| | - Min-Jee Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Dong-Hun Han
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Seo Lim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Bokyeong Ryu
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea.
| |
Collapse
|
3
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
4
|
Kim HK, Kim SY, Kwak JH, Kim HJ. Glycemic Index, Glycemic Load, and FAS rs6586161 Polymorphism in Relation to Gastric Cancer Risk: A Case-Control Study in Korea. Nutrients 2023; 15:3238. [PMID: 37513656 PMCID: PMC10383319 DOI: 10.3390/nu15143238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Many dietary and genetic factors have been confirmed to be associated with gastric cancer risk. This research investigated gastric cancer risk with regard to the glycemic index, glycemic load, and FAS rs6586161 polymorphism. A total of 232 matched pairs were included in this case-control study. Data collection was conducted at two hospitals in Korea from 2002 to 2006. Dietary information was obtained from a food frequency questionnaire, and genotypes of FAS rs6586161 polymorphism were TT, TA, and AA type. Gastric cancer risk was increased for the highest tertile of glycemic index (vs. lowest tertile, OR = 1.84, 95% CI = 1.07-3.18), the highest tertile of glycemic load (vs. lowest tertile, OR = 2.14, 95% CI = 1.23-3.75), and the AA type of FAS rs6586161 polymorphism (vs. TT types, OR = 1.95, 95% CI = 1.13-3.39). Furthermore, gastric cancer risk was significantly elevated for the participants with the highest glycemic load and AA type of FAS rs6586161 polymorphism (vs. the lowest glycemic load and TT type, OR = 5.53, 95% CI = 2.01-15.21). Both the high glycemic load and AA type of FAS rs6586161 polymorphism increased gastric cancer risk; however, the interactions between these two elevated the risk of gastric cancer even more.
Collapse
Affiliation(s)
- Hong Kyoung Kim
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea;
| | - Sang Young Kim
- Department of Food and Nutrition, Gangneung-Wonju National University College of Life Science, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea; (S.Y.K.); (J.H.K.)
| | - Jung Hyun Kwak
- Department of Food and Nutrition, Gangneung-Wonju National University College of Life Science, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea; (S.Y.K.); (J.H.K.)
| | - Hyun Ja Kim
- Department of Food and Nutrition, Gangneung-Wonju National University College of Life Science, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea; (S.Y.K.); (J.H.K.)
| |
Collapse
|
5
|
White E. Apoptosis, autophagy, and cancer: the critical role Genes & Development played in paradigm shifts. Genes Dev 2023; 37:59-62. [PMID: 37061957 PMCID: PMC10046429 DOI: 10.1101/gad.350443.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA; Ludwig Institute for Cancer Research, Princeton University, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
6
|
Infectious Spleen and Kidney Necrosis Virus (ISKNV) Triggers Mitochondria-Mediated Dynamic Interaction Signals via an Imbalance of Bax/Bak over Bcl-2/Bcl-xL in Fish Cells. Viruses 2022; 14:v14050922. [PMID: 35632664 PMCID: PMC9144193 DOI: 10.3390/v14050922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection. Subsequently, in an apoptotic assay, ISKNV infection was seen to induce an increase in Annexin-V-positive signals by 20% and in propidium iodide (PI) staining-positive signals by up to 30% at day 5 (D5) in GF-1 cells. Then, through our studies on the mechanism of cell death in mitochondria function, we found that ISKNV can induce MMP loss by up to 58% and 78% at days 4 and 5 with a JC1 dye staining assay. Furthermore, we found that pro-apoptotic members Bax and Bak were upregulated from the early replication stage (day one) to the late stage (day 5), but the expression profiles were very dynamically different. On the other hand, by Western blotted analysis, the anti-apoptotic members Bcl-2 and Bcl-xL were upregulated very quickly at the same time from day one (two-fold) and continued to maintain this level at day five. Finally, we found that pro-apoptotic death signals strongly activated the downstream signals of caspase-9 and -3. Taken together, these results suggest that ISKNV infection can induce Bax/Bak-mediated cell death signaling downstream of caspase-9 and -3 activation. During the viral replication cycle with the cell death induction process, the anti-apoptotic members Bcl-2/Bcl-xL interacted with the pro-apoptotic members Bax/Bak to maintain the mitochondrial function in the dynamic interaction so as to maintain the MMP in GF-1 cells. These findings may provide insights into DNA-virus control and treatment.
Collapse
|
7
|
Ciliberti MG, Francavilla M, Albenzio M, Inghese C, Santillo A, Sevi A, Caroprese M. Green extraction of bioactive compounds from wine lees and their bio-responses on immune modulation using in vitro sheep model. J Dairy Sci 2022; 105:4335-4353. [PMID: 35307182 DOI: 10.3168/jds.2021-21098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
The objective of this study was to apply microwave-assisted extraction using green solvents starting from 3 different wine (white, rosé, and red) lees and to test their bio-response on sheep peripheral blood mononuclear cells proliferation, Bax/Bcl-2 ratio, and cytokines secretion. Wine lees (WL) of local organic farming from white wine, produced with Trebbiano cultivar, rosé and red wine, made with Nero di Troia cultivar, were collected. The WL were subjected to microwave-assisted extraction using 2 green solvents (water and ethanol) in 3 different combinations (water; water/ethanol 1:1 vol/vol; ethanol) with a dry matter-to-solvent ratio of 1:40 (wt/vol) at 4 temperature levels: 50, 100, 150, and 200°C. Sodium carbonate Na2CO3 (2 mmol/g of dry weight of lees) was used for increasing the polyphenol extraction yield. A total number of 6 extracts, 2 for each kind of WL investigated, according to their total phenolic content and in vitro antioxidant capacity, were selected to be tested on sheep peripheral blood mononuclear cells, as an animal model. All the WL extracts demonstrated a strong antiproliferative action. On the contrary, the cytokines' profile was mainly dependent on the different winemaking derived WL and the extraction solvent combination procedures. Red WL extract obtained by a combination of water/Na2CO3 and tested at 0.8 mg/mL, resulted in an increase of both IL-6 secretion and Bax/Bcl-2 ratio. Data from the present study demonstrated that WL extracts derived from different winemaking and solvent extraction could have a bimodal action on control of inflammatory mediated damage and highlighted the importance for further studies aimed at applying the biorefinery process on by-products to increase their economic value and exploit new derived bioactive compound.
Collapse
Affiliation(s)
- M G Ciliberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy.
| | - M Francavilla
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy; STAR Facility Centre, Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - M Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - C Inghese
- Nutritionist, San Severo, 71016 Foggia, Italy
| | - A Santillo
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - A Sevi
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| |
Collapse
|
8
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
9
|
Zhao X, Zhang Q, Wang Y, Li S, Yu X, Wang B, Wang X. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1084. [PMID: 34422996 PMCID: PMC8339817 DOI: 10.21037/atm-21-2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Oridonin is a diterpenoid isolated from Rabdosia rubescens that has potent anticancer activity. This study set out to investigate the antitumor effects of oridonin in pancreatic carcinoma (PC) and their underlying mechanisms. Methods To investigate the antitumor effects of oridonin, we developed an orthotopic C57BL/6 mouse model of PC. After successful establishment of the model, the mice were given a daily intraperitoneal injection of phosphate-buffered saline containing 0.1% dimethyl sulfoxide or oridonin for 2 weeks. In vitro experiments including MTT assay and flow cytometry were performed to examine cell viability and apoptosis. Panc-1 and Panc02 cells were transfected with a green fluorescent protein (GFP)-LC3 plasmid. After the cells had been treated with or without 20 μM oridonin and 10 μM 3-MA, the formation of GFP-LC3 puncta was detected by fluorescence microscopy. The levels of the autophagy-related proteins Beclin-1, LC3, and p62 were measured by western blotting. Results Oridonin inhibited the proliferation of PC cells and induced their apoptosis in vitro and in vivo. Treatment with oridonin also led to an increase in the quantity of LC3B II protein and upregulation of the p62 and Beclin-1 levels in PC cells. The effects of oridonin on PC cell proliferation, apoptosis, and autophagy were mediated via the simultaneous inhibition of the phosphoinositide 3-kinase pathway and activation of the c-Jun N-terminal kinase pathway. Conclusions Our study is the first to confirm the antitumor and autophagy-activating effects of oridonin on PC cells. In light of these results, oridonin may be a promising therapeutic agent for PC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuanyuan Wang
- Department of Pharmacology, Tianjin Children's Hospital, Tianjin, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Botao Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
10
|
Zhang DL, Wu SS, Chen S, Liu XX, Tang JQ, Lin N, Ding GS, Li GP. Differences in the therapeutic effects of high-intensity focused ultrasound (HIFU) ablation on uterine fibroids with different shear wave velocity (SWV): a study of histopathological characteristics. Int J Hyperthermia 2021; 37:1322-1329. [PMID: 33243047 DOI: 10.1080/02656736.2020.1849827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore correlations between the therapeutic effect of high intensity focused ultrasound (HIFU) and histopathological characteristics of uterine fibroids with different Shear Wave Velocity (SWV) values. METHODS A retrospective study was conducted on 36 women (43 fibroids) who had undergone high intensity focused ultrasound (HIFU) uterine fibroids ablation between January 2019 and January 2020. Preoperative fibroids tissue sections were obtained for histopathological examination. The pathological sections were stained with Masson-trichrome, and were observed and imaged under a Low-power microscope (4 × 10), while the smooth muscle cell (SMC) and collagen fiber content were semi-quantitatively measured. Preoperative fibroid SWV was measured using the Virtual Touch tissue quantification (VTQ) technique. Within one month after HIFU ablation, all patients had undergone a pelvic cavity MRI examination, which measured the size, volume, and non-perfused volume (NPV) of the fibroids. The formula: the ablation rate = NPV/target fibroid volume × 100% was used to calculate the ablation rate of the uterine fibroids. Correlation analysis of SWV values, HIFU ablation rate, along with the smooth muscle cell (SMC) and collagen fiber content, were conducted using the Spearman's correlation test. RESULTS The collagen fiber and SMC content of the preoperative fibroids were 32.09 ± 15.90%/view and 37.61 ± 15.32%/view, respectively. Preoperative fibroid SWV value was 3.56 ± 0.71 m/s. Preoperative fibroid SWV was negatively correlated with SMC content (r = -0.445, p = 0.003), but positively correlated with collagen fiber content (r = 0.454, p = 0.002). The ablation rate was negatively correlated with collagen fiber content (r = -0.377, p = 0.013), but positively correlated with SMC content (r = 0.402, p = 0.007). CONCLUSION Differences in histopathological characteristics may be important factors that induce differences in the therapeutic effects of HIFU ablation on uterine fibroids with different SWV values.
Collapse
Affiliation(s)
- Dan-Ling Zhang
- Department of Ultrasonography, Fuzhou No.7 Hospital, Fuzhou, China
| | - Song-Song Wu
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Xin-Xiu Liu
- Department of Ultrasonography, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jian-Qing Tang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ning Lin
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Gui-Sheng Ding
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Guo-Ping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M. Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy. Biomedicines 2021; 9:biomedicines9050500. [PMID: 34063205 PMCID: PMC8147479 DOI: 10.3390/biomedicines9050500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations.
Collapse
Affiliation(s)
- Hend M. Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Said M. Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Maram H. Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
12
|
Identification and Functional Analysis of Apoptotic Protease Activating Factor-1 (Apaf-1) from Spodoptera litura. INSECTS 2021; 12:insects12010064. [PMID: 33450838 PMCID: PMC7828216 DOI: 10.3390/insects12010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule, essential for activating initiator caspase and downstream effector caspases, which directly cause apoptosis. In fruit flies, nematodes, and mammals, Apaf-1 has been extensively studied. However, the structure and function of Apaf-1 in Lepidoptera remain unclear. This study identified a novel Apaf-1 from Spodoptera litura, named Sl-Apaf-1. Sl-Apaf-1 contains three domains: a CARD domain, as well as NOD and WD motifs, and is very similar to mammalian Apaf-1. Interference of Sl-apaf-1 expression in SL-1 cells blocked apoptosis induced by actinomycin D. Overexpression of Sl-apaf-1 significantly enhances apoptosis induced by actinomycin D in Sf9/SL-1/U2OS cells, suggesting that the function of Sl-Apaf-1 is evolutionarily conserved. Furthermore, Sl-Apaf-1 could interact with Sl-caspase-5 (a homologue of mammalian caspase-9) and yielded a binding affinity of 1.37 × 106 M-1 according isothermal titration calorimetry assay. Initiator caspase (procaspase-5) of S. litura could be activated by Sl-Apaf-1 (without WD motif) in vitro, and the activated Sl-caspase-5 could cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly caused apoptosis. This study demonstrates the key role of Sl-Apaf-1 in the apoptosis pathway, suggesting that the apoptosis pathway in Lepidopteran insects and mammals is conserved.
Collapse
|
13
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Lord JS, Bonsall MB. The evolutionary dynamics of viruses: virion release strategies, time delays and fitness minima. Virus Evol 2021; 7:veab039. [PMID: 34221452 PMCID: PMC8242231 DOI: 10.1093/ve/veab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viruses exhibit a diverse array of strategies for infecting host cells and for virion release after replication. Cell exit strategies generally involve either budding from the cell membrane or killing the host cell. The conditions under which either is at a selective advantage is a key question in the evolutionary theory of viruses, with the outcome having potentially important impacts on the course of infection and pathogenicity. Although a plethora of external factors will influence the fitness of either strategy; here, we focus just on the effects of the physical properties of the system. We develop theoretical approaches to assess the effects of the time delays between initial infection and virion release. We show that the length of the delay before apoptosis is an important trait in virus evolutionary dynamics. Our results show that for a fixed time to apoptosis, intermediate delays lead to virus fitness that is lower than short times to apoptosis - leading to an apoptotic strategy - and long times to apoptosis - leading to a budding strategy at the between-cell level. At fitness minima, selection is expected to be disruptive and the potential for adaptive radiation in virus strategies is feasible. Hence, the physical properties of the system are sufficient to explain the existence of both budding and virus-induced apoptosis. The fitness functions presented here provide a formal basis for further work focusing on the evolutionary implications of trade-offs between time delays, intracellular replication and resulting mutation rates.
Collapse
Affiliation(s)
- Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
15
|
Sheng YN, Luo YH, Liu SB, Xu WT, Zhang Y, Zhang T, Xue H, Zuo WB, Li YN, Wang CY, Jin CH. Zeaxanthin Induces Apoptosis via ROS-Regulated MAPK and AKT Signaling Pathway in Human Gastric Cancer Cells. Onco Targets Ther 2020; 13:10995-11006. [PMID: 33149614 PMCID: PMC7605660 DOI: 10.2147/ott.s272514] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Zeaxanthin, a carotenoid commonly found in plants, has a variety of biological functions including anti-cancer activity. PURPOSE This study aimed to investigate the potential mechanisms of zeaxanthin in human gastric cancer cells. METHODS CCK-8 assay was used to examine the cytotoxic effect of zeaxanthin on human gastric cancer cells. Flow cytometry was used to analyse AGS cell cycle distribution and apoptosis status. Western blot analysis was used to detect the expression levels of cycle-related proteins (Cyclin A, Cyclin B1, CDK1/2, p21, and p27), apoptosis-related proteins (Bcl-2, Bad, caspase-3, PARP), MAPK, AKT, STAT3, and NF-κB. RESULTS CCK-8 assay showed that zeaxanthin has obvious cytotoxic effects on 12 types of human gastric cancer cells, but no obvious toxic effect on normal cells. In addition, flow cytometry and Western blotting results showed that zeaxanthin induces apoptosis by reducing mitochondrial membrane potential; increasing Cytochrome C, Bax, cleaved-caspase-3 (cle-cas-3), and cleaved-PARP (cle-PARP) expression levels; and decreasing Bcl-2, pro-caspase-3 (pro-cas-3), and pro-PARP expression levels. Additionally, zeaxanthin caused cell cycle arrest at the G2/M phase by increasing the levels of p21 and p27 and reduced the levels of AKT, Cyclin A, Cyclin B1, and Cyclin-dependent kinase 1/2 (CDK1/2). Furthermore, after zeaxanthin treatment, the expression levels of reactive oxygen species (ROS), p-JNK, p-p38, and I-κB increased, and the expression levels of p-ERK, p-AKT, STAT3, and NF-κB decreased. However, the ROS scavenger N-acetylcysteine (NAC) and MAPK inhibitors inhibited zeaxanthin-induced apoptosis, and under the action of zeaxanthin, MAPK regulated NF-κB and STAT3, and reduced their protein expression levels. CONCLUSION Zeaxanthin has a potential effect against gastric cancer cells through the ROS-mediated MAPK, AKT, NF-κB, and STAT3 signaling pathways, and it is expected to become a new drug for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Ya-Nan Sheng
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Shao-Bin Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
| | - Chang-Yuan Wang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing163319, People’s Republic of China
| | - Cheng-Hao Jin
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing163319, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing163319, People’s Republic of China
| |
Collapse
|
16
|
Lasjerdi Z, Ghanbarian H, Mohammadi Yeganeh S, Seyyed Tabaei SJ, Mohebali M, Taghipour N, Koochaki A, Hamidi F, Gholamrezaei M, Haghighi A. Comparative Expression Profile Analysis of Apoptosis-Related miRNA and Its Target Gene in Leishmania major Infected Macrophages. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:332-340. [PMID: 33082797 PMCID: PMC7548466 DOI: 10.18502/ijpa.v15i3.4197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: Cutaneous Leishmaniasis (CL) is an emerging uncontrollable and neglected infectious disease worldwide including Iran. The aim of this study was to investigate the expression profile of apoptosis-related miRNA and its target gene in macrophages. Methods: This study was carried out in the Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran from January 2016 to November 2018. Applying literature reviews, bioinformatics software, and microarray expression analysis, we selected miRNA-24-3p interfering in apoptosis pathway. The expression profile of this miRNA and target gene were investigated in Leishmania major (MRHO/IR/75/ER)-infected primary and RAW 264.7 macrophages (IBRC-C10072) compared with non-infected macrophages (control group) using quantitative Real-time PCR. Results: Results of bioinformatics analysis showed that miR-24-3p as anti-apoptotic miRNA inhibits pro-apoptotic genes (Caspases 3 and 7). Microarray expression data presented in Gene Expression Omnibus (GEO) revealed a significant difference in the expression level of selected miRNA and its target gene between two groups. QRT-PCR results showed that the expression of miR-24-3p was upregulated in L. major infectioned macrophages that approved the results of bioinformatics and microarray analysis. Conclusion: Parasite can alter miRNAs expression pattern in the host cells to establish infection and its survival. Alteration in miRNAs levels likely plays an important role in regulating macrophage functions following L. major infection. These results could highlight current understanding and new insights concerning the gene expression in macrophages during leishmaniasis and will help to development of novel strategies for control and treatment of CL.
Collapse
Affiliation(s)
- Zohreh Lasjerdi
- Department of Medical Parasitology and Mycology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Niloofar Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hamidi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Gholamrezaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Haghighi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Velugula K, Kumar A, Chinta JP. Nuclease and anticancer activity of antioxidant conjugated terpyridine metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Ge J, Huang Y, Zhang Y, Liu L, Gu T, Liu X, Yao L, Cai M, Sun J, Song J. Metformin Inhibits Propofol-Induced Apoptosis of Mouse Hippocampal Neurons HT-22 Through Downregulating Cav-1. Drug Des Devel Ther 2020; 14:1561-1569. [PMID: 32368014 PMCID: PMC7183342 DOI: 10.2147/dddt.s229520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
Objective To elucidate the neuroprotective function of metformin in suppressing propofol-induced apoptosis of HT-22 cells. Methods HT-22 cells were treated with 0, 10 or 100 μmol/L propofol, followed by determination of their proliferative ability. Subsequently, changes in proliferation and apoptosis of propofol-treated HT-22 cells induced with metformin were assessed. Apoptosis-associated genes in HT-22 cells were detected by Western blot. At last, regulatory effects of Cav-1 on propofol and metformin-treated HT-22 cells were examined. Results Propofol treatment dose-dependently decreased proliferative ability and increased apoptosis ability in HT-22 cells, which were partially blocked by metformin administration. Upregulated Bcl-2 and downregulated Bax were observed in propofol-treated HT-22 cells following metformin administration. In addition, Cav-1 level in HT-22 cells was regulated by metformin treatment. Notably, metformin reversed propofol-induced apoptosis stimulation and proliferation decline in HT-22 cells via downregulating Cav-1. Conclusion In our study, we found that propofol could induce apoptosis of HT-22 cells and metformin could rescue the apoptosis effect regulated by propofol. Then, we found that metformin protects propofol-induced neuronal apoptosis via downregulating Cav-1.
Collapse
Affiliation(s)
- Jianyun Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Yi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Lin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Tianyu Gu
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xu Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Lei Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Mengmeng Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jiafeng Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jie Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
19
|
Chen KW, Chiu HW, Chiu YW, Wu JL, Hong JR. EPA and DHA can modulate cell death via inhibition of the Fas/tBid-mediated signaling pathway with ISKNV infection in grouper fin cell line (GF-1) cells. FISH & SHELLFISH IMMUNOLOGY 2020; 97:608-616. [PMID: 31614198 DOI: 10.1016/j.fsi.2019.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in organisms, including the structure and liquidity of cell membranes, anti-oxidation and anti-inflammation. Very little has been done in terms of the effect of PUFAs on cell death, especially on DNA virus. In this study, we demonstrated that the infectious spleen and kidney necrosis virus (ISKNV) can induce host cell death via the apoptotic cell death pathway, which correlated to modulation by PUFAs in grouper fin cell line (GF-1) cells. We screened the PUFAs, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for the ability of different dosages to prevent cell death in GF-1 cells with ISKNV infection. In the results, each 10 μM of DHA and EPA treatment enhanced host cell viability up to 80% at day 5 post-infection. Then, in Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, DHA- and EPA-treated groups reduced TUNEL positive signals 50% in GF-1 cells with ISKNV infection. Then, through studies of the mechanism of cell death, we found that ISKNV can induce both the Bax/caspase-3 and Fas/caspase-8/tBid death signaling pathways in GF-1 cells, especially at day 5 post-infection. Furthermore, we found that DHA and EPA treatment can either prevent caspase-3 activation on 17-kDa form cleavage or Bid cleaved (15-kDa form) for activation by caspase-8, apparently. On the other hand, the anti-apoptotic gene Bcl-2 was upregulated 0.3-fold and 0.15-fold at day 3 and day 5, respectively, compared to ISKNV-infected and DHA-treated cells; that this did not happen in the EPA-treated group showed that different PUFAs trigger different signals. Finally, ISKNV-infected GF-1 cells treated with either DHA or EPA showed a 5-fold difference in viral titer at day 5. Taken together, these results suggest that optimal PUFA treatment can affect cell death signaling through both the intrinsic and extrinsic death pathways, reducing viral expression and viral titer in GF-1 cells. This finding may provide insight in DNA virus infection and control.
Collapse
Affiliation(s)
- Kuang-Wen Chen
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Yu-Wei Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC.
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
20
|
Luo L, Zhu S, Tong Y, Peng S. Ferulic Acid Induces Apoptosis of HeLa and Caski Cervical Carcinoma Cells by Down-Regulating the Phosphatidylinositol 3-Kinase (PI3K)/Akt Signaling Pathway. Med Sci Monit 2020; 26:e920095. [PMID: 31983729 PMCID: PMC7003662 DOI: 10.12659/msm.920095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Ferulic acid is an antioxidant phenolic compound derived from plants, which has effects on cancer cells. This study aimed to investigate the effects of ferulic acid on HeLa and Caski human cervical carcinoma cells and the molecular mechanisms involved. Material/Methods HeLa and Caski human cervical carcinoma cells were grown in culture and treated with increasing doses of ferulic acid. The MTT assay was used to evaluate cell viability. Flow cytometry was performed with 4′,6-diamidino-2-phenylindole (DAPI) and Annexin V staining for cell apoptosis. The expression of myeloid leukemia cell differentiation-1 (Mcl-1) protein and MCL-1 mRNA were determined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Results Ferulic acid significantly reduced HeLa and Caski cell viability in the concentration range of 4–20 μM (P<0.05). Ferulic acid treatment promoted DNA condensation and significantly increased apoptosis in Caski cells (P<0.05). Ferulic acid treatment resulted in the activation of pro-caspase-3, pro-caspase-8, pro-caspase-9, and PARP. The MTT assay showed that ferulic acid did not reduce the viability of Caski cells treated with the caspase inhibitor, z-VAD-fmk. Ferulic acid reduced the levels of Bcl-2 and Mcl-1, and increased the levels of Bax and reactive oxygen species (ROS). In Caski cells, Akt and PI3K phosphorylation were reduced by ferulic acid in a concentration-dependent manner. Conclusions The effects of ferulic acid were dose-dependent and resulted in cell cytotoxicity and apoptosis of HeLa and Caski cells, and the PI3K/Akt signaling pathway was down-regulated in Caski cells.
Collapse
Affiliation(s)
- Liping Luo
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China (mainland)
| | - Sihong Zhu
- Department of Obstetrics and Gynecology, Jiangxi Health Vocational College, Nanchang, Jiangxi, China (mainland)
| | - Yan Tong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Shiwei Peng
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
21
|
Han B, Wu J, Huang L. Induction of Apoptosis in Lung Cancer Cells by Viburnum grandiflorum via Mitochondrial Pathway. Med Sci Monit 2020; 26:e920265. [PMID: 31900380 PMCID: PMC6977709 DOI: 10.12659/msm.920265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Lung cancer is one of the leading causes of mortality and morbidity. Viburnum grandiflorum is a medicinal herb known for its wide spectrum of pharmacological activities, but its anti-cancer properties against lung cancer cells have not been previously investigated. The present study elucidated the antitumor effect and associated mechanism of methanol extract of Viburnum grandiflorum extract (VGE) against lung cancer cells. Material/Methods The viability of H1650, HCC827, and H1299 cells was measured using MTT assay. Apoptosis and cell cycle progression were determined by flow cytometry using annexin-V/PI and JC-1 stains, respectively. The Lipofectamine Plus reagent (Invitrogen) was used for transfection of caspase-9 plasmid to H1650 and H1299 cells. Results The results showed decreased H1650, HCC827, and H1299 cell viability by VGE, which occurred in a concentration- and time-dependent manner. The VGE treatment significantly increased the rate of apoptosis in H1650 (P<0.05) and H1299 (P<0.02) cells at 48 and 72 h. Treatment of H1650 and H1299 cells with 10 μM of VGE significantly enhanced the number of cells in sub-G1 phase. The VGE treatment cleaved pro-caspase-8/-9 and-3 in H1650 and HCC827 cells at 72 h. The VGE treatment of H1650 and HCC827 cells reduced Mcl-1 protein expression. Treatment of H1650 and HCC827 cells with VGE markedly decreased the level of p-Akt. However, dominant-negative caspase-9 (caspase-9 dN) plasmid transfection prevented the viability-inhibitory effect of VGE on H1650 and HCC827 cells. Treatment of H1650 and HCC827 cells with VGE increased levels of cytochrome c in the cytosol. Conclusions VGE inhibited lung carcinoma cell viability by apoptosis activation through a caspase-dependent pathway. Therefore, VGE is a potent anti-cancer agent against lung cancer cells.
Collapse
Affiliation(s)
- Bing Han
- Department of Cardio-Thoracic Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China (mainland)
| | - Jianqiang Wu
- Department of Cardio-Thoracic Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China (mainland)
| | - Lei Huang
- Department of Cardio-Thoracic Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China (mainland)
| |
Collapse
|
22
|
Li LX, Liu MY, Jiang X, Xia ZH, Wang YX, An D, Wang HG, Heng B, Liu YQ. Metformin inhibits Aβ 25-35 -induced apoptotic cell death in SH-SY5Y cells. Basic Clin Pharmacol Toxicol 2019; 125:439-449. [PMID: 31220411 DOI: 10.1111/bcpt.13279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022]
Abstract
Metformin, a first-line drug for type-2 diabetes, plays a potentially protective role in preventing Alzheimer's disease (AD), but its underlying mechanism is unclear. In this study, Aβ25-35 -treated SH-SY5Y cells were used as a cell model of AD to investigate the neuroprotective effect of metformin, as well as its underlying mechanisms. We found that metformin decreased the cell apoptosis rate and death, ratio of Bcl-2/Bax, and expression of NR2A and NR2B, and increased the expression of LC3 in Aβ25-35 -treated SH-SY5Y cells. Metformin also reduced intracellular and extracellular Glu concentrations, as well as the intracellular concentration of Ca2+ and ROS in Aβ25-35 -treated SH-SY5Y cells. These findings suggest that metformin inhibits Aβ25-35 -treated SH-SY5Y cell death by inhibiting apoptosis, decreasing intracellular Ca2+ and ROS by reducing neurotoxicity of excitatory amino acids, and by possibly reversing autophagy disorder via regulating autophagy process.
Collapse
Affiliation(s)
- Li-Xia Li
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng-Yu Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Jiang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhen-Hong Xia
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu-Xiang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Zhang L, Ji H, Huang Y, Hu H, Li B, Yang Y, Yu H, Chen X, Li W, Liu F, Wang S, Wang C, Chen K, Bao Y, Liu H, Duan S. Association of BAX hypermethylation with coronary heart disease is specific to individuals aged over 70. Medicine (Baltimore) 2019; 98:e14130. [PMID: 30681575 PMCID: PMC6358363 DOI: 10.1097/md.0000000000014130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION As a member of B-cell lymphoma-2 (BCL-2) gene family, BCL-2 associated X (BAX) is important for cell apoptosis. In this work, we investigated the association of BAX promoter DNA methylation with coronary heart disease (CHD) in Han Chinese. METHODS A SYBR green-based quantitative methylation specific PCR (qMSP) was used to test BAX methylation levels in 959 CHD cases and 514 controls. RESULTS Although BAX methylation was not associated with CHD in the total samples, further breakdown analysis by age showed that BAX hypermethylation was significantly associated with CHD for individuals aged over 70 (median percentage of methylation ratio [PMR], 10.70% in cases versus (vs) 2.25% in controls, P =.046). Moreover, BAX methylation was associated with smoking and lipoprotein A (Lp(a)) for individuals aged over 70 (CHD: smoking P = .012, Lp(a) P = .001; non-CHD: smoking P = .051, Lp(a) P = .004). Further analysis of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data showed BAX expression was upregulated by 5-aza-2'-deoxycytidine demethylation agent (fold = 1.66, P = .038) and inversely correlated with BAX methylation (r = -0.428, P = 8E-05). CONCLUSIONS Our study supported that BAX hypermethylation might contribute to CHD risk via downregulation of BAX expression for individuals aged over 70.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Wenxia Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Fang Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Shi Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Chunming Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Ke Chen
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Yingchun Bao
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Haibo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
24
|
Yang CT, Li KY, Meng FQ, Lin JF, Young IC, Ivkov R, Lin FH. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. NANOTECHNOLOGY 2018; 29:375101. [PMID: 29920184 PMCID: PMC6931263 DOI: 10.1088/1361-6528/aacda1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
HepG2 cell death with magnetic hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe2+. The grain size of the HAPs and iron oxide magnetic were 39.1 and 19.5 nm and were calculated by the Scherrer formula. The HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5 °C. After heating, the cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured reactive oxygen species (ROS) in cells exposed to MHT were two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of ROS to cause DNA damage, which leads to cell death that complement heat stress related biological effects.
Collapse
Affiliation(s)
- Chun-Ting Yang
- Institute of Biomedical Engineering, National Taiwan University, No1, Section 1, Jen-Ai Rd., Taipei 100, Taiwan. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine Baltimore, MD 21231, United States of America
| | | | | | | | | | | | | |
Collapse
|
25
|
Betekhtin A, Milewska-Hendel A, Chajec L, Rojek M, Nowak K, Kwasniewska J, Wolny E, Kurczynska E, Hasterok R. 5-Azacitidine Induces Cell Death in a Tissue Culture of Brachypodium distachyon. Int J Mol Sci 2018; 19:E1806. [PMID: 29921802 PMCID: PMC6032170 DOI: 10.3390/ijms19061806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Morphological and histological observations revealed that, at a concentration of 50 µM, 5-azacitidine (5-azaC) totally inhibited the induction of embryogenic masses (EM), while the cultivation of explants (zygotic embryos; ZEs) in the presence of 5 µM of 5-azaC led to the formation of a callus with EM in 10% of the cases. Transmission electron microscopy (TEM) analyzes revealed the presence of the morphological and ultrastructural features that are typical for the vacuolar type of cell death in the callus cells that were treated. A TUNEL assay confirmed the presence of DNA double-strand breaks for the callus cells that had been treated with both 5 and 50 µM 5-azaC concentrations. Analysis of the gene expression of selected cell death markers demonstrated a reduced expression of metacaspase, protein executer 1 (EX1), and thioredoxin (TRX) in the callus cells that had been treated compared to the control culture. The strongest increase in the gene activity was characteristic for glutathione S-transferase (GST). Our studies also included an analysis of the distribution of some arabinogalactan proteins (AGPs) and extensin epitopes, which can be used as markers of cells that are undergoing death in a Brachypodium distachyon tissue culture.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Lukasz Chajec
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| |
Collapse
|
26
|
Molina AS, Duprat Neto JP, Bertolli E, da Cunha IW, Fregnani JHTG, Figueiredo PHM, Soares FA, Macedo MP, Pinto Lopes CA, de Abranches Oliveira Santos Filho ID. Relapse in dermatofibrosarcoma protuberans: A histological and molecular analysis. J Surg Oncol 2018; 117:845-850. [PMID: 29509956 DOI: 10.1002/jso.25039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Dermatofibrosarcoma protuberans (DFSP) is a rare low grade tumor with a locally aggressive behavior and low metastatic potential. OBJECTIVES To evaluate the factors that are associated with relapse in DFSP. Methods Retrospective analysis of medical records from 61 patients with dermatofibrosarcoma. Fluorescence in situ hybridization was used to detect translocations. RESULTS Of 61 patients, 6 experienced a relapse. No patient with resection margins greater than 3 cm had a recurrence. One relapse was observed in a patient treated with at least 2 cm margins and 4 relapses occurred in 16 patients whose margins were below 2 cm (P = 0.018). The frequency of translocations was 77.8%. The recurrence rate was lower in patients with translocation, but this difference was not significant. Immunohistochemical markers did not correlate with recurrence rates, but greater FasL expression was associated with recurrence in patients with margins smaller than 3 cm. CONCLUSIONS Surgical margins smaller than than 2 cm are related to higher recurrences in dermatofibrosarcomas. In this analysis a 2 cm margin was acceptable for treatment. Between all the immunohistochemical markers analyzed, only FasL was associated with a higher recurrence rate in patients with margins smaller than 3 cm.
Collapse
Affiliation(s)
- André S Molina
- Skin Cancer Department, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | - Eduardo Bertolli
- Skin Cancer Department, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | - José H T G Fregnani
- Research and Teaching Institute of Barretos Cancer Hospital, Barretos, Brazil
| | | | - Fernando A Soares
- Department of Pathology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | - Mariana P Macedo
- Department of Pathology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | | |
Collapse
|
27
|
Gao QJ, Yang B, Chen J, Shi SB, Yang HJ, Liu X. Sigma-1 Receptor Stimulation with PRE-084 Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats. Chin Med J (Engl) 2018; 131:539-543. [PMID: 29483387 PMCID: PMC5850669 DOI: 10.4103/0366-6999.226076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The sigma receptors are a relatively novel receptor group with respect to knowledge of their effect on health. Although the sigma-1 receptor agonist PRE-084 exhibits a cardioprotective effect in some studies, the benefits in cases of myocardial ischemia/reperfusion (I/R) are not clear. The aim of this study was to explore the mechanism of action and assess the effect of PRE-084 on myocardial I/R injury in rats. METHODS In this study, rats were assigned randomly to three groups with computer (n = 14 for each group): a sham group, an I/R group, and a PRE-084 group. In the PRE-084 group, rats were administered PRE-084 1 h before operation. In the myocardial I/R model, the left anterior descending branch of rats was ligated and opened half an hour later. Cardiac function was assessed, and the apoptosis index was evaluated. The mechanisms of the cardioprotective effects of PRE-084 were explored. RESULTS PRE-084 pretreatment preserved cardiac function and reduced myocardial apoptosis (F = 86.0, P < 0.01) with Western blotting analysis, showing significantly reduced expression of Bax (F = 75.7, P < 0.01) and cleaved-caspase 3 (F = 44.7, P < 0.01), along with increased expression of the Bcl-2 protein (P < 0.01) and phosphorylated protein kinase B (p-Akt) (P < 0.01) and phosphorylated-endothelial nitric oxide synthase (p-eNOS; P < 0.01). CONCLUSION PRE-084 preserved cardiac function and reduced myocardial apoptosis through the activation of Akt and eNOS.
Collapse
Affiliation(s)
- Qi-Jun Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
- Department of Cardiology, First Hospital of Jingmen, Jingmen, Hubei 448000, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Shao-Bo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| |
Collapse
|
28
|
Vidimar V, Chakravarti D, Bulun SE, Yin P, Nowak R, Wei JJ, Kim JJ. The AKT/BCL-2 Axis Mediates Survival of Uterine Leiomyoma in a Novel 3D Spheroid Model. Endocrinology 2018; 159:1453-1462. [PMID: 29381777 PMCID: PMC5839731 DOI: 10.1210/en.2017-03191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
A deeper understanding of the pathways that drive uterine leiomyoma (ULM) growth and survival requires model systems that more closely mimic the in vivo tumors. This would provide new insights into developing effective therapeutic strategies for these common benign tumors of childbearing-aged women. In this study, we examined the role of BCL-2 in mediating ULM survival in the context of increased protein kinase B (AKT) and oxidative stress using a three-dimensional (3D), spheroid-based model that more closely resembles the native ULM tumor microenvironment. Human primary cells from matched myometrium (MM) and ULM tissues were used to establish spheroid cultures in vitro. Histological and immunohistochemical methods were used to assess the spheroid architecture and characteristics. Viability assays for 3D cultures were used to evaluate their response to BH3 mimetics and the superoxide inducer, paraquat (PQ). Primary MM and ULM cells formed spheroids in culture. Notably, ULM spheroids exhibited low proliferation, increased oxidative stress, and secretion of interstitial collagen. Knockdown studies revealed that AKT sustained BCL-2 expression in ULM. The targeting of BCL-2 with BH3 mimetics effectively reduced viability and induced apoptosis in a subset of ULM spheroids. ULM spheroids that did not respond to BH3 mimetics alone responded to combination treatment with PQ. In conclusion, BCL-2 mediates AKT survival of ULM, providing compelling evidence for further evaluation of BH3 mimetics for ULM treatment. ULM spheroids recapitulated intrinsic features of the native ULM tumor microenvironment and can be used as a model for preclinical testing of potential therapeutic options for ULM.
Collapse
Affiliation(s)
- Vania Vidimar
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
| | - Debabrata Chakravarti
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
| | - Serdar E. Bulun
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
| | - Ping Yin
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
| | - Romana Nowak
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Jian-Jun Wei
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Northwestern University, Chicago, Illinois 60611
| | - J. Julie Kim
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611
- Correspondence: J. Julie Kim, PhD, Division of Reproductive Science in Medicine, Department Obstetrics and Gynecology, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, 4-117, Chicago, Illinois 60611. E-mail:
| |
Collapse
|
29
|
Zhou X, Liu J, Zhang J, Wei Y, Li H. Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov 2018. [PMID: 29531815 PMCID: PMC5841417 DOI: 10.1038/s41420-017-0017-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Flubendazole, FDA-approved anthelmintic, has been widely used in treating testinal parasites. In the recent years, Flubendazole has been reported to exert anticancer activities. On the other hand, little was known about the effects of Flubendazole on gliomas. Here we demonstrated a novel effect of flubendazole on glioma cells. We found that Flubendazole inhibited cell proliferation and promoted cell apoptosis of glioma cell lines in vitro, and suppressed tumor growth in xenograft models by intraperitoneal injection. However, Flubendazole might have no influence on cell migration. Mechanism study reaveled that Flubendazole caused cell cycle arrest in G2/M phase, which partly account for the suppressed proliferation. Consistently, Flubendazole induced P53 expression and reduced Cyclin B1 and p-cdc2 expression in glioma cells. In addition, Flubendazole promoted cell apoptosis by regulating the classical apoptosis protein BCL-2 expression. These observations suggest that Flubendazole exerts anti-proliferation and pro-apoptosis effects in Glioma through affecting the cell cycle and intrinsic apoptotic signaling, and indicate a novel utilization of Flubendazole in the treatment of Glioma.
Collapse
Affiliation(s)
- Xumin Zhou
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jumei Liu
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jinming Zhang
- 2Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yong Wei
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Hua Li
- 1Department of Pathogen Biology and Experimental teaching center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
30
|
Zhang J, Zhou X, Zhu J. Beauveria attenuates asthma by inhibiting inflammatory response and inducing lymphocytic cell apoptosis. Oncotarget 2018; 7:74557-74568. [PMID: 27801673 PMCID: PMC5342686 DOI: 10.18632/oncotarget.12958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to investigate the role of beauveria (BEA) in asthma. We investigated the cytotoxic effect of BEA on the proliferation of inflammatory cells and secretion of inflammatory mediators both in-vitro and in-vivo. In in-vitro studies, BEA inhibited lymphocytic cell proliferation and the proliferation of lymphocytic cells induced by Phorbol-12-myristate-13-acetate (PMA). We used ELISA to test the effects of BEA on the secretion of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Flow cytometry was used to evaluate the influence of BEA on cell apoptosis. The effect of BEA on the cell numbers of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse bronchoalveolar lavage fluid (BALF) was also evaluated. The expression of apoptosis related molecules Bax, Caspase-3 and Bcl-2 was examined by Western blotting analysis. Our results indicated that BEA played a protective role in asthma. BEA inhibited lymphocytic cell proliferation and secretion of inflammatory mediators. BEA promoted cell apoptosis, stimulated the expression of Bax and Caspase-3 and inhibited Bcl-2 protein expression in a dose-dependent manner. In in-vivo experiments, BEA reduced the cell number of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse BALF. BEA inhibited secretion of inflammatory mediators, stimulated expression of Bax and Caspase-3, and inhibited expression of Bcl-2 in mouse lung tissue dose-dependently. All together, our results indicated that BEA could attenuate asthma by inhibiting inflammatory response and induce apoptosis of inflammatory cells.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jiping Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Abstract
Failure to eliminate cancer cells that have been exposed to cytotoxic agents may contribute to the development of resistance to antitumor drugs. A widespread model in present day oncology is that antitumor therapy involves the triggering of tumor cells to undergo apoptosis, and cells that can avoid apoptosis will be resistant to such therapy. Apoptosis is a defined program of cell death that is markedly influenced by the fact that many routes leading to it are mutated or deregulated in human cancer. Mutations in the tumor suppressor protein p53, a common feature of many cancers, may decrease the sensitivity of cells to some antitumor agents. Moreover, it has been increasingly reported that antitumor therapy not only causes apoptosis, but other forms of cell death as well, such as mitotic catastrophe, necrosis and autophagy, or a permanent cell arrest with phenotype characteristics of senescence. Mitotic catastrophe is a form of cell death that results from abnormal mitosis, which does not seem to depend on wild-type p53. Sometimes mitotic catastrophe is used restrictively for faulty mitosis leading to cell death, which may occur via apoptosis or necrosis. We critically review herein how antitumor therapy may elicit the response of human cancers through different cell pathways leading to cell death.
Collapse
|
32
|
HPV Status and Its Correlation with BCL2, p21, p53, Rb, and Survivin Expression in Breast Cancer in a Chinese Population. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6315392. [PMID: 29423411 PMCID: PMC5750508 DOI: 10.1155/2017/6315392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Despite recent evidence, the role of human papillomavirus (HPV) in breast carcinogenesis is controversial. The correlations of HPV infection with the clinicopathological features of breast cancer and the expression of cell cycle/apoptosis-associated proteins have not been well elucidated. In this study, we sought to determine the prevalence of high-risk HPVs (HR-HPVs) infection and BCL2, p21, p53, Rb, and survivin expression in breast cancer patients and to investigate the relationship of HPV with these cancer-related proteins, in an attempt to clarify the potential mechanism of HPV in breast cancer pathogenesis. HPV presence in 81 fresh breast cancer tissues was determined by hybrid capture 2 (HC2) assay, and expression of BCL2, p21, p53, Rb, and survivin was detected by immunohistochemistry. Here we showed that fourteen (17.3%) patients were HR-HPV positive. HPV infection demonstrated no significant correlation with the clinicopathological characteristics of breast cancer. HPV-positive tumors showed significantly higher BCL2 and lower p53 expression than HPV-negative tumors. Expression of p21, Rb, and survivin was not associated with HPV status. Our results suggest a possible role of HR-HPV in breast cancer carcinogenesis, in which BCL2 and p53 may be involved.
Collapse
|
33
|
The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1. Oncotarget 2017; 7:12222-34. [PMID: 26933817 PMCID: PMC4914280 DOI: 10.18632/oncotarget.7731] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers.
Collapse
|
34
|
Saemisch M, Nickmann M, Riesinger L, Edelman ER, Methe H. 3D matrix-embedding inhibits cycloheximide-mediated sensitization to TNF-alpha-induced apoptosis of human endothelial cells. J Tissue Eng Regen Med 2017; 12:1085-1096. [PMID: 29131527 DOI: 10.1002/term.2609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Others and we previously demonstrated endothelial biology being intertwined with biochemical and structural composition of the subendothelial basement membrane. We now demonstrate that a three-dimensional growing environment significantly shields endothelial cells from cytokine-induced apoptosis. Detailed analysis reveals differences in intracellular signaling pathways in naive endothelial cells and cytokine-stimulated endothelial cells when cells are grown within a three-dimensional collagen-based matrix compared to cells grown on two-dimensional tissue culture plates. Main findings are significantly reduced p53 expression and level of p38-phosphorylation in three-dimensional grown endothelial cells. Despite similar concentrations of focal adhesion kinase, three-dimensional matrix-embedded endothelial cells express significantly less tyrosine-phosphorylated focal adhesion kinase. Pretreatment with antibodies against integrin αv β3 partially reversed the protective effect of three-dimensional matrix-embedding on endothelial apoptosis. Our findings provide detailed insights into the mechanisms of endothelial apoptosis with respect to the spatial matrix environment. These results enhance our understanding of endothelial biology and may otherwise help in the design of tissue-engineered materials. Furthermore, findings on focal adhesion kinase phosphorylation might enhance our understanding of clinical studies with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.,Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elazer R Edelman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Kliniken an der Paar, Aichach, Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis. Oncotarget 2017; 8:19342-19353. [PMID: 28038443 PMCID: PMC5386688 DOI: 10.18632/oncotarget.14258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 01/23/2023] Open
Abstract
Expression of the RNA-binding protein HnRNP-L was previously shown to associate with tumorigenesis in liver and lung cancer. In this study, we examined the role of HnRNP-L in prostate cancer (Pca). We found that HnRNP-L is overexpressed in prostate tissue samples from 160 PC patients compared with tissue samples from 32 donors with cancers other than Pca. Moreover, HnRNP-L positively correlated with aggressive tumor characteristics. HnRNP-L knockdown inhibited cell proliferation and promoted cell apoptosis of Pca cell lines in vitro, and suppressed tumor growth when the cells were subcutaneously implanted in an athymic mouse model. Conversely, overexpression of HnRNP-L promoted cell proliferation and tumor growth while prohibiting cell apoptosis. HnRNP-L promoted cell proliferation and tumor growth in Pca in part by interacting with endogenous p53 mRNA, which was closely associated with cyclin p21. In addition, HnRNP-L affected cell apoptosis by directly binding the classical apoptosis protein BCL-2. These observations suggest HnRNP-L is an important regulatory factor that exerts pro-proliferation and anti-apoptosis effects in Pca through actions affecting the cell cycle and intrinsic apoptotic signaling. Thus HnRNP-L could potentially serve as a valuable molecular biomarker or therapeutic target in the treatment of Pca.
Collapse
|
36
|
Kumar M, Nayak PK. Psychological sequelae of myocardial infarction. Biomed Pharmacother 2017; 95:487-496. [PMID: 28866415 DOI: 10.1016/j.biopha.2017.08.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
Patient with myocardial infarction (MI) are often affected by psychological disorders such as depression, anxiety, and post-traumatic stress disorder. Psychological disorders are disabling and have a negative influence on recovery, reduce the quality of life and causes high mortality rate in MI patients. Despite tremendous advancement in technologies, screening scales, and treatment strategies, psychological sequelae of MI are currently understudied, underestimated, underdiagnosed, and undertreated. Depression is highly prevalent in MI patients followed by anxiety and post-traumatic stress disorder. Pathophysiological factors involved in psychopathologies observed in patients with MI are sympathetic over-activity, hypothalamic-pituitary-adrenal axis dysfunction, and inflammation. Numerous preclinical and clinical studies evidenced a positive association between MI and psychopathologies with a common molecular pathophysiology. This review provides an update on diagnostic feature, prevalence, pathophysiology, clinical outcomes, and management strategies of psychopathologies associated with MI. Moreover, preclinical research findings on molecular mechanisms involved in post-MI psychopathologies and future therapeutic strategies have been outlined in the review.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
37
|
Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, Aryan H, Nassiri F, Jangholi E. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurg 2017; 108:94-100. [PMID: 28867321 DOI: 10.1016/j.wneu.2017.08.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). METHODS Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. RESULTS Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. CONCLUSIONS C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs.
Collapse
Affiliation(s)
- Masoumeh Mansoubi Hosseini
- Department of Microbiology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aliasghar Karimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mitra Behroozaghdam
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Javidi
- Department of Molecular and Cellular Science, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer, Iran
| | - Ahmad Bereimipour
- Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hoda Aryan
- Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Medical Students' Scientific Association, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Nassiri
- Department of Cell Biology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Jangholi
- Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Clinical Research Development Center, Amir-almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
38
|
Shahin V. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis. Semin Cell Dev Biol 2017; 68:85-90. [DOI: 10.1016/j.semcdb.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
39
|
Methotrexate Induces Apoptosis in Organ-Cultured Nasal Polyps Via the Fas Pathway. J Craniofac Surg 2017; 28:806-809. [PMID: 28468172 DOI: 10.1097/scs.0000000000003562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Methotrexate (MTX) is very effective when used to treat chronic inflammatory diseases, and also induces apoptosis in nasal polyps (NPs). Increasing evidence suggests that Fas-Fas ligand (FasL) interactions activate multiple pathways involved in the regulation of immune and inflammatory cell functions. The aim of the present study was to identify pathways activated by Fas signaling when NPs were treated with MTX. METHODS Nasal polyps tissues were cultured using an air-liquid interface organ culture method. Cultures were maintained in the absence or presence of MTX (10 or 100 μM) for 24 hours. The authors used the reverse transcription-polymerase chain reaction method and Western blotting to identify pathways activated by Fas when NPs were treated with MTX. RESULTS The Fas mRNA expression ratio was unchanged upon MTX treatment, but the FasL mRNA expression ratio was significantly higher in MTX-treated than nontreated polyps. In addition, the expression levels of the Fas and FasL proteins were significantly higher in polyps treated with both 10 and 100 μM MTX compared with nontreated polyps. CONCLUSIONS Methotrexate induces apoptosis in NPs via the Fas pathway. Future studies should explore the topical use of MTX for NP control. Methotrexate may be a useful alternative steroid-sparing agent for the treatment of NPs.
Collapse
|
40
|
Bentley BP, Haas BJ, Tedeschi JN, Berry O. Loggerhead sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress. Mol Ecol 2017; 26:2978-2992. [PMID: 28267875 DOI: 10.1111/mec.14087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022]
Abstract
Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change.
Collapse
Affiliation(s)
- Blair P Bentley
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| | - Brian J Haas
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jamie N Tedeschi
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia
| | - Oliver Berry
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| |
Collapse
|
41
|
Vilela TC, Scaini G, Furlanetto CB, Pasquali MAB, Santos JPA, Gelain DP, Moreira JCF, Schuck PF, Ferreira GC, Streck EL. Apoptotic signaling pathways induced by acute administration of branched-chain amino acids in an animal model of maple syrup urine disease. Metab Brain Dis 2017; 32:115-122. [PMID: 27510712 DOI: 10.1007/s11011-016-9892-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Thais C Vilela
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Camila B Furlanetto
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Matheus A B Pasquali
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Paulo A Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
42
|
Reshi L, Wang HV, Hui CF, Su YC, Hong JR. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. FISH & SHELLFISH IMMUNOLOGY 2017; 61:120-129. [PMID: 28025159 DOI: 10.1016/j.fsi.2016.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability.
Collapse
Affiliation(s)
- Latif Reshi
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Hua-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Cho-Fat Hui
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Yu-Chin Su
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Biotechnology and Bioindustry, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
43
|
Sun YY, Xiao L, Wang D, Ji YC, Yang YP, Ma R, Chen XH. Triptolide inhibits viability and induces apoptosis in liver cancer cells through activation of the tumor suppressor gene p53. Int J Oncol 2017; 50:847-852. [PMID: 28098861 DOI: 10.3892/ijo.2017.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effect of triptolide on viability and apoptosis along with underlying mechanism in liver cancer cells. CCK-8 assay showed that triptolide treatment for 48 h significantly reduced the viability of HepG2 and QSG7701 cells at 50 µM concentration. Annexin V-FITC and propidium iodide staining showed that triptolide treatment of HepG2 cells at 50 µM concentrations induced apoptosis in 56.45% cells compared to only 2.36% cells in the control cultures. Western blot assay showed that treatment of HepG2 cells with 50 µM concentration of triptolide significantly induced phosphorylation of p53 in a 2 h-treatment. Phosphorylation of histone H2A.X indicator of DNA damage was induced by triptolide treatment after 12 h in HepG2 cells. The level of nuclear p53 in a 6 h-treatment with 0, 10, 20, 30, 40 and 50 µM concentration of triptolide was found to be 15.3, 19.6, 28.5, 43.7, 63.8 and 91.5%, respectively. Treatment of HepG2 cells with triptolide at 50 µM concentration caused a significant increase in the binding potential of p53 to DNA. Triptolide treatment of HepG2 cells caused a significant increase in the expression of p21, Bax and DR5 genes in HepG2 cells. It also increased the expression of miR-34b and miR-34c in HepG2 cells markedly. Treatment of HepG2 cells with p53 inhibitor, pifithrin-α prior to incubation with triptolide significantly prevented induction of cell apoptosis. Suppression of p53 expression by siRNA inhibited the expression of p53 as well as its target genes along with the prevention of apoptosis induction. In conclusion, triptolide inhibits viability and induces apoptosis in liver cancer cells through activation of the tumor suppressor gene p53. Thus, triptolide can be used for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yan-Yan Sun
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Xiao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan-Chao Ji
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu-Peng Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Rong Ma
- Department of Gynecological Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Xi-Hai Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
44
|
He JD, Wang Z, Li SP, Xu YJ, Yu Y, Ding YJ, Yu WL, Zhang RX, Zhang HM, Du HY. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget 2016; 7:84520-84532. [PMID: 27588401 PMCID: PMC5356678 DOI: 10.18632/oncotarget.11731] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022] Open
Abstract
Vitexin, a flavonoids compound, is known to exhibit broad anti-oxidative, anti-inflammatory, analgesic, and antitumor activity in many cancer xenograft models and cell lines. The purpose of this study was to investigate the antitumor effects and underlying mechanisms of vitexin on hepatocellular carcinoma. In this study, we found that vitexin suppressed the viability of HCC cell lines (SK-Hep1 and Hepa1-6 cells) significantly. Vitexin showed cytotoxic effects against HCC cell lines in vitro by inducing apoptosis and inhibiting autophagy. Vitexin induced apoptosis in a concentration-dependent manner, and caused up-regulations of Caspase-3, Cleave Caspase-3, and a down-regulation of Bcl-2. The expression of autophagy-related protein LC3 II was significantly decreased after vitexin treatment. Moreover, western blot analysis presented that vitexin markedly up-regulated the levels of p-JNK and down-regulated the levels of p-Erk1/2 in SK-Hep1 cells and Hepa1-6 cells. Cotreatment with JNK inhibitor SP600125, we demonstrated that apoptosis induced by vitexin was suppressed, while the inhibition of autophagy by vitexin was reversed. The results of colony formation assay and mouse model confirmed the growth inhibition role of vitexin on HCC in vitro and in vivo. In conclusion, vitexin inhibits HCC growth by way of apoptosis induction and autophagy suppression, both of which are through JNK MAPK pathway. Therefore, vitexin could be regarded as a potent therapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Jin-Dan He
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Zhen Wang
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Shi-Peng Li
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of General Surgery, The People's Hospital of Jiaozuo City, Jiaozuo 454002, P.R. China
| | - Yan-Jie Xu
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Yao Yu
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Yi-Jie Ding
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Wen-Li Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Rong-Xin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hai-Ming Zhang
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of Liver Transplantation, Oriental Organ Transplant Center of Tianjin First Central Hospital, Key Laboratory of Organ Transplantation of Tianjin, Tianjin 300192, P.R. China
| | - Hong-Yin Du
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
45
|
Reshi L, Wu HC, Wu JL, Wang HV, Hong JR. GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells. Apoptosis 2016; 21:443-58. [PMID: 26833308 DOI: 10.1007/s10495-016-1219-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway.
Collapse
Affiliation(s)
- Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.,Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Horng-Cherng Wu
- Laboratory Department of Food Science and Technology, Chin Nan University of Pharmacy and Science, Tainan, 717, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
46
|
Shan TD, Xu JH, Yu T, Li JY, Zhao LN, Ouyang H, Luo S, Lu XJ, Huang CZ, Lan QS, Zhong W, Chen QK. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget 2016; 7:961-75. [PMID: 26510906 PMCID: PMC4808045 DOI: 10.18632/oncotarget.5830] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). Here, we investigated the association of linc-POU3F3 and prognosis in CRC. We demonstrated that linc-POU3F3 was overexpressed in CRC tissues and positively correlated with tumor grade and N stage. Inhibition of linc-POU3F3 resulted in inhibition of cell proliferation and G1 cell cycle arrest, which was mediated by cyclin D1, CDK4, p18, Rb, and phosphorylated Rb. Inhibition of linc-POU3F3 induced apoptosis, and suppressed migration and invasion in LOVO and SW480 cell lines. This inhibition also increased the expressions of epithelial markers and decreased the expressions of mesenchymal markers, thus inhibiting the cancer epithelial-mesenchymal transition. The decreased migration and invasion following linc-POU3F3 knockdown were mediated by an increased BMP signal. Furthermore, autophagy was enhanced by linc-POU3F3 knockdown, suggesting the involvement of autophagy in the induced apoptosis. Collectively, linc-POU3F3 might be crucial in pro-proliferation, anti-apoptosis, and metastasis in LOVO and SW480 cells by regulating the cell cycle, intrinsic apoptosis, BMP signaling and autophagy. Thus, linc-POU3F3 is a potential therapeutic target and novel molecular biomarker for CRC.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Ji-Hao Xu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Jie-Yao Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Lin-Na Zhao
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510504, People's Republic of China
| | - Hui Ouyang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Su Luo
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Xi-Ji Lu
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Can-Ze Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Qiu-Shen Lan
- Department of General Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
47
|
Kong L, Gao X, Zhu J, Cheng K, Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1674-1683. [PMID: 27257140 DOI: 10.1002/tox.22288] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
Nickel nanoparticles (Ni NPs) are associated with reproductive toxicity. However, the mechanisms of reproductive toxicity are unclear. Our goal was to explore further reproductive toxicity induced by nickel nanoparticle and mechanisms involved in this process, including the role of oxidative stress and apoptosis. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors. Ultrastructural results of ovaries showed mitochondrion swelling, disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum in the exposure groups. NiNPs had significantly decreased the activity of SOD and CAT, and had increased the levels of ROS, MDA, and NO in comparison with the control groups. The mRNA expressions of caspase-3, caspase-8, and caspase-9 and the expressions of Fas, Cyt c, Bax, and Bid protein on the ovaries significantly increased. At the same time, the expressions of Bcl-2 protein were significantly decreased. Based on these results, oxidative stress and cell apoptosis may play the important roles in inducing reproductive toxicity after NiNPs treatment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1674-1683, 2016.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jiaqian Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
48
|
Shehata HH, Abou Ghalia AH, Elsayed EK, Ahmed Said AM, Mahmoud SS. Clinical significance of high levels of survivin and transforming growth factor beta-1 proteins in aqueous humor and serum of retinoblastoma patients. J AAPOS 2016; 20:444.e1-444.e9. [PMID: 27663628 DOI: 10.1016/j.jaapos.2016.07.223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the diagnostic and prognostic values of survivin and transforming growth factor beta-1 (TGF-B1) expression in aqueous humor and serum of retinoblastoma (RB) in comparison to the conventional RB marker lactate dehydrogenase (LDH) and to elucidate a possible correlation between them and the clinicopathological features of the disease. METHODS This prospective, comparative study included 88 newly diagnosed children with RB and 80 age-matched controls with ophthalmic conditions other than tumors prepared for intraocular surgeries. Concentrations of survivin, TGF-B1, and LDH were measured in serum and aqueous humor before and 6 months after completion of therapy. RESULTS High serum and aqueous humor concentrations of the three proteins were detected in RB patients before treatment compared to the control group (P < 0.01), with a significant reduction of serum concentrations after treatment (P < 0.01). For the highest sensitivity and specificity, the optimal cutoff values of serum and aqueous survivin were 12.9 pg/ml and 25.2 pg/mg, with a significant positive correlation between aqueous survivin and RB staging and presence of optic nerve infiltration (r = 0.43, P = 0.04); the best cutoff values of serum and aqueous TGF-B1, 370.7 pg/ml and 39.8 pg/mg, with a significant positive correlation between aqueous TGF-B1 and poor differentiation of the tumor (r = 0.69, P = 0.001). CONCLUSIONS The high sensitivity, specificity, and accuracy of serum and aqueous humor survivin and TGF-B1 proteins make them promising markers for early detection and follow-up of RB patients.
Collapse
Affiliation(s)
- Hanan Hussein Shehata
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman Khairy Elsayed
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Safaa Saleh Mahmoud
- Ophthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Cossa AC, Lima DC, do Vale TG, de Alencar Rocha AKA, da Graça Naffah-Mazzacoratti M, da Silva Fernandes MJ, Amado D. Maternal seizures can affect the brain developing of offspring. Metab Brain Dis 2016; 31:891-900. [PMID: 27085526 DOI: 10.1007/s11011-016-9825-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
To elucidate the impact of maternal seizures in the developing rat brain, pregnant Wistar rats were subjected to the pilocarpine-induced seizures and pups from different litters were studied at different ages. In the first 24 h of life, blood glucose and blood gases were analyzed. (14)C-leucine [(14)C-Leu] incorporation was used to analyze protein synthesis at PN1, and Western Blot method was used to analyze protein levels of Bax, Bcl-2 and Poly(ADP-ribose) polymerase-1 (PARP-1) in the hippocampus (PN3-PN21). During the first 22 days of postnatal life, body weight gain, length, skull measures, tooth eruption, eye opening and righting reflex have been assessed. Pups from naive mothers were used as controls. Experimental pups showed a compensated metabolic acidosis and hyperglycemia. At PN1, the [(14)C-Leu] incorporation into different studied areas of experimental pups was lower than in the control pups. During development, the protein levels of Bax, Bcl-2 and PARP-1 in the hippocampus of experimental pups were altered when compared with control pups. A decreased level of pro- and anti-apoptotic proteins was verified in the early postnatal age (PN3), and an increased level of pro-apoptotic proteins concomitant with a reduced level of anti-apoptotic protein was observed at the later stages of the development (PN21). Experimental pups had a delay in postnatal growth and development beyond disturb in protein synthesis and some protein expression during development. These changes can be result from hormonal alterations linked to stress and/or hypoxic events caused by maternal epileptic seizures during pregnancy.
Collapse
Affiliation(s)
- Ana Carolina Cossa
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil.
| | - Daiana Correia Lima
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil
| | | | - Anna Karynna Alves de Alencar Rocha
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil
| | - Maria da Graça Naffah-Mazzacoratti
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil
- Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP - Rua 3 de maio, 100, São Paulo, BR, Brasil
| | - Maria José da Silva Fernandes
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil
| | - Debora Amado
- Departamento de Neurologia e Neurocirurgia - Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, UNIFESP, Rua Pedro de Toledo, 669, 2° Andar, São Paulo, SP, Brasil
| |
Collapse
|
50
|
Cheng Y, Wang W, Yao J, Huang L, Voegele RT, Wang X, Kang Z. Two distinct Ras genes from Puccinia striiformis
exhibit differential roles in rust pathogenicity and cell death. Environ Microbiol 2016; 18:3910-3922. [DOI: 10.1111/1462-2920.13379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Wumei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Ralf T. Voegele
- Fachgebiet Phytopathologie, Fakultät Agrarwissenschaften, Institut für Phytomedizin, Universität Hohenheim; Stuttgart Germany
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| |
Collapse
|