1
|
Struys I, Velázquez C, Ubels J, LeJeune CL, van Roosmalen MJ, Rosendahl Huber AK, van Leeuwen AJ, Bossuyt W, Thienpont B, Voet T, Van Calsteren K, Lenaerts L, van Boxtel R, Amant F. Prenatal Exposure to Chemotherapy Increases the Mutation Burden in Human Neonatal Hematopoietic Stem Cells. Cancer Discov 2025; 15:903-912. [PMID: 39852764 PMCID: PMC12046327 DOI: 10.1158/2159-8290.cd-24-1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
SIGNIFICANCE This study demonstrates that environmental mutagenic exposure during pregnancy can increase somatic mutation accumulation in the fetus. Given that detrimental early life exposures can adversely affect health outcomes later in life, our study highlights the need for further research into the impact of environmentally induced genomic insults during the perinatal period. See related commentary by Furudate and Takahashi, p. 870.
Collapse
Affiliation(s)
- Ilana Struys
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Carolina Velázquez
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Axel K.M. Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anais J.C.N. van Leeuwen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter Bossuyt
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
| | - Liesbeth Lenaerts
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Frédéric Amant
- Department of Oncology, University of Leuven, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, UZ Leuven, Leuven, Belgium
- Gynecologic Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Cheng AP, Widman AJ, Arora A, Rusinek I, Sossin A, Rajagopalan S, Midler N, Hooper WF, Murray RM, Halmos D, Langanay T, Chu H, Inghirami G, Potenski C, Germer S, Marton M, Manaa D, Helland A, Furatero R, McClintock J, Winterkorn L, Steinsnyder Z, Wang Y, Alimohamed AI, Malbari MS, Saxena A, Callahan MK, Frederick DT, Spain L, Sigouros M, Manohar J, King A, Wilkes D, Otilano J, Elemento O, Mosquera JM, Jaimovich A, Lipson D, Turajlic S, Zody MC, Altorki NK, Wolchok JD, Postow MA, Robine N, Faltas BM, Boland G, Landau DA. Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling. Nat Methods 2025; 22:973-981. [PMID: 40217113 PMCID: PMC12077166 DOI: 10.1038/s41592-025-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Differentiating sequencing errors from true variants is a central genomics challenge, calling for error suppression strategies that balance costs and sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing for cancer monitoring is limited by sparsity of circulating tumor DNA, abundance of genomic material in samples and preanalytical error rates. Whole-genome sequencing (WGS) can overcome the low abundance of ccfDNA by integrating signals across the mutation landscape, but higher costs limit its wide adoption. Here, we applied deep (~120×) lower-cost WGS (Ultima Genomics) for tumor-informed circulating tumor DNA detection within the part-per-million range. We further leveraged lower-cost sequencing by developing duplex error-corrected WGS of ccfDNA, achieving 7.7 × 10-7 error rates, allowing us to assess disease burden in individuals with melanoma and urothelial cancer without matched tumor sequencing. This error-corrected WGS approach will have broad applicability across genomics, allowing for accurate calling of low-abundance variants at efficient cost and enabling deeper mapping of somatic mosaicism as an emerging central aspect of aging and disease.
Collapse
Affiliation(s)
- Alexandre Pellan Cheng
- New York Genome Center, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
- Département de Génie des Systèmes, École de Technologie Supérieure, Montréal, Québec, Canada.
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| | - Adam J Widman
- New York Genome Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anushri Arora
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Aaron Sossin
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Srinivas Rajagopalan
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas Midler
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Rebecca M Murray
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Daniel Halmos
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Theophile Langanay
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hoyin Chu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Giorgio Inghirami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Dina Manaa
- New York Genome Center, New York, NY, USA
| | | | | | | | | | | | - Yohyoh Wang
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Asrar I Alimohamed
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Murtaza S Malbari
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ashish Saxena
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Dennie T Frederick
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Abigail King
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Otilano
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Nasser K Altorki
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Michael A Postow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bishoy M Faltas
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Genevieve Boland
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Lecuyer G, Rolland AD, Neyroud AS, Evrard B, Alary N, Genthon C, Dejucq-Rainsford N, Ravel C, Moreau J, Moinard N, Abdelhamid MHM, Klopp C, Bujan L, Chalmel F. Recurrent spontaneous miscarriages from sperm after ABVD chemotherapy in a patient with Hodgkin's lymphoma: sperm DNA and methylation profiling. Asian J Androl 2025:00129336-990000000-00303. [PMID: 40232270 DOI: 10.4103/aja2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 04/16/2025] Open
Abstract
ABSTRACT Lymphomas represent one of the most common malignant diseases in young men and an important issue is how treatments will affect their reproductive health. It has been hypothesized that chemotherapies, similarly to environmental chemicals, may alter the spermatogenic epigenome. Here, we report the genomic and epigenomic profiling of the sperm DNA from a 31-year-old Hodgkin lymphoma patient who faced recurrent spontaneous miscarriages in his couple 11-26 months after receiving chemotherapy with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). In order to capture the potential deleterious impact of the ABVD treatment on mutational and methylation changes, we compared sperm DNA before and 26 months after chemotherapy with whole-genome sequencing (WGS) and reduced representation bisulfite sequencing (RRBS). The WGS analysis identified 403 variants following ABVD treatment, including 28 linked to genes crucial for embryogenesis. However, none were found in coding regions, indicating no impact of chemotherapy on protein function. The RRBS analysis identified 99 high-quality differentially methylated regions (hqDMRs) for which methylation status changed upon chemotherapy. Those hqDRMs were associated with 87 differentially methylated genes, among which 14 are known to be important or expressed during embryo development. While no variants were detected in coding regions, promoter regions of several genes potentially important for embryo development contained variants or displayed an altered methylated status. These might in turn modify the corresponding gene expression and thus affect their function during key stages of embryogenesis, leading to potential developmental disorders or miscarriages.
Collapse
Affiliation(s)
- Gwendoline Lecuyer
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Anne-Sophie Neyroud
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
- CHU de Rennes, Departement de Gynécologie Obstetrique Reproduction-CECOS, 16 Boulevard de Bulgarie, Rennes F-35000, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Nathan Alary
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Clemence Genthon
- Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan 31326, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| | - Célia Ravel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
- CHU de Rennes, Departement de Gynécologie Obstetrique Reproduction-CECOS, 16 Boulevard de Bulgarie, Rennes F-35000, France
| | - Jessika Moreau
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
| | - Nathalie Moinard
- Service de Biologie de la Reproduction et CECOS, Hôpital Paule de Viguier, CHU Toulouse, 330 Avenue de Grande Bretagne, Toulouse 31059, France
| | - Mohamed Hadi Mohamed Abdelhamid
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
- Department of Cell Biology and Tissue Culture, Biotechnology Research Center (BTRC), Ayn Zarah, Tripoli, Libya
| | - Christophe Klopp
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse F-31027, France
| | - Louis Bujan
- Service de Biologie de la Reproduction et CECOS, Hôpital Paule de Viguier, CHU Toulouse, 330 Avenue de Grande Bretagne, Toulouse 31059, France
- DEFE, Inserm1203 Toulouse III and Montpellier Universities, 330 Avenue de Grande Bretagne, Toulouse 31059, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35000, France
| |
Collapse
|
4
|
Starostecka M, Jeong H, Hasenfeld P, Benito-Garagorri E, Christiansen T, Stober Brasseur C, Gomes Queiroz M, Garcia Montero M, Jechlinger M, Korbel JO. Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model. Proc Natl Acad Sci U S A 2025; 122:e2415475122. [PMID: 39993200 PMCID: PMC11892646 DOI: 10.1073/pnas.2415475122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
The most common chemotherapeutics induce DNA damage to eradicate cancer cells, yet defective DNA repair can propagate mutations, instigating therapy resistance and secondary malignancies. Structural variants (SVs), arising from copy-number-imbalanced and -balanced DNA rearrangements, are a major driver of tumor evolution, yet understudied posttherapy. Here, we adapted single-cell template-strand sequencing (Strand-seq) to a HER2+ breast cancer model to investigate the formation of doxorubicin-induced de novo SVs. We coupled this approach with nucleosome occupancy (NO) measurements obtained from the same single cell to enable simultaneous SV detection and cell-type classification. Using organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA mice modeling HER2+ breast cancer, we generated 459 Strand-seq libraries spanning various tumorigenesis stages, identifying a 7.4-fold increase in large chromosomal alterations post-doxorubicin. Complex DNA rearrangements, deletions, and duplications were prevalent across basal, luminal progenitor (LP), and mature luminal (ML) cells, indicating uniform susceptibility of these cell types to SV formation. Doxorubicin further elevated sister chromatid exchanges (SCEs), indicative of genomic stress persisting posttreatment. Altered nucleosome occupancy levels on distinct cancer-related genes further underscore the broad genomic impact of doxorubicin. The organoid-based system for single-cell multiomics established in this study paves the way for unraveling the most important therapy-associated SV mutational signatures, enabling systematic studies of the effect of therapy on cancer evolution.
Collapse
Affiliation(s)
- Maja Starostecka
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg69120, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul03722, Republic of Korea
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Eva Benito-Garagorri
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Tania Christiansen
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg69120, Germany
| | | | - Maise Gomes Queiroz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Marta Garcia Montero
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg69117, Germany
| | - Martin Jechlinger
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg69117, Germany
- Molecular and Information Technology Institute for Personalized Medicine gGmbH, Heilbronn74076, Germany
| | - Jan O. Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg69120, Germany
| |
Collapse
|
5
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
6
|
Hutchens T, Thorstad W, Wang X, Li Y, Duncavage EJ, Sun L, Chernock RD. Head and neck squamous cell carcinomas of unknown primary: Can ancillary studies help identify more primary tumor sites? Exp Mol Pathol 2024; 138:104915. [PMID: 38964052 PMCID: PMC11458069 DOI: 10.1016/j.yexmp.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
A subset of head and neck squamous cell carcinomas present solely as metastatic disease in the neck and are of unknown primary origin (SCCUP). Most primary tumors will ultimately be identified, usually in the oropharynx. In a minority of cases, the primary site remains elusive. Here, we examine the role of ancillary testing, including mutational signature analysis (MSA), to help identify likely primary sites in such cases. Twenty-two cases of SCCUP in the neck, collected over a 10-year period, were classified by morphology and viral status; including human papillomavirus (HPV) testing by p16 immunohistochemistry (IHC) and RT-qPCR, as well as Epstein-Barr virus (EBV) testing by EBER-ISH. CD5 and c-KIT (CD117) IHC was done to evaluate for possible thymic origin in all virus-negative cases. Whole exome sequencing, followed by MSA, was used to identify UV signature mutations indicative of cutaneous origin. HPV was identified in 12 of 22 tumors (54.5%), favoring an oropharyngeal origin, and closely associated with nonkeratinizing tumor morphology (Fisher's exact test; p = 0.0002). One tumor with indeterminant morphology had discordant HPV and p16 status (p16+/HPV-). All tumors were EBV-negative. Diffuse expression of CD5 and c-KIT was identified in 1 of 10 virus-negative SCCUPs (10%), suggesting a possible ectopic thymic origin rather than a metastasis. A UV mutational signature, indicating cutaneous origin, was identified in 1 of 10 (10%) virus-negative SCCUPs. A cutaneous auricular primary emerged 3 months after treatment in this patient. Primary tumors became clinically apparent in 2 others (1 hypopharynx, 1 hypopharynx/larynx). Thus, after follow-up, 6 tumors remained unclassifiable as to the possible site of origin (27%). Most SCCUPs of the neck in our series were HPV-associated and thus likely of oropharyngeal origin. UV signature mutation analysis and additional IHC for CD5 and c-KIT for possible thymic origin may aid in further classifying virus-negative unknown primaries. Close clinical inspection of hypopharyngeal mucosa may also be helpful, as a subset of primary tumors later emerged at this site.
Collapse
MESH Headings
- Humans
- Neoplasms, Unknown Primary/virology
- Neoplasms, Unknown Primary/pathology
- Neoplasms, Unknown Primary/genetics
- Male
- Female
- Middle Aged
- Aged
- Squamous Cell Carcinoma of Head and Neck/virology
- Squamous Cell Carcinoma of Head and Neck/genetics
- Squamous Cell Carcinoma of Head and Neck/pathology
- Head and Neck Neoplasms/virology
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/genetics
- Papillomavirus Infections/virology
- Papillomavirus Infections/pathology
- Papillomavirus Infections/genetics
- Proto-Oncogene Proteins c-kit/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 4, Human/pathogenicity
- Immunohistochemistry
- Biomarkers, Tumor/genetics
- Mutation
- Aged, 80 and over
- Adult
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomaviridae/isolation & purification
- Exome Sequencing
- Carcinoma, Squamous Cell/virology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/genetics
Collapse
Affiliation(s)
- Troy Hutchens
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, United States of America.
| | - Wade Thorstad
- Department of Radiation-Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, United States of America
| | - Yuanxiang Li
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Rebecca D Chernock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
7
|
Bertoli RM, Chung YJ, Difilippantonio MJ, Wokasch A, Marasco MR, Klimaszewski H, Gammell S, Zhu YJ, Walker RL, Cao D, Khanna A, Walter MJ, Doroshow JH, Meltzer PS, Aplan PD. The DNA Methyltransferase Inhibitor 5-Aza-4'-thio-2'-Deoxycytidine Induces C>G Transversions and Acute Lymphoid Leukemia Development. Cancer Res 2024; 84:2518-2532. [PMID: 38832931 PMCID: PMC11293964 DOI: 10.1158/0008-5472.can-23-2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza-TdCyd or ATC) is a recently described thiol-substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. In this study, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to the transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole-exome sequencing revealed 1,000 acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed 1,000 acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC. Significance: Treatment with a DNA methyltransferase inhibitor generates a distinct mutation signature and triggers leukemic transformation, which has important implications for the research and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Ryan M. Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael J. Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anthony Wokasch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Madison R.B. Marasco
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haley Klimaszewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Susannah Gammell
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew J. Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Brosda S, Aoude LG, Bonazzi VF, Patel K, Lonie JM, Belle CJ, Newell F, Koufariotis LT, Addala V, Naeini MM, Pearson JV, Krause L, Waddell N, Barbour AP. Spatial intra-tumour heterogeneity and treatment-induced genomic evolution in oesophageal adenocarcinoma: implications for prognosis and therapy. Genome Med 2024; 16:90. [PMID: 39020404 PMCID: PMC11253399 DOI: 10.1186/s13073-024-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance. METHODS Whole-genome sequencing data from 59 treatment-naïve and 18 post-treatment samples from 29 OAC patients was analysed. Twenty-seven of these were enrolled in the DOCTOR trial, sponsored by the Australasian Gastro-Intestinal Trials Group. Two biopsies from each treatment-naïve tumour were assessed to define 'shared' (between both samples) and 'private' (present in one sample) mutations. RESULTS Mutational signatures SBS2/13 (APOBEC) and SBS3 (BRCA) were almost exclusively detected in private mutation populations of treatment-naïve tumours. Patients presenting these signatures had significantly worse disease specific survival. Furthermore, mutational signatures associated with platinum-based chemotherapy treatment as well as high platinum enrichment scores were only detected in post-treatment samples. Additionally, clones with high putative neoantigen binding scores were detected in some treatment-naïve samples suggesting immunoediting of clones. CONCLUSIONS This study demonstrates the high intra-tumour heterogeneity in OAC, as well as indicators for treatment-induced changes during tumour evolution. Intra-tumour heterogeneity remains a problem for successful treatment strategies in OAC.
Collapse
Affiliation(s)
- Sandra Brosda
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James M Lonie
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Clemence J Belle
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Lutz Krause
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Microba Life Sciences, Brisbane, QLD, 4000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
9
|
Bertrums EJM, de Kanter JK, Derks LLM, Verheul M, Trabut L, van Roosmalen MJ, Hasle H, Antoniou E, Reinhardt D, Dworzak MN, Mühlegger N, van den Heuvel-Eibrink MM, Zwaan CM, Goemans BF, van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat Commun 2024; 15:6025. [PMID: 39019934 PMCID: PMC11255340 DOI: 10.1038/s41467-024-50384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure. However, selective pressures induced by chemotherapy early in life are less well studied. Here, we use single-cell whole genome sequencing and phylogenetic inference to show that the founding cell of t-MN in children starts expanding after cessation of platinum exposure. In patients with Li-Fraumeni syndrome, characterized by a germline TP53 mutation, we find that the t-MN already expands during treatment, suggesting that platinum-induced growth inhibition is TP53-dependent. Our results demonstrate that germline aberrations can interact with treatment exposures in inducing t-MN, which is important for the development of more targeted, patient-specific treatment regimens and follow-up.
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jurrian K de Kanter
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L M Derks
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Mühlegger
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - C Michel Zwaan
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F Goemans
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Huang RJ, Huang YS, An N, Hu JJ, Wu CY, Chen YX, Chen JY, Zhao Q, Xu RH, Yuan SQ, Wang F. Pan-cancer analysis of heterogeneity of tumor mutational burden and genomic mutation under treatment pressure. ESMO Open 2024; 9:103494. [PMID: 38981309 PMCID: PMC11292426 DOI: 10.1016/j.esmoop.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND High tumor mutational burden (TMB) is one of the widely researched predictive biomarkers of immune checkpoint inhibitors and has been shown to be closely related with response to immunotherapy in multiple cancer types. However, for patients who have failed conventional therapy and are about to undergo immunotherapy, there is no consensus recommendation on the timing of tumor sampling for TMB analysis, and the effects of different therapies on TMB have not been clarified. This retrospective observational study aimed to investigate the heterogeneity of TMB and genomic mutation under the treatment pressure. PATIENTS AND METHODS We retrospectively collected the available genomic and therapeutic information from 8051 samples across 15 tumor types (>50 samples/tumor) found in 30 published studies and investigated the distribution and heterogeneity of TMB under treatment across diverse cohorts. RESULTS This integrated analysis has shown anticancer treatments increased TMB. Significant effects of treatment on TMB were more frequently observed in tumor types with lower treatment-naïve TMB, including breast, prostate, and pediatric cancers. For different cancer therapies, chemotherapy was prone to be correlated with an increased TMB in most cancer types. Meanwhile, the fraction of the TMB-high category of breast, prostate, and bladder cancers and glioma increased significantly after chemotherapy. Several actionable genes including ERS1 and NF1 in breast cancer, as well as some prognostic markers including TERT in bladder cancer and IDH1 in glioma, were significantly changed in post-chemotherapy tumors compared to treatment-naïve tumors. CONCLUSION Our study reveals the heterogeneity of TMB under treatment across diverse cancer types and provides evidences that chemotherapy was associated with increases in TMB as well as the fraction of TMB-high category, suggesting that resampling tumor tissues for calculating post-chemotherapy TMB could be a better option for predicting the response to immunotherapy, especially for tumors with initially low TMB.
Collapse
Affiliation(s)
- R J Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - Y S Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - N An
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - J J Hu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - C Y Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - Y X Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - J Y Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou
| | - Q Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Bioinformatic Platform, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou
| | - R H Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| | - S Q Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou.
| | - F Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| |
Collapse
|
11
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
12
|
Díaz-Gay M, Zhang T, Hoang PH, Khandekar A, Zhao W, Steele CD, Otlu B, Nandi SP, Vangara R, Bergstrom EN, Kazachkova M, Pich O, Swanton C, Hsiung CA, Chang IS, Wong MP, Leung KC, Sang J, McElderry J, Yang L, Nowak MA, Shi J, Rothman N, Wedge DC, Homer R, Yang SR, Lan Q, Zhu B, Chanock SJ, Alexandrov LB, Landi MT. The mutagenic forces shaping the genomic landscape of lung cancer in never smokers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307318. [PMID: 38798417 PMCID: PMC11118654 DOI: 10.1101/2024.05.15.24307318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lung cancer in never smokers (LCINS) accounts for up to 25% of all lung cancers and has been associated with exposure to secondhand tobacco smoke and air pollution in observational studies. Here, we evaluate the mutagenic exposures in LCINS by examining deep whole-genome sequencing data from a large international cohort of 871 treatment-naïve LCINS recruited from 28 geographical locations within the Sherlock-Lung study. KRAS mutations were 3.8-fold more common in adenocarcinomas of never smokers from North America and Europe, while a 1.6-fold higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas from East Asia. Signature SBS40a, with unknown cause, was found in most samples and accounted for the largest proportion of single base substitutions in adenocarcinomas, being enriched in EGFR-mutated cases. Conversely, the aristolochic acid signature SBS22a was almost exclusively observed in patients from Taipei. Even though LCINS exposed to secondhand smoke had an 8.3% higher mutational burden and 5.4% shorter telomeres, passive smoking was not associated with driver mutations in cancer driver genes or the activities of individual mutational signatures. In contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations while exhibiting shorter telomeres and an increase in most types of somatic mutations, including a 3.9-fold elevation of signature SBS4 (q-value=3.1 × 10-5), previously linked mainly to tobacco smoking, and a 76% increase of clock-like signature SBS5 (q-value=5.0 × 10-5). A positive dose-response effect was observed with air pollution levels, which correlated with both a decrease in telomere length and an elevation in somatic mutations, notably attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Maria Pik Wong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin Chung Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, Department of Human Genetics, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
- Manchester NIHR Biomedical Research Centre, Manchester, UK
| | - Robert Homer
- Yale Surgery Pathology Department, Yale University, New Haven, CT, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Chen L, Zhang C, Xue R, Liu M, Bai J, Bao J, Wang Y, Jiang N, Li Z, Wang W, Wang R, Zheng B, Yang A, Hu J, Liu K, Shen S, Zhang Y, Bai M, Wang Y, Zhu Y, Yang S, Gao Q, Gu J, Gao D, Wang XW, Nakagawa H, Zhang N, Wu L, Rozen SG, Bai F, Wang H. Deep whole-genome analysis of 494 hepatocellular carcinomas. Nature 2024; 627:586-593. [PMID: 38355797 DOI: 10.1038/s41586-024-07054-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.
Collapse
Affiliation(s)
- Lei Chen
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Chong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| | - Ruidong Xue
- Peking University-Yunnan Baiyao International Medical Research Center, International Cancer Institute, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Mo Liu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jian Bai
- Berry Oncology Corporation, Beijing, China
| | - Jinxia Bao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yin Wang
- Berry Oncology Corporation, Beijing, China
| | - Nanhai Jiang
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Zhixuan Li
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenwen Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ruiru Wang
- Berry Oncology Corporation, Beijing, China
| | - Bo Zheng
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | - Ji Hu
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ke Liu
- Berry Oncology Corporation, Beijing, China
| | - Siyun Shen
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yangqianwen Zhang
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Mixue Bai
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yan Wang
- Berry Oncology Corporation, Beijing, China
| | - Yanjing Zhu
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shuai Yang
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Gu
- MOE Key Laboratory for Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ning Zhang
- Peking University-Yunnan Baiyao International Medical Research Center, International Cancer Institute, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Lin Wu
- Berry Oncology Corporation, Beijing, China.
| | - Steven G Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China.
| | - Hongyang Wang
- National Center for Liver Cancer/Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| |
Collapse
|
14
|
Pire A, Hirsch TZ, Morcrette G, Imbeaud S, Gupta B, Pilet J, Cornet M, Fabre M, Guettier C, Branchereau S, Brugières L, Guerin F, Laithier V, Coze C, Nagae G, Hiyama E, Laurent-Puig P, Rebouissou S, Sarnacki S, Chardot C, Capito C, Faure-Conter C, Aerts I, Taque S, Fresneau B, Zucman-Rossi J. Mutational signature, cancer driver genes mutations and transcriptomic subgroups predict hepatoblastoma survival. Eur J Cancer 2024; 200:113583. [PMID: 38330765 DOI: 10.1016/j.ejca.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.
Collapse
Affiliation(s)
- Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Marianna Cornet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Monique Fabre
- Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Catherine Guettier
- Department of Pathology, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France
| | - Florent Guerin
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | | | - Carole Coze
- Department of Pediatric and Oncology, Hopital de La Timone, Aix Marseille University, F-13005 Marseille, France
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan; Department of Biomedical Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sabine Sarnacki
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Christophe Chardot
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Carmen Capito
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Cécile Faure-Conter
- Institut d'hématologie et d'oncologie pédiatrique de Lyon, F-69008 Lyon, France
| | - Isabelle Aerts
- Institut Curie, Oncology Center SIREDO, F-75005 Paris, France
| | - Sophie Taque
- Pediatric Department hemato-oncology, CHU Rennes, F-35033 Rennes, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, Cancer and Radiation Team, F-94805 Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, F-75015 Paris, France.
| |
Collapse
|
15
|
Terlouw D, Boot A, Ducarmon QR, Nooij S, Suerink M, van Leerdam ME, van Egmond D, Tops CM, Zwittink RD, Ruano D, Langers AMJ, Nielsen M, van Wezel T, Morreau H. Enrichment of colibactin-associated mutational signatures in unexplained colorectal polyposis patients. BMC Cancer 2024; 24:104. [PMID: 38238650 PMCID: PMC10797792 DOI: 10.1186/s12885-024-11849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Colibactin, a genotoxin produced by polyketide synthase harboring (pks+) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks+Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. METHODS In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. RESULTS NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. CONCLUSIONS These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.
Collapse
Affiliation(s)
- Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud Boot
- Department of Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Demi van Egmond
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy D Zwittink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Alexandra M J Langers
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
16
|
Marchi G, Rajavuori A, Nguyen MTN, Huhtinen K, Oksa S, Hietanen S, Hautaniemi S, Hynninen J, Oikkonen J. Extensive mutational ctDNA profiles reflect High-grade serous cancer tumors and reveal emerging mutations at recurrence. Transl Oncol 2024; 39:101814. [PMID: 37924564 PMCID: PMC10641709 DOI: 10.1016/j.tranon.2023.101814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Circulating tumor DNA (ctDNA) offers a minimally-invasive alternative to study genomic changes in recurrent malignancies. With a high recurrence rate, the overall survival in high-grade serous ovarian carcinoma (HGSC) has remained low. Our objectives were to determine whether ctDNA from plasma adequately represents HGSC, and to find mutational changes at relapse suggesting therapy options that could alter patient outcome. METHODS We collected 152 longitudinal plasma and 92 fresh tissue samples from 29 HGSC patients, sequencing and detecting mutations with a gene panel of more than 700 cancer-related genes. Tumor content was measured using TP53 VAF. We analyzed the concordance between the mutations in tissue and plasma samples and calculated correlations to patient outcomes. We also searched for novel mutations appearing at relapse. RESULTS The concordance rate between mutations in plasma compared to tumor tissue was 83 % at diagnosis and 90 % at relapse. CtDNA was released similarly from the tubo-ovarian tumors, intra-abdominal metastases and ascites. CtDNA release was high when CA-125 level was elevated. The TP53 VAF in ctDNA from plasma samples before the third cycle of primary chemotherapy showed a negative correlation to patient outcome. At relapse, 19 novel, pathogenic DNA mutations appeared, suggesting possible actionable alterations and biological mechanisms related to chemoresistance. CONCLUSION Relapse ctDNA samples reflect tissue samples well and longitudinal sampling provides a timely source for mutational profiling. The emerging genetic mutations at recurrence propose that ctDNA accurately represents the widespread disease and provides possibilities for personalized therapy options.
Collapse
Affiliation(s)
- Giovanni Marchi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Anna Rajavuori
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Mai T N Nguyen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Sinikka Oksa
- Satasairaala Central Hospital, Department of Obstetrics and Gynecology, 28500 Pori, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| |
Collapse
|
17
|
Nuttall Musson E, Miller RE, Mansour MR, Lockley M, Ledermann JA, Payne EM. Monitoring clone dynamics and reversibility in clonal haematopoiesis and myelodysplastic neoplasm associated with PARP inhibitor therapy-a role for early monitoring and intervention. Leukemia 2024; 38:215-218. [PMID: 37978317 PMCID: PMC10776406 DOI: 10.1038/s41375-023-02040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Affiliation(s)
| | - Rowan E Miller
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Marc R Mansour
- UCL Cancer Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Michelle Lockley
- University College London Hospitals NHS Foundation Trust, London, UK
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jonathan A Ledermann
- UCL Cancer Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Elspeth M Payne
- UCL Cancer Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Aplan P, Bertoli R, Chung YJ, Difilippantonio M, Wokasch A, Marasco M, Klimaszewski H, Garber S, Zhu Y, Walker R, Cao D, Doroshow J, Meltzer P. 5-Aza-4'-thio-2'-deoxycytidine induces C>G transversions in a specific trinucleotide context and leads to acute lymphoid leukemia. RESEARCH SQUARE 2023:rs.3.rs-3186246. [PMID: 38168433 PMCID: PMC10760231 DOI: 10.21203/rs.3.rs-3186246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that are used clinically to decrease 5'-cytosine methylation, with the aim of re-expression of tumor suppressor genes. We used a murine pre-clinical model of myelodysplastic syndrome based on transplantation of cells expressing a NUP98::HOXD13 transgene to investigate 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC), a thiol substituted DNMTi, as a potential therapy. We found that ATC treatment led to lymphoid leukemia in wild-type recipient cells; further study revealed that healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C > G transversions in a previously unrecognized, specific 5'-NCG-3' context. These mutations involved dozens of genes well-known to be involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53 , and Nf1 . Treatment of human cells in vitro showed thousands of acquired C > G transversions in a similar context. Deletion of Dck , the rate-limiting enzyme for the cytidine salvage pathway, eliminated C > G transversions. Taken together, these findings demonstrate that DNMTi can be potent mutagens in human and mouse cells, both in vitro and in vivo .
Collapse
|
19
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
20
|
Prosz A, Duan H, Tisza V, Sahgal P, Topka S, Klus GT, Börcsök J, Sztupinszki Z, Hanlon T, Diossy M, Vizkeleti L, Stormoen DR, Csabai I, Pappot H, Vijai J, Offit K, Ried T, Sethi N, Mouw KW, Spisak S, Pathania S, Szallasi Z. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. Sci Rep 2023; 13:20567. [PMID: 37996508 PMCID: PMC10667362 DOI: 10.1038/s41598-023-47946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT), Harvard University, Cambridge, MA, USA
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Laura Vizkeleti
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Dag Rune Stormoen
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, NY, USA
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT), Harvard University, Cambridge, MA, USA
| | - Kent W Mouw
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sandor Spisak
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA.
- Department of Biology, University of Massachusetts, Boston, MA, USA.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
21
|
Kinnaman MD, Zaccaria S, Makohon-Moore A, Arnold B, Levine MF, Gundem G, Arango Ossa JE, Glodzik D, Rodríguez-Sánchez MI, Bouvier N, Li S, Stockfisch E, Dunigan M, Cobbs C, Bhanot UK, You D, Mullen K, Melchor JP, Ortiz MV, O'Donohue TJ, Slotkin EK, Wexler LH, Dela Cruz FS, Hameed MR, Glade Bender JL, Tap WD, Meyers PA, Papaemmanuil E, Kung AL, Iacobuzio-Donahue CA. Subclonal Somatic Copy-Number Alterations Emerge and Dominate in Recurrent Osteosarcoma. Cancer Res 2023; 83:3796-3812. [PMID: 37812025 PMCID: PMC10646480 DOI: 10.1158/0008-5472.can-23-0385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.
Collapse
Affiliation(s)
- Michael D. Kinnaman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, United Kingdom
| | - Alvin Makohon-Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian Arnold
- Department of Computer Science, Princeton University, Princeton, New Jersey
- Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey
| | - Max F. Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan E. Arango Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dominik Glodzik
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shanita Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Stockfisch
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marisa Dunigan
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cassidy Cobbs
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umesh K. Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katelyn Mullen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York
| | - Jerry P. Melchor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tara J. O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily K. Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leonard H. Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera R. Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julia L. Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A. Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A. Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Chen G, Li X, Li R, Wu K, Lei Z, Dai R, Roche K, Wang AZ, Min Y. Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy. ACS NANO 2023; 17:18818-18831. [PMID: 37750443 DOI: 10.1021/acsnano.3c03274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Chemotherapeutics have the potential to increase the efficacy of cancer immunotherapies by stimulating the production of damage-associated molecular patterns (DAMPs) and eliciting mutations that result in the production of neoantigens, thereby increasing the immunogenicity of cancerous lesions. However, the dose-limiting toxicity and limited immunogenicity of chemotherapeutics are not sufficient to induce a robust antitumor response. We hypothesized that cancer cells in vitro treated with ultrahigh doses of various chemotherapeutics artificially increased the abundance, variety, and specificity of DAMPs and neoantigens, thereby improving chemoimmunotherapy. The in vitro chemotherapy-induced (IVCI) nanovaccines manufactured from cell lysates comprised multiple neoantigens and DAMPs, thereby exhibiting comprehensive antigenicity and adjuvanticity. Our IVCI nanovaccines exhibited enhanced immune responses in CT26 tumor-bearing mice, with a significant increase in CD4+/CD8+ T cells in tumors in combination with immune checkpoint inhibitors. The concept of IVCI nanovaccines provides an idea for manufacturing and artificial enhancement of immunogenicity vaccines to improve chemoimmunotherapy.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhouhang Lei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ruike Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kyle Roche
- School of Medicine and Health Sciences, The George Washington University, Washington D.C. 20052, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Aldea M, Friboulet L, Apcher S, Jaulin F, Mosele F, Sourisseau T, Soria JC, Nikolaev S, André F. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision? ESMO Open 2023; 8:101642. [PMID: 37769400 PMCID: PMC10539962 DOI: 10.1016/j.esmoop.2023.101642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Precision medicine for cancer is rapidly moving to an approach that integrates multiple dimensions of the biology in order to model mechanisms of cancer progression in each patient. The discovery of multiple drivers per tumor challenges medical decision that faces several treatment options. Drug sensitivity depends on the actionability of the target, its clonal or subclonal origin and coexisting genomic alterations. Sequencing has revealed a large diversity of drivers emerging at treatment failure, which are potential targets for clinical trials or drug repurposing. To effectively prioritize therapies, it is essential to rank genomic alterations based on their proven actionability. Moving beyond primary drivers, the future of precision medicine necessitates acknowledging the intricate spatial and temporal heterogeneity inherent in cancer. The advent of abundant complex biological data will make artificial intelligence algorithms indispensable for thorough analysis. Here, we will discuss the advancements brought by the use of high-throughput genomics, the advantages and limitations of precision medicine studies and future perspectives in this field.
Collapse
Affiliation(s)
- M Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif.
| | | | - S Apcher
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Jaulin
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Mosele
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif
| | | | - J-C Soria
- Paris Saclay University, Orsay; Drug Development Department, Gustave Roussy, Villejuif, France
| | - S Nikolaev
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F André
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Orsay
| |
Collapse
|
24
|
Donker HC, Cuppens K, Froyen G, Groen HJM, Hiltermann TJN, Maes B, Schuuring E, Volders PJ, Lunter GA, van Es B. Reliability of panel-based mutational signatures for immune-checkpoint-inhibition efficacy prediction in non-small cell lung cancer. Lung Cancer 2023; 182:107286. [PMID: 37421934 DOI: 10.1016/j.lungcan.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES Mutational signatures (MS) are gaining traction for deriving therapeutic insights for immune checkpoint inhibition (ICI). We asked if MS attributions from comprehensive targeted sequencing assays are reliable enough for predicting ICI efficacy in non-small cell lung cancer (NSCLC). METHODS Somatic mutations of m = 126 patients were assayed using panel-based sequencing of 523 cancer-related genes. In silico simulations of MS attributions for various panels were performed on a separate dataset of m = 101 whole genome sequenced patients. Non-synonymous mutations were deconvoluted using COSMIC v3.3 signatures and used to test a previously published machine learning classifier. RESULTS The ICI efficacy predictor performed poorly with an accuracy of 0.51-0.09+0.09, average precision of 0.52-0.11+0.11, and an area under the receiver operating characteristic curve of 0.50-0.09+0.10. Theoretical arguments, experimental data, and in silico simulations pointed to false negative rates (FNR) related to panel size. A secondary effect was observed, where deconvolution of small ensembles of point mutations lead to reconstruction errors and misattributions. CONCLUSION MS attributions from current targeted panel sequencing are not reliable enough to predict ICI efficacy. We suggest that, for downstream classification tasks in NSCLC, signature attributions be based on whole exome or genome sequencing instead.
Collapse
Affiliation(s)
- H C Donker
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - K Cuppens
- Department of Pulmonology and Thoracic Oncology, Jessa Hospital, Hasselt, Belgium; Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Faculty of Medicine and Life Sciences - LCRC, Hasselt University, Diepenbeek, Belgium.
| | - G Froyen
- Faculty of Medicine and Life Sciences - LCRC, Hasselt University, Diepenbeek, Belgium; Laboratory of Molecular Diagnostics, Dept Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - H J M Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, the Netherlands.
| | - T J N Hiltermann
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, the Netherlands.
| | - B Maes
- Faculty of Medicine and Life Sciences - LCRC, Hasselt University, Diepenbeek, Belgium; Laboratory of Molecular Diagnostics, Dept Clinical Biology, Jessa Hospital, Hasselt, Belgium.
| | - E Schuuring
- Department of Pathology, University of Groningen and University Medical Center Groningen, the Netherlands.
| | - P-J Volders
- Laboratory of Molecular Diagnostics, Dept Clinical Biology, Jessa Hospital, Hasselt, Belgium.
| | - G A Lunter
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, UK.
| | - B van Es
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands; MedxAI, Theophile de Bockstraat 77-1, 1058VA Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Casimir L, Zimmer S, Racine-Brassard F, Goudreau F, Jacques PÉ, Maréchal A. Chronic treatment with ATR and CHK1 inhibitors does not substantially increase the mutational burden of human cells. Mutat Res 2023; 827:111834. [PMID: 37531716 DOI: 10.1016/j.mrfmmm.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
DNA replication stress (RS) entails the frequent slow down and arrest of replication forks by a variety of conditions that hinder accurate and processive genome duplication. Elevated RS leads to genome instability, replication catastrophe and eventually cell death. RS is particularly prevalent in cancer cells and its exacerbation to unsustainable levels by chemotherapeutic agents remains a cornerstone of cancer treatments. The adverse consequences of RS are normally prevented by the ATR and CHK1 checkpoint kinases that stabilize stressed forks, suppress origin firing and promote cell cycle arrest when replication is perturbed. Specific inhibitors of these kinases have been developed and shown to potentiate RS and cell death in multiple in vitro cancer settings. Ongoing clinical trials are now probing their efficacy against various cancer types, either as single agents or in combination with mainstay chemotherapeutics. Despite their promise as valuable additions to the anti-cancer pharmacopoeia, we still lack a genome-wide view of the potential mutagenicity of these new drugs. To investigate this question, we performed chronic long-term treatments of TP53-depleted human cancer cells with ATR and CHK1 inhibitors (ATRi, AZD6738/ceralasertib and CHK1i, MK8776/SCH-900776). ATR or CHK1 inhibition did not significantly increase the mutational burden of cells, nor generate specific mutational signatures. Indeed, no notable changes in the numbers of base substitutions, short insertions/deletions and larger scale rearrangements were observed despite induction of replication-associated DNA breaks during treatments. Interestingly, ATR inhibition did induce a slight increase in closely-spaced mutations, a feature previously attributed to translesion synthesis DNA polymerases. The results suggest that ATRi and CHK1i do not have substantial mutagenic effects in vitro when used as standalone agents.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Goudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| |
Collapse
|
26
|
Yu W, Chen Y, Putluri N, Osman A, Coarfa C, Putluri V, Kamal AHM, Asmussen JK, Katsonis P, Myers JN, Lai SY, Lu W, Stephan CC, Powell RT, Johnson FM, Skinner HD, Kazi J, Ahmed KM, Hu L, Threet A, Meyer MD, Bankson JA, Wang T, Davis J, Parker KR, Harris MA, Baek ML, Echeverria GV, Qi X, Wang J, Frederick AI, Walsh AJ, Lichtarge O, Frederick MJ, Sandulache VC. Evolution of cisplatin resistance through coordinated metabolic reprogramming of the cellular reductive state. Br J Cancer 2023; 128:2013-2024. [PMID: 37012319 PMCID: PMC10205814 DOI: 10.1038/s41416-023-02253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.
Collapse
Affiliation(s)
- Wangie Yu
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yunyun Chen
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Abdullah Osman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology core, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Abu H M Kamal
- Advanced Technology core, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Kay Asmussen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Y Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wuhao Lu
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clifford C Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Reid T Powell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jawad Kazi
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kazi Mokim Ahmed
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Linghao Hu
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Addison Threet
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tony Wang
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jack Davis
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kirby R Parker
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Madison A Harris
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Mokryun L Baek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gloria V Echeverria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Andy I Frederick
- School of Electrical and Computer Engineering Undergraduate Department, Cornell University, NY, USA
| | - Alex J Walsh
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Mitchell J Frederick
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
27
|
Donker HC, van Es B, Tamminga M, Lunter GA, van Kempen LCLT, Schuuring E, Hiltermann TJN, Groen HJM. Using genomic scars to select immunotherapy beneficiaries in advanced non-small cell lung cancer. Sci Rep 2023; 13:6581. [PMID: 37085581 PMCID: PMC10121673 DOI: 10.1038/s41598-023-32499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
In advanced non-small cell lung cancer (NSCLC), response to immunotherapy is difficult to predict from pre-treatment information. Given the toxicity of immunotherapy and its financial burden on the healthcare system, we set out to identify patients for whom treatment is effective. To this end, we used mutational signatures from DNA mutations in pre-treatment tissue. Single base substitutions, doublet base substitutions, indels, and copy number alteration signatures were analysed in [Formula: see text] patients (the discovery set). We found that tobacco smoking signature (SBS4) and thiopurine chemotherapy exposure-associated signature (SBS87) were linked to durable benefit. Combining both signatures in a machine learning model separated patients with a progression-free survival hazard ratio of 0.40[Formula: see text] on the cross-validated discovery set and 0.24[Formula: see text] on an independent external validation set ([Formula: see text]). This paper demonstrates that the fingerprints of mutagenesis, codified through mutational signatures, select advanced NSCLC patients who may benefit from immunotherapy, thus potentially reducing unnecessary patient burden.
Collapse
Affiliation(s)
- H C Donker
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - B van Es
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
- MedxAI, Theophile de Bockstraat 77-1, 1058 VA, Amsterdam, The Netherlands.
| | - M Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Internal Medicine, Twente Hospital, Enschede, The Netherlands
| | - G A Lunter
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ, Groningen, The Netherlands
| | - L C L T van Kempen
- Department Of Pathology, University of Antwerp, University Hospital Antwerp, 2650, Edegem, Belgium
| | - E Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - T J N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - H J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
28
|
Ren D, Li L, Wang S, Zuo Y. The c-MYC transcription factor conduces to resistance to cisplatin by regulating MMS19 in bladder cancer cells. Tissue Cell 2023; 82:102096. [PMID: 37201439 DOI: 10.1016/j.tice.2023.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Chemoresistance is one of the dominant causes for tumor progression and recurrence of bladder cancer (BC). This paper investigated the effects of transcription factor c-MYC through promoting MMS19 expression on proliferation, metastasis and cisplatin (DDP) resistance in BC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were applied to acquire the needed BC gene data. The mRNA and protein levels of c-MYC and MMS19 were verified with q-PCR or Western blot assay. MTT and Transwell assays were utilized to detect cell viability and metastasis. Chromatin Immunoprecipitation (ChIP) assay and Luciferase reporter assay were exerted to confirm the relationship between c-MYC and MMS19. TCGA and GEO BC datasets results implied MMS19 could be an independent indicator for BC patients' prognosis. MMS19 expression was dramatically augmented in BC cell lines. Overexpression of MMS19 conduced to accelerate BC cells proliferation, metastasis and increase DDP resistance. c-MYC was positively correlated with MMS19 and acted as a transcription activator for MMS19 in BC cell lines and activated MMS19 expression. Overexpression of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance. In conclusions, c-MYC gene was a transcriptional regulator of MMS19. Up-regulation of c-MYC facilitated BC cells proliferation, metastasis and DDP resistance by motivating MMS19 expression. This molecular mechanism between c-MYC and MMS19 exerts a crucial mission in BC tumorigenesis and DDP resistance, and may contribute to the diagnosis and therapy of BC for the time to come.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Shuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
29
|
Al Bakir M, Huebner A, Martínez-Ruiz C, Grigoriadis K, Watkins TBK, Pich O, Moore DA, Veeriah S, Ward S, Laycock J, Johnson D, Rowan A, Razaq M, Akther M, Naceur-Lombardelli C, Prymas P, Toncheva A, Hessey S, Dietzen M, Colliver E, Frankell AM, Bunkum A, Lim EL, Karasaki T, Abbosh C, Hiley CT, Hill MS, Cook DE, Wilson GA, Salgado R, Nye E, Stone RK, Fennell DA, Price G, Kerr KM, Naidu B, Middleton G, Summers Y, Lindsay CR, Blackhall FH, Cave J, Blyth KG, Nair A, Ahmed A, Taylor MN, Procter AJ, Falzon M, Lawrence D, Navani N, Thakrar RM, Janes SM, Papadatos-Pastos D, Forster MD, Lee SM, Ahmad T, Quezada SA, Peggs KS, Van Loo P, Dive C, Hackshaw A, Birkbak NJ, Zaccaria S, Jamal-Hanjani M, McGranahan N, Swanton C. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 2023; 616:534-542. [PMID: 37046095 PMCID: PMC10115651 DOI: 10.1038/s41586-023-05729-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 04/14/2023]
Abstract
Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.
Collapse
Affiliation(s)
- Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kristiana Grigoriadis
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Joanne Laycock
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Diana Johnson
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Maryam Razaq
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mita Akther
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Paulina Prymas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Antonia Toncheva
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Abigail Bunkum
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | | | - Dean A Fennell
- University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Gillian Price
- Department of Medical Oncology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
- University of Aberdeen, Aberdeen, UK
| | - Keith M Kerr
- University of Aberdeen, Aberdeen, UK
- Department of Pathology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Gary Middleton
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yvonne Summers
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Colin R Lindsay
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Fiona H Blackhall
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Judith Cave
- Department of Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Arjun Nair
- Department of Radiology, University College London Hospitals, London, UK
- UCL Respiratory, Department of Medicine, University College London, London, UK
| | - Asia Ahmed
- Department of Radiology, University College London Hospitals, London, UK
| | - Magali N Taylor
- Department of Radiology, University College London Hospitals, London, UK
| | | | - Mary Falzon
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David Lawrence
- Department of Thoracic Surgery, University College London Hospital NHS Trust, London, UK
| | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Martin D Forster
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Siow Ming Lee
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Tanya Ahmad
- Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Department of Haematology, University College London Hospitals, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
30
|
Prosz A, Duan H, Tisza V, Sahgal P, Topka S, Klus GT, Börcsök J, Sztupinszki Z, Hanlon T, Diossy M, Vizkeleti L, Stormoen DR, Csabai I, Pappot H, Vijai J, Offit K, Ried T, Sethi N, Mouw KW, Spisak S, Pathania S, Szallasi Z. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527498. [PMID: 36798363 PMCID: PMC9934582 DOI: 10.1101/2023.02.07.527498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Purpose Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA
- Department of Biology, University of Massachusetts, Boston, MA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Miklos Diossy
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
| | - Laura Vizkeleti
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Dag Rune Stormoen
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York,New York
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York,New York
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Kent W. Mouw
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Oncology, Brigham & Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sandor Spisak
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA
- Department of Biology, University of Massachusetts, Boston, MA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Casimir L, Zimmer S, Racine-Brassard F, Jacques PÉ, Maréchal A. The mutational impact of Illudin S on human cells. DNA Repair (Amst) 2023; 122:103433. [PMID: 36566616 DOI: 10.1016/j.dnarep.2022.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Illudin S (ILS) is a fungal sesquiterpene secondary metabolite with potent genotoxic and cytotoxic properties. Early genetic studies and more recent genome-wide CRISPR screens showed that Illudin-induced lesions are preferentially repaired by transcription-coupled nucleotide excision repair (TC-NER) with some contribution from post-replication repair pathways. In line with these results, Irofulven, a semi-synthetic ILS analog was recently shown to be particularly effective on cell lines and patient-derived xenografts with impaired NER (e.g. ERCC2/3 mutations), raising hope that ILS-derived molecules may soon enter the clinic. Despite the therapeutic potential of ILS and its analogs, we still lack a global understanding of their mutagenic potential. Here, we characterize the mutational signatures associated with chronic exposure to ILS in human cells. ILS treatment rapidly stalls DNA replication and transcription, leading to the activation of the replication stress response and the accumulation of DNA damage. Novel single and double base substitution signatures as well as a characteristic indel signature indicate that ILS treatment preferentially alkylates purine residues and induces oxidative stress, confirming prior in vitro data. Many mutation contexts exhibit a strong transcriptional strand bias, highlighting the contribution of TC-NER to the repair of ILS lesions. Finally, collateral mutations are also observed in response to ILS, suggesting a contribution of translesion synthesis pathways to ILS tolerance. Accordingly, ILS treatment led to the rapid recruitment of the Y-family DNA polymerase kappa onto chromatin, supporting its preferential use for ILS lesion bypass. Altogether, our work provides the first global assessment of the genomic impact of ILS, demonstrating the contribution of multiple DNA repair pathways to ILS resistance and mutagenicity.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada J1H 5N3.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada J1H 5N3.
| |
Collapse
|
32
|
Ghassemi-Barghi N, Ehsanfar Z, Mohammadrezakhani O, Ashari S, Ghiabi S, Bayrami Z. Mechanistic Approach for Protective Effect of ARA290, a Specific Ligand for the Erythropoietin/CD131 Heteroreceptor, against Cisplatin-Induced Nephrotoxicity, the Involvement of Apoptosis and Inflammation Pathways. Inflammation 2023; 46:342-358. [PMID: 36085231 DOI: 10.1007/s10753-022-01737-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
ARA 290, an 11-amino acid linear nonhematopoietic peptide derived from the three-dimensional structure of helix B of the erythropoietin (EPO), interacts selectively with the innate repair receptor (IRR) that arbitrates tissue protection. The aim of this study was to investigate the protective effects of ARA290 against cisplatin-induced nephrotoxicity. For this purpose, HEK-293 and ACHN cells were treated with ARA290 (50-400 nM) and cisplatin (2.5 μM) in pretreatment condition. Then, cytotoxicity, genotoxicity, oxidative stress parameters (ROS, GPx, SOD, and MDA), and inflammatory markers (TNFα, IL6, and IL1β) were evaluated. Furthermore, apoptotic cell death was assessed via caspase-3 activity and tunnel assay. To determine the molecular mechanisms of the possible nephroprotective effects of ARA290, gene and protein expressions of TNFα, IL1β, IL6, Caspase-3, Bax, and Bcl2 were evaluated by real-time PCR and western blot assay, respectively. The findings indicated that ARA290 significantly reduced the DNA damage parameters of comet assay and the frequency of micronuclei induced by cisplatin. Besides, ARA290 improved cisplatin-induced oxidative stress by reducing MDA/ROS levels and enhancing antioxidant enzyme levels. In addition, reduced levels of pro-inflammatory cytokines indicated that cisplatin-induced renal inflammation was mitigated upon the treatment with ARA290. Besides, ARA290 ameliorates cisplatin-induced cell injury by antagonizing apoptosis. Furthermore, the molecular findings indicated that gene and protein levels of TNFα, IL1β, IL6, Caspase-3, and Bax were significantly decreased and gene and protein levels of Bcl2 significantly increased in the ARA290 plus cisplatin group compared with the cisplatin group. These findings revealed that ARA290 as a potent chemo-preventive agent exerted a protective effect on cisplatin-induced nephrotoxicity mostly through its anti-apoptotic, anti-inflammatory, and antioxidant potentials and also suggested that ARA290 might be a new therapeutic approach for patients with acute kidney injury.
Collapse
Affiliation(s)
- Nasrin Ghassemi-Barghi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | | | - Omid Mohammadrezakhani
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sorour Ashari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
33
|
Kinnaman MD, Zaccaria S, Makohon-Moore A, Arnold B, Levine M, Gundem G, Ossa JEA, Glodzik D, Rodríguez-Sánchez MI, Bouvier N, Li S, Stockfisch E, Dunigan M, Cobbs C, Bhanot U, You D, Mullen K, Melchor J, Ortiz MV, O'Donohue T, Slotkin E, Wexler LH, Dela Cruz FS, Hameed M, Glade Bender JL, Tap WD, Meyers PA, Papaemmanuil E, Kung AL, Iacobuzio-Donahue CA. Subclonal somatic copy number alterations emerge and dominate in recurrent osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522765. [PMID: 36711976 PMCID: PMC9881990 DOI: 10.1101/2023.01.05.522765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.
Collapse
Affiliation(s)
- Michael D Kinnaman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Alvin Makohon-Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA (current affiliation)
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA (current affiliation)
| | - Brian Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Max Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Isabl, New York, NY, USA (current affiliation)
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Glodzik
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA (current affiliation)
| | - M Irene Rodríguez-Sánchez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Wunderman Thompson Health, New York, NY, USA (current affiliation)
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- IT and Digital Initiatives, Memorial Sloan Kettering Cancer Center, New York, NY, USA (current affiliation)
| | - Shanita Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Stockfisch
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marisa Dunigan
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Cobbs
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katelyn Mullen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Jerry Melchor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
34
|
Germline TP53 mutations undergo copy number gain years prior to tumor diagnosis. Nat Commun 2023; 14:77. [PMID: 36604421 PMCID: PMC9816166 DOI: 10.1038/s41467-022-35727-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.
Collapse
|
35
|
Pancotti C, Rollo C, Birolo G, Benevenuta S, Fariselli P, Sanavia T. Unravelling the instability of mutational signatures extraction via archetypal analysis. Front Genet 2023; 13:1049501. [PMID: 36685831 PMCID: PMC9846778 DOI: 10.3389/fgene.2022.1049501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
The high cosine similarity between some single-base substitution mutational signatures and their characteristic flat profiles could suggest the presence of overfitting and mathematical artefacts. The newest version (v3.3) of the signature database available in the Catalogue Of Somatic Mutations In Cancer (COSMIC) provides a collection of 79 mutational signatures, which has more than doubled with respect to previous version (30 profiles available in COSMIC signatures v2), making more critical the associations between signatures and specific mutagenic processes. This study both provides a systematic assessment of the de novo extraction task through simulation scenarios based on the latest version of the COSMIC signatures and highlights, through a novel approach using archetypal analysis, which COSMIC signatures are redundant and more likely to be considered as mathematical artefacts. 29 archetypes were able to reconstruct the profile of all the COSMIC signatures with cosine similarity > 0.8. Interestingly, these archetypes tend to group similar original signatures sharing either the same aetiology or similar biological processes. We believe that these findings will be useful to encourage the development of new de novo extraction methods avoiding the redundancy of information among the signatures while preserving the biological interpretation.
Collapse
|
36
|
Bernstein AP, Loloi J, Reddy R, Ramsoomair C, Campbell K, Maura F, Landgren O, Nassau D, Ibrahim E, Ramasamy R. Mutagenic effect of chemotherapy on sperm DNA and implications for family planning. Nat Rev Urol 2022; 19:511-512. [PMID: 35906486 DOI: 10.1038/s41585-022-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ari P Bernstein
- Department of Urology, New York University Langone Health, New York, NY, USA
| | - Justin Loloi
- Department of Urology, Montefiore Medical Center, Bronx, NY, USA
| | - Rohit Reddy
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Francesco Maura
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ola Landgren
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Nassau
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Urology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Emad Ibrahim
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
37
|
Bertrums EJ, Rosendahl Huber AK, de Kanter JK, Brandsma AM, van Leeuwen AJ, Verheul M, van den Heuvel-Eibrink MM, Oka R, van Roosmalen MJ, de Groot-Kruseman HA, Zwaan CM, Goemans BF, van Boxtel R. Elevated Mutational Age in Blood of Children Treated for Cancer Contributes to Therapy-Related Myeloid Neoplasms. Cancer Discov 2022; 12:1860-1872. [PMID: 35678530 PMCID: PMC7613255 DOI: 10.1158/2159-8290.cd-22-0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023]
Abstract
Childhood cancer survivors are confronted with various chronic health conditions like therapy-related malignancies. However, it is unclear how exposure to chemotherapy contributes to the mutation burden and clonal composition of healthy tissues early in life. Here, we studied mutation accumulation in hematopoietic stem and progenitor cells (HSPC) before and after cancer treatment of 24 children. Of these children, 19 developed therapy-related myeloid neoplasms (t-MN). Posttreatment HSPCs had an average mutation burden increase comparable to what treatment-naïve cells accumulate during 16 years of life, with excesses up to 80 years. In most children, these additional mutations were induced by clock-like processes, which are also active during healthy aging. Other patients harbored mutations that could be directly attributed to treatments like platinum-based drugs and thiopurines. Using phylogenetic inference, we demonstrate that most t-MN in children originate after the start of treatment and that leukemic clones become dominant during or directly after chemotherapy exposure. SIGNIFICANCE Our study shows that chemotherapy increases the mutation burden of normal blood cells in cancer survivors. Only few drugs damage the DNA directly, whereas in most patients, chemotherapy-induced mutations are caused by processes similar to those present during normal aging. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Eline J.M. Bertrums
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Axel K.M. Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Jurrian K. de Kanter
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Arianne M. Brandsma
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Anaïs J.C.N. van Leeuwen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F. Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands.,Corresponding Author: Ruben van Boxtel, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands. Phone: 0031 (0)889727272; E-mail:
| |
Collapse
|
38
|
Rasche L, Schinke C, Maura F, Bauer MA, Ashby C, Deshpande S, Poos AM, Zangari M, Thanendrarajan S, Davies FE, Walker BA, Barlogie B, Landgren O, Morgan GJ, van Rhee F, Weinhold N. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nat Commun 2022; 13:4517. [PMID: 35922426 PMCID: PMC9349320 DOI: 10.1038/s41467-022-32145-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Deciphering Multiple Myeloma evolution in the whole bone marrow is key to inform curative strategies. Here, we perform spatial-longitudinal whole-exome sequencing, including 140 samples collected from 24 Multiple Myeloma patients during up to 14 years. Applying imaging-guided sampling we observe three evolutionary patterns, including relapse driven by a single-cell expansion, competing/co-existing sub-clones, and unique sub-clones at distinct locations. While we do not find the unique relapse sub-clone in the baseline focal lesion(s), we show a close phylogenetic relationship between baseline focal lesions and relapse disease, highlighting focal lesions as hotspots of tumor evolution. In patients with ≥3 focal lesions on positron-emission-tomography at diagnosis, relapse is driven by multiple distinct sub-clones, whereas in other patients, a single-cell expansion is typically seen (p < 0.01). Notably, we observe resistant sub-clones that can be hidden over years, suggesting that a prerequisite for curative therapies would be to overcome not only tumor heterogeneity but also dormancy.
Collapse
Affiliation(s)
- Leo Rasche
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Francesco Maura
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Michael A Bauer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shayu Deshpande
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexandra M Poos
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Faith E Davies
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Bart Barlogie
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ola Landgren
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Niels Weinhold
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
39
|
Schiantarelli J, Pappa T, Conway J, Crowdis J, Reardon B, Dietlein F, Huang J, Stanizzi D, Carey E, Bosma-Moody A, Imamovic A, Han S, Camp S, Kofman E, Shannon E, Barletta JA, He MX, Liu D, Park J, Lorch JH, Van Allen EM. Mutational Footprint of Platinum Chemotherapy in a Secondary Thyroid Cancer. JCO Precis Oncol 2022; 6:e2200183. [PMID: 36075011 PMCID: PMC9489159 DOI: 10.1200/po.22.00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Julia Schiantarelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Theodora Pappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Darren Stanizzi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Evan Carey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Alma Imamovic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Seunghun Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Sabrina Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Harvard Graduate Program in Biophysics, Boston, MA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jochen H. Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
40
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
41
|
Gutierrez C, Vilas CK, Wu CJ, Al'Khafaji AM. Functionalized Lineage Tracing Can Enable the Development of Homogenization-Based Therapeutic Strategies in Cancer. Front Immunol 2022; 13:859032. [PMID: 35603167 PMCID: PMC9120583 DOI: 10.3389/fimmu.2022.859032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic landscape across many cancers has dramatically improved since the introduction of potent targeted agents and immunotherapy. Nonetheless, success of these approaches is too often challenged by the emergence of therapeutic resistance, fueled by intratumoral heterogeneity and the immense evolutionary capacity inherent to cancers. To date, therapeutic strategies have attempted to outpace the evolutionary tempo of cancer but frequently fail, resulting in lack of tumor response and/or relapse. This realization motivates the development of novel therapeutic approaches which constrain evolutionary capacity by reducing the degree of intratumoral heterogeneity prior to treatment. Systematic development of such approaches first requires the ability to comprehensively characterize heterogeneous populations over the course of a perturbation, such as cancer treatment. Within this context, recent advances in functionalized lineage tracing approaches now afford the opportunity to efficiently measure multimodal features of clones within a tumor at single cell resolution, enabling the linkage of these features to clonal fitness over the course of tumor progression and treatment. Collectively, these measurements provide insights into the dynamic and heterogeneous nature of tumors and can thus guide the design of homogenization strategies which aim to funnel heterogeneous cancer cells into known, targetable phenotypic states. We anticipate the development of homogenization therapeutic strategies to better allow for cancer eradication and improved clinical outcomes.
Collapse
Affiliation(s)
- Catherine Gutierrez
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Caroline K Vilas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Catherine J Wu
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | |
Collapse
|
42
|
Lost by Transcription: Fork Failures, Elevated Expression, and Clinical Consequences Related to Deletions in Metastatic Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095080. [PMID: 35563471 PMCID: PMC9102808 DOI: 10.3390/ijms23095080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Among the structural variants observed in metastatic colorectal cancer (mCRC), deletions (DELs) show a size preference of ~10 kb-1 Mb and are often found in common fragile sites (CFSs). To gain more insight into the biology behind the occurrence of these specific DELs in mCRC, and their possible association with outcome, we here studied them in detail in metastatic lesions of 429 CRC patients using available whole-genome sequencing and corresponding RNA-seq data. Breakpoints of DELs within CFSs are significantly more often located between two consecutive replication origins compared to DELs outside CFSs. DELs are more frequently located at the midpoint of genes inside CFSs with duplications (DUPs) at the flanks of the genes. The median expression of genes inside CFSs was significantly higher than those of similarly-sized genes outside CFSs. Patients with high numbers of these specific DELs showed a shorter progression-free survival time on platinum-containing therapy. Taken together, we propose that the observed DEL/DUP patterns in expressed genes located in CFSs are consistent with a model of transcription-dependent double-fork failure, and, importantly, that the ability to overcome the resulting stalled replication forks decreases sensitivity to platinum-containing treatment, known to induce stalled replication forks as well. Therefore, we propose that our DEL score can be used as predictive biomarker for decreased sensitivity to platinum-containing treatment, which, upon validation, may augment future therapeutic choices.
Collapse
|
43
|
Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, Coorens T, Prigmore E, Short P, Gallone G, McRae J, Carmichael J, Barnicoat A, Firth H, O'Brien P, Rahbari R, Hurles M. Genetic and chemotherapeutic influences on germline hypermutation. Nature 2022; 605:503-508. [PMID: 35545669 PMCID: PMC9117138 DOI: 10.1038/s41586-022-04712-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/31/2022] [Indexed: 01/06/2023]
Abstract
Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.
Collapse
Affiliation(s)
- Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Benjamin Ide
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashesh Sanghvi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Neville
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tim Coorens
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jeremy McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jenny Carmichael
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Angela Barnicoat
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Patrick O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
44
|
Natesan D, Zhang L, Martell HJ, Jindal T, Devine P, Stohr B, Espinosa-Mendez C, Grenert J, Van Ziffle J, Joseph N, Umetsu S, Onodera C, Turski M, Chan E, Desai A, Aggarwal R, Wong A, Porten S, Chou J, Friedlander T, Fong L, Small EJ, Sweet-Cordero A, Koshkin VS. APOBEC Mutational Signature and Tumor Mutational Burden as Predictors of Clinical Outcomes and Treatment Response in Patients With Advanced Urothelial Cancer. Front Oncol 2022; 12:816706. [PMID: 35321431 PMCID: PMC8935010 DOI: 10.3389/fonc.2022.816706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Introduction Tumor mutational burden (TMB) and APOBEC mutational signatures are potential prognostic markers in patients with advanced urothelial carcinoma (aUC). Their utility in predicting outcomes to specific therapies in aUC warrants additional study. Methods We retrospectively reviewed consecutive UC cases assessed with UCSF500, an institutional assay that uses hybrid capture enrichment of target DNA to interrogate 479 common cancer genes. Hypermutated tumors (HM), defined as having TMB ≥10 mutations/Mb, were also assessed for APOBEC mutational signatures, while non-HM (NHM) tumors were not assessed due to low TMB. The logrank test was used to determine if there were differences in overall survival (OS) and progression-free survival (PFS) among patient groups of interest. Results Among 75 aUC patients who had UCSF500 testing, 46 patients were evaluable for TMB, of which 19 patients (41%) had HM tumors and the rest had NHM tumors (27 patients). An additional 29 patients had unknown TMB status. Among 19 HM patients, all 16 patients who were evaluable for analysis had APOBEC signatures. HM patients (N=19) were compared with NHM patients (N=27) and had improved OS from diagnosis (125.3 months vs 35.7 months, p=0.06) but inferior OS for patients treated with chemotherapy (7.0 months vs 13.1 months, p=0.04). Patients with APOBEC (N=16) were compared with remaining 56 patients, comprised of 27 NHM patients and 29 patients with unknown TMB, showing APOBEC patients to have improved OS from diagnosis (125.3 months vs 44.5 months, p=0.05) but inferior OS for patients treated with chemotherapy (7.0 months vs 13.1 months, p=0.05). Neither APOBEC nor HM status were associated with response to immunotherapy. Conclusions In a large, single-institution aUC cohort assessed with UCSF500, an institutional NGS panel, HM tumors were common and all such tumors that were evaluated for mutational signature analysis had APOBEC signatures. APOBEC signatures and high TMB were prognostic of improved OS from diagnosis and both analyses also predicted inferior outcomes with chemotherapy treatment.
Collapse
Affiliation(s)
- Divya Natesan
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Henry J. Martell
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Tanya Jindal
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Patrick Devine
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Bradley Stohr
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Carlos Espinosa-Mendez
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - James Grenert
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Jessica Van Ziffle
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Nancy Joseph
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Sarah Umetsu
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Courtney Onodera
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Michelle Turski
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Emily Chan
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Arpita Desai
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Rahul Aggarwal
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Anthony Wong
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Sima Porten
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Jonathan Chou
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Terence Friedlander
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Lawrence Fong
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Eric J. Small
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Alejandro Sweet-Cordero
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Vadim S. Koshkin
- Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Vadim S. Koshkin,
| |
Collapse
|
45
|
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer 2022; 22:131-142. [PMID: 34789870 DOI: 10.1038/s41568-021-00418-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), already among the deadliest epithelial malignancies, is rising in both incidence and contribution to overall cancer deaths. Decades of research have improved our understanding of PDAC carcinogenesis, including characterizing germline predisposition, the cell of origin, precursor lesions, the sequence of genetic alterations, including simple and structural alterations, transcriptional changes and subtypes, tumour heterogeneity, metastatic progression and the tumour microenvironment. These fundamental advances inform contemporary translational efforts in primary prevention, screening and early detection, multidisciplinary management and survivorship, as prospective clinical trials begin to adopt molecular-based selection criteria to guide targeted therapies. Genomic and transcriptomic data on PDAC were also included in the international pan-cancer analysis of approximately 2,600 cancers, a milestone in cancer research that allows further insight through comparison with other tumour types. Thus, this is an ideal time to review our current knowledge of PDAC evolution and heterogeneity, gained from the study of preclinical models and patient biospecimens, and to propose a model of PDAC evolution that takes into consideration findings from varied sources, with a particular focus on the genomics of human PDAC.
Collapse
Affiliation(s)
- Ashton A Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Steven Gallinger
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON, Canada.
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada.
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
46
|
Póti Á, Szikriszt B, Gervai JZ, Chen D, Szüts D. Characterisation of the spectrum and genetic dependence of collateral mutations induced by translesion DNA synthesis. PLoS Genet 2022; 18:e1010051. [PMID: 35130276 PMCID: PMC8870599 DOI: 10.1371/journal.pgen.1010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10–20% of non-paired substitutions as well, underscoring the importance of the process. DNA base substitutions are the most common form of genomic mutations, formed both spontaneously and in response to environmental mutagens. One of the main mechanisms of base substitution mutagenesis is translesion synthesis, a process that relies on specialised DNA polymerases to replicate damaged DNA templates. In addition to incorrect base insertions at the site of lesions in the template, translesion polymerases may also generate ‘collateral’ mutations away from the lesion due to their lower accuracy in selecting the correct incoming nucleotide. In this study, we surveyed the whole genome sequence of experimental cell clones to examine the extent and genetic dependence of collateral mutagenesis in higher eukaryotes. Looking for close mutation pairs, we found that collateral mutations frequently occur near primary lesions generated by cisplatin or ultraviolet radiation in chicken and human cells, but are restricted to a short distance of approximately 25 base pairs. By analysing their sequence context, we showed that collateral mutations can also occur near correctly bypassed primary lesions and may be responsible for a considerable proportion of all base substitution mutations.
Collapse
Affiliation(s)
- Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Dan Chen
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
47
|
Griso AB, Acero-Riaguas L, Castelo B, Cebrián-Carretero JL, Sastre-Perona A. Mechanisms of Cisplatin Resistance in HPV Negative Head and Neck Squamous Cell Carcinomas. Cells 2022; 11:561. [PMID: 35159370 PMCID: PMC8834318 DOI: 10.3390/cells11030561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the eighth most common cancers worldwide. While promising new therapies are emerging, cisplatin-based chemotherapy remains the gold standard for advanced HNSCCs, although most of the patients relapse due to the development of resistance. This review aims to condense the different mechanisms involved in the development of cisplatin resistance in HNSCCs and highlight future perspectives intended to overcome its related complications. Classical resistance mechanisms include drug import and export, DNA repair and oxidative stress control. Emerging research identified the prevalence of these mechanisms in populations of cancer stem cells (CSC), which are the cells mainly contributing to cisplatin resistance. The use of old and new CSC markers has enabled the identification of the characteristics within HNSCC CSCs predisposing them to treatment resistance, such as cell quiescence, increased self-renewal capacity, low reactive oxygen species levels or the acquisition of epithelial to mesenchymal transcriptional programs. In the present review, we will discuss how cell intrinsic and extrinsic cues alter the phenotype of CSCs and how they influence resistance to cisplatin treatment. In addition, we will assess how the stromal composition and the tumor microenvironment affect drug resistance and the acquisition of CSCs' characteristics through a complex interplay between extracellular matrix content as well as immune and non-immune cell characteristics. Finally, we will describe how alterations in epigenetic modifiers or other signaling pathways can alter tumor behavior and cell plasticity to induce chemotherapy resistance. The data generated in recent years open up a wide range of promising strategies to optimize cisplatin therapy, with the potential to personalize HNSCC patient treatment strategies.
Collapse
Affiliation(s)
- Ana Belén Griso
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Lucía Acero-Riaguas
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| | - Beatriz Castelo
- Medical Oncology Department, University Hospital La Paz, 28046 Madrid, Spain;
| | | | - Ana Sastre-Perona
- Laboratory of Experimental Therapies and Biomarkers in Cancer, IdiPAZ, 28046 Madrid, Spain; (A.B.G.); (L.A.-R.)
| |
Collapse
|
48
|
Chojnacka M, Diamond B, Landgren O, Maura F. Defining genomic events involved in the evolutionary trajectories of myeloma and its precursor conditions. Semin Oncol 2022; 49:11-18. [PMID: 35168813 PMCID: PMC9149131 DOI: 10.1053/j.seminoncol.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 02/03/2023]
Abstract
All patients with a diagnosis of multiple myeloma (MM) have a preceding, asymptomatic expansion of clonal plasma cells, clinically recognized as monoclonal gammopathy of undetermined significance or smoldering multiple myeloma (SMM). While most patients with monoclonal gammopathy of undetermined significance have a very small rate of progression, SMM is a widely heterogeneous condition where a fraction of patients will progress to symptomatic MM rather quickly, while others will experience an indolent clinical course. The differentiation between progressive and stable precursor condition thus represents one of the most important unmet clinical needs in the MM community. The ability to identify patients at high-risk of progression before major clonal expansion and onset of end-organ damage would enable strategies for early prevention and perhaps more effective intervention. All proposed criteria to predict the progression of myeloma precursor conditions are built around indirect markers of disease burden and, therefore, are generally able to accurately identify only a small fraction of patients in whom progression to MM is already occurring. Leveraging whole genome and exome sequencing, it has been shown that patients with stable myeloma precursor conditions are characterized by either absence or lower prevalence of distinct genomic events that are detectable in progressive precursor condition years before the progression. In this review, we discuss evolving genomic concepts and tools; and their ability to differentiate myeloma precursor conditions into two distinct entities: one benign (monoclonal gammopathy of benign significance) and another malignant (asymptomatic multiple myeloma).
Collapse
Affiliation(s)
- Monika Chojnacka
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Benjamin Diamond
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Ola Landgren
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Francesco Maura
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
49
|
Brady SW, Gout AM, Zhang J. Therapeutic and prognostic insights from the analysis of cancer mutational signatures. Trends Genet 2022; 38:194-208. [PMID: 34483003 PMCID: PMC8752466 DOI: 10.1016/j.tig.2021.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The somatic mutations in each cancer genome are caused by multiple mutational processes, each of which leaves a characteristic imprint (or 'signature'), potentially caused by specific etiologies or exposures. Deconvolution of these signatures offers a glimpse into the evolutionary history of individual tumors. Recent work has shown that mutational signatures may also yield therapeutic and prognostic insights, including the identification of cell-intrinsic signatures as biomarkers of drug response and prognosis. For example, mutational signatures indicating homologous recombination deficiency are associated with poly(ADP)-ribose polymerase (PARP) inhibitor sensitivity, whereas APOBEC-associated signatures are associated with ataxia telangiectasia and Rad3-related kinase (ATR) inhibitor sensitivity. Furthermore, therapy-induced mutational signatures implicated in cancer progression have also been uncovered, including the identification of thiopurine-induced TP53 mutations in leukemia. In this review, we explore the various ways mutational signatures can reveal new therapeutic and prognostic insights, thus extending their traditional role in identifying disease etiology.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
50
|
Chen D, Gervai JZ, Póti Á, Németh E, Szeltner Z, Szikriszt B, Gyüre Z, Zámborszky J, Ceccon M, d'Adda di Fagagna F, Szallasi Z, Richardson AL, Szüts D. BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1. Nat Commun 2022; 13:226. [PMID: 35017534 PMCID: PMC8752635 DOI: 10.1038/s41467-021-27872-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, H-1085, Hungary
| | - Judit Zámborszky
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Marta Ceccon
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, H-1092, Hungary
| | | | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|