1
|
Hao Y, Li T, Hong X. Interface phenomena and emerging functionalities in ferroelectric oxide based heterostructures. Chem Commun (Camb) 2025; 61:4924-4950. [PMID: 40062386 DOI: 10.1039/d4cc05836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials. The topics covered include the basic synthesis methods for ferroelectric oxide thin films, membranes, and heterostructures, characterization of their properties, and various emergent phenomena hosted by the heterostructures, including the polarization-controlled metal-insulator transition and magnetic anisotropy, negative capacitance effect, domain-imposed one-dimensional graphene superlattices, programmable second harmonic generation, and interface-enhanced polar alignment and piezoelectric response, as well as their applications in nonvolatile memory, logic, and reconfigurable optical devices. Possible future research directions are also outlined, encompassing the synthesis via remote epitaxy and oxide moiré engineering, incorporation of binary ferroelectric oxides, realization of topological properties, and functional design of oxygen octahedral rotation.
Collapse
Affiliation(s)
- Yifei Hao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Tianlin Li
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Xia Hong
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| |
Collapse
|
2
|
Pugachev A, Tumarkin A, Adichtchev S, Ivleva L, Bogdan A. Characterization of the Microstructure of Sr 0.75Ba 0.25Nb 2O 6 Thin Films by Brillouin Light Scattering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1963. [PMID: 39683351 DOI: 10.3390/nano14231963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Strontium-barium niobate (SrxBa(1-x)Nb2O6) films can be considered as a promising material for microwave applications due to high dielectric nonlinearity and relatively low losses. Since strontium-barium niobate has a disordered structure that determines its unique electrical properties, the identification of structural features of the SrxBa(1-x)Nb2O6 films is the key to their successful use. The SrxBa(1-x)Nb2O6 films were synthesized on a sapphire substrate by magnetron sputtering. The structure of the films was studied by both traditional methods of electron microscopy, X-ray diffraction, and the rarely used for thin films investigation Brillouin light scattering method, which was the focus of our study. We show that Brillouin light scattering is an excellent nondestructive method for studying the structural features of thin ferroelectric strontium-barium niobate films. An analysis of the features of the Brillouin light scattering spectra in thin-film structures and their comparison with the spectra of bulk crystals allowed us to determine with high accuracy the thickness of the films under study and their structural features determined by the resonant scattering of acoustic waves.
Collapse
Affiliation(s)
- Alexey Pugachev
- Institute of Authomation and Electrometry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey Tumarkin
- Department of Physical Electronics and Technology, St. Petersburg State Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| | - Sergey Adichtchev
- Institute of Authomation and Electrometry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ludmila Ivleva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Bogdan
- Department of Physical Electronics and Technology, St. Petersburg State Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| |
Collapse
|
3
|
Liu H, Yang Z, Su B, Hao Y, Feng TY, Zhang BP, Li JF. High Temperature-Insensitive Electrostrain Obtained in (K, Na)NbO 3-Based Lead-Free Piezoceramics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407848. [PMID: 39439184 DOI: 10.1002/smll.202407848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy (V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration andV A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments ofV A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.
Collapse
Affiliation(s)
- Huan Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziqi Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Su
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yijin Hao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tian-Yi Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bo-Ping Zhang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Mao J, He J, Io WF, Guo F, Wu Z, Yang M, Hao J. Strain-Engineered Ferroelectricity in 2H Bilayer MoS 2. ACS NANO 2024; 18:30360-30367. [PMID: 39445514 DOI: 10.1021/acsnano.4c07397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The exploration of two-dimensional (2D) materials exhibiting out-of-plane ferroelectric and piezoelectric properties through interlayer twist/translation or strain, known as sliding ferroelectricity, has become a focal point in the quest for low-power electronic devices, capitalizing on weak van der Waals interactions. Herein, we delve into the behavior of strained bilayer molybdenum disulfide (2L-MoS2) transferred onto a nanocone-patterned substrate. An intriguing observation is the emergence of unexpected vertical ferroelectricity in MoS2, irrespective of whether it was prepared using chemical vapor deposition or mechanical exfoliation from the bulk crystal. Such an observation underscores the versatility and reproducibility of the emerging ferroelectricity across different preparation methods. Furthermore, the piezoelectric coefficients recorded are exceptionally high, with the values of 37.54 and 24.80 pm V-1 for monolayer and bilayer MoS2, respectively, outperforming most currently discovered 2D piezoelectrics. The presence of room-temperature out-of-plane ferroelectricity in strained 2L-MoS2 is confirmed through first-principles calculations and piezoresponse force microscopy. This ferroelectric behavior can be attributed to the symmetry breaking and interlayer sliding within the strained 2L-MoS2 structure. Our findings not only deepen the understanding of ferroelectricity in 2D materials but also offer insights for the design of 2D ferroelectrics, thereby enabling diverse functionalities and applications in ferroelectricity.
Collapse
Affiliation(s)
- Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jingyu He
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Weng Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| |
Collapse
|
5
|
Li T, Yang J, Deng S, Wang Z, Tang M, Luo H, Long F, Chen Y, Wang JO, Wang H, Xu S, Guo EJ, Jin KJ, Qi H, Diéguez O, Liu S, Chen J. Superfine Nanodomain Engineering Unleashing Ferroelectricity in Incipient Ferroelectrics. J Am Chem Soc 2024; 146:20205-20212. [PMID: 39007348 DOI: 10.1021/jacs.4c05281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 μC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiyuan Yang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxue Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Center for High-Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Huajie Luo
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feixiang Long
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Ou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhua Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - He Qi
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Oswaldo Diéguez
- Department of Materials Science and Engineering and Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shi Liu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Zhang P, Li Q, Li Z, Shi X, Wang H, Huo C, Zhou L, Kuang X, Lin K, Cao Y, Deng J, Yu C, Chen X, Miao J, Xing X. Intrinsic-strain-induced ferroelectric order and ultrafine nanodomains in SrTiO 3. Proc Natl Acad Sci U S A 2024; 121:e2400568121. [PMID: 38857392 PMCID: PMC11194550 DOI: 10.1073/pnas.2400568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.
Collapse
Affiliation(s)
- Peixi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Zhiguo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xiaoming Shi
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Haoyu Wang
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Chuanrui Huo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541006, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
7
|
Ojha SK, Hazra S, Bera S, Gogoi SK, Mandal P, Maity J, Gloskovskii A, Schlueter C, Karmakar S, Jain M, Banerjee S, Gopalan V, Middey S. Quantum fluctuations lead to glassy electron dynamics in the good metal regime of electron doped KTaO 3. Nat Commun 2024; 15:3830. [PMID: 38714672 PMCID: PMC11076559 DOI: 10.1038/s41467-024-47956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
One of the central challenges in condensed matter physics is to comprehend systems that have strong disorder and strong interactions. In the strongly localized regime, their subtle competition leads to glassy electron dynamics which ceases to exist well before the insulator-to-metal transition is approached as a function of doping. Here, we report on the discovery of glassy electron dynamics deep inside the good metal regime of an electron-doped quantum paraelectric system: KTaO3. We reveal that upon excitation of electrons from defect states to the conduction band, the excess injected carriers in the conduction band relax in a stretched exponential manner with a large relaxation time, and the system evinces simple aging phenomena-a telltale sign of glassy dynamics. Most significantly, we observe a critical slowing down of carrier dynamics below 35 K, concomitant with the onset of quantum paraelectricity in the undoped KTaO3. Our combined investigation using second harmonic generation technique, density functional theory and phenomenological modeling demonstrates quantum fluctuation-stabilized soft polar modes as the impetus for the glassy behavior. This study addresses one of the most fundamental questions regarding the potential promotion of glassiness by quantum fluctuations and opens a route for exploring glassy dynamics of electrons in a well-delocalized regime.
Collapse
Affiliation(s)
- Shashank Kumar Ojha
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India.
| | - Sankalpa Hazra
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Surajit Bera
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Sanat Kumar Gogoi
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- Department of Physics, Digboi College, Digboi, 786171, India
| | - Prithwijit Mandal
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Jyotirmay Maity
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | | | | | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, India
| | - Manish Jain
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Sumilan Banerjee
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India.
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Srimanta Middey
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
8
|
Wang JH, Zhu MX, Li YS, Chen SJ, Gong FH, Lv XD, Jiang RJ, Liu SZ, Li C, Wang YJ, Tang YL, Zhu YL, Ma XL. Large Polarization Near 50 μC/cm 2 in a Single Unit Cell Layer SrTiO 3. NANO LETTERS 2024; 24:4082-4090. [PMID: 38526914 DOI: 10.1021/acs.nanolett.3c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (∼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to ∼50 μC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.
Collapse
Affiliation(s)
- Jing-Hui Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Mei-Xiong Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yu-Shu Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shuang-Jie Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Feng-Hui Gong
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiao-Dong Lv
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Ru-Jian Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Su-Zhen Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Changji Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yu-Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yin-Lian Zhu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, China
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiu-Liang Ma
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Neupane CP, Sylvester J, Singhapurage HAS, Senarathna RMDM, Ganikhanov F. Time-resolved nonlinear optical spectroscopy of perovskites. OPTICS EXPRESS 2024; 32:5621-5631. [PMID: 38439283 DOI: 10.1364/oe.509234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Ultrafast decay of optical phonons has been studied in wide-bandgap BaSnO3 and SrTiO3 perovskites using nonlinear spectroscopy with 120 femtosecond time resolution. The coherent Raman mode excitations have been selected and traced with tunable optical pulses. Decay of symmetry forbidden modes of vibrations have been detected directly in time. Phonon decay rates for the main LO- and TO- phonon modes have been found to be within 1.36-1.78 ps-1 and are explained in terms of parametric phonon interactions and pure dephasing mechanisms in the materials that are of interest in microelectronic applications.
Collapse
|
10
|
Zhang X, Wei H, Wu Y, Yang T, Cao B. Giant tunnel resistance effect in (SrTiO 3) 2/(BaTiO 3) 4/(CaTiO 3) 2 asymmetric superlattice with enhanced polarization. Phys Chem Chem Phys 2024; 26:2168-2174. [PMID: 38132888 DOI: 10.1039/d3cp04608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this work, we report the effectively enhanced tunneling electroresistance effect in Au/(SrTiO3)2/(BaTiO3)4/(CaTiO3)2/Nb:SrTiO3 superlattice ferroelectric tunnel junction (FTJ). The stable polarization switching and enhanced ferroelectricity were achieved in the nanoscale thickness high-quality epitaxial superlattice. A high ON/OFF current ratio of more than 105 was obtained at room temperature, which is an order of magnitude larger than the BaTiO3 FTJ with the same structure. Nonvolatile resistance switching controlled by nonvolatile polarization switching was observed in the superlattice FTJ. Driven by increased polarization and intrinsic asymmetric ferroelectricity, a highly asymmetric depolarization field is generated compared with the Au/BaTiO3/Nb:SrTiO3 FTJ, resulting in an enhanced tunneling electroresistance effect. These results provide a potential way to construct FTJ memory devices by constructing asymmetric three-component ferroelectric superlattices.
Collapse
Affiliation(s)
- Xiubing Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Haoming Wei
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yangqing Wu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Tengzhou Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Bingqiang Cao
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
11
|
Caputo M, Studniarek M, Guedes EB, Schio L, Baiseitov K, Daffé N, Bachellier N, Chikina A, Di Santo G, Verdini A, Goldoni A, Muntwiler M, Piamonteze C, Floreano L, Radovic M, Dreiser J. Charge Transfer and Orbital Reconstruction at an Organic-Oxide Interface. NANO LETTERS 2023. [PMID: 38029285 DOI: 10.1021/acs.nanolett.3c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The two-dimensional electron system (2DES) located at the surface of strontium titanate (STO) and at several other STO-based interfaces has been an established platform for the study of novel physical phenomena since its discovery. Here we report how the interfacing of STO and tetracyanoquinodimethane (TCNQ) results in a charge transfer that depletes the number of free carriers at the STO surface, with a strong impact on its electronic structure. Our study paves the way for efficient tuning of the electronic properties, which promises novel applications in the framework of oxide/organic-based electronics.
Collapse
Affiliation(s)
- Marco Caputo
- Elettra Sincrotrone Trieste, s.s. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
- MAX IV Laboratory, Lund University, PO Box 118, 22100 Lund, Sweden
| | - Michał Studniarek
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Eduardo Bonini Guedes
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Luca Schio
- Laboratorio TASC, Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Kassymkhan Baiseitov
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Niéli Daffé
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Nicolas Bachellier
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alla Chikina
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Giovanni Di Santo
- Elettra Sincrotrone Trieste, s.s. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Alberto Verdini
- Laboratorio TASC, Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Andrea Goldoni
- Elettra Sincrotrone Trieste, s.s. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Matthias Muntwiler
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Cinthia Piamonteze
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Luca Floreano
- Laboratorio TASC, Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Milan Radovic
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
12
|
Krasnenko V, Platonenko A, Liivand A, Rusevich LL, Mastrikov YA, Zvejnieks G, Sokolov M, Kotomin EA. Modeling of the Lattice Dynamics in Strontium Titanate Films of Various Thicknesses: Raman Scattering Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6207. [PMID: 37763485 PMCID: PMC10532996 DOI: 10.3390/ma16186207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites' nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5-21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.9 nm. Our calculations revealed features in the Raman spectra of the films that were absent in the bulk spectra. Out of the seven Raman-active modes associated with bulk STO, the frequencies of five modes (2Eg, A1g, B2g, and B1g) decreased as the film thickness increased, while the low-frequency B2g and higher-frequency Eg modes frequencies increased. The modes in the films exhibited vibrations with different amplitudes in the central or surface parts of the films compared to the bulk, resulting in frequency shifts. Some peaks related to bulk vibrations were too weak (compared to the new modes related to films) to distinguish in the Raman spectra. However, as the film thickness increased, the Raman modes approached the frequencies of the bulk, and their intensities became higher, making them more noticeable in the Raman spectrum. Our results could help to explain inconsistencies in the experimental data for thin STO films, providing insights into the behavior of Raman modes and their relationship with film thickness.
Collapse
Affiliation(s)
- Veera Krasnenko
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia;
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
| | - Alexander Platonenko
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
| | | | - Leonid L. Rusevich
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
| | - Yuri A. Mastrikov
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
| | - Guntars Zvejnieks
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
| | - Maksim Sokolov
- Theoretical Inorganic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany;
| | - Eugene A. Kotomin
- Institute of Solid State Physics, University of Latvia, LV-1586 Riga, Latvia; (A.P.); (L.L.R.); (Y.A.M.); (G.Z.); (E.A.K.)
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Sun H, Gu J, Li Y, Paudel TR, Liu D, Wang J, Zang Y, Gu C, Yang J, Sun W, Gu Z, Tsymbal EY, Liu J, Huang H, Wu D, Nie Y. Prominent Size Effects without a Depolarization Field Observed in Ultrathin Ferroelectric Oxide Membranes. PHYSICAL REVIEW LETTERS 2023; 130:126801. [PMID: 37027865 DOI: 10.1103/physrevlett.130.126801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/28/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO_{3} membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics.
Collapse
Affiliation(s)
- Haoying Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiahui Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yongqiang Li
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Tula R Paudel
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
- Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Di Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jierong Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yipeng Zang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Chengyi Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiangfeng Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenjie Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhengbin Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Junming Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Di Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Sha H, Ma Y, Cao G, Cui J, Yang W, Li Q, Yu R. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO 3. Nat Commun 2023; 14:162. [PMID: 36631462 PMCID: PMC9834382 DOI: 10.1038/s41467-023-35877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Defects in crystals play a fundamental role in modulating mechanical, electrical, luminescent, and magnetic behaviors of materials. However, accurate measurement of defect structures is hindered by symmetry breaking and the corresponding complex modifications in atomic configuration and/or crystal tilt at the defects. Here, we report the deep-sub-angstrom resolution imaging of dislocation cores via multislice electron ptychography with adaptive propagator, which allows sub-nanometer scale mapping of crystal tilt in the vicinity of dislocation cores and simultaneous recovery of depth-dependent atomic structure of dislocations. The realization of deep-sub-angstrom resolution and depth-dependent imaging of defects shows great potential in revealing microstructures and properties of real materials and devices.
Collapse
Affiliation(s)
- Haozhi Sha
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Yunpeng Ma
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Guoping Cao
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Jizhe Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Wenfeng Yang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Qian Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China.
| | - Rong Yu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Lin JL, Sun Y, He R, Li Y, Zhong Z, Gao P, Zhao X, Zhang Z, Wang ZJ. Colossal Room-Temperature Ferroelectric Polarizations in SrTiO 3/SrRuO 3 Superlattices Induced by Oxygen Vacancies. NANO LETTERS 2022; 22:7104-7111. [PMID: 35984239 DOI: 10.1021/acs.nanolett.2c02175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial superlattices have demonstrated many unique phenomena not found in bulk materials. For this investigation, SrTiO3/SrRuO3 paraelectric/metallic superlattices with various stacking periods were synthesized via pulsed laser deposition. A robust room-temperature ferroelectric polarization (∼46 μC/cm2) was found in the superlattices with 2 unit cell (u.c.) thick SrRuO3 layers, despite the fact that neither SrTiO3 nor SrRuO3 is inherently ferroelectric. Results obtained from atomically resolved elemental mapping and X-ray photoelectron spectroscopy verified that oxygen vacancies accumulated at the SrTiO3/SrRuO3 interfaces, causing lattice distortions and increased tetragonality (c/a). The observed ferroelectric responses can be mainly attributed to the broken spatial inversion symmetry induced by the ordered distribution of oxygen vacancies at the SrTiO3/SrRuO3 interfaces, coupled with the triggering of external electric field. The resulting polarization mechanism induced by oxygen vacancies suggests viable ways for improving the electrical properties of ferroelectric materials, with the goal of expanding the functionality of a range of electronic devices.
Collapse
Affiliation(s)
- Jun Liang Lin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016, China
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Yuanwei Sun
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ri He
- Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanxi Li
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gao
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiang Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016, China
| | - Zhan Jie Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
16
|
Pressure-Dependent Structure of BaZrO 3 Crystals as Determined by Raman Spectroscopy. MATERIALS 2022; 15:ma15124286. [PMID: 35744345 PMCID: PMC9228820 DOI: 10.3390/ma15124286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
The structure of dielectric perovskite BaZrO3, long known to be cubic at room temperature without any structural phase transition with variation in temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. Pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorphs, helping in turn to understand its ground state structure at atmospheric pressure. Here, the Raman scattering spectra of high-quality BaZrO3 single crystals grown by the optical floating zone method are investigated in a pressure range from 1 atm to 42 GPa. First, based on the analyses of the infrared and Raman spectra measured at atmospheric pressure, it was found that all the observed vibrational modes could be assigned according to the cubic Pm3¯m structure. In addition, by applying pressure, two structural phase transitions were found at 8.4 and 19.2 GPa, one from the cubic to the rhombohedral R3¯c phase and the other from the rhombohedral to the tetragonal I4/mcm phase. Based on the two pressure-induced structural phase transitions, the true ground state structure of BaZrO3 at room temperature and ambient pressure was corroborated to be cubic while the rhombohedral phase was the closest second.
Collapse
|
17
|
Yue J, Ayino Y, Truttmann TK, Gastiasoro MN, Persky E, Khanukov A, Lee D, Thoutam LR, Kalisky B, Fernandes RM, Pribiag VS, Jalan B. Anomalous transport in high-mobility superconducting SrTiO 3 thin films. SCIENCE ADVANCES 2022; 8:eabl5668. [PMID: 35613270 PMCID: PMC9132441 DOI: 10.1126/sciadv.abl5668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.
Collapse
Affiliation(s)
- Jin Yue
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yilikal Ayino
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tristan K. Truttmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria N. Gastiasoro
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eylon Persky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alex Khanukov
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dooyong Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laxman R. Thoutam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beena Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rafael M. Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vlad S. Pribiag
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Jeong SG, Seo A, Choi WS. Atomistic Engineering of Phonons in Functional Oxide Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103403. [PMID: 35038232 PMCID: PMC8895146 DOI: 10.1002/advs.202103403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Indexed: 06/04/2023]
Abstract
Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron-phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon-engineering have been largely limited to the high-quality heterostructures of III-V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic-scale SrRuO3 /SrTiO3 superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone-folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic-scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic-scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration.
Collapse
Affiliation(s)
| | - Ambrose Seo
- Department of Physics and AstronomyUniversity of KentuckyLexingtonKY40506USA
| | - Woo Seok Choi
- Department of PhysicsSungkyunkwan UniversitySuwon16419Korea
| |
Collapse
|
19
|
Chiu CC, Ho SZ, Lee JM, Shao YC, Shen Y, Liu YC, Chang YW, Zheng YZ, Huang R, Chang CF, Kuo CY, Duan CG, Huang SW, Yang JC, Chuang YD. Presence of Delocalized Ti 3d Electrons in Ultrathin Single-Crystal SrTiO 3. NANO LETTERS 2022; 22:1580-1586. [PMID: 35073104 DOI: 10.1021/acs.nanolett.1c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.
Collapse
Affiliation(s)
- Chun-Chien Chiu
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Jenn-Min Lee
- MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Yu-Cheng Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yang Shen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu-Chen Liu
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yao-Wen Chang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Zhe Zheng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Chun-Fu Chang
- Max-Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden
- Swiss Light Source, Paul Scherrer Institut, CH5232 Villigen PSI, Switzerland
| | - Jan-Chi Yang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Wei XK, Dunin-Borkowski RE, Mayer J. Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review. MATERIALS 2021; 14:ma14247854. [PMID: 34947446 PMCID: PMC8707040 DOI: 10.3390/ma14247854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Benefitting from exceptional energy storage performance, dielectric-based capacitors are playing increasingly important roles in advanced electronics and high-power electrical systems. Nevertheless, a series of unresolved structural puzzles represent obstacles to further improving the energy storage performance. Compared with ferroelectrics and linear dielectrics, antiferroelectric materials have unique advantages in unlocking these puzzles due to the inherent coupling of structural transitions with the energy storage process. In this review, we summarize the most recent studies about in-situ structural phase transitions in PbZrO3-based and NaNbO3-based systems. In the context of the ultrahigh energy storage density of SrTiO3-based capacitors, we highlight the necessity of extending the concept of antiferroelectric-to-ferroelectric (AFE-to-FE) transition to broader antiferrodistortive-to-ferrodistortive (AFD-to-FD) transition for materials that are simultaneously ferroelastic. Combining discussion of the factors driving ferroelectricity, electric-field-driven metal-to-insulator transition in a (La1−xSrx)MnO3 electrode is emphasized to determine the role of ionic migration in improving the storage performance. We believe that this review, aiming at depicting a clearer structure–property relationship, will be of benefit for researchers who wish to carry out cutting-edge structure and energy storage exploration.
Collapse
Affiliation(s)
- Xian-Kui Wei
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
- Correspondence:
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
- Gemeinschaftslabor für Elektronenmikroskopie (GFE), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Jin MJ, Um DS, Ohnishi K, Komori S, Stelmashenko N, Choe D, Yoo JW, Robinson JWA. Pure Spin Currents Driven by Colossal Spin-Orbit Coupling on Two-Dimensional Surface Conducting SrTiO 3. NANO LETTERS 2021; 21:6511-6517. [PMID: 34320314 DOI: 10.1021/acs.nanolett.1c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spin accumulation is generated by passing a charge current through a ferromagnetic layer and sensed by other ferromagnetic layers downstream. Pure spin currents can also be generated in which spin currents flow and are detected as a nonlocal resistance in which the charge current is diverted away from the voltage measurement point. Here, we report nonlocal spin-transport on two-dimensional surface-conducting SrTiO3 (STO) without a ferromagnetic spin-injector via the spin Hall effect (and inverse spin Hall effect). By applying magnetic fields to the Hall bars at different angles to the nonlocal spin-diffusion, we demonstrate an anisotropic spin-signal that is consistent with a Hanle precession of a pure spin current. We extract key transport parameters for surface-conducting STO, including: a spin Hall angle of γ ≈ (0.25 ± 0.05), a spin lifetime of τ ∼ 49 ps, and a spin diffusion length of λs ≈ (1.23 ± 0.7) μm at 2 K.
Collapse
Affiliation(s)
- Mi-Jin Jin
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Doo-Seung Um
- Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kohei Ohnishi
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department of Physics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Sachio Komori
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Nadia Stelmashenko
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Daeseong Choe
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jason W A Robinson
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
22
|
Tang Y, Zhu Y, Wu B, Wang Y, Yang L, Feng Y, Zou M, Geng W, Ma X. Periodic Polarization Waves in a Strained, Highly Polar Ultrathin SrTiO 3. NANO LETTERS 2021; 21:6274-6281. [PMID: 34252283 DOI: 10.1021/acs.nanolett.1c02117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SrTiO3 is generally paraelectric with centrosymmetric structure exhibiting unique quantum fluctuation related ferroelectricity. Here we reveal highly polar and periodic polarization waves in SrTiO3 at room temperature, which is stabilized by periodic tensile strains in a sandwiched PbTiO3/SrTiO3/PbTiO3 structure. Scanning transmission electron microscopy reveals that periodic a/c domain structures in PbTiO3 layers exert unique periodic tensile strains in the ultrathin SrTiO3 layer and consequently make the highly polar and periodic states of SrTiO3. The as-received polar SrTiO3 layer features peak polar ion displacement of ∼0.01 nm and peak tetragonality of ∼1.07. These peak values are larger than previous results, which are comparable to that of bulk ferroelectric PbTiO3. Our results suggest that it is possible to integrate large and periodic strain state in oxide films with exotic properties, which in turn could be useful in optical applications and information addressing when used as memory unit.
Collapse
Affiliation(s)
- Yunlong Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Yinlian Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bo Wu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yujia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Lixin Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Yanpeng Feng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Minjie Zou
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Geng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuliang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
- State Key Lab of Advanced Processing and Recycling on Non-ferrous Metals, Lanzhou University of Technology, Langongping Road 287, 730050 Lanzhou, China
| |
Collapse
|
23
|
Han B, Zhu R, Li X, Wu M, Ishikawa R, Feng B, Bai X, Ikuhara Y, Gao P. Two-Dimensional Room-Temperature Giant Antiferrodistortive SrTiO_{3} at a Grain Boundary. PHYSICAL REVIEW LETTERS 2021; 126:225702. [PMID: 34152191 DOI: 10.1103/physrevlett.126.225702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
The broken symmetry at structural defects such as grain boundaries (GBs) discontinues chemical bonds, leading to the emergence of new properties that are absent in the bulk owing to the couplings between the lattice and other parameters. Here, we create a two-dimensional antiferrodistortive (AFD) strontium titanate (SrTiO_{3}) phase at a Σ13(510)/[001] SrTiO_{3} tilt GB at room temperature. We find that such an anomalous room-temperature AFD phase with the thickness of approximate six unit cells is stabilized by the charge doping from oxygen vacancies. The localized AFD originated from the strong lattice-charge couplings at a SrTiO_{3} GB is expected to play important roles in the electrical and optical activity of GBs and can explain past experiments such as the transport properties of electroceramic SrTiO_{3}. Our study also provides new strategies to create low-dimensional anomalous elements for future nanoelectronics via grain boundary engineering.
Collapse
Affiliation(s)
- Bo Han
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ruixue Zhu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiaomei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mei Wu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ryo Ishikawa
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Bin Feng
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Li T, Deng S, Liu H, Sun S, Li H, Hu S, Liu S, Xing X, Chen J. Strong Room-Temperature Ferroelectricity in Strained SrTiO 3 Homoepitaxial Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008316. [PMID: 33860569 DOI: 10.1002/adma.202008316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Although the discovery of exceptional ferroelectricity in paraelectrics offers great opportunities to enrich the diversity of the ferroelectric family and promote the development of novel functionalities, transformation of paraelectric phases into ferroelectric phases remains challenging. Herein, a method is presented for driving paraelectrics into ferroelectric states via the introduction of M/O-deficient (M for metal) perovskite nanoregions. Using this method, strong ferroelectricity, equivalent to that of classic ferroelectrics, is achieved in a prototype paraelectric strontium titanate (SrTiO3 ) homoepitaxial film embedded with Ti/O-deficient perovskite nanoregions. It is shown that these unique nanoregions impose large out-of-plane tensile strain and electron-doping effects on the matrix to form a tetragonal structure (tetragonality = 1.038), driving the off-center movements of Ti and Sr atoms. This leads to a significant room-temperature ferroelectric polarization (maximum polarization = 41.6 µC cm-2 and spontaneous polarization = 25.2 µC cm-2 at 1.60 MV cm-1 ) with a high thermal stability (Tstable ≈ 1098 K). The proposed approach can be applied to various paraelectrics for creating ferroelectricity and generating emergent physical properties, opening the door to a new realm of materials design.
Collapse
Affiliation(s)
- Tianyu Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shiqing Deng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hui Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shengdong Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shi Liu
- School of Science, Key Laboratory of Quantum Materials of Zhejiang Provinces, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
25
|
Baki A, Stöver J, Schulz T, Markurt T, Amari H, Richter C, Martin J, Irmscher K, Albrecht M, Schwarzkopf J. Influence of Sr deficiency on structural and electrical properties of SrTiO 3 thin films grown by metal-organic vapor phase epitaxy. Sci Rep 2021; 11:7497. [PMID: 33820911 PMCID: PMC8021553 DOI: 10.1038/s41598-021-87007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
Homoepitaxial growth of SrTiO3 thin films on 0.5 wt% niobium doped SrTiO3 (100) substrates with high structural perfection was developed using liquid-delivery spin metal-organic vapor phase epitaxy (MOVPE). Exploiting the advantage of adjusting the partial pressures of the individual constituents independently, we tuned the Sr/Ti ratio of the gas phase for realizing, stoichiometric, as well as Sr deficient layers. Quantitative energy dispersive X-ray spectroscopy in a scanning transmission electron microscope confirm Sr deficiency of up to 20% in nominally off-stoichiometrically grown films. Our MOVPE process allows to grow such layers in phase pure state and without extended defect formation. Indications for oxygen deficiency could not be identified. Sr deficient layers exhibit an increased permittivity of ɛr = 202 and a larger vertical lattice parameter. Current-voltage characteristics (IVCs) of metal-oxide-semiconductor (Pt/SrTiO3/SrTiO3:Nb) structures reveal that Sr deficient SrTiO3 films show an intrinsic resistive switching with on-off ratios of three orders of magnitude at RT and seven orders of magnitude at 10 K. There is strong evidence that a large deviation from stoichiometry pronounces the resistive switching behavior. IVCs conducted at 10 K indicate a defect-based mechanism instead of mass transport by ion diffusion. This is supported by in-situ STEM investigations that show filaments to form at significant higher voltages than those were resistive switching is observed in our samples.
Collapse
Affiliation(s)
- Aykut Baki
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany.
| | - Julian Stöver
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Tobias Schulz
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Toni Markurt
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Houari Amari
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Carsten Richter
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Jens Martin
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Klaus Irmscher
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Martin Albrecht
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Jutta Schwarzkopf
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
26
|
Zhang Y, Wang J, Ghosez P. Unraveling the Suppression of Oxygen Octahedra Rotations in A_{3}B_{2}O_{7} Ruddlesden-Popper Compounds: Engineering Multiferroicity and Beyond. PHYSICAL REVIEW LETTERS 2020; 125:157601. [PMID: 33095620 DOI: 10.1103/physrevlett.125.157601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The competition between polar distortions and BO_{6} octahedra rotations is well known to be critical in explaining the ground state of various ABO_{3} perovskites. Here, we show from first-principles calculations that a similar competition between interlayer rumpling and rotations is playing a key role in layered Ruddlesden-Popper (RP) perovskites. This competition explains the suppression of oxygen octahedra rotations and hybrid improper ferroelectricity in A_{3}B_{2}O_{7} compounds with rare-earth ions in the rocksalt layer and also appears relevant to other phenomena like negative thermal expansion and the dimensionality determined band gap in RP systems. Moreover, we highlight that RP perovskites offer more flexibility than ABO_{3} perovskites in controlling such a competition and four distinct strategies are proposed to tune it. These strategies are shown to be promising for designing new multiferroics. They are generic and might also be exploited for tuning negative thermal expansion and band gap.
Collapse
Affiliation(s)
- Yajun Zhang
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, B-4000 Liège, Belgium
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Jie Wang
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Philippe Ghosez
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, B-4000 Liège, Belgium
| |
Collapse
|
27
|
Kim JR, Jang J, Go KJ, Park SY, Roh CJ, Bonini J, Kim J, Lee HG, Rabe KM, Lee JS, Choi SY, Noh TW, Lee D. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat Commun 2020; 11:4944. [PMID: 33009380 PMCID: PMC7532175 DOI: 10.1038/s41467-020-18741-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Nonequilibrium atomic structures can host exotic and technologically relevant properties in otherwise conventional materials. Oxygen octahedral rotation forms a fundamental atomic distortion in perovskite oxides, but only a few patterns are predominantly present at equilibrium. This has restricted the range of possible properties and functions of perovskite oxides, necessitating the utilization of nonequilibrium patterns of octahedral rotation. Here, we report that a designed metastable pattern of octahedral rotation leads to robust room-temperature ferroelectricity in CaTiO3, which is otherwise nonpolar down to 0 K. Guided by density-functional theory, we selectively stabilize the metastable pattern, distinct from the equilibrium pattern and cooperative with ferroelectricity, in heteroepitaxial films of CaTiO3. Atomic-scale imaging combined with deep neural network analysis confirms a close correlation between the metastable pattern and ferroelectricity. This work reveals a hidden but functional pattern of oxygen octahedral rotation and opens avenues for designing multifunctional materials.
Collapse
Affiliation(s)
- Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jinhyuk Jang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Se Young Park
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
- Department of Physics, Soongsil University, Seoul, 07027, Korea.
| | - Chang Jae Roh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - John Bonini
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854-8019, USA
| | - Jinkwon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Han Gyeol Lee
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Karin M Rabe
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854-8019, USA
| | - Jong Seok Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
| | - Daesu Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Asia Pacific Center for Theoretical Physics, Pohang, 37673, Korea.
| |
Collapse
|
28
|
Enriquez E, Li Q, Bowlan P, Lu P, Zhang B, Li L, Wang H, Taylor AJ, Yarotski D, Prasankumar RP, Kalinin SV, Jia Q, Chen A. Induced ferroelectric phases in SrTiO 3 by a nanocomposite approach. NANOSCALE 2020; 12:18193-18199. [PMID: 32856672 DOI: 10.1039/d0nr03460f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.
Collapse
Affiliation(s)
- Erik Enriquez
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu X, Zhang H, Zhong Z, Zhang R, Yin L, Sun Y, Huang H, Lu Y, Lu Y, Zhou C, Ma Z, Shen L, Wang J, Guo J, Sun J, Sheng Z. Polar Rectification Effect in Electro-Fatigued SrTiO 3-Based Junctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31645-31651. [PMID: 32551489 DOI: 10.1021/acsami.0c08418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rectifying semiconductor junctions are crucial to electronic devices. They convert alternating current into a direct one by allowing unidirectional charge flows. Analogous to the current-flow rectification for itinerary electrons, here, a polar rectification that is based on the localized oxygen vacancies (OVs) in a Ti/fatigued-SrTiO3 (fSTO) Schottky junction is first demonstrated. The fSTO with OVs is produced by an electrodegradation process. The different movabilities of localized OVs and itinerary electrons in the fSTO yield a unidirectional electric polarization at the interface of the junction under the coaction of external and built-in electric fields. Moreover, the fSTO displays a pre-ferroelectric state located between paraelectric and ferroelectric phases. The pre-ferroelectric state has three sub-states and can be easily driven into a ferroelectric state by an external electric field. These observations open up opportunities for potential polar devices and may underpin many useful polar-triggered electronic phenomena.
Collapse
Affiliation(s)
- Xueli Xu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Fert Beijing Institute, School of Microelectronics, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ranran Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
| | - Lihua Yin
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Haoliang Huang
- Anhui Laboratory of Advanced Photon Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Lu
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Chun Zhou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
| | - Zongwei Ma
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
| | - Lei Shen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junsong Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhigao Sheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
30
|
Lu YL, Zhu L, Li Y, Wang N, Wang FL, Zheng H, Wang YG, Pan FM. Enhancement of charge-mediated magnetoelectric coupling in Fe 3O 4/SrTiO 3/Ba 0.6Sr 0.4TiO 3 heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:295802. [PMID: 32163930 DOI: 10.1088/1361-648x/ab7f6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The in-plane magnetic hysteresis loops of Fe3O4/SrTiO3(STO) and Fe3O4/STO/Ba0.6Sr0.4TiO3(BSTO) heterostructures have been investigated at 200 K under various electric fields. The bottom BSTO layer of the STO/BSTO bilayer is used to improve the dielectric properties of the top STO layer. The polarization of the STO/BSTO bilayer is ∼78% larger than that of the STO layer at room temperature due to the improvement of surface topography and the contribution of electrostatic interlayer coupling. A significant enlargement (∼70%) in the magnetoelectric response of Fe3O4/STO/BSTO heterostructure has been achieved at 200 K and 300 kV cm-1 after introducing the BSTO layer, since the STO/BSTO bilayer with larger dielectric constant supplies more polarization charges at its interface to the Fe3O4 layer than the STO layer. It indicates that the dielectric bilayer improves the polarization and thus benefits the magnetoelectric coupling in the multiferroic heterostructure.
Collapse
Affiliation(s)
- Y L Lu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu R, Scatena R, Khalyavin DD, Johnson RD, Inaguma Y, Tanaka M, Matsushita Y, Yamaura K, Belik AA. High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn 2Ti 4O 12 with R = Sm, Eu, Gd, Dy, Ho, Y. Inorg Chem 2020; 59:9065-9076. [PMID: 32515189 DOI: 10.1021/acs.inorgchem.0c00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A'A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A'[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A' site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A' and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8-13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er-Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA'3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.
Collapse
Affiliation(s)
- Ran Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Rebecca Scatena
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dmitry D Khalyavin
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Roger D Johnson
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Yoshiyuki Inaguma
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Masahiko Tanaka
- Synchrotron X-ray Station at SPring-8, NIMS, Kouto 1-1-1, Sayo-cho, Hyogo 679-5148, Japan
| | - Yoshitaka Matsushita
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - Kazunari Yamaura
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Alexei A Belik
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
32
|
Zhang FX, Xue H, Keum JK, Boulle A, Zhang Y, Weber WJ. Symmetry degeneration and room temperature ferroelectricity in ion-irradiated SrTiO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:355405. [PMID: 32353841 DOI: 10.1088/1361-648x/ab8ec7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Polar phonon modes associated with room temperature ferroelectricity are observed in SrTiO3single crystals irradiated with Ti ions. Quantitative strain analysis reveals that irradiation-induced out-of-plane strain drives the centrosymmetric cubic SrTiO3to a tetragonal-like structure in the maximum damaged region. Energy transfer from ions to electrons during ion irradiation yields defects in SrTiO3that also plays an important role for the room temperature ferroelectricity. Different from thin film techniques, the ferroelectricity in the ion irradiated SrTiO3can occur for much larger thicknesses, depending on the energy and type of ion.
Collapse
Affiliation(s)
- F X Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Haizhou Xue
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - J K Keum
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - A Boulle
- Institut de Recherche sur les Céramiques, CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges Cedex, France
| | - Yanwen Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - W J Weber
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| |
Collapse
|
33
|
Gao K, Liu C, Zhang W, Wang K, Liu W. Pyroelectricity and field-induced spin-flop in (4-(Aminomethyl)pyridinium) 2 MnCl 4 · 2H 2O. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200271. [PMID: 32537222 PMCID: PMC7277289 DOI: 10.1098/rsos.200271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Large single crystals of (4-(Aminomethyl)pyridinium)2 MnCl4 · 2H2O (1) were grown by slow evaporation of solution. The crystal structure was solved to be Pī, which belongs to the central symmetric space group. But small pyroelectric current was detected, as well as a ferroelectric hysteresis loop. The pyroelectric and the ferroelectric properties were attributed to the strain caused by defects. Temperature-dependent magnetic curves and the M-H curve show that 1 is antiferromagnetic ordering below 2.5 K. A field-induced spin-flop is observed in the antiferromagnetic ordering state.
Collapse
Affiliation(s)
- Kaige Gao
- Author for correspondence: Kaige Gao e-mail:
| | | | | | | | | |
Collapse
|
34
|
Nova TF, Disa AS, Fechner M, Cavalleri A. Metastable ferroelectricity in optically strained SrTiO 3. Science 2020; 364:1075-1079. [PMID: 31197010 DOI: 10.1126/science.aaw4911] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/20/2019] [Indexed: 11/03/2022]
Abstract
Fluctuating orders in solids are generally considered high-temperature precursors of broken symmetry phases. However, in some cases, these fluctuations persist to zero temperature and prevent the emergence of long-range order. Strontium titanate (SrTiO3) is a quantum paraelectric in which dipolar fluctuations grow upon cooling, although a long-range ferroelectric order never sets in. Here, we show that optical excitation of lattice vibrations can induce polar order. This metastable polar phase, observed up to temperatures exceeding 290 kelvin, persists for hours after the optical pump is interrupted. Furthermore, hardening of a low-frequency vibration points to a photoinduced ferroelectric phase transition, with a spatial domain distribution suggestive of a photoflexoelectric coupling.
Collapse
Affiliation(s)
- T F Nova
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany. .,The Hamburg Centre for Ultrafast Imaging, Hamburg 22761, Germany
| | - A S Disa
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - M Fechner
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - A Cavalleri
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany. .,The Hamburg Centre for Ultrafast Imaging, Hamburg 22761, Germany.,Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
35
|
Saremi S, Kim J, Ghosh A, Meyers D, Martin LW. Defect-Induced (Dis)Order in Relaxor Ferroelectric Thin Films. PHYSICAL REVIEW LETTERS 2019; 123:207602. [PMID: 31809085 DOI: 10.1103/physrevlett.123.207602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
The effect of intrinsic point defects on relaxor properties of 0.68 PbMg_{1/3}Nb_{2/3}O_{3}-0.32 PbTiO_{3} thin films is studied across nearly 2 orders of magnitude of defect concentration via ex post facto ion bombardment. A weakening of the relaxor character is observed with increasing concentration of bombardment-induced point defects, which is hypothesized to be related to strong interactions between defect dipoles and the polarization. Although more defects and structural disorder are introduced in the system as a result of ion bombardment, the special type of defects that are likely to form in these polar materials (i.e., defect dipoles) can stabilize the direction of polarization against thermal fluctuations, and in turn, weaken relaxor behavior.
Collapse
Affiliation(s)
- Sahar Saremi
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jieun Kim
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Anirban Ghosh
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Derek Meyers
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Ferroelectric switching in ferroelastic materials with rough surfaces. Sci Rep 2019; 9:15834. [PMID: 31676819 PMCID: PMC6825142 DOI: 10.1038/s41598-019-52240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/05/2019] [Indexed: 11/08/2022] Open
Abstract
Electric switching of non-polar bulk crystals is shown to occur when domain walls are polar in ferroelastic materials and when rough surfaces with steps on an atomic scale promote domain switching. All domains emerging from surface nuclei possess polar domain walls. The progression of domains is then driven by the interaction of the electric field with the polarity of domain boundaries. In contrast, smooth surfaces with higher activation barriers prohibit effective domain nucleation. We demonstrate the existence of an electrically driven ferroelectric hysteresis loop in a non-ferroelectric, ferroelastic bulk material.
Collapse
|
37
|
Song C, Li X, Jiang Y, Wang X, Yao J, Meng S, Zhang J. Real-Space Imaging of Orbital Selectivity on SrTiO 3(001) Surface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37279-37284. [PMID: 31529959 DOI: 10.1021/acsami.9b11724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Real-space access of the orbital degree of freedom in complex oxides is still challenging due to intricate electronic hybridization. Here, we report a direct observation of reproducible orbital-selective tunneling on a novel SrTiO3(001) surface by scanning tunneling microscopy. The electronic structures reversibly switch between two different sets of symmetries depending on the sample bias, which is accompanied by a remarkable change in energy-dependent spectroscopy data. Tunneling spectrum combined with density functional theory calculations elucidates that symmetry-breaking at the surface determines the crystal-splitting field of eg/t2g orbitals with a strong in-plane anisotropy so that electrons alternatingly fill eg and t2g orbitals during the imaging process with different biases. This surface superstructure provides a new strategy toward understanding orbital textures and orbital selectivity in complex oxides.
Collapse
Affiliation(s)
- Chuangye Song
- Department of Physics , Beijing Normal University , Beijing 100875 , China
| | - Xuanyi Li
- Institute of Physics , Chinese Academic of Science , Beijing 100190 , China
- School of Physics , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science , Beijing Jiaotong University , Beijing 100044 , China
- Chemistry and Chemical Engineering Guangdong Laboratory , Shantou 515031 , China
| | - Jiannian Yao
- Chemistry and Chemical Engineering Guangdong Laboratory , Shantou 515031 , China
- Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Science , Beijing 100190 , China
| | - Sheng Meng
- Institute of Physics , Chinese Academic of Science , Beijing 100190 , China
- School of Physics , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jinxing Zhang
- Department of Physics , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
38
|
Ofoegbuna T, Darapaneni P, Sahu S, Plaisance C, Dorman JA. Stabilizing the B-site oxidation state in ABO 3 perovskite nanoparticles. NANOSCALE 2019; 11:14303-14311. [PMID: 31321389 DOI: 10.1039/c9nr04155a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The stabilization of the B-site oxidation state in ABO3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium(iv) oxide (Sr1-xNbO3-δ, SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nb = 1.3), a phase transition is observed forming an oxygen-deficient SrNbO3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO3 and Sr0.7NbO3-δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties.
Collapse
Affiliation(s)
- Tochukwu Ofoegbuna
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
39
|
Iglesias L, Gómez A, Gich M, Rivadulla F. Tuning Oxygen Vacancy Diffusion through Strain in SrTiO 3 Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35367-35373. [PMID: 30249093 DOI: 10.1021/acsami.8b12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding diffusion of oxygen vacancies in oxides under different external stimuli is crucial for the design of ion-based electronic devices, improvement of catalytic performance, and so forth. In this manuscript, using an external electric field produced by an atomic force microscopy tip, we obtain the room-temperature diffusion coefficient of oxygen-vacancies in thin films of SrTiO3 under compressive/tensile epitaxial strain. Tensile strain produces a substantial increase of the diffusion coefficient, facilitating the mobility of vacancies through the film. Additionally, the effect of tip bias, pulse time, and temperature on the local concentration of vacancies is investigated. These are important parameters of control in the production and stabilization of nonvolatile states in ion-based devices. Our findings show the key role played by strain for the control of oxygen vacancy migration in thin-film oxides.
Collapse
Affiliation(s)
- Lucia Iglesias
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Andrés Gómez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB , Bellaterra , Catalonia 08193 , Spain
| | - Martí Gich
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB , Bellaterra , Catalonia 08193 , Spain
| | - Francisco Rivadulla
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| |
Collapse
|
40
|
Kang C, Xiao K, Wang Y, Huang D, Zhu L, Liu F, Tian T. Synthesis of SrTiO3–TiN Nanocomposites with Enhanced Photocatalytic Activity under Simulated Solar Irradiation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Kunkun Xiao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Yuhan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Dongmei Huang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Ling Zhu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Fang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| | - Tao Tian
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
41
|
Gao P, Yang S, Ishikawa R, Li N, Feng B, Kumamoto A, Shibata N, Yu P, Ikuhara Y. Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_{3} Dislocations. PHYSICAL REVIEW LETTERS 2018; 120:267601. [PMID: 30004731 DOI: 10.1103/physrevlett.120.267601] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/06/2018] [Indexed: 05/27/2023]
Abstract
Owing to the broken translational symmetry at dislocations, a strain gradient naturally exists around the dislocation cores and can significantly influence the electrical and mechanical properties. We use aberration corrected scanning transmission electron microscopy to directly measure the flexoelectric polarization (∼28 μC cm^{-2}) at dislocation cores in SrTiO_{3}. The polarization charges can interact with the nonstoichiometric dislocation cores and thus impact the electrical activities. Our findings can help us to understand the properties of dislocations in perovskite, providing new insights into the design of new devices via defect engineering such as bicrystal fabrication and thin film growth.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Shuzhen Yang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tshinghua University, Beijing 100084, China
| | - Ryo Ishikawa
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ning Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bin Feng
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akihito Kumamoto
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Pu Yu
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tshinghua University, Beijing 100084, China
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
42
|
Zhang L, Yuan Y, Lapano J, Brahlek M, Lei S, Kabius B, Gopalan V, Engel-Herbert R. Continuously Tuning Epitaxial Strains by Thermal Mismatch. ACS NANO 2018; 12:1306-1312. [PMID: 29320634 DOI: 10.1021/acsnano.7b07539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strain engineering of thin films is a conventionally employed approach to enhance material properties and to energetically prefer ground states that would otherwise not be attainable. Controlling strain states in perovskite oxide thin films is usually accomplished through coherent epitaxy by using lattice-mismatched substrates with similar crystal structures. However, the limited choice of suitable oxide substrates makes certain strain states experimentally inaccessible and a continuous tuning impossible. Here, we report a strategy to continuously tune epitaxial strains in perovskite films grown on Si(001) by utilizing the large difference of thermal expansion coefficients between the film and the substrate. By establishing an adsorption-controlled growth window for SrTiO3 thin films on Si using hybrid molecular beam epitaxy, the magnitude of strain can be solely attributed to thermal expansion mismatch, which only depends on the difference between growth and room temperature. Second-harmonic generation measurements revealed that structure properties of SrTiO3 films could be tuned by this method using films with different strain states. Our work provides a strategy to generate continuous strain states in oxide/semiconductor pseudomorphic buffer structures that could help achieve desired material functionalities.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yakun Yuan
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jason Lapano
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew Brahlek
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Shiming Lei
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bernd Kabius
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Roman Engel-Herbert
- Department of Materials Science and Engineering, ‡Materials Research Institute, §Department of Physics, and ∥Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
43
|
Pai YY, Tylan-Tyler A, Irvin P, Levy J. Physics of SrTiO 3-based heterostructures and nanostructures: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036503. [PMID: 29424362 DOI: 10.1088/1361-6633/aa892d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Collapse
Affiliation(s)
- Yun-Yi Pai
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States of America. Pittsburgh Quantum Institute, Pittsburgh, PA 15260, United States of America
| | | | | | | |
Collapse
|
44
|
Herklotz A, Lee D, Guo EJ, Meyer TL, Petrie JR, Lee HN. Strain coupling of oxygen non-stoichiometry in perovskite thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:493001. [PMID: 29130456 DOI: 10.1088/1361-648x/aa949b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of strain and oxygen vacancies on perovskite thin films have been studied in great detail over the past decades and have been treated separately from each other. While epitaxial strain has been realized as a tuning knob to tailor the functional properties of correlated oxides, oxygen vacancies are usually regarded as undesirable and detrimental. In transition metal oxides, oxygen defects strongly modify the properties and functionalities via changes in oxidation states of the transition metals. However, such coupling is not well understood in epitaxial films, but rather deemed as cumbersome or experimental artifact. Only recently it has been recognized that lattice strain and oxygen non-stoichiometry are strongly correlated in a vast number of perovskite systems and that this coupling can be beneficial for information and energy technologies. Recent experimental and theoretical studies have focused on understanding the correlated phenomena between strain and oxygen vacancies for a wide range of perovskite systems. These correlations not only include the direct relationship between elastic strain and the formation energy of oxygen vacancies, but also comprise highly complex interactions such as strain-induced phase transitions due to oxygen vacancy ordering. Therefore, we aim in this review to give a comprehensive overview on the coupling between strain and oxygen vacancies in perovskite oxides and point out the potential applications of the emergent functionalities strongly coupled to oxygen vacancies.
Collapse
Affiliation(s)
- Andreas Herklotz
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | | | | | | | | | | |
Collapse
|
45
|
Plumb NC, Radović M. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433005. [PMID: 28961143 DOI: 10.1088/1361-648x/aa833f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.
Collapse
Affiliation(s)
- Nicholas C Plumb
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | |
Collapse
|
46
|
Liu S, Zhang C, Zhu M, He Q, Chakhalian J, Liu X, Borisevich A, Wang X, Xiao M. Polar phase transitions in heteroepitaxial stabilized La 0.5Y 0.5AlO 3 thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:405401. [PMID: 28741594 DOI: 10.1088/1361-648x/aa81ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the fabrication of epitaxial La0.5Y0.5AlO3 ultrathin films on (001) LaAlO3 substrates. Structural characterizations by scanning transmission electron microscopy and x-ray diffraction confirm the high quality of the film with a - b + c - AlO6 octahedral tilt pattern. Unlike either of the nonpolar parent compound, LaAlO3 and YAlO3, second harmonic generation measurements on the thin films suggest a nonpolar-polar phase transition at T c near 500 K, and a polar-polar phase transition at T a near 160 K. By fitting the angular dependence of the second harmonic intensities, we further propose that the two polar structures can be assigned to the Pmc2 1 and Pmn2 1 space group, while the high temperature nonpolar structure belongs to the Pbnm space group.
Collapse
Affiliation(s)
- Shenghua Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moghadam RM, Xiao Z, Ahmadi-Majlan K, Grimley ED, Bowden M, Ong PV, Chambers SA, Lebeau JM, Hong X, Sushko PV, Ngai JH. An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor. NANO LETTERS 2017; 17:6248-6257. [PMID: 28876941 DOI: 10.1021/acs.nanolett.7b02947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, the integration of gate materials that enable nonvolatile or hysteretic functionality in field-effect transistors could lead to device technologies that consume less power or allow for novel modalities in computing. Here we present electrical characterization of ultrathin single crystalline SrZrxTi1-xO3 (x = 0.7) films epitaxially grown on a high mobility semiconductor, Ge. Epitaxial films of SrZrxTi1-xO3 exhibit relaxor behavior, characterized by a hysteretic polarization that can modulate the surface potential of Ge. We find that gate layers as thin as 5 nm corresponding to an equivalent-oxide thickness of just 1.0 nm exhibit a ∼2 V hysteretic window in the capacitance-voltage characteristics. The development of hysteretic metal-oxide-semiconductor capacitors with nanoscale gate thicknesses opens new vistas for nanoelectronic devices.
Collapse
Affiliation(s)
- Reza M Moghadam
- Department of Physics, University of Texas-Arlington , Arlington, Texas 76019, United States
| | - Zhiyong Xiao
- Department of Physics and Astronomy, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Kamyar Ahmadi-Majlan
- Department of Physics, University of Texas-Arlington , Arlington, Texas 76019, United States
| | - Everett D Grimley
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Mark Bowden
- Environmental Molecular Sciences Laboratory, Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Phuong-Vu Ong
- Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Scott A Chambers
- Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - James M Lebeau
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Xia Hong
- Department of Physics and Astronomy, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Peter V Sushko
- Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Joseph H Ngai
- Department of Physics, University of Texas-Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
48
|
Room-temperature soft mode and ferroelectric like polarization in SrTiO 3 ultrathin films: Infrared and ab initio study. Sci Rep 2017; 7:2160. [PMID: 28526857 PMCID: PMC5438411 DOI: 10.1038/s41598-017-02113-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/05/2017] [Indexed: 11/08/2022] Open
Abstract
Due to the remarkable possibilities of epitaxially growing strontium titanate (SrTiO3 or STO) on silicon, this oxide is widely used as a buffer layer for integrating other perovskite oxides which allows for the development of various functional electronic devices on silicon. Moreover, STO is known to be an incipient ferroelectric in bulk but may become ferroelectric when in the form of strained ultrathin films. Given the importance of the potential applications for electronics if this property is demonstrated, we performed a spectroscopic study of STO on Si(001) templates coupling experimental and ab initio investigations. We selected six samples of ultrathin films: three strained samples (of thickness 4, 9 and 48 nm) and three relaxed samples (of equivalent thickness). Their infrared spectra show that both the mechanical stress and the thickness play major roles: higher energy modes evolve as soft modes in thinner strained films. In order to support these observations, the dynamical ab initio calculations allowed deriving the conditions for STO films to become ferroelectric at room temperature as shown by the development of a soft mode and the divergence of the in-plane dielectric constant.
Collapse
|
49
|
Snijders PC, Şen C, McConnell MP, Ma YZ, May AF, Herklotz A, Wong AT, Ward TZ. Dynamic defect correlations dominate activated electronic transport in SrTiO3. Sci Rep 2016; 6:30141. [PMID: 27443503 PMCID: PMC4957113 DOI: 10.1038/srep30141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 12/02/2022] Open
Abstract
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.
Collapse
Affiliation(s)
- Paul C. Snijders
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee Knoxville, Tennessee 37996, USA
| | - Cengiz Şen
- Department of Physics, Lamar University, Beaumont, Texas 77710, USA
| | - Michael P. McConnell
- Department of Physics and Astronomy, University of Tennessee Knoxville, Tennessee 37996, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Andrew F. May
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Andreas Herklotz
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Anthony T. Wong
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T. Zac Ward
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
50
|
Umezawa N, Janotti A. Controlling the Electronic Structures of Perovskite Oxynitrides and their Solid Solutions for Photocatalysis. CHEMSUSCHEM 2016; 9:1027-1031. [PMID: 27072042 DOI: 10.1002/cssc.201600040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Band-gap engineering of oxide materials is of great interest for optoelectronics, photovoltaics, and photocatalysis applications. In this study, electronic structures of perovskite oxynitrides, LaTiO2 N and SrNbO2 N, and solid solutions, (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x , are investigated using hybrid density functional calculations. Band gaps of LaTiO2 N and SrNbO2 N are much smaller than that of SrTiO3 owing to the formation of a N 2p band, which is higher in energy than the O 2p band. The valence- and conduction-band offsets of SrTiO3 /LaTiO2 N and SrTiO3 /SrNbO2 N are computed, and the adequacy for H2 evolution is analyzed by comparing the positions of the band edges with respect to the standard hydrogen electrode (SHE). The band gap of (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x solid solutions are also discussed.
Collapse
Affiliation(s)
- Naoto Umezawa
- Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki, 305-0044, Japan.
| | - Anderson Janotti
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|