1
|
Huang YT, Calvi BR. Activation of a Src-JNK pathway in unscheduled endocycling cells of the Drosophila wing disc induces a chronic wounding response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642788. [PMID: 40161657 PMCID: PMC11952448 DOI: 10.1101/2025.03.12.642788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The endocycle is a specialized cell cycle during which cells undergo repeated G / S phases to replicate DNA without division, leading to large polyploid cells. The transition from a mitotic cycle to an endocycle can be triggered by various stresses, which results in unscheduled, or induced endocycling cells (iECs). While iECs can be beneficial for wound healing, they can also be detrimental by impairing tissue growth or promoting cancer. However, the regulation of endocycling and its role in tissue growth remain poorly understood. Using the Drosophila wing disc as a model, we previously demonstrated that iEC growth is arrested through a Jun N-Terminal Kinase (JNK)-dependent, reversible senescence-like response. However, it remains unclear how JNK is activated in iECs and how iECs impact overall tissue structure. In this study, we performed a genetic screen and identified the Src42A-Shark-Slpr pathway as an upstream regulator of JNK in iECs, leading to their senescence-like arrest. We found that tissues recognize iECs as wounds, releasing wound-related signals that induce a JNK-dependent developmental delay. Similar to wound closure, this response triggers Src-JNK-mediated actomyosin remodeling, yet iECs persist rather than being eliminated. Our findings suggest that the tissue response to iECs shares key signaling and cytoskeletal regulatory mechanisms with wound healing and dorsal closure, a developmental process during Drosophila embryogenesis. However, because iECs are retained within the tissue, they create a unique system that may serve as a model for studying chronic wounds and tumor progression.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, 46202 USA
| |
Collapse
|
2
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
3
|
Huang H, Kuang X, Zou Y, Zeng J, Du H, Tang H, Long C, Mao Y, Yu X, Wen C, Yan J, Shen H. MAP4K4 is involved in the neuronal development of retinal photoreceptors. Exp Eye Res 2023; 233:109524. [PMID: 37290629 DOI: 10.1016/j.exer.2023.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is a potential regulator of photoreceptor development. To investigate the mechanisms underlying MAP4K4 during the neuronal development of retinal photoreceptors, we generated knockout models of C57BL/6j mice in vivo and 661 W cells in vitro. Our findings revealed homozygous lethality and neural tube malformation in mice subjected to Map4k4 DNA ablation, providing evidence for the involvement of MAP4K4 in early stage embryonic neural formation. Furthermore, our study demonstrated that the ablation of Map4k4 DNA led to the vulnerability of photoreceptor neurites during induced neuronal development. By monitoring transcriptional and protein variations in mitogen-activated protein kinase (MAPK) signaling pathway-related factors, we discovered an imbalance in neurogenesis-related factors in Map4k4 -/- cells. Specifically, MAP4K4 promotes jun proto-oncogene (c-JUN) phosphorylation and recruits other factors related to nerve growth, ultimately leading to the robust formation of photoreceptor neurites. These data suggest that MAP4K4 plays a decisive role in regulating the fate of retinal photoreceptors through molecular modulation and contributes to our understanding of vision formation.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuxiu Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Colleluori V, Khokha MK. Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2. Dev Biol 2023; 495:42-53. [PMID: 36572140 PMCID: PMC10116378 DOI: 10.1016/j.ydbio.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when β-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.
Collapse
Affiliation(s)
- Vaughn Colleluori
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
CRISPR-based kinome-screening revealed MINK1 as a druggable player to rewire 5FU-resistance in OSCC through AKT/MDM2/p53 axis. Oncogene 2022; 41:4929-4940. [PMID: 36182968 PMCID: PMC9630125 DOI: 10.1038/s41388-022-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022]
Abstract
Cisplatin, 5FU and docetaxel (TPF) are the most common chemotherapy regimen used for advanced OSCC. However, many cancer patients experience relapse, continued tumor growth, and spread due to drug resistance, which leads to treatment failure and metastatic disease. Here, using a CRISPR/Cas9 based kinome knockout screening, Misshapen-like kinase 1 (MINK1) is identified as an important mediator of 5FU resistance in OSCC. Analysis of clinical samples demonstrated significantly higher MINK1 expression in the tumor tissues of chemotherapy non-responders as compared to chemotherapy responders. The nude mice and zebrafish xenograft experiments indicate that knocking out MINK1 restores 5FU mediated cell death in chemoresistant OSCC. An antibody based phosphorylation array screen revealed MINK1 as a negative regulator of p53. Mechanistically, MINK1 modulates AKT phosphorylation at Ser473, which enables p-MDM2 (Ser 166) mediated degradation of p53. We also identified lestaurtinib as a potent inhibitor of MINK1 kinase activity. The patient derived TPF resistant cell based xenograft data suggest that lestaurtinib restores 5FU sensitivity and facilitates a significant reduction of tumor burden. Overall, our study suggests that MINK1 is a major driver of 5FU resistance in OSCC. The novel combination of MINK1 inhibitor lestaurtinib and 5FU needs further clinical investigation in advanced OSCC.
Collapse
|
8
|
Ma B, Ma C, Li J, Fang Y. Revealing phosphorylation regulatory networks during embryogenesis of honey bee worker and drone (Apis mellifera). Front Cell Dev Biol 2022; 10:1006964. [PMID: 36225314 PMCID: PMC9548569 DOI: 10.3389/fcell.2022.1006964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48–72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.
Collapse
Affiliation(s)
| | | | - Jianke Li
- *Correspondence: Jianke Li, ; Yu Fang,
| | - Yu Fang
- *Correspondence: Jianke Li, ; Yu Fang,
| |
Collapse
|
9
|
Li J, Liu J, Chi B, Chen P, Liu Y. 20E and MAPK signal pathway involved in the effect of reproduction caused by cyantraniliprole in Bactrocera dorsalis Hendel (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2022; 78:63-72. [PMID: 34418274 DOI: 10.1002/ps.6607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND It is a common phenomenon that insecticides affect insect reproduction and insect hormones. After cyantraniliprole treatment, the egg production and remating behavior of female Bactrocera dorsalis were affected, a phenomenon of 'hormesis' appeared, but the change at the molecular level was unknown. Therefore, we investigated the fertility, insect hormone titers and transcription levels and used RNAi to prove the function of genes, to explore the molecular mechanism of cyantraniliprole causing reproductive changes in female B. dorsalis. RESULTS LC20 treatment promoted egg production, while LC50 treatment inhibited it. Both high and low concentrations inhibited female ovaries' development and reduced the length of the ovarian tubes. Among insect hormones, only the titer of 20-hydroxyecdysone (20E) changed significantly. According to the KEGG pathway enrichment analysis of RNA-seq, there are significant differences in insect hormone synthesis and MAPK signal pathways between treatments. Furthermore, 20E biosynthetic genes, BdVgs and BdVgR were all down-regulated, and multiple MAPK signaling pathway genes were up-regulated. Based on qRT-PCR, the expression of BdCyp307A1, BdCyp302A1, BdMEKK4 and BdMAP2K6 within 1-11 days after treatment were consistent with the change of 20E titer. The BdVg1 and BdVg2 in LC50 were still suppressed, while the LC20 returned to normal in 9-11 days. RNAi indicated that BdMEKK4 and BdMAP2K6 participated in the transcriptional regulation of BdCyp307A1 and BdCyp302A1, then affected the levels of BdVgs. CONCLUSION Cyantraniliprole affected 20E through MAPK signal pathway, causing many genes to be down-regulated during the early period but up-regulated during the late period, ultimately affecting the reproduction of B. dorsalis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jin Liu
- Shandong Agriculture and Engineering University, Jinan, China
| | - Baojie Chi
- Shandong Agriculture and Engineering University, Jinan, China
| | - Peng Chen
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yongjie Liu
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Abstract
Ras is the most mutated oncoprotein in cancer. Among the three oncogenic effectors of Ras - Raf, PI3 Kinase and RalGEF>Ral - signalling through RalGEF>Ral (Ras-like) is by far the least well understood. A variety of signals and binding partners have been defined for Ral, yet we know little of how Ral functions in vivo. This review focuses on previous research in Drosophila that defined a function for Ral in apoptosis and established indirect relationships among Ral, the CNH-domain MAP4 Kinase misshapen, and the JNK MAP kinase basket. Most of the described signalling components are not essential in C. elegans, facilitating subsequent analysis using developmental patterning of the C. elegans vulval precursor cells (VPCs). The functions of two paralogous CNH-domain MAP4 Kinases were defined relative to Ras>Raf, Notch and Ras>RalGEF>Ral signalling in VPCs. MIG-15, the nematode ortholog of misshapen, antagonizes both the Ral-dependent and Ras>Raf-dependent developmental outcomes. In contrast, paralogous GCK-2, the C. elegans ortholog of Drosophila happyhour, propagates the 2°-promoting signal of Ral. Manipulations via CRISPR of Ral signalling through GCK-2 coupled with genetic epistasis delineated a Ras>RalGEF>Ral>Exo84>GCK-2>MAP3KMLK-1> p38PMK-1 cascade. Thus, genetic analysis using invertebrate experimental organisms defined a cascade from Ras to p38 MAP kinase.
Collapse
Affiliation(s)
| | - David J. Reiner
- Texas A&M University, Houston, TX, USA,CONTACT David J. Reiner Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX
| |
Collapse
|
11
|
Kong D, Lu JY, Li X, Zhao S, Xu W, Fang J, Wang X, Ma X. Misshapen Disruption Cooperates with RasV12 to Drive Tumorigenesis. Cells 2021; 10:cells10040894. [PMID: 33919765 PMCID: PMC8070713 DOI: 10.3390/cells10040894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that synergizes with oncogenic Ras (RasV12) to induce c-Jun N-terminal kinase (JNK) activation and Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat (Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Du Kong
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jin-Yu Lu
- Baylor College of Medicine, Hematology & Oncology, Houston, TX 77054, USA;
| | - Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Sihua Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jinan Fang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
- Correspondence: (X.W.); (X.M.)
| | - Xianjue Ma
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; (S.Z.); (J.F.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: (X.W.); (X.M.)
| |
Collapse
|
12
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
13
|
Trainor JE, KR P, Mortimer NT. Immune Cell Production Is Targeted by Parasitoid Wasp Virulence in a Drosophila-Parasitoid Wasp Interaction. Pathogens 2021; 10:49. [PMID: 33429864 PMCID: PMC7826891 DOI: 10.3390/pathogens10010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
The interactions between Drosophila melanogaster and the parasitoid wasps that infect Drosophila species provide an important model for understanding host-parasite relationships. Following parasitoid infection, D. melanogaster larvae mount a response in which immune cells (hemocytes) form a capsule around the wasp egg, which then melanizes, leading to death of the parasitoid. Previous studies have found that host hemocyte load; the number of hemocytes available for the encapsulation response; and the production of lamellocytes, an infection induced hemocyte type, are major determinants of host resistance. Parasitoids have evolved various virulence mechanisms to overcome the immune response of the D. melanogaster host, including both active immune suppression by venom proteins and passive immune evasive mechanisms. We identified a previously undescribed parasitoid species, Asobara sp. AsDen, which utilizes an active virulence mechanism to infect D. melanogaster hosts. Asobara sp. AsDen infection inhibits host hemocyte expression of msn, a member of the JNK signaling pathway, which plays a role in lamellocyte production. Asobara sp. AsDen infection restricts the production of lamellocytes as assayed by hemocyte cell morphology and altered msn expression. Our findings suggest that Asobara sp. AsDen infection alters host signaling to suppress immunity.
Collapse
Affiliation(s)
| | | | - Nathan T. Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; (J.E.T.); (P.K.)
| |
Collapse
|
14
|
Golenkina S, Manhire-Heath R, Murray MJ. Exploiting Drosophila melanogaster Wing Imaginal Disc Eversion to Screen for New EMT Effectors. Methods Mol Biol 2021; 2179:115-134. [PMID: 32939717 DOI: 10.1007/978-1-0716-0779-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stages of Drosophila melanogaster (Drosophila) metamorphosis, a partial epithelial-mesenchymal transition (pEMT) takes place in the peripodial epithelium of wing imaginal discs. Blocking this pEMT results in adults with internalized wings and missing thoracic tissue. Using peripodial GAL4 drivers, GAL80ts temporal control, and UAS RNAi transgenes, one can use these phenotypes to screen for genes involved in the pEMT. Dominant modifier tests can then be employed to identify genetic enhancers and suppressors. To analyze a gene's role in the pEMT, one can then visualize peripodial cells in vivo at the time of eversion within the pupal case using live markers, and by dissecting, fixing, and immunostaining the prepupae. Alternatively, one can analyze the pEMT ex vivo by dissecting out wing discs and culturing them in the presence of ecdysone to induce eversion. This can provide a clearer view of the cellular processes involved and permit drug treatments to be easily applied.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Michael J Murray
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Plutoni C, Keil S, Zeledon C, Delsin LEA, Decelle B, Roux PP, Carréno S, Emery G. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nat Commun 2019; 10:3940. [PMID: 31477736 PMCID: PMC6718686 DOI: 10.1038/s41467-019-11963-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022] Open
Abstract
Collective cell migration is involved in development, wound healing and metastasis. In the Drosophila ovary, border cells (BC) form a small cluster that migrates collectively through the egg chamber. To achieve directed motility, the BC cluster coordinates the formation of protrusions in its leader cell and contractility at the rear. Restricting protrusions to leader cells requires the actin and plasma membrane linker Moesin. Herein, we show that the Ste20-like kinase Misshapen phosphorylates Moesin in vitro and in BC. Depletion of Misshapen disrupts protrusion restriction, thereby allowing other cells within the cluster to protrude. In addition, we show that Misshapen is critical to generate contractile forces both at the rear of the cluster and at the base of protrusions. Together, our results indicate that Misshapen is a key regulator of BC migration as it coordinates two independent pathways that restrict protrusion formation to the leader cells and induces contractile forces.
Collapse
Affiliation(s)
- Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Lara Elis Alberici Delsin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Cell Rep 2018; 24:2669-2681.e5. [PMID: 30184501 PMCID: PMC6484852 DOI: 10.1016/j.celrep.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
C. elegans vulval precursor cell (VPC) fates are patterned by an epidermal growth factor (EGF) gradient. High-dose EGF induces 1° VPC fate, and lower dose EGF contributes to 2° fate in support of LIN-12/Notch. We previously showed that the EGF 2°-promoting signal is mediated by LET-60/Ras switching effectors, from the canonical Raf-MEK-ERK mitogen-activated protein (MAP) kinase cascade that promotes 1° fate to the non-canonical RalGEF-Ral that promotes 2° fate. Of oncogenic Ras effectors, RalGEF-Ral is by far the least well understood. We use genetic analysis to identify an effector cascade downstream of C. elegans RAL-1/Ral, starting with an established Ral binding partner, Exo84 of the exocyst complex. Additionally, RAL-1 signals through GCK-2, a citron-N-terminal-homology-domain-containing MAP4 kinase, and PMK-1/p38 MAP kinase cascade to promote 2° fate. Our study delineates a Ral-dependent developmental signaling cascade in vivo, thus providing the mechanism by which lower EGF dose is transduced.
Collapse
Affiliation(s)
- Hanna Shin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Rebecca E W Kaplan
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Razan Fakieh
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Alfonso-Gonzalez C, Riesgo-Escovar JR. Fos metamorphoses: Lessons from mutants in model organisms. Mech Dev 2018; 154:73-81. [PMID: 29753813 DOI: 10.1016/j.mod.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico; Maestría en Bioquímica y Biología Molecular, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico.
| |
Collapse
|
18
|
Li Q, Nirala NK, Nie Y, Chen HJ, Ostroff G, Mao J, Wang Q, Xu L, Ip YT. Ingestion of Food Particles Regulates the Mechanosensing Misshapen-Yorkie Pathway in Drosophila Intestinal Growth. Dev Cell 2018; 45:433-449.e6. [PMID: 29754801 PMCID: PMC7480018 DOI: 10.1016/j.devcel.2018.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/04/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has a high cell turnover rate and is an excellent system to study stem cell-mediated adaptive growth. In the Drosophila midgut, the Ste20 kinase Misshapen, which is distally related to Hippo, has a niche function to restrict intestinal stem cell activity. We show here that, under low growth conditions, Misshapen is localized near the cytoplasmic membrane, is phosphorylated at the threonine 194 by the upstream kinase Tao, and is more active toward Warts, which in turn inhibits Yorkie. Ingestion of yeast particles causes a midgut distention and a reduction of Misshapen membrane association and activity. Moreover, Misshapen phosphorylation is regulated by the stiffness of cell culture substrate, changing of actin cytoskeleton, and ingestion of inert particles. These results together suggest that dynamic membrane association and Tao phosphorylation of Misshapen are steps that link the mechanosensing of intestinal stretching after food particle ingestion to control adaptive growth.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Campos B, Fletcher D, Piña B, Tauler R, Barata C. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray. BMC Genomics 2018; 19:370. [PMID: 29776339 PMCID: PMC5960145 DOI: 10.1186/s12864-018-4725-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Results Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Conclusion Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4725-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Campos
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain.
| | | | - Benjamín Piña
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Romà Tauler
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Carlos Barata
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| |
Collapse
|
20
|
Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 2018; 433:94-107. [PMID: 29133184 PMCID: PMC6010229 DOI: 10.1016/j.ydbio.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.
Collapse
Affiliation(s)
- Henry L Bushnell
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Kwami F Ketosugbo
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Mark B Hellerman
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Valerie L Nazzaro
- Quantitative Analysis Center, Wesleyan University, 222 Church Street, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
21
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
22
|
Vora NL, Powell B, Brandt A, Strande N, Hardisty E, Gilmore K, Foreman AKM, Wilhelmsen K, Bizon C, Reilly J, Owen P, Powell CM, Skinner D, Rini C, Lyerly AD, Boggess KA, Weck K, Berg JS, Evans JP. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 2017; 19:1207-1216. [PMID: 28518170 PMCID: PMC5675748 DOI: 10.1038/gim.2017.33] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeWe investigated the diagnostic and clinical performance of exome sequencing in fetuses with sonographic abnormalities with normal karyotype and microarray and, in some cases, normal gene-specific sequencing.MethodsExome sequencing was performed on DNA from 15 anomalous fetuses and from the peripheral blood of their parents. Parents provided consent to be informed of diagnostic results in the fetus, medically actionable findings in the parents, and their identification as carrier couples for significant autosomal recessive conditions. We assessed the perceptions and understanding of exome sequencing using mixed methods in 15 mother-father dyads.ResultsIn seven (47%) of 15 fetuses, exome sequencing provided a diagnosis or possible diagnosis with identification of variants in the following genes: COL1A1, MUSK, KCTD1, RTTN, TMEM67, PIEZO1 and DYNC2H1. One additional case revealed a de novo nonsense mutation in a novel candidate gene (MAP4K4). The perceived likelihood that exome sequencing would explain the results (5.2 on a 10-point scale) was higher than the approximately 30% diagnostic yield discussed in pretest counseling.ConclusionExome sequencing had diagnostic utility in a highly select population of fetuses where a genetic diagnosis was highly suspected. Challenges related to genetics literacy and variant interpretation must be addressed by highly tailored pre- and posttest genetic counseling.
Collapse
Affiliation(s)
- Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bradford Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Natasha Strande
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Emily Hardisty
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ann Katherine M. Foreman
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- North Carolina Translational and Clinical Sciences (NC TraCS) Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kirk Wilhelmsen
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Chris Bizon
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jason Reilly
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Phil Owen
- Departments of Genetics and Neurology, Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cynthia M. Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Debra Skinner
- FPG Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christine Rini
- Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anne D. Lyerly
- Department of Social Medicine and Center for Bioethics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kim A. Boggess
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan S. Berg
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P. Evans
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Social Medicine and Center for Bioethics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
23
|
Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis 2016; 54:198-211. [PMID: 26934462 DOI: 10.1002/dvg.22931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.
Collapse
Affiliation(s)
- Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Euclides E Fernandes Póvoa
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
24
|
Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 2015; 339:51-60. [DOI: 10.1016/j.yexcr.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/26/2015] [Accepted: 09/26/2015] [Indexed: 01/15/2023]
|
25
|
Loss of flfl Triggers JNK-Dependent Cell Death in Drosophila. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623573. [PMID: 26583122 PMCID: PMC4637051 DOI: 10.1155/2015/623573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/05/2015] [Indexed: 01/21/2023]
Abstract
falafel (flfl) encodes a Drosophila homolog of human SMEK whose in vivo functions remain elusive. In this study, we performed gain-of-function and loss-of-function analysis in Drosophila and identified flfl as a negative regulator of JNK pathway-mediated cell death. While ectopic expression of flfl suppresses TNF-triggered JNK-dependent cell death, loss of flfl promotes JNK activation and cell death in the developing eye and wing. These data report for the first time an essential physiological function of flfl in maintaining tissue homeostasis and organ development. As the JNK signaling pathway has been evolutionary conserved from fly to human, a similar role of PP4R3 in JNK-mediated physiological process is speculated.
Collapse
|
26
|
MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet 2015; 11:e1005124. [PMID: 25875245 PMCID: PMC4395465 DOI: 10.1371/journal.pgen.1005124] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. Biopesticide and transgenic crops based on Bacillus thuringiensis (Bt) Cry toxins are widely used worldwide, yet the development of field resistance seriously threatens their sustainability. Unraveling these resistance mechanisms are of great importance for delaying insect field resistance evolution. The diamondback moth was the first insect to evolve field resistance to Bt biopesticides and it is an excellent model for the study of Bt resistance mechanisms. In this work, we present strong empirical evidence supporting that (1) field-evolved resistance to Bt in P. xylostella is tightly associated with differential expression of a membrane-bound alkaline phosphatase (ALP) and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes, and (2) a constitutively transcriptionally-activated upstream gene (MAP4K4) in the MAPK signaling pathway is responsible for this trans-regulatory signaling mechanism. These findings identify key resistance genes and provide the first comprehensive mechanistic description responsible for the field-evolved Bt resistance in P. xylostella. Given that expression alterations of multiple receptor genes result in Bt resistance in many other insects, it can now be tested to determine whether the previously unidentified trans-regulatory mechanism characterized in this study is also involved in these cases.
Collapse
|
27
|
Chittaranjan S, Xu J, Kuzyk M, Dullat HK, Wilton J, DeVorkin L, Lebovitz C, Morin GB, Marra MA, Gorski SM. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy. Biol Open 2015; 4:672-84. [PMID: 25836674 PMCID: PMC4434819 DOI: 10.1242/bio.20148417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
TNFAIP8 and other mammalian TIPE family proteins have attracted increased interest due to their associations with disease-related processes including oncogenic transformation, metastasis, and inflammation. The molecular and cellular functions of TIPE family proteins are still not well understood. Here we report the molecular and genetic characterization of the Drosophila TNFAIP8 homolog, CG4091/sigmar. Previous gene expression studies revealed dynamic expression of sigmar in larval salivary glands prior to histolysis. Here we demonstrate that in sigmar loss-of-function mutants, the salivary glands are morphologically abnormal with defects in the tubulin network and decreased autophagic flux. Sigmar localizes subcellularly to microtubule-containing projections in Drosophila S2 cells, and co-immunoprecipitates with the Ste20-like kinase Misshapen, a regulator of the JNK pathway. Further, the Drosophila TNF ligand Eiger can induce sigmar expression, and sigmar loss-of-function leads to altered localization of pDJNK in salivary glands. Together, these findings link Sigmar to the JNK pathway, cytoskeletal remodeling and autophagy activity during salivary gland development, and provide new insights into TIPE family member function.
Collapse
Affiliation(s)
- Suganthi Chittaranjan
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Jing Xu
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Michael Kuzyk
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Harpreet K Dullat
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada
| | - James Wilton
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Lindsay DeVorkin
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Chandra Lebovitz
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gregg B Morin
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada Department of Medical Genetics, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marco A Marra
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Sharon M Gorski
- The Genome Sciences Centre, BC Cancer Agency, 675 West 10 Avenue, Vancouver, BC V5Z 1L3, Canada Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519:425-30. [PMID: 25799996 DOI: 10.1038/nature14323] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2015] [Indexed: 11/09/2022]
Abstract
Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to β1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, α5β1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Philip Vitorino
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Stacey Yeung
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Ailey Crow
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Jesse Bakke
- Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tanya Smyczek
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Kristina West
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Erin McNamara
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | - Stephen Gould
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Seth F Harris
- Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Chudi Ndubaku
- Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Weilan Ye
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
29
|
Álvarez-Fernández C, Tamirisa S, Prada F, Chernomoretz A, Podhajcer O, Blanco E, Martín-Blanco E. Identification and functional analysis of healing regulators in Drosophila. PLoS Genet 2015; 11:e1004965. [PMID: 25647511 PMCID: PMC4315591 DOI: 10.1371/journal.pgen.1004965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/20/2014] [Indexed: 12/28/2022] Open
Abstract
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. Two major challenges in our understanding of epithelial repair and regeneration is the identification of the signals triggered after injury and the characterization of mechanisms initiated during tissue repair. From a clinical perspective, a key question that remains unanswered is “Why do some wounds fail to heal?” Considering the low genetic redundancy of Drosophila and its high degree of conservation of fundamental functions, the analysis of wound closure in imaginal discs, whose features are comparable to other post-injury events, seems to be a good model. To proceed to genomic studies, we developed a healing-permissive in vitro culture system for discs. Employing this method and microarray analysis, we aimed to identify relevant genes that are involved in healing. We compared cells that were actively involved in healing to those not involved, and identified a set of upregulated or downregulated genes. They were annotated, clustered by expression profiles, chromosomal locations, and presumptive functions. Most importantly, we functionally tested them in a healing assay. This led to the selection of a group of genes whose changes in expression level and functionality are significant for proper tissue repair. Data obtained from these analyses must facilitate the targeting of these genes in gene therapy or pharmacological studies in mammals.
Collapse
Affiliation(s)
- Carmen Álvarez-Fernández
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
| | - Srividya Tamirisa
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
| | - Federico Prada
- Terapia Molecular y Celular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Terapia Molecular y Celular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Enrique Blanco
- Departament de Genètica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Yue J, Xie M, Gou X, Lee P, Schneider MD, Wu X. Microtubules regulate focal adhesion dynamics through MAP4K4. Dev Cell 2014; 31:572-85. [PMID: 25490267 PMCID: PMC4261153 DOI: 10.1016/j.devcel.2014.10.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/03/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023]
Abstract
Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Min Xie
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, Imperial College London, Sir Alexander Fleming Building, Room 258, London W12 ONN, UK
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT. The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 2014; 31:291-304. [PMID: 25453828 PMCID: PMC4254555 DOI: 10.1016/j.devcel.2014.09.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022]
Abstract
Similar to the mammalian intestine, the Drosophila adult midgut has resident stem cells that support growth and regeneration. How the niche regulates intestinal stem cell activity in both mammals and flies is not well understood. Here, we show that the conserved germinal center protein kinase Misshapen restricts intestinal stem cell division by repressing the expression of the JAK-STAT pathway ligand Upd3 in differentiating enteroblasts. Misshapen, a distant relative to the prototypic Warts activating kinase Hippo, interacts with and activates Warts to negatively regulate the activity of Yorkie and the expression of Upd3. The mammalian Misshapen homolog MAP4K4 similarly interacts with LATS (Warts homolog) and promotes inhibition of YAP (Yorkie homolog). Together, this work reveals that the Misshapen-Warts-Yorkie pathway acts in enteroblasts to control niche signaling to intestinal stem cells. These findings also provide a model in which to study requirements for MAP4K4-related kinases in MST1/2-independent regulation of LATS and YAP.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Satoshi Kaneko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaohao Yao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaochu Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Ma M, Baumgartner M. Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton. PLoS Pathog 2014; 10:e1004003. [PMID: 24626571 PMCID: PMC3953445 DOI: 10.1371/journal.ppat.1004003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/01/2014] [Indexed: 11/18/2022] Open
Abstract
The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. The protozoan parasite Theileria annulata causes the often fatal leukoproliferative disorder Tropical Theileriosis in their ruminant host animals, which is the result of widespread dissemination and proliferation of cytokine secreting, parasite-infected cells. This host cell behavior is induced by and dependent on the intracellular presence of the parasite and is reminiscent of metastatic dissemination of human cancer cells. We investigated how the intracellular parasite modulates cell motility and invasiveness, to better understand the pathogenesis of Tropical Theileriosis and to reveal conserved mechanisms of eukaryotic cell motility regulation. We found that the parasite drives host cell motility and invasiveness through the induction and activation of the host cell protein MAP4K4. We show that MAP4K4 induction is driven by the inflammatory cytokine TNFα and causes dynamic changes in the cytoskeleton of the host cell that facilitate cell motility. Thus, our findings reveal how the intracellular Theileria parasite can influence morphology and behavior of its host cell in a way that suits its propagation and highlight a novel function of chronic TNFα production for the pathogenesis of Tropical Theileriosis. Furthermore, our study revealed a novel aspect of inflammatory cytokine action, namely cell mobilization through the induction of the evolutionary conserved protein kinase MAP4K4.
Collapse
Affiliation(s)
- Min Ma
- Neuro-Oncology, Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, Zürich, Switzerland
- Molecular Pathobiology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martin Baumgartner
- Neuro-Oncology, Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, Zürich, Switzerland
- Molecular Pathobiology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
A Novel Interaction between Pyk2 and MAP4K4 Is Integrated with Glioma Cell Migration. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:956580. [PMID: 24163766 PMCID: PMC3791834 DOI: 10.1155/2013/956580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/07/2013] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
Glioma cell migration correlates with Pyk2 activity, but the intrinsic mechanism that regulates the activity of Pyk2 is not fully understood. Previous studies have supported a role for the N-terminal FERM domain in the regulation of Pyk2 activity as mutations in the FERM domain inhibit Pyk2 phosphorylation. To search for novel protein-protein interactions mediated by the Pyk2 FERM domain, we utilized a yeast two-hybrid genetic selection to identify the mammalian Ste20 homolog MAP4K4 as a binding partner for the Pyk2 FERM domain. MAP4K4 coimmunoprecipitated with Pyk2 and was a substrate for Pyk2 but did not coimmunoprecipitate with the closely related focal adhesion kinase FAK. Knockdown of MAP4K4 expression inhibited glioma cell migration and effectively blocked Pyk2 stimulation of glioma cell. Increased expression of MAP4K4 stimulated glioma cell migration; however, this stimulation was blocked by knockdown of Pyk2 expression. These data support that the interaction of MAP4K4 and Pyk2 is integrated with glioma cell migration and suggest that inhibition of this interaction may represent a potential therapeutic strategy to limit glioblastoma tumor dispersion.
Collapse
|
35
|
Lewellyn L, Cetera M, Horne-Badovinac S. Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. ACTA ACUST UNITED AC 2013; 200:721-9. [PMID: 23509067 PMCID: PMC3601364 DOI: 10.1083/jcb.201209129] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior-posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen's primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell's trailing edge. These data provide mechanistic insight into Misshapen's conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
36
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
37
|
Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling. PLoS One 2012; 7:e43330. [PMID: 22984420 PMCID: PMC3439448 DOI: 10.1371/journal.pone.0043330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/19/2012] [Indexed: 12/03/2022] Open
Abstract
Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.
Collapse
|
38
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1062] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
39
|
The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling. PLoS One 2012; 7:e34310. [PMID: 22479597 PMCID: PMC3315533 DOI: 10.1371/journal.pone.0034310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/26/2012] [Indexed: 01/19/2023] Open
Abstract
The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.
Collapse
|
40
|
Lada K, Gorfinkiel N, Martinez Arias A. Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biol Open 2012; 1:353-61. [PMID: 23213425 PMCID: PMC3509461 DOI: 10.1242/bio.2012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dorsal closure (DC) is an essential step during Drosophila development whereby a hole is sealed in the dorsal epidermis and serves as a model for cell sheet morphogenesis and wound healing. It involves the orchestrated interplay of transcriptional networks and dynamic regulation of cell machinery to bring about shape changes, mechanical forces, and emergent properties. Here we provide insight into the regulation of dorsal closure by describing novel autonomous and non-autonomous roles for U-shaped (Ush) in the amnioserosa, the epidermis, and in mediation of communication between the tissues. We identified Ush by gene expression microarray analysis of Dpp signaling targets and show that Ush mediates some DC functions of Dpp. By selectively restoring Ush function in either the AS or the epidermis in ush mutants, we show that the AS makes a greater (Ush-dependent) contribution to closure than the epidermis. A signal from the AS induces epidermal cell elongation and JNK activation in the DME, while cable formation requires Ush on both sides of the leading edge, i.e. in both the AS and epidermis. Our study demonstrates that the amnioserosa and epidermis communicate at several steps during the process: sometimes the epidermis instructs the amnioserosa, other times the AS instructs the epidermis, and still other times they appear to collaborate.
Collapse
Affiliation(s)
- Karolina Lada
- Department of Genetics, University of Cambridge , CB2 3EH, Cambridge , UK
| | | | | |
Collapse
|
41
|
Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet 2011; 7:e1002424. [PMID: 22242003 PMCID: PMC3248467 DOI: 10.1371/journal.pgen.1002424] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/31/2011] [Indexed: 12/24/2022] Open
Abstract
The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration. An epidermal wound provides signals that initiate a variety of localized responses, some of which act to regenerate and repair the breach in the epidermal barrier. The Drosophila melanogaster embryonic epidermis provides an excellent system to discover new genes that regulate wound-healing processes. Using fluorescent epidermal “wound” reporters that are locally activated around wound sites, we have screened almost 5,000 Drosophila mutants for functions required to activate or delimit wound-induced transcriptional responses to a local zone of epidermal cells. Among the seven new genes required to delimit the spread of wound responses are Flotillin-2 and Src42A. These two genes are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One new gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. Our results define new genetic functions, and the interactions among them, which regulate the local transcriptional response to puncture wounds.
Collapse
|
42
|
Teulière J, Gally C, Garriga G, Labouesse M, Georges-Labouesse E. MIG-15 and ERM-1 promote growth cone directional migration in parallel to UNC-116 and WVE-1. Development 2011; 138:4475-85. [PMID: 21937599 DOI: 10.1242/dev.061952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.
Collapse
Affiliation(s)
- Jérôme Teulière
- IGBMC, CNRS/Université de Strasbourg UMR7104, INSERM U964, 1 rue Laurent Fries, BP10142, Illkirch, 67400 France.
| | | | | | | | | |
Collapse
|
43
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
44
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
45
|
Abstract
The level of TGF-β/bone morphogenetic protein (BMP) signaling through Smad is tightly regulated to ensure proper embryonic patterning and homeostasis. Here we show that Smad activation by TGF-β/BMP is blocked by a highly conserved phosphorylation event in the α-helix 1 region of Smad [T312 in Drosophila Smad1 (MAD)]. α-helix 1 phosphorylation reduces Smad interaction with TGF-β/BMP receptor kinase and affects all receptor-activated Smads except Smad3. Tissue culture and transgenic studies in Drosophila further demonstrate that the biological activity of MAD is repressed by T312 phosphorylation in vivo. Through RNAi screening of the kinome, we have identified Misshapen (Msn) and the mammalian orthologs TNIK, MINK1, and MAP4K4 as the kinases responsible for α-helix 1 phosphorylation. Targeted expression of an active form of Msn in the wing imaginal disk disrupted activation of endogenous MAD by Dpp and expression of the Dpp/MAD target gene. Msn kinases belong to the Ste20 kinase family that has been shown to act as MAP kinase kinase kinase kinase (MAP4K). Our findings thus reveal a function of Msn independent of its impact on MAP kinase cascades. This Smad inhibition mechanism by Msn likely has important implications for development and disease.
Collapse
|
46
|
A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics 2010; 186:943-57. [PMID: 20813879 DOI: 10.1534/genetics.110.121822] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Robust mechanisms for tissue repair are critical for survival of multicellular organisms. Efficient cutaneous wound repair requires the migration of cells at the wound edge and farther back within the epidermal sheet, but the genes that control and coordinate these migrations remain obscure. This is in part because a systematic screening approach for in vivo identification and classification of postembryonic wound closure genes has yet to be developed. Here, we performed a proof-of-principle reporter-based in vivo RNAi screen in the Drosophila melanogaster larval epidermis to identify genes required for normal wound closure. Among the candidate genes tested were kinases and transcriptional mediators of the Jun N-terminal kinase (JNK) signaling pathway shown to be required for epithelial sheet migration during development. Also targeted were genes involved in actin cytoskeletal remodeling. Importantly, RNAi knockdown of both canonical and noncanonical members of the JNK pathway caused open wounds, as did several genes involved in actin cytoskeletal remodeling. Our analysis of JNK pathway components reveals redundancy among the upstream activating kinases and distinct roles for the downstream transcription factors DJun and DFos. Quantitative and qualitative morphological classification of the open wound phenotypes and evaluation of JNK activation suggest that multiple cellular processes are required in the migrating epidermal cells, including functions specific to cells at the wound edge and others specific to cells farther back within the epidermal sheet. Together, our results identify a new set of conserved wound closure genes, determine putative functional roles for these genes within the migrating epidermal sheet, and provide a template for a broader in vivo RNAi screen to discover the full complement of genes required for wound closure during larval epidermal wound healing.
Collapse
|
47
|
The ATAC Acetyltransferase Complex Coordinates MAP Kinases to Regulate JNK Target Genes. Cell 2010; 142:726-36. [DOI: 10.1016/j.cell.2010.07.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/14/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
|
48
|
Garlena RA, Gonda RL, Green AB, Pileggi RM, Stronach B. Regulation of mixed-lineage kinase activation in JNK-dependent morphogenesis. J Cell Sci 2010; 123:3177-88. [PMID: 20736302 DOI: 10.1242/jcs.063313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Normal cells respond appropriately to various signals, while sustaining proper developmental programs and tissue homeostasis. Inappropriate signal reception, response or attenuation, can upset the normal balance of signaling within cells, leading to dysfunction or tissue malformation. To understand the molecular mechanisms that regulate protein-kinase-based signaling in the context of tissue morphogenesis, we analyzed the domain requirements of Drosophila Slpr, a mixed-lineage kinase (MLK), for Jun N-terminal kinase (JNK) signaling. The N-terminal half of Slpr is involved in regulated signaling whereas the C-terminal half promotes cortical protein localization. The SH3 domain negatively regulates Slpr activity consistent with autoinhibition via a conserved proline motif. Also, like many kinases, conserved residues in the activation segment of the catalytic domain regulate Slpr. Threonine 295, in particular, is essential for function. Slpr activation requires dual input from the MAP4K Misshapen (Msn), through its C-terminal regulatory domain, and the GTPase Rac, which both bind to the LZ-CRIB region of Slpr in vitro. Although Rac is sufficient to activate JNK signaling, our results indicate that there are Slpr-independent functions for Rac in dorsal closure. Finally, expression of various Slpr constructs alone or with upstream activators reveals a wide-ranging response at the cell and tissue level.
Collapse
Affiliation(s)
- Rebecca A Garlena
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
49
|
Beam CK, Moberg K. The gang of four gene regulates growth and patterning of the developing Drosophila eye. Fly (Austin) 2010; 4:104-16. [PMID: 20473027 DOI: 10.4161/fly.4.2.11890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report here the identification of a novel complementation group in the fruit fly Drosophila melanogaster named gang of four (gfr). Mutations in gfr disrupt patterns of cell differentiation in the eye and increase eye size through a proliferative mechanism that can be enhanced by a block in apoptosis. gfr mutant cells show several features of deregulated Ras/MAP kinase activity, including reduced expression of the Capicua growth suppressing transcription factor and synthetically lethality with alleles of the Jun N-terminal kinase phosphatase puckered. gfr alleles also upreguate Notch activity in the eye. Thus, gfr alleles appear to elicit growth and patterning phenotypes via effects on multiple signaling pathways. Moreover, the gfr alleles behave as gain-of-function lesions and overexpress the gene, bruno-3 (bru-3), which is located at the genomic region to which gfr lesions map. Genetic reduction of bru-3 suppresses phenotypes caused by gfr alleles, and like gfr alleles, overexpression of bru-3 depresses levels of Cic protein, indicating that overexpression of bru-3 is central to gfr mutant phenotypes.
Collapse
Affiliation(s)
- Carolyn K Beam
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Rallis A, Moore C, Ng J. Signal strength and signal duration define two distinct aspects of JNK-regulated axon stability. Dev Biol 2009; 339:65-77. [PMID: 20035736 PMCID: PMC2845820 DOI: 10.1016/j.ydbio.2009.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/29/2022]
Abstract
Signaling proteins often control multiple aspects of cell morphogenesis. Yet the mechanisms that govern their pleiotropic behavior are often unclear. Here we show activity levels and timing mechanisms determine distinct aspects of Jun N-terminal kinase (JNK) pathway dependent axonal morphogenesis in Drosophila mushroom body (MB) neurons. In the complete absence of Drosophila JNK (Basket), MB axons fail to stabilize, leading to their subsequent degeneration. However, with a partial loss of Basket (Bsk), or of one of the upstream JNK kinases, Hemipterous or Mkk4, these axons overextend. This suggests that Bsk activity prevents axons from destabilizing, resulting in degeneration and overextension beyond their terminal targets. These distinct phenotypes require different threshold activities involving the convergent action of two distinct JNK kinases. We show that sustained Bsk signals are essential throughout development and act additively but are dispensable at adulthood. We also suggest that graded Bsk inputs are translated into AP-1 transcriptional outputs consisting of Fos and Jun proteins.
Collapse
Affiliation(s)
- Andrew Rallis
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College, London SE1 1UL, UK
| | | | | |
Collapse
|