1
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
2
|
Filipczak D, Souchet A, Georgiou K, Foisner R, Naetar N. Lamin chromatin binding is modulated by interactions of different LAP2α domains with lamins and chromatin. iScience 2024; 27:110869. [PMID: 39319273 PMCID: PMC11417337 DOI: 10.1016/j.isci.2024.110869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Lamins A and C are components of the lamina at the nuclear periphery and associate with heterochromatin. A distinct, relatively mobile pool of lamin A/C in the nuclear interior associates with euchromatic regions and with lamin-associated polypeptide 2α (LAP2α). Here we show that phosphorylation-dependent impairment of lamin assembly had no effect on its chromatin association, while LAP2α depletion was sufficient to increase chromatin association of lamins. This suggests that complex interactions between LAP2α, chromatin, and lamins regulate lamin chromatin binding. Both the C terminus of LAP2α and its N-terminal LAP2-Emerin-MAN1 (LEM) domain, mediating interaction with lamin A/C indirectly via barrier-to-autointegration factor (BAF), are required for binding to lamins. The N-terminal LEM-like domain of LAP2α, but not its LEM domain, mediates chromatin association of LAP2α and requires LAP2α dimerization via its C terminus. Our data suggest that formation of several LAP2α-, lamin A/C-, and BAF-containing complexes in the nucleoplasm and on chromatin affects lamin chromatin association.
Collapse
Affiliation(s)
- Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Anna Souchet
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Konstantina Georgiou
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna A-1030, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, Vienna 1030, Austria
| |
Collapse
|
3
|
Maurizi E, Merra A, Schiroli D, Ghezzi B, Macaluso C, Pellegrini G. Fluctuations in Corneal Endothelial LAP2 Expression Levels Correlate with Passage Dependent Declines in Their Cell Proliferative Activity. Int J Mol Sci 2022; 23:ijms23105859. [PMID: 35628669 PMCID: PMC9146651 DOI: 10.3390/ijms23105859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro. This study aims to analyze CEnCs behavior and expression in vitro, either in sub-confluent growing (S) or confluent (C) CEnCs cultures. Primary rabbit and human CEnCs were cultured and used for RT-PCR, immunofluorescence or western blot analysis. These methods allowed identifying a novel molecular marker, LAP2, that is upregulated in S while downregulated in C human or rabbit CEnCs. Those results were observed for several subsequent passages in culture and this, together with the correlation between ki67 and LAP2 expression, suggested LAP2 as a novel possible indicator for culture ageing. Finally, treatment with FGF and TGFβ in rCEnCs highlighted how LAP2 can vary as the cells regulate their proliferative state. In conclusion, we have identified a novel marker for CEnCs, LAP2, that regulates its expression depending on the cells sub/confluent state and that correlates with CEnCs proliferation.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Correspondence:
| | - Alessia Merra
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy;
| | - Benedetta Ghezzi
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Claudio Macaluso
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| |
Collapse
|
4
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
5
|
Abstract
Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
Collapse
Affiliation(s)
- Xianrong Wong
- Laboratory of Developmental and Regenerative Biology, Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138648
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
6
|
Chen NY, Kim PH, Tu Y, Yang Y, Heizer PJ, Young SG, Fong LG. Increased expression of LAP2β eliminates nuclear membrane ruptures in nuclear lamin-deficient neurons and fibroblasts. Proc Natl Acad Sci U S A 2021; 118:e2107770118. [PMID: 34161290 PMCID: PMC8237679 DOI: 10.1073/pnas.2107770118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2β, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2β and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2β expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2β levels and NM ruptures. We also found low LAP2β levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2β expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2β expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2β expression increased NM ruptures, whereas increased LAP2β expression virtually abolished NM ruptures. Increased LAP2β expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2β expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.
Collapse
Affiliation(s)
- Natalie Y Chen
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Patrick J Heizer
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
7
|
Rezzani R, Franco C, Hardeland R, Rodella LF. Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. Int J Mol Sci 2020; 21:E8806. [PMID: 33233845 PMCID: PMC7699871 DOI: 10.3390/ijms21228806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
For years the thymus gland (TG) and the pineal gland (PG) have been subject of increasingly in-depth studies, but only recently a link that can associate the activities of the two organs has been identified. Considering, on the one hand, the well-known immune activity of thymus and, on the other, the increasingly emerging immunological roles of circadian oscillators and the rhythmically secreted main pineal product, melatonin, many studies aimed to analyse the possible existence of an interaction between these two systems. Moreover, data confirmed that the immune system is functionally associated with the nervous and endocrine systems determining an integrated dynamic network. In addition, recent researches showed a similar, characteristic involution process both in TG and PG. Since the second half of the 20th century, evidence led to the definition of an effectively interacting thymus-pineal axis (TG-PG axis), but much has to be done. In this sense, the aim of this review is to summarize what is actually known about this topic, focusing on the impact of the TG-PG axis on human life and ageing. We would like to give more emphasis to the implications of this dynamical interaction in a possible therapeutic strategy for human health. Moreover, we focused on all the products of TG and PG in order to collect what is known about the role of peptides other than melatonin. The results available today are often unclear and not linear. These peptides have not been well studied and defined over the years. In this review we hope to awake the interest of the scientific community in them and in their future pharmacological applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Lower Saxony, D-37073 Göttingen, Germany;
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
8
|
Casting a Wider Net: Differentiating between Inner Nuclear Envelope and Outer Nuclear Envelope Transmembrane Proteins. Int J Mol Sci 2019; 20:ijms20215248. [PMID: 31652739 PMCID: PMC6862087 DOI: 10.3390/ijms20215248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.
Collapse
|
9
|
Capitanchik C, Dixon CR, Swanson SK, Florens L, Kerr ARW, Schirmer EC. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus 2019; 9:410-430. [PMID: 29912636 PMCID: PMC7000147 DOI: 10.1080/19491034.2018.1469351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. A little investigated hypothesis to explain this is that the mutated proteins or their partners have tissue-specific splice variants. To test this, we analyzed RNA-Seq datasets, finding novel isoforms or isoform tissue-specificity for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, that regulates the Emery-Dreifuss muscular dystrophy linked emerin gene. Interestingly, the muscle-specific Lmo7 exon is rich in serine phosphorylation motifs, suggesting regulatory function. Muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies were also found. Nucleoporins tissue-specific variants were found for Nup54, Nup133, Nup153 and Nup358/RanBP2. RT-PCR confirmed novel Lmo7 and RanBP2 variants and specific knockdown of the Lmo7 variantreduced myogenic index. Nuclear envelope proteins were enriched for tissue-specific splice variants compared to the rest of the genome, suggesting that splice variants contribute to its tissue-specific functions.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Charles R Dixon
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Selene K Swanson
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Laurence Florens
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Alastair R W Kerr
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Eric C Schirmer
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
10
|
Liu C, Yu H, Shen X, Qiao J, Wu X, Chang J, Zhu X, Wang J, Shen X. Prognostic significance and biological function of Lamina-associated polypeptide 2 in non-small-cell lung cancer. Onco Targets Ther 2019; 12:3817-3827. [PMID: 31190881 PMCID: PMC6529027 DOI: 10.2147/ott.s179870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: Lamina-associated polypeptide 2 (LAP2; encoded by TMPO), is a nuclear protein that may affect chromatin regulation and gene expression through dynamically binding to nuclear lamin. TMPO (LAP2) plays dual roles of either suppressing or promoting proliferation of cells, depending on the status of the cell. It has been reported that TMPO is up-regulated in various cancer types. However, its function in lung cancer has not been studied yet. Materials and methods: A series of clinical microarray datasets for lung cancer were investigated to demonstrate the expression of TMPO. The transcription of TMPO gene in human lung cancer was analyzed using Oncomine platform (www.oncomine.org) according to the standardized procedures described previously. Four separate datasets (Hou Lung, Okayama Lung, Beer Lung, and Garber Lung) were analyzed. Results: Here, we show that TMPO is over-expressed in lung cancer tissues, and that a high level of TMPO indicates a poor prognosis in lung cancer patients. Knockdown of TMPO in lung cancer cells inhibits cell proliferation and induces apoptosis. Also, down-regulation of TMPO leads to an impaired metastatic ability of tumor cells. A nude mice tumor model show that knockdown of TMPO suppresses tumor formation in vivo. Conclusion: Collectively, this study suggests TMPO as an oncogene and a novel prognostic gene in lung cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xuxia Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Jie Qiao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xunxia Zhu
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai 200040, People's Republic of China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
11
|
Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 2018; 10:1033-1051. [PMID: 29869195 PMCID: PMC6082319 DOI: 10.1007/s12551-018-0431-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure, function, and interactions between components of the LINC complex will be described. Mutations that are known to cause cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the field and emerging technologies to investigate LINC complex function will be discussed.
Collapse
|
12
|
Abstract
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.
Collapse
Affiliation(s)
- Nana Naetar
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Simona Ferraioli
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Roland Foisner
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
13
|
Zhang L, Wang G, Chen S, Ding J, Ju S, Cao H, Tian H. Depletion of thymopoietin inhibits proliferation and induces cell cycle arrest/apoptosis in glioblastoma cells. World J Surg Oncol 2016; 14:267. [PMID: 27756319 PMCID: PMC5069786 DOI: 10.1186/s12957-016-1018-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/04/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant nervous system tumor with an almost 100 % recurrence rate. Thymopoietin (TMPO) has been demonstrated to be upregulated in various tumors, including lung cancer, breast cancer, and so on, but its role in GBM has not been reported. This study was aimed to determine the role of TMPO in GBM. METHODS Publicly available Oncomine dataset analysis was used to explore the expression level of TMPO in GBM specimens. Then the expression of TMPO was knocked down in GBM cells using lentiviral system, and the knockdown efficacy was further validated by real-time quantitative PCR and western blot analysis. Furthermore, the effects of TMPO silencing on GBM cell proliferation and apoptosis were examined by MTT, colony formation, and flow cytometry analysis. Meanwhile, the expression of apoptotic markers caspase-3 and poly(ADP-ribose) polymerase (PARP) were investigated by western blot analysis. RESULTS This study observed that the expression of TMPO in GBM specimens was remarkably higher than that in normal brain specimens. Moreover, knockdown of TMPO could significantly inhibit cell proliferation and arrest cell cycle progression at the G2/M phase. It also found that TMPO knockdown promoted cell apoptosis by upregulation of the cleavage of caspase-3 and PARP protein levels which are the markers of apoptosis. CONCLUSIONS The results suggested TMPO might be a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Gan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Heli Cao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
14
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang Q, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 2015; 4:77-94. [PMID: 26788539 PMCID: PMC4707028 DOI: 10.1002/mgg3.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Juvenile-onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown. METHODS We performed whole exome sequencing of three Hutterite-type cataract trios and follow-up genotyping and mapping in four extended kindreds. RESULTS Trio exomes enabled genome-wide autozygosity mapping, which localized the disease gene to a 9.5-Mb region on chromosome 6p. This region contained two candidate variants, LEMD2 c.T38G and MUC21 c.665delC. Extended pedigrees recruited for variant genotyping revealed multiple additional relatives with juvenile-onset cataract, as well as six deceased relatives with both cataracts and sudden cardiac death. The candidate variants were genotyped in 84 family members, including 17 with cataracts; only the variant in LEMD2 cosegregated with cataracts (LOD = 9.62). SNP-based fine mapping within the 9.5 Mb linked region supported this finding by refining the cataract locus to a 0.5- to 2.9-Mb subregion (6p21.32-p21.31) containing LEMD2 but not MUC21. LEMD2 is expressed in mouse and human lenses and encodes a LEM domain-containing protein; the c.T38G missense mutation is predicted to mutate a highly conserved residue within this domain (p.Leu13Arg). CONCLUSION We performed a genetic and genomic study of Hutterite-type cataract and found evidence for an association of this phenotype with sudden cardiac death. Using combined genetic and genomic approaches, we mapped cataracts to a small portion of chromosome 6 and propose that they result from a homozygous missense mutation in LEMD2.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Shen Gu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Janson J White
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Kimberly Walker
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Qiaoyan Wang
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Donna M Muzny
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Richard A Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas; Department of OphthalmologyBaylor College of MedicineHoustonTexas; Department of MedicineBaylor College of MedicineHoustonTexas
| |
Collapse
|
15
|
Abstract
LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.
Collapse
|
16
|
Worman HJ, Schirmer EC. Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr Opin Cell Biol 2015; 34:101-12. [PMID: 26115475 PMCID: PMC4522394 DOI: 10.1016/j.ceb.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
Human 'laminopathy' diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as 'specialized' in each cell type is important to understand the tissue-specific pathology of NE-linked diseases.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Abascal F, Tress ML, Valencia A. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2α and ZNF451 in mammals. Bioinformatics 2015; 31:2257-61. [PMID: 25735770 PMCID: PMC4495291 DOI: 10.1093/bioinformatics/btv132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Transposable elements constitute a large fraction of vertebrate genomes and, during evolution, may be co-opted for new functions. Exonization of transposable elements inserted within or close to host genes is one possible way to generate new genes, and alternative splicing of the new exons may represent an intermediate step in this process. The genes TMPO and ZNF451 are present in all vertebrate lineages. Although they are not evolutionarily related, mammalian TMPO and ZNF451 do have something in common-they both code for splice isoforms that contain LAP2alpha domains. We found that these LAP2alpha domains have sequence similarity to repetitive sequences in non-mammalian genomes, which are in turn related to the first ORF from a DIRS1-like retrotransposon. This retrotransposon domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms, which may have contributed to the success of the colonization process. The LAP2alpha-specific isoform of TMPO (LAP2α) has been co-opted for important roles in the cell, whereas the ZNF451 LAP2alpha isoform is evolving under strong purifying selection but remains uncharacterized.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Michael L Tress
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| |
Collapse
|
18
|
Jevtić P, Levy DL. Mechanisms of nuclear size regulation in model systems and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:537-69. [PMID: 24563365 DOI: 10.1007/978-1-4899-8032-8_25] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Changes in nuclear size have long been used by cytopathologists as an important parameter to diagnose, stage, and prognose many cancers. Mechanisms underlying these changes and functional links between nuclear size and malignancy are largely unknown. Understanding mechanisms of nuclear size regulation and the physiological significance of proper nuclear size control will inform the interplay between altered nuclear size and oncogenesis. In this chapter we review what is known about molecular mechanisms of nuclear size control based on research in model experimental systems including yeast, Xenopus, Tetrahymena, Drosophila, plants, mice, and mammalian cell culture. We discuss how nuclear size is influenced by DNA ploidy, nuclear structural components, cytoplasmic factors and nucleocytoplasmic transport, the cytoskeleton, and the extracellular matrix. Based on these mechanistic insights, we speculate about how nuclear size might impact cell physiology and whether altered nuclear size could contribute to cancer development and progression. We end with some outstanding questions about mechanisms and functions of nuclear size regulation.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA,
| | | |
Collapse
|
19
|
Gesson K, Vidak S, Foisner R. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin Cell Dev Biol 2013; 29:116-24. [PMID: 24374133 PMCID: PMC4053830 DOI: 10.1016/j.semcdb.2013.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/10/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022]
Abstract
A-type lamins are components of the lamina network at the nuclear envelope, which mediates nuclear stiffness and anchors chromatin to the nuclear periphery. However, A-type lamins are also found in the nuclear interior. Here we review the roles of the chromatin-associated, nucleoplasmic LEM protein, lamina-associated polypeptide 2α (LAP2α) in the regulation of A-type lamins in the nuclear interior. The lamin A/C-LAP2α complex may be involved in the regulation of the retinoblastoma protein-mediated pathway and other signaling pathways balancing proliferation and differentiation, and in the stabilization of higher-order chromatin organization throughout the nucleus. Loss of LAP2α in mice leads to selective depletion of the nucleoplasmic A-type lamin pool, promotes the proliferative stem cell phenotype of tissue progenitor cells, and delays stem cell differentiation. These findings support the hypothesis that LAP2α and nucleoplasmic lamins are regulators of adult stem cell function and tissue homeostasis. Finally, we discuss potential implications of this concept for defining the molecular disease mechanisms of lamin-linked diseases such as muscular dystrophy and premature aging syndromes.
Collapse
Affiliation(s)
- Kevin Gesson
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sandra Vidak
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
20
|
Osorio DS, Gomes ER. The contemporary nucleus: A trip down memory lane. Biol Cell 2013; 105:430-41. [DOI: 10.1111/boc.201300009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/21/2013] [Indexed: 01/12/2023]
|
21
|
LMX1B is part of a transcriptional complex with PSPC1 and PSF. PLoS One 2013; 8:e53122. [PMID: 23308148 PMCID: PMC3537735 DOI: 10.1371/journal.pone.0053122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
The LIM homeodomain transcription factor Lmx1b is essential for the development of the isthmic organizer and mesodiencephalic dopaminergic neurons. The uncoupling of Pitx3 and Th expression, in the Lmx1b null mutant, suggests that Lmx1b may act as a positional activator of the mdDA domain, eventually leading to properly differentiating mdDA neurons. In this study, we aimed to elucidate how Lmx1b functions mechanistically in this developmental process, by searching for molecular interactors of Lmx1b at the protein level. Initially, affinity-purification of LMX1B-HIS overexpressed protein in MN9D dopaminergic cells followed by mass-spectrometry analysis, resulted in the identification of PSPC1 protein as a possible binding partner of LMX1B. Subsequent immunoprecipitation experiments revealed an interaction between LMX1B and PSPC1 in a larger protein complex also containing PSF. This complex was observed in vitro and in vivo, and we hypothesize that, via PSF and PSPC1, LMX1B may be part of the previously identified Nurr1 transcriptional complex wherein interaction with the co-repressor PSF and the transcription factor Pitx3 is needed to drive expression of Nurr1 target genes in specifying the dopaminergic phenotype. Furthermore, we identified GRLF1, DHX9, MYO1C, HSP70 and TMPO as potential LMX1B interactors. DHX9 and GRLF1 are highly expressed in the developing mdDA neuronal field, and GRLF1 and MYO1C have both been linked to neurite outgrowth. The identification of these proteins suggests that Lmx1b may act directly in the transcriptional activation of Nurr1 target genes and be involved in other processes like neurite outgrowth as well.
Collapse
|
22
|
Gotic I, Foisner R. Multiple novel functions of lamina associated polypeptide 2α in striated muscle. Nucleus 2012; 1:397-401. [PMID: 21326822 DOI: 10.4161/nucl.1.5.12394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 01/19/2023] Open
Abstract
Lamina-associated polypeptide 2α (LAP2α) is a nucleoplasmic protein that interacts with A-type lamins and the retinoblastoma protein (pRb) and affects pRb-mediated cell cycle regulation and chromatin organization. Mutations in lamin A/C and LAP2α cause late onset striated muscle diseases, but the molecular mechanisms are poorly understood. We have recently reported on the striated muscle phenotype of LAP2α-deficient mice, revealing new unexpected roles of LAP2α. Loss of LAP2α in skeletal muscle caused an upregulated stem cell-type gene expression in muscle satellite cell progeny and their delayed myogenic differentiation in vitro. In vivo, the myofiber-associated muscle stem cell pool was increased. In addition, absence of LAP2α promoted muscle remodeling towards fast myofiber types in the soleus muscle of old animals. In cardiac tissue, deletion of LAP2α caused systolic dysfunction in young mice with an increased susceptibility for fibrosis in old animals. The functional impairment in the heart was accompanied by a deregulation of major cardiac transcription factors, GATA4 and MEF2c and activation of compensatory pathways, including the downregulation of β-adrenergic receptor signaling.Here we discuss potential functions of LAP2α in striated muscle at molecular level and how loss of these functions may cause the diverse muscle phenotypes. We propose that LAP2α serves as a transcriptional co-regulator, which controls muscle specific gene expression during muscle regeneration, muscle remodeling and stress response.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
23
|
Kim HJ, Hwang SH, Han ME, Baek S, Sim HE, Yoon S, Baek SY, Kim BS, Kim JH, Kim SY, Oh SO. LAP2 is widely overexpressed in diverse digestive tract cancers and regulates motility of cancer cells. PLoS One 2012; 7:e39482. [PMID: 22745766 PMCID: PMC3380024 DOI: 10.1371/journal.pone.0039482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/24/2012] [Indexed: 11/21/2022] Open
Abstract
Background Lamina-associated polypeptides 2 (LAP2) is a nuclear protein that connects the nuclear lamina with chromatin. Although its critical roles in genetic disorders and hematopoietic malignancies have been described, its expression and roles in digestive tract cancers have been poorly characterized. Methods To examine the expression of LAP2 in patient tissues, we performed immunohistochemistry and real-time PCR. To examine motility of cancer cells, we employed Boyden chamber, wound healing and Matrigel invasion assays. To reveal its roles in metastasis in vivo, we used a liver metastasis xenograft model. To investigate the underlying mechanism, a cDNA microarray was conducted. Results Immunohistochemistry in patient tissues showed widespread expression of LAP2 in diverse digestive tract cancers including stomach, pancreas, liver, and bile duct cancers. Real-time PCR confirmed that LAP2β is over-expressed in gastric cancer tissues. Knockdown of LAP2β did not affect proliferation of most digestive tract cancer cells except pancreatic cancer cells. However, knockdown of LAP2β decreased motility of all tested cancer cells. Moreover, overexpression of LAP2β increased motility of gastric and pancreatic cancer cells. In the liver metastasis xenograft model, LAP2β increased metastatic efficacy of gastric cancer cells and mortality in tested mice. cDNA microarrays showed the possibility that myristoylated alanine-rich C kinase substrate (MARCKS) and interleukin6 (IL6) may mediate LAP2β-regulated motility of cancer cells. Conclusions From the above results, we conclude that LAP2 is widely overexpressed in diverse digestive tract cancers and LAP2β regulates motility of cancer cells and suggest that LAP2β may have utility for diagnostics and therapeutics in digestive tract cancers.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sun-Hwi Hwang
- Department of Surgery, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sungmin Baek
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Hey-Eun Sim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Sun-Yong Baek
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Bong-Seon Kim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Song HK, Hong SE, Kim T, Kim DH. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 2012; 7:e35552. [PMID: 22523601 PMCID: PMC3327670 DOI: 10.1371/journal.pone.0035552] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/21/2012] [Indexed: 12/25/2022] Open
Abstract
Although both physiological hypertrophy (PHH) and pathological hypertrophy (PAH) of the heart have similar morphological appearances, only PAH leads to fatal heart failure. In the present study, we used RNA sequencing (RNA-Seq) to determine the transcriptomic signatures for both PHH and PAH. Approximately 13-20 million reads were obtained for both models, among which PAH showed more differentially expressed genes (DEGs) (2,041) than PHH (245). The expression of 417 genes was barely detectable in the normal heart but was suddenly activated in PAH. Among them, Foxm1 and Plk1 are of particular interest, since Ingenuity Pathway Analysis (IPA) using DEGs and upstream motif analysis showed that they are essential hub proteins that regulate the expression of downstream proteins associated with PAH. Meanwhile, 52 genes related to collagen, chemokines, and actin showed opposite expression patterns between PHH and PAH. MAZ-binding motifs were enriched in the upstream region of the participating genes. Alternative splicing (AS) of exon variants was also examined using RNA-Seq data for PAH and PHH. We found 317 and 196 exon inclusions and exon exclusions, respectively, for PAH, and 242 and 172 exon inclusions and exclusions, respectively for PHH. The AS pattern was mostly related to gains or losses of domains, changes in activity, and localization of the encoded proteins. The splicing variants of 8 genes (i.e., Fhl1, Rcan1, Ndrg2, Synpo, Ttll1, Cxxc5, Egfl7, and Tmpo) were experimentally confirmed. Multilateral pathway analysis showed that the patterns of quantitative (DEG) and qualitative (AS) changes differ depending on the type of pathway in PAH and PHH. One of the most significant changes in PHH is the severe downregulation of autoimmune pathways accompanied by significant AS. These findings revealed the unique transcriptomic signatures of PAH and PHH and also provided a more comprehensive understanding at both the quantitative and qualitative levels.
Collapse
Affiliation(s)
| | | | | | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
25
|
Structural determinants for nuclear envelope localization and function of pseudorabies virus pUL34. J Virol 2011; 86:2079-88. [PMID: 22156520 DOI: 10.1128/jvi.05484-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpesvirus proteins pUL34 and pUL31 form a complex at the inner nuclear membrane (INM) which is necessary for efficient nuclear egress. Pseudorabies virus (PrV) pUL34 is a type II membrane protein of 262 amino acids (aa). The transmembrane region (TM) is predicted to be located between aa 245 and 261, leaving only one amino acid in the C terminus that probably extends into the perinuclear space. It is targeted to the nuclear envelope in the absence of other viral proteins, pointing to intrinsic localization motifs, and shows structural similarity to cellular INM proteins like lamina-associated polypeptide (Lap) 2ß and Emerin. To investigate which domains of pUL34 are relevant for localization and function, we constructed chimeric proteins by replacing parts of pUL34 with regions of cellular INM proteins. First the 18 C-terminal amino acids encompassing the TM were exchanged with TM regions and C-terminal domains of Lap2ß and Emerin or with the first TM region of the polytopic lamin B receptor (LBR), including the nine following amino acids. All resulting chimeric proteins complemented the replication defect of PrV-ΔUL34, demonstrating that the substitution of the TM and the extension of the C-terminal domain does not interfere with the function of pUL34. Complementation was reduced but not abolished when the C-terminal 50 aa were replaced by corresponding Lap2ß sequences (pUL34-LapCT50). However, replacing the C-terminal 100 aa (pUL34-LapCT100) resulted in a nonfunctional protein despite continuing pUL31 binding, pointing to an important functional role of this region. The replacement of the N-terminal 100 aa (pUL34-LapNT100) had no effect on nuclear envelope localization but abrogated pUL31 binding and function.
Collapse
|
26
|
Ward MC, van der Watt PJ, Tzoneva G, Leaner VD. Deregulated LAP2α expression in cervical cancer associates with aberrant E2F and p53 activities. IUBMB Life 2011; 63:1018-26. [PMID: 21990273 DOI: 10.1002/iub.528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/06/2011] [Indexed: 01/11/2023]
Abstract
Lamina-associated polypeptide 2 alpha (LAP2α) plays a role in maintaining nuclear structure, in nuclear assembly/disassembly, and in transcriptional regulation. Elevated LAP2α mRNA expression has been previously reported to associate with certain cancer types. The aim of this study was to investigate LAP2α expression in cervical cancer and transformed cells and to identify factors that associate with its differential expression. LAP2α expression was found to be elevated in cervical cancer tissue by microarray, qRT-PCR, and immunofluorescence analyses. LAP2α also showed elevated expression in cervical cancer cell lines and in transformed fibroblasts compared with normal cells. To determine factors associated with elevated LAP2α in cervical cancer, the effect of inhibiting HPV E7 and E6 oncoproteins was investigated. E7 inhibition resulted in a decrease in phosphorylated Rb and an associated decrease in LAP2α, suggesting a role for E2F in regulating LAP2α expression. This finding was confirmed by inhibiting DP1, a co-activator of E2F, which resulted in decreased LAP2α levels. Inhibition of E6 resulted in elevated p53 and an associated decrease in LAP2α, suggesting that p53 associates with the negative regulation of LAP2α expression. This hypothesis was tested by inhibiting p53 in normal cells, and a resultant increase in LAP2α expression was observed. In conclusion, this study provides evidence for elevated LAP2α expression in cervical cancer and suggests that E2F and p53 activities associate with the positive and negative regulation of LAP2α expression, respectively.
Collapse
Affiliation(s)
- Michelle C Ward
- Faculty of Health Sciences, Division of Medical Biochemistry, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, South Africa
| | | | | | | |
Collapse
|
27
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
28
|
Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R, Braun J, Stewart CL, Foisner R. Loss of LAP2 alpha delays satellite cell differentiation and affects postnatal fiber-type determination. Stem Cells 2010; 28:480-8. [PMID: 20039368 DOI: 10.1002/stem.292] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lamina-associated polypeptide 2 alpha (LAP2 alpha) is a nucleoplasmic protein implicated in cell cycle regulation through its interaction with A-type lamins and the retinoblastoma protein. Mutations in lamin A/C and LAP2 alpha cause late onset striated muscle diseases, but the molecular mechanisms are poorly understood. To study the role of LAP2 alpha in skeletal muscle function and postnatal tissue homeostasis, we generated complete and muscle-specific LAP2 alpha knockout mice. Whereas overall muscle morphology, function, and regeneration were not detectably affected, the myofiber-associated muscle stem cell pool was increased in complete LAP2 alpha knockout animals. At molecular level, the absence of LAP2 alpha preserved the stem cell-like phenotype of Lap2 alpha(-/-) primary myoblasts and delayed their in vitro differentiation. In addition, loss of LAP2 alpha shifted the myofiber-type ratios of adult slow muscles toward fast fiber types. Conditional Cre-mediated late muscle-specific ablation of LAP2 alpha affected early stages of in vitro myoblast differentiation, and also fiber-type determination, but did not change myofiber-associated stem cell numbers in vivo. Our data demonstrate multiple and distinct functions of LAP2 alpha in muscle stem cell maintenance, early phases of myogenic differentiation, and muscle remodeling.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kvell K, Varecza Z, Bartis D, Hesse S, Parnell S, Anderson G, Jenkinson EJ, Pongracz JE. Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One 2010; 5:e10701. [PMID: 20502698 PMCID: PMC2872673 DOI: 10.1371/journal.pone.0010701] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/27/2010] [Indexed: 11/24/2022] Open
Abstract
Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2α expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2α and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2α over-expression provoked a surge of PPARγ expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARγ. Murine embryonic thymic lobes have also been transfected with LAP2α- or Wnt4-encoding lentiviral vectors. As expected LAP2α over-expression increased, while additional Wnt4 secretion suppressed PPARγ expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2α expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes.
Collapse
Affiliation(s)
- Krisztian Kvell
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Zoltan Varecza
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Domokos Bartis
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Sebastian Hesse
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Sonia Parnell
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Jenkinson
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Judit E. Pongracz
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Abstract
A- and B-type lamins are the major intermediate filaments of the nucleus. Lamins engage in a plethora of stable and transient interactions, near the inner nuclear membrane and throughout the nucleus. Lamin-binding proteins serve an amazingly diverse range of functions. Numerous inner-membrane proteins help anchor lamin filaments to the nuclear envelope, serving as part of the nuclear "lamina" network that is essential for nuclear architecture and integrity. Certain lamin-binding proteins of the inner membrane bind partners in the outer membrane and mechanically link lamins to the cytoskeleton. Inside the nucleus, lamin-binding proteins appear to serve as the "adaptors" by which the lamina organizes chromatin, influences gene expression and epigenetic regulation, and modulates signaling pathways. Transient interactions of lamins with key components of the transcription and replication machinery may provide an additional level of regulation or support to these essential events.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
31
|
Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP, Labib S, Bolongo PM, Hamza A, Jackson T, Ploski R, Walski M, Grzybowski J, Walczak E, Religa G, Fidzianska A, Tesson F. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 2010; 105:365-77. [PMID: 20127487 DOI: 10.1007/s00395-010-0085-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/24/2022]
Abstract
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pallavi Gupta
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Craig DW, Millis MP, DiStefano JK. Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet Med 2009; 26:1090-8. [PMID: 19929986 DOI: 10.1111/j.1464-5491.2009.02846.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Genetic factors play a major role in the progression of kidney disease in diabetes. To identify candidate single nucleotide polymorphisms (SNPs) with potential effects on susceptibility to end-stage renal disease (ESRD), we performed a whole genome association scan using pooled DNA from Caucasian individuals with Type 1 diabetes. METHODS We utilized the Illumina Infinium II HumanHap 550 beadchip platform to genotype 555 352 SNPs in DNA pools comprised of 547 cases with ESRD and 549 control subjects with Type 1 diabetes duration > 20 years and no ESRD. Pooled probe intensity was used to predict mean allele frequency (MAF) for each locus. Individual genotyping was performed using the iPLEX assay in conjunction with the MassARRAY platform (Sequenom). RESULTS We identified 2870 markers showing substantial differences in MAF (5.0-10.7%) between pools. To initiate validation of these findings, we genotyped 22 high-ranking markers in 462 individuals with ESRD and 470 unaffected control subjects selected from the genome-wide SNP genotyping study sample. We observed the strongest evidence for association between ESRD and rs1749824, located in the ZMIZ1 gene [OR = 1.47 (1.21-1.78) per copy of T allele; P = 8.1 x 10(-5)] and rs9298190, located in the musculin gene [OR = 1.56 (1.28-1.91) per copy of C allele; P = 1.6 x 10(-5)]. Evidence for nominal association with markers in or near the IRS2, TMPO, BID, KLRA1, ELMO1 and CNDP1 genes was also observed (P < or = 0.0006). CONCLUSIONS These findings identify several novel loci which may contribute to ESRD susceptibility in individuals with Type 1 diabetes.
Collapse
Affiliation(s)
- D W Craig
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | |
Collapse
|
33
|
Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, Stewart CL, Foisner R. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008; 10:1341-8. [PMID: 18849980 DOI: 10.1038/ncb1793] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/01/2008] [Indexed: 01/07/2023]
Abstract
Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Medical University of Vienna and University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
35
|
Shaklai S, Somech R, Gal-Yam EN, Deshet-Unger N, Moshitch-Moshkovitz S, Hirschberg K, Amariglio N, Simon AJ, Rechavi G. LAP2zeta binds BAF and suppresses LAP2beta-mediated transcriptional repression. Eur J Cell Biol 2008; 87:267-78. [PMID: 18403046 DOI: 10.1016/j.ejcb.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/20/2008] [Accepted: 01/31/2008] [Indexed: 11/15/2022] Open
Abstract
Proteins of the nuclear envelope have been implicated as participating in gene silencing. BAF, a DNA- and LEM domain-binding protein, has been suggested to link chromatin to the nuclear envelope. We have previously shown that LAP2beta, a LEM-domain inner nuclear membrane protein, represses transcription through binding to HDAC3 and induction of histone H4 deacetylation. We now show that LAP2zeta, the smallest LAP2 family member, is also involved in regulation of transcription. We show that similar to other LEM-domain proteins LAP2zeta interacts with BAF. LAP2zeta-YFP and BAF co-localize in the cytoplasm, and overexpression of LAP2zeta leads to reduction of nucleoplasmic BAF. Mutations in the LAP2zeta-YFP LEM domain decrease its interaction with BAF retaining the nucleo-cytoplasmic distribution of BAF. Co-expression of LAP2beta and LAP2zeta results in inhibition of LAP2beta-induced gene silencing while overexpression of LAP2zeta alone leads to a small increase in transcriptional activity of various transcription factors. Our results suggest that LAP2zeta is a transcriptional regulator acting predominantly to inhibit LAP2beta-mediated repression. LAP2zeta may function by decreasing availability of BAF. These findings could have implications in the study of nuclear lamina-associated diseases and BAF-dependent retroviral integration.
Collapse
Affiliation(s)
- Sigal Shaklai
- Sheba Cancer Research Center and the Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park HJ, Kim BG, Lee SJ, Heo SH, Kim JY, Kwon TH, Lee EB, Ryoo HM, Cho JY. Proteomic profiling of endothelial cells in human lung cancer. J Proteome Res 2008; 7:1138-50. [PMID: 18220333 DOI: 10.1021/pr7007237] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic and proteomic analysis of normal and diseased tissues have yielded an abundance of molecular information for diagnostic and potential therapeutic targets. Changing the target of analysis from poorly accessible cells within tissues to easily accessible vascular endothelium has theoretical advantages in tissue-specific targeting. In this study, we sought to map a large-scale proteome of microvascular endothelium in human non-small cell lung cancer (NSCLC) and normal lung tissues, and identify lung cancer-related endothelial cell (EC)-selective proteins. Endothelial cells were isolated within NSCLC tissues and adjacent-normal lung tissue of lung cancer patients by using CD31-immunomagnetic beads. The complex proteins from the ECs were separated by one-dimensional gel electrophoresis, and the proteins in each gel band were digested by trypsin. Peptides were separated by online reverse-phase liquid-chromatography and analyzed by electrospray ionization (ESI) ion trap tandem mass spectrometry. Approximately 600-1000 proteins were identified in each individual sample. Five patient cases of paired individual data, extracted from the protein identification data sets of both normal- and cancer-derived ECs, were analyzed by subtractive proteomics. An average of 300 proteins was specifically identified from each lung cancer-derived EC isolate, compared to normal lung-derived ECs. With the use of several comparative analyses, we identified among those 300 proteins, 16 common candidate proteins that were detected in at least 3 of 5 cases specific to lung cancer-derived ECs. Proteins selectively identified in cancer-derived ECs, including coatomer protein complex, subunit gamma (COPG), and peroxiredoxin 4 (PRDX4), were validated by Western blot analysis. In an additional experiment in which 16 cancer samples were analyzed by immunohistochemistry, PRDX4, thymopoietin (TMPO), and COPG were confirmed to be abundantly expressed in lung cancer-derived ECs and in cancerous lung cells. Further ongoing analysis of these 16 candidate proteins will determine their potential applicability to NSCLC-specific diagnosis and therapeutics.
Collapse
Affiliation(s)
- Hye-Jeong Park
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Antinuclear antibodies are detectable in approximately 50% of subjects with primary biliary cirrhosis (PBC). Most clinical laboratories use indirect immunofluorescence microscopy to detect antinuclear antibodies and two labeling patterns that predominate in PBC are nuclear rim and multiple nuclear dots. Antibodies giving these patterns most often recognize nuclear envelope protein gp210 and nuclear body protein sp100, respectively. Fewer subjects with PBC have autoantibodies giving nuclear rim labeling that recognize nucleoporin p62 and LBR. Gp210 is an integral protein localized to the nuclear pore membranes. Approximately 25% of subjects with PBC have detectable serum anti-gp210 antibodies. The vast majority of anti-gp210 antibodies from patients with PBC recognize a stretch of only 15 amino acids in the carboxyl-terminal tail that faces the nuclear pore complex. Enzyme-linked immunosorbent assays using either recombinant protein expressed in bacteria or chemically synthesized polypeptides have been established to reliably detect these autoantibodies. Although initial studies did not find a correlation between the presence of anti-gp210 antibodies and prognosis in PBC, recent data suggest that the presence of antinuclear envelope protein antibodies correlate with an unfavorable disease course and more rapid progression.
Collapse
Affiliation(s)
- Howard J Worman
- Departments of Medicine and of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| |
Collapse
|
38
|
Bradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, Craigie R, Dyda F. Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 2007; 15:643-53. [PMID: 17562312 DOI: 10.1016/j.str.2007.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 04/18/2007] [Indexed: 01/20/2023]
Abstract
Lamina-associated polypeptides (LAPs) are important components of the nuclear lamina, the dense network of filaments that supports the nuclear envelope and also extends into the nucleoplasm. The main protein constituents of the nuclear lamina are the constitutively expressed B-type lamins and the developmentally regulated A- and C-type lamins. LAP2alpha is the only non-membrane-associated member of the LAP family. It preferentially binds lamin A/C, has been implicated in cell-cycle regulation and chromatin organization, and has also been found to be a component of retroviral preintegration complexes. As an approach to understanding the role of LAP2alpha in cellular pathways, we have determined the crystal structure of the C-terminal domain of LAP2alpha, residues 459-693. The C-terminal domain is dimeric and possesses an extensive four-stranded, antiparallel coiled coil. The surface involved in binding lamin A/C is proposed based on results from alanine-scanning mutagenesis and a solid-phase overlay binding assay.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 2007; 274:1362-73. [PMID: 17489094 DOI: 10.1111/j.1742-4658.2007.05695.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamins are major structural components of the nuclear envelope in multicellular eukaryotes. Particularly A-type lamins are also located in the nucleoplasm, likely involving a specific binding partner, lamina-associated polypeptide 2alpha (LAP2alpha). LAP2alpha-lamins A/C complexes in the nucleoplasm have been implicated in the regulation of gene expression by various means. They bind chromatin proteins and chromatin modifying enzymes, and can thus participate in epigenetic control pathways. Furthermore, binding of lamins A/C complexes to specific transcription factors and repressors may directly affect their transcriptional activity. LAP2alpha-lamins A/C also regulate retinoblastoma protein and influence cell cycle progression and differentiation, which could have important implications for molecular mechanisms of laminopathic diseases, linked to lamins A/C mutations.
Collapse
Affiliation(s)
- Daniela Dorner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
40
|
Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y. Barrier-to-autointegration factor – a BAFfling little protein. Trends Cell Biol 2007; 17:202-8. [PMID: 17320395 DOI: 10.1016/j.tcb.2007.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/22/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
Barrier-to-autointegration factor (BAF) is an abundant, highly conserved, small and essential protein that binds to dsDNA, chromatin, nuclear lamina proteins, histones and various transcription factors. It was discovered as a cellular component of retrovirus pre-integration complex that inhibits their autointegration in vitro. BAF is also required for many cellular functions, including the higher-order organization of chromatin and the transcription of specific genes. Recent findings suggest further roles for BAF, including nuclear envelope assembly, regulating specific developmental processes and regulating retrovirus infectivity. At least some of these roles are controlled by phosphorylation of the BAF N-terminus by the vaccinia-related kinase. Here, we give an overview of recent advances in the field of BAF with special emphasis on evolution, interacting partners and functions.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
41
|
Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res 2007; 313:2167-79. [PMID: 17451680 DOI: 10.1016/j.yexcr.2007.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 11/27/2022]
Abstract
Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and beta-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.
Collapse
Affiliation(s)
- Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
42
|
Somech R, Gal-Yam EN, Shaklai S, Geller O, Amariglio N, Rechavi G, Simon AJ. Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 2007; 86:393-401. [PMID: 17364180 DOI: 10.1007/s00277-007-0275-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Extensive research in recent years has broadened the functions of nuclear envelope proteins beyond simply stabilizing the nucleus architecture. Particularly, integral nuclear membrane proteins, such as the alternative spliced isoforms of lamina-associated polypeptide 2 (LAP2), have been shown to be important for the initiation of replication and repression of transcription. The latter is regulated by epigenetic changes, induced by the binding of LAP2beta to histone deacetylase-3 (HDAC3), resulting in histone H4 deacetylation. Involvement of nuclear envelope proteins in pathological proliferative conditions, mainly those involving abnormal recruitment and activation of HDACs, is still unknown. In this paper, we show that various nuclear envelope proteins are highly expressed in normal and malignant activated lymphocytes. Specifically, rapidly replicating cells of various hematological malignancies highly express LAP2beta, while slowly proliferating malignant cells of chronic malignant hematological diseases do not. Taking together the elevated expression of LAP2beta in highly proliferative malignant cells with its known ability to modify histones through binding with HDAC3 raises the possibility of its role in hematological malignancies involving aberrant activity of HDAC3. Based on our presented results, we believe that the LAP2-HDAC regulatory pathway should be studied as a new target for rational therapy.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center, Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
43
|
Naetar N, Hutter S, Dorner D, Dechat T, Korbei B, Gotzmann J, Beug H, Foisner R. LAP2alpha-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. J Cell Sci 2007; 120:737-47. [PMID: 17284516 DOI: 10.1242/jcs.03390] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lamina-associated polypeptide 2alpha (LAP2alpha) is a nuclear protein dynamically associating with chromatin during the cell cycle. In addition, LAP2alpha interacts with A-type lamins and retinoblastoma protein and regulates cell cycle progression via the E2F-Rb pathway. Using yeast two-hybrid analysis and three independent in vitro binding assays we identified a new LAP2alpha interaction partner of hitherto unknown functions, which we termed LINT-25. LINT-25 protein levels were upregulated during G1 phase in proliferating cells and upon cell cycle exit in quiescence, senescence and differentiation. Upon cell cycle exit LINT-25 accumulated in heterochromatin foci, and LAP2alpha protein levels were downregulated by proteasomal degradation. Although LAP2alpha was not required for the upregulation and reorganization of LINT-25 during cell cycle exit, transient expression of LINT-25 in proliferating cells caused loss of LAP2alpha and subsequent cell death. Our data show a role of LINT-25 and LAP2alpha during cell cycle exit, in which LINT-25 acts upstream of LAP2alpha.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Brachner A, Reipert S, Foisner R, Gotzmann J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 2007; 118:5797-810. [PMID: 16339967 DOI: 10.1242/jcs.02701] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The LEM (lamina-associated polypeptide-emerin-MAN1) domain is a motif shared by a group of lamin-interacting proteins in the inner nuclear membrane (INM) and in the nucleoplasm. The LEM domain mediates binding to a DNA-crosslinking protein, barrier-to-autointegration factor (BAF). We describe a novel, ubiquitously expressed LEM domain protein, LEM2, which is structurally related to MAN1. LEM2 contains an N-terminal LEM motif, two predicted transmembrane domains and a MAN1-Src1p C-terminal (MSC) domain highly homologous to MAN1, but lacks the MAN1-specific C-terminal RNA-recognition motif. Immunofluorescence microscopy of digitonin-treated cells and subcellular fractionation identified LEM2 as a lamina-associated protein residing in the INM. LEM2 binds to the lamin C tail in vitro. Targeting of LEM2 to the nuclear envelope requires A-type lamins and is mediated by the N-terminal and transmembrane domains. Highly overexpressed LEM2 accumulates in patches at the nuclear envelope and forms membrane bridges between nuclei of adjacent cells. LEM2 structures recruit A-type lamins, emerin, MAN1 and BAF, whereas lamin B and lamin B receptor are excluded. Our data identify LEM2 as a novel A-type-lamin-associated INM protein involved in nuclear structure organization.
Collapse
Affiliation(s)
- Andreas Brachner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
45
|
Pekovic V, Harborth J, Broers JLV, Ramaekers FCS, van Engelen B, Lammens M, von Zglinicki T, Foisner R, Hutchison C, Markiewicz E. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts. J Cell Biol 2007; 176:163-72. [PMID: 17227891 PMCID: PMC2063936 DOI: 10.1083/jcb.200606139] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/15/2006] [Indexed: 01/03/2023] Open
Abstract
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wagner N, Krohne G. LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:1-46. [PMID: 17560279 DOI: 10.1016/s0074-7696(07)61001-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEM-domain proteins present a growing family of nonrelated inner nuclear membrane and intranuclear proteins, including emerin, MAN1, LEM2, several alternatively spliced isoforms of LAP2, and various uncharacterized proteins in higher eukaryotes as well as the Drosophila-specific proteins otefin and Bocksbeutel. LEM-domain proteins are involved in diverse cellular processes including replication and cell cycle control, chromatin organization and nuclear assembly, the regulation of gene expression and signaling pathways, as well as retroviral infection. Genetic analyses in different model organisms reveal new insights into the various functions of LEM-domain proteins, lamins, and their involvement in laminopathic diseases. All these findings as well as previously proposed ideas and models have been summarized to broaden our view of this exciting protein family.
Collapse
Affiliation(s)
- Nicole Wagner
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
47
|
Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2006; 26:566-74. [PMID: 16247757 DOI: 10.1002/humu.20250] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Matthew R G Taylor
- CU-Cardiovascular Institute, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C, Gotzmann J, Hutchison CJ, Foisner R. Lamina-associated polypeptide 2alpha regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. ACTA ACUST UNITED AC 2006; 173:83-93. [PMID: 16606692 PMCID: PMC2063793 DOI: 10.1083/jcb.200511149] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lamina-associated polypeptide (LAP) 2α is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2α in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2α by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2α-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2α COOH terminus directly bound Rb, and overexpressed LAP2α inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2α associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2α in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2α on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.
Collapse
Affiliation(s)
- Daniela Dorner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Brien LL, Wiese C. TPX2 is required for postmitotic nuclear assembly in cell-free Xenopus laevis egg extracts. ACTA ACUST UNITED AC 2006; 173:685-94. [PMID: 16735579 PMCID: PMC2063886 DOI: 10.1083/jcb.200512107] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell division in many metazoa is accompanied by the disassembly of the nuclear envelope and the assembly of the mitotic spindle. These dramatic structural rearrangements are reversed after mitosis, when the mitotic spindle is dismantled and the nuclear envelope reassembles. The targeting protein for XKlp2 (TPX2) plays important roles in mitotic spindle assembly. We report that TPX2 depletion from nuclear assembly extracts prepared from Xenopus laevis eggs results in the formation of nuclei that are only about one fifth the size of control nuclei. TPX2-depleted nuclei assemble nuclear envelopes, nuclear pore complexes, and a lamina, and they perform nuclear-specific functions, including DNA replication. We show that TPX2 interacts with lamina-associated polypeptide 2 (LAP2), a protein known to be required for nuclear assembly in interphase extracts and in vitro. LAP2 localization is disrupted in TPX2-depleted nuclei, suggesting that the interaction between TPX2 and LAP2 is required for postmitotic nuclear reformation.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
50
|
Wagner N, Kagermeier B, Loserth S, Krohne G. The Drosophila melanogaster LEM-domain protein MAN1. Eur J Cell Biol 2006; 85:91-105. [PMID: 16439308 DOI: 10.1016/j.ejcb.2005.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 12/24/2022] Open
Abstract
Here we describe the Drosophila melanogaster LEM-domain protein encoded by the annotated gene CG3167 which is the putative ortholog to vertebrate MAN1. MAN1 of Drosophila (dMAN1) and vertebrates have the following properties in common. Firstly, both molecules are integral membrane proteins of the inner nuclear membrane (INM) and share the same structural organization comprising an N-terminally located LEM motif, two transmembrane domains in the middle of the molecule, and a conserved RNA recognition motif in the C-terminal region. Secondly, dMAN1 has similar targeting domains as it has been reported for the human protein. Thirdly, immunoprecipitations with dMAN1-specific antibodies revealed that this Drosophila LEM-domain protein is contained in protein complexes together with lamins Dm0 and C. It has been previously shown that human MAN1 binds to A- and B-type lamins in vitro. During embryogenesis and early larval development LEM-domain proteins dMAN1 and otefin show the same expression pattern and are much more abundant in eggs and the first larval instar than in later larval stages and young pupae whereas the LEM-domain protein Bocksbeutel is uniformly expressed in all developmental stages. dMAN1 is detectable in the nuclear envelope of embryonic cells including the pole cells. In mitotic cells of embryos at metaphase and anaphase, LEM-domain proteins dMAN1, otefin and Bocksbeutel were predominantly localized in the region of the two spindle poles whereas the lamin B receptor and lamin Dm0 were more homogeneously distributed. Downregulation of dMAN1 by RNA interference (RNAi) in Drosophila cultured Kc167 cells has no obvious effect on nuclear architecture, viability of RNAi-treated cells and the intracellular distribution of the LEM-domain proteins Bocksbeutel and otefin. In contrast, the localization of dMAN1, Bocksbeutel and otefin at the INM is supported by lamin Dm0. We conclude that the dMAN1 protein is not a limiting component of the nuclear architecture in Drosophila cultured cells.
Collapse
Affiliation(s)
- Nicole Wagner
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|