1
|
Gong D, Yang J, Zhang S, Pandey S, Cui D, Ruff JPC, Horak L, Karapetrova E, Kim JW, Ryan PJ, Hao L, Zhang Y, Liu J. Large asymmetric anomalous Nernst effect in the antiferromagnet SrIr 0.8Sn 0.2O 3. Nat Commun 2025; 16:2888. [PMID: 40133261 PMCID: PMC11937396 DOI: 10.1038/s41467-025-58020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
A large anomalous Nernst effect is essential for thermoelectric energy-harvesting in the transverse geometry without external magnetic field. It's often connected with anomalous Hall effect, especially when electronic Berry curvature is believed to be the driving force. This approach implicitly assumes the same symmetry for the Nernst and Hall coefficients, which is however not necessarily true. Here we report a large anomalous Nernst effect in antiferromagnetic SrIr0.8Sn0.2O3 that defies the antisymmetric constraint on the anomalous Hall effect imposed by the Onsager reciprocal relation. The observed spontaneous Nernst thermopower quickly reaches the sub-μV/K level below the Néel transition around 250 K, which is comparable with many topological antiferromagnetic semimetals and far excels other magnetic oxides. Our analysis indicates that the coexistence of significant symmetric and antisymmetric contributions plays a key role, pointing to the importance of extracting both contributions and a new pathway to enhanced anomalous Nernst effect for transverse thermoelectrics.
Collapse
Affiliation(s)
- Dongliang Gong
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Junyi Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
- Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shu Zhang
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Shashi Pandey
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dapeng Cui
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Lukas Horak
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | | | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Zheng J, Zhang J, Cheng S, Shi W, Wang M, Li Z, Chen Y, Hu F, Shen B, Chen Y, Zhu T, Sun J. Room-Temperature Ferromagnetism with Strong Spin-Orbit Coupling Achieved in CaRuO 3 Interfacial Phase via Magnetic Proximity Effect. ACS NANO 2024; 18:32625-32634. [PMID: 39527839 PMCID: PMC11603879 DOI: 10.1021/acsnano.4c10014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Recently, theoretical and experimental research predicted that ferromagnets with strong spin-orbit coupling (SOC) could serve as spin sources with dramatically enhanced spin-orbit torque (SOT) efficiency due to the combination of spin Hall effect and anomalous Hall effect (AHE), presenting potential advantages over conventional nonmagnetic heavy metals. However, materials with a strong SOC and room-temperature ferromagnetism are rare. Here, we report on a ferromagnetic (FM) interfacial phase with Curie temperature exceeding 300 K in the heavy transition-metal oxide CaRuO3, in proximity to La0.67Sr0.33MnO3. Electron energy loss and polarized neutron reflectometry spectra reveal the strong charge transfer from Ru to Mn at the interface, triggering antiferromagnetic exchange interactions between interfacial Ru/Mn ions and thus transferring magnetic order from La0.67Sr0.33MnO3 to CaRuO3. An obvious advantage of such interfacial phase is the enhanced anomalous Hall effect at temperatures from 150 to 300 K. Compared to the most promising room-temperature ferromagnetic oxide La0.67Sr0.33MnO3, the anomalous Hall conductivity σxyAHE (or anomalous Hall angle θH) of CaRuO3/La0.67Sr0.33MnO3 superlattices is increased by 30 (or 31) times at 150 K and 10 (or 3) times at 300 K. This work demonstrates a special approach for inducing ferromagnetism in heavy transition-metal oxides with strong SOC, offering promising prospects for all-oxide-based spintronic applications.
Collapse
Affiliation(s)
- Jie Zheng
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Sheng Cheng
- Spallation
Neutron Source Science Center, Dongguan 523803, China
| | - Wenxiao Shi
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Mengqin Wang
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yunzhong Chen
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Fengxia Hu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Baogen Shen
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
- Ningbo
Institute of Materials Technology & Engineering, Chinese Academy
of Sciences, Ningbo, Zhejiang 315201, China
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Yuansha Chen
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Tao Zhu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- Spallation
Neutron Source Science Center, Dongguan 523803, China
| | - Jirong Sun
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Datta R, Mondal S, Mondal S, Kalyan Pradhan S, Majumdar S, Kumar De S. Evolution of structural, magnetic and transport properties of 3 d-5 dbased double perovskites Nd 2-xSr xCoIrO 6. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:065801. [PMID: 39564817 DOI: 10.1088/1361-648x/ad8d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
The evolution of the structural, magnetic and transport properties of the intermediate compounds Nd2-xSrxCoIrO6withx= 0.2, 0.4, 0.6, 1 and 1.5 have been studied to establish important roles of sizes and oxidation states of cations on various phases. The replacement of Nd3+by Sr2+primarily influences the oxidation states of Co (Co2+→Co3+) and Ir (Ir4+→Ir5+) ions to maintain the charge neutrality in the entire system. The Sr dopants give rise to an increasing Co/Ir antisite disorder (ASD) to accommodate the variation of charge state and ionic radius of Co and Ir. The nature of magnetic interaction induced by Sr changes from being a ferrimagnetic (FIM) to a more dominant antiferromagnetic. The suppression of the second magnetic transition below 30 K in samples forx>0.2 is entirely due to dilution of the Nd-Nd magnetic interaction. The combined effects of ASD and mixed oxidation state of Co and Ir ions generate various types of magnetic exchange pathways and create competitive magnetic interactions to stabilize a particular magnetic ground state. In the middle compound NdSrCoIrO6, a Griffith like phase in the temperature region 65-150 K and exchange bias field of 658 Oe at 2.3 K under a cooling field of 50 kOe has been observed. The compounds show an insulating kind of behaviour, and with hole doping the value of room temperature resistivity drastically decreases. The nature of conduction is found to follow three dimensional Mott's variable range hopping process.
Collapse
Affiliation(s)
- Raktim Datta
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suman Mondal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suchanda Mondal
- Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Suman Kalyan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subham Majumdar
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subodh Kumar De
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Wang H, de la Torre A, Race JT, Wang Q, Ruff JPC, Woodward PM, Plumb KW, Walker D, Xie W. Pseudosymmetry in Tetragonal Perovskite SrIrO 3 Synthesized under High Pressure. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:6820-6825. [PMID: 39345271 PMCID: PMC11425847 DOI: 10.1021/acsaelm.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
In this study, we report a tetragonal perovskite structure of SrIrO3 (P4/mmm, a = 3.9362(9) Å, c = 7.880(3) Å) synthesized at 6 GPa and 1400 °C, employing the ambient pressure monoclinic SrIrO3 with distorted 6H structure as a precursor. The crystal structure of tetragonal SrIrO3 was evaluated on the basis of single-crystal and powder X-ray diffraction. A cubic indexing was observed, which was attributed to overlooked superlattice reflections. Weak fractional peaks in the H and K dimensions suggest possible structure modulation by oxygen defects. Magnetization study reveals weak paramagnetic behavior down to 2 K, indicative of the interplay between spin-orbit coupling, electron correlations, and the crystal electric field. Additionally, measurements of electrical resistivity display metallic behavior with an upturn at about 54 K, which is ascribed to weak electron localization and possible structural defects.
Collapse
Affiliation(s)
- Haozhe Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alberto de la Torre
- Department of Physics, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph T Race
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qiaochu Wang
- Department of Physics, Brown University, Providence, Rhode Island 02912, United States
| | - Jacob P C Ruff
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Patrick M Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kemp W Plumb
- Department of Physics, Brown University, Providence, Rhode Island 02912, United States
| | - David Walker
- Lamont Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Weiwei Xie
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Liu J, Gao X, Shi K, Zhang M, Wu J, Ukleev V, Radu F, Ji Y, Deng Z, Wei L, Hong Y, Hu S, Xiao W, Li L, Zhang Q, Wang Z, Wang L, Gan Y, Chen K, Liao Z. Hundred-Fold Enhancement in the Anomalous Hall Effect Induced by Hydrogenation. NANO LETTERS 2024; 24:1351-1359. [PMID: 38251855 DOI: 10.1021/acs.nanolett.3c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The anomalous Hall effect (AHE) is one of the most fascinating transport properties in condensed matter physics. However, the AHE magnitude, which mainly depends on net spin polarization and band topology, is generally small in oxides and thus limits potential applications. Here, we demonstrate a giant enhancement of AHE in a LaCoO3-induced 5d itinerant ferromagnet SrIrO3 by hydrogenation. The anomalous Hall resistivity and anomalous Hall angle, which are two of the most critical parameters in AHE-based devices, are found to increase to 62.2 μΩ·cm and 3%, respectively, showing an unprecedentedly large enhancement ratio of ∼10000%. Theoretical analysis suggests the key roles of Berry curvature in enhancing AHE. Furthermore, the hydrogenation concomitantly induces the significant elevation of Curie temperature from 75 to 160 K and 40-fold reinforcement of coercivity. Such giant regulation and very large AHE magnitude observed in SrIrO3 could pave the path for 5d oxide devices.
Collapse
Affiliation(s)
- Junhua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xiaofei Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ke Shi
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Minjie Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Jiating Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Victor Ukleev
- Helmholtz-Zentrum-Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Florin Radu
- Helmholtz-Zentrum-Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Yaoyao Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Deng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Long Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yuhao Hong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shilin Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wen Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Lin Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaosheng Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Lingfei Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yulin Gan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoliang Liao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Zhang Q, Shi S, Zheng Z, Zhou H, Shao DF, Zhao T, Su H, Liu L, Shu X, Jia L, Gu Y, Xiao R, Wang G, Zhao C, Li H, Chen J. Highly Energy-Efficient Spin Current Generation in SrIrO 3 by Manipulating the Octahedral Rotation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1129-1136. [PMID: 38118124 DOI: 10.1021/acsami.3c15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Materials with strong spin-orbit coupling (SOC) have been continuously attracting intensive attention due to their promising application in energy-efficient, high-density, and nonvolatile spintronic devices. Particularly, transition-metal perovskite oxides with strong SOC have been demonstrated to exhibit efficient charge-spin interconversion. In this study, we systematically investigated the impact of epitaxial strain on the spin-orbit torque (SOT) efficiency in the SrIrO3(SIO)/Ni81Fe19(Py) bilayer. The results reveal that the SOT efficiency is strongly related to the octahedral rotation around the in-plane axes of the single-crystal SIO. By modulating the epitaxial strain using different substrates, the SOT efficiency can be remarkably improved from 0.15 to 1.45. This 10-fold enhancement of SOT efficiency suggests that modulating the epitaxial strain is an efficient approach to control the SOT efficiency in complex oxide-based heterostructures. Our work may have the potential to advance the application of complex oxides in energy-efficient spintronic devices.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shu Shi
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zhenyi Zheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hengan Zhou
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Tieyang Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hanxin Su
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Liang Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Shu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Lanxin Jia
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Youdi Gu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Rui Xiao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Guilei Wang
- Beijing Superstring Academy of Memory Technology, Beijing 100176, China
| | - Chao Zhao
- Beijing Superstring Academy of Memory Technology, Beijing 100176, China
| | - Huihui Li
- Beijing Superstring Academy of Memory Technology, Beijing 100176, China
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Chongqing Research Institute, National University of Singapore, Chongqing 401120, China
| |
Collapse
|
7
|
Martin-Rio S, Konstantinovic Z, Pomar A, Balcells L, Pablo-Navarro J, Ibarra MR, Magén C, Mestres N, Frontera C, Martínez B. Spin-to-Charge Conversion in All-Oxide La 2/3Sr 1/3MnO 3/SrIrO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478394 DOI: 10.1021/acsami.3c06562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Spin injection and spin-charge conversion processes in all-oxide La2/3Sr1/3MnO3/SrIrO3 (LSMO/SIO) heterostructures with different SIO layer thickness and interfacial features have been studied. Ferromagnetic resonance (FMR) technique has been used to generate pure spin currents by spin pumping (SP) in ferromagnetic (FM) half-metallic LSMO. The change of the resonance linewidth in bare LSMO layers and LSMO/SIO heterostructures suggests a successful spin injection into the SIO layers. However, low values of the spin mixing conductance, compared to more traditional permalloy (Py)/Pt or yttrium iron garnet (YIG)/Pt systems, are found. A thorough analysis of the interfaces by high-resolution scanning transmission electron microscopy (HR-STEM) imaging suggests that they are structurally clean and atomic sharp, but a compositional analysis by energy-dispersive X-ray spectroscopy (EDS) reveals the interdiffusion of La, Ir, and Mn atomic species in the first atomic layers close to the interface. Inverse spin Hall effect (ISHE) measurements evidence that interfacial features play a very relevant role in controlling the effectiveness of the spin injection process and low transversal ISHE voltage signals are detected. In addition, it is found that larger voltage signals are detected for the lowest SIO layer thickness highlighting the role of the spin diffusion length (λsd)/SIO layer thickness ratio. The values of ISHE voltage are rather low but allow us to determine the spin Hall angle of SIO (θSH ≈ 1.12% at T = 250 K), which is remarkably similar to that obtained for the well-known Py/Pt system, therefore suggesting that SIO could be a promising spin-Hall material.
Collapse
Affiliation(s)
- Sergi Martin-Rio
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| | - Zorica Konstantinovic
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Belgrade 11 000, Serbia
| | - Alberto Pomar
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| | - Lluis Balcells
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - M Ricardo Ibarra
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Cesar Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Narcis Mestres
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| | - Carlos Frontera
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| | - Benjamin Martínez
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
8
|
Hao L, Yi D, Wang M, Liu J, Yu P. Emergent quantum phenomena in atomically engineered iridate heterostructures. FUNDAMENTAL RESEARCH 2023; 3:313-321. [PMID: 38933764 PMCID: PMC11197666 DOI: 10.1016/j.fmre.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last few years, researches in iridates have developed into an exciting field with the discovery of numerous emergent phenomena, interesting physics, and intriguing functionalities. Among the studies, iridate-based artificial structures play a crucial role owing to their extreme flexibility and tunability in lattice symmetry, chemical composition, and crystal dimensionality. In this article, we present an overview of the recent progress regarding iridate-based artificial structures. We first explicitly introduce several essential concepts in iridates. Then, we illustrate important findings on representative SrIrO3/SrTiO3 superlattices, heterostructures comprised of SrIrO3 and magnetic oxides, and their response to external electric-field stimuli. Finally, we comment on existing problems and promising future directions in this exciting field.
Collapse
Affiliation(s)
- Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Di Yi
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Meng Wang
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
9
|
Gong X, Autieri C, Zhou H, Ma J, Tang X, Zheng X, Ming X. In-gap states and strain-tuned band convergence in layered structure trivalent iridate K 0.75Na 0.25IrO 2. Phys Chem Chem Phys 2023; 25:6857-6866. [PMID: 36799367 DOI: 10.1039/d2cp04806j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir4+, 5d5) and pentavalent (Ir5+, 5d4) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir3+, 5d6) iridate, K0.75Na0.25IrO2, crystallizing in a triangular lattice with edge-sharing IrO6 octahedra and alkali metal ion intercalated [IrO2]- layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of K0.75Na0.25IrO2. The SOC interactions play a critical role in the band dispersion, resulting in NM Jeff = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in K0.75Na0.25IrO2. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of K0.75Na0.25IrO2. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.
Collapse
Affiliation(s)
- Xujia Gong
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Carmine Autieri
- International Research Centre Magtop, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Huanfu Zhou
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jiafeng Ma
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Xin Tang
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaojun Zheng
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Xing Ming
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| |
Collapse
|
10
|
Song G, Zhang C, Xie T, Wu Q, Zhang B, Huang X, Li Z, Li G, Gao B. Intrinsic ferromagnetism and the quantum anomalous Hall effect in two-dimensional MnOCl 2 monolayers. Phys Chem Chem Phys 2022; 24:20530-20537. [PMID: 35996999 DOI: 10.1039/d2cp02384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their potential application in spintronic devices, two-dimensional (2D) ferromagnetic materials are highly desired. We used first-principles calculations and Monte Carlo simulations to investigate the electronic structure and magnetic characteristics of the MnOCl2 monolayers. We discovered two stable monolayer structures, Pmna-MnOCl2 and Pmmn-MnOCl2. Our findings show that the Pmna-MnOCl2 monolayer is an intrinsic ferromagnetic semiconductor with an indirect band gap of 0.152 eV and a Curie temperature (TC) of 202 K, while the Pmmn-MnOCl2 monolayer is an intrinsic ferromagnetic Dirac semimetal with a high TC (910 K) and triaxial magnetic anisotropy. We also show that a Pmmn-MnOCl2 monolayer with a nontrivial band gap of 6.2 meV can achieve the quantum anomalous Hall effect (QAHE) with Chern number C = 1. Additionally, the existence of a gapless edge state can be flexibly regulated by choosing the terminal edges. Our studies reveal that the Pmmn-MnOCl2 monolayer can serve as a candidate material to achieve high-temperature QAHE.
Collapse
Affiliation(s)
- Guang Song
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Chengfeng Zhang
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tengfei Xie
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Qingkang Wu
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Bingwen Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| | - Xiaokun Huang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
| | - Zhongwen Li
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Guannan Li
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Benling Gao
- Department of Physics, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
11
|
Jaiswal AK, Wang D, Wollersen V, Schneider R, Tacon ML, Fuchs D. Direct Observation of Strong Anomalous Hall Effect and Proximity-Induced Ferromagnetic State in SrIrO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109163. [PMID: 35080789 DOI: 10.1002/adma.202109163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Indexed: 05/08/2023]
Abstract
The 5d iridium-based transition metal oxides have gained broad interest because of their strong spin-orbit coupling, which favors new or exotic quantum electronic states. On the other hand, they rarely exhibit more mainstream orders like ferromagnetism due to generally weak electron-electron correlation strength. Here, a proximity-induced ferromagnetic (FM) state with TC ≈ 100 K and strong magnetocrystalline anisotropy is shown in a SrIrO3 (SIO) heterostructure via interfacial charge transfer by using a ferromagnetic insulator in contact with SIO. Electrical transport allows to selectively probe the FM state of the SIO layer and the direct observation of a strong, intrinsic, and positive anomalous Hall effect (AHE). For T ≤ 20 K, the AHE displays unusually large coercive and saturation field, a fingerprint of a strong pseudospin-lattice coupling. A Hall angle, σxy AHE /σxx , larger by an order of magnitude than in typical 3d metals and an FM net moment of about 0.1 μB /Ir, is reported. This emphasizes how efficiently the nontrivial topological band properties of SIO can be manipulated by structural modifications and the exchange interaction with 3d TMOs.
Collapse
Affiliation(s)
- Arun Kumar Jaiswal
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Di Wang
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, 76021, Karlsruhe, Germany
| | - Vanessa Wollersen
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, 76021, Karlsruhe, Germany
| | - Rudolf Schneider
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Matthieu Le Tacon
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Dirk Fuchs
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| |
Collapse
|
12
|
Nelson JN, Schreiber NJ, Georgescu AB, Goodge BH, Faeth BD, Parzyck CT, Zeledon C, Kourkoutis LF, Millis AJ, Georges A, Schlom DG, Shen KM. Interfacial charge transfer and persistent metallicity of ultrathin SrIrO 3/SrRuO 3 heterostructures. SCIENCE ADVANCES 2022; 8:eabj0481. [PMID: 35119924 PMCID: PMC8816341 DOI: 10.1126/sciadv.abj0481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Interface quantum materials have yielded a plethora of previously unknown phenomena, including unconventional superconductivity, topological phases, and possible Majorana fermions. Typically, such states are detected at the interface between two insulating constituents by electrical transport, but whether either material is conducting, transport techniques become insensitive to interfacial properties. To overcome these limitations, we use angle-resolved photoemission spectroscopy and molecular beam epitaxy to reveal the electronic structure, charge transfer, doping profile, and carrier effective masses in a layer-by-layer fashion for the interface between the Dirac nodal-line semimetal SrIrO3 and the correlated metallic Weyl ferromagnet SrRuO3. We find that electrons are transferred from the SrIrO3 to SrRuO3, with an estimated screening length of λ = 3.2 ± 0.1 Å. In addition, we find that metallicity is preserved even down to a single SrIrO3 layer, where the dimensionality-driven metal-insulator transition typically observed in SrIrO3 is avoided because of strong hybridization of the Ir and Ru t2g states.
Collapse
Affiliation(s)
- Jocienne N. Nelson
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Nathaniel J. Schreiber
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexandru B. Georgescu
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Berit H. Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Brendan D. Faeth
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Christopher T. Parzyck
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Cyrus Zeledon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lena F. Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
| | - Andrew J. Millis
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Antoine Georges
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
- DQMP, Universitè de Genéve, 24 quai Ernest Ansermet, CH-1211 Genéve, Suisse
| | - Darrell G. Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
- Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
| | - Kyle M. Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Arias-Egido E, Laguna-Marco MA, Piquer C, Jiménez-Cavero P, Lucas I, Morellón L, Gallego F, Rivera-Calzada A, Cabero-Piris M, Santamaria J, Fabbris G, Haskel D, Boada R, Díaz-Moreno S. Dimensionality-driven metal-insulator transition in spin-orbit-coupled IrO 2. NANOSCALE 2021; 13:17125-17135. [PMID: 34635906 DOI: 10.1039/d1nr04207f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A metal-insulator transition is observed in spin-orbit-coupled IrO2 thin films upon reduction of the film thickness. In the epitaxially grown samples, the critical thickness (t ∼ 1.5-2.2 nm) is found to depend on growth orientation (001), (100) or (110). Interestingly from the applied point of view, the insulating behavior is found even in polycrystalline ultrathin films. By analyzing the experimental electrical response with various theoretical models, we find good fits to the Efros-Shklovskii-VRH and the Arrhenius-type behaviors, which suggests an important role of electron correlations in determining the electrical properties of IrO2. Our magnetic measurements also point to a significant role of magnetic order. Altogether, our results would point to a mixed Slater- and Mott-type of insulator.
Collapse
Affiliation(s)
- E Arias-Egido
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - M A Laguna-Marco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - C Piquer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - P Jiménez-Cavero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - I Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - L Morellón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Zaragoza 50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - F Gallego
- GFMC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - M Cabero-Piris
- ICTS - Centro Nacional de Microscopía Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Santamaria
- GFMC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Laboratorio de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28049 Madrid, Spain
- GFMC, Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - G Fabbris
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - D Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - R Boada
- Department of Chemistry Universitat Autonoma de Barcelona 08193 Bellaterra, Barcelona, Spain
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot, Oxfordshire OX11 0DE, UK
| | - S Díaz-Moreno
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
14
|
Dhingra A, Komesu T, Kumar S, Shimada K, Zhang L, Hong X, Dowben PA. Electronic band structure of iridates. MATERIALS HORIZONS 2021; 8:2151-2168. [PMID: 34846422 DOI: 10.1039/d1mh00063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this review, an attempt has been made to compare the electronic structures of various 5d iridates (iridium oxides), with an effort to note the common features and differences. Both experimental studies, especially angle-resolved photoemission spectroscopy (ARPES) results, and first-principles band structure calculations have been discussed. This brings to focus the fact that the electronic structures and magnetic properties of the high-Z 5d transition iridates depend on the intricate interplay of strong electron correlation, strong (relativistic) spin-orbit coupling, lattice distortion, and the dimensionality of the system. For example, in the thin film limit, SrIrO3 exhibits a metal-insulator transition that corresponds to the dimensionality crossover, with the band structure resembling that of bulk Sr2IrO4.
Collapse
Affiliation(s)
- Archit Dhingra
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, Theodore Jorgensen Hall, University of Nebraska, 855 N 16th, P. O. Box 880299, Lincoln, Nebraska 68588-0299, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Edgington J, Schweitzer N, Alayoglu S, Seitz LC. Constant Change: Exploring Dynamic Oxygen Evolution Reaction Catalysis and Material Transformations in Strontium Zinc Iridate Perovskite in Acid. J Am Chem Soc 2021; 143:9961-9971. [PMID: 34161089 DOI: 10.1021/jacs.1c04332] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIr0.8Zn0.2O3 perovskite for the OER in acid by employing electrochemical experiments with in situ and ex situ characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via in situ X-ray absorption spectroscopy. We discover that the SrIr0.8Zn0.2O3 perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.
Collapse
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Neil Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States.,Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Selim Alayoglu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
16
|
Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S. Observation of Nonlinear Spin-Charge Conversion in the Thin Film of Nominally Centrosymmetric Dirac Semimetal SrIrO_{3} at Room Temperature. PHYSICAL REVIEW LETTERS 2021; 126:236801. [PMID: 34170165 DOI: 10.1103/physrevlett.126.236801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Spin-charge conversion via spin-orbit interaction is one of the core concepts in the current spintronics research. The efficiency of the interconversion between charge and spin current is estimated based on Berry curvature of Bloch wave function in the linear-response regime. Beyond the linear regime, nonlinear spin-charge conversion in the higher-order electric field terms has recently been demonstrated in noncentrosymmetric materials with nontrivial spin texture in the momentum space. Here, we report the observation of the nonlinear charge-spin conversion in a nominally centrosymmetric oxide material SrIrO_{3} by breaking inversion symmetry at the interface. A large second-order magnetoelectric coefficient is observed at room temperature because of the antisymmetric spin-orbit interaction at the interface of Dirac semimetallic bands, which is subject to the symmetry constraint of the substrates. Our study suggests that nonlinear spin-charge conversion can be induced in many materials with strong spin-orbit interaction at the interface by breaking the local inversion symmetry to give rise to spin splitting in otherwise spin degenerate systems.
Collapse
Affiliation(s)
- Y Kozuka
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - S Isogami
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - K Masuda
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Y Miura
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Saikat Das
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - J Fujioka
- Faculty of Material Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - T Ohkubo
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - S Kasai
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Yoo MW, Tornos J, Sander A, Lin LF, Mohanta N, Peralta A, Sanchez-Manzano D, Gallego F, Haskel D, Freeland JW, Keavney DJ, Choi Y, Strempfer J, Wang X, Cabero M, Vasili HB, Valvidares M, Sanchez-Santolino G, Gonzalez-Calbet JM, Rivera A, Leon C, Rosenkranz S, Bibes M, Barthelemy A, Anane A, Dagotto E, Okamoto S, te Velthuis SGE, Santamaria J, Villegas JE. Large intrinsic anomalous Hall effect in SrIrO 3 induced by magnetic proximity effect. Nat Commun 2021; 12:3283. [PMID: 34078889 PMCID: PMC8172877 DOI: 10.1038/s41467-021-23489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/25/2021] [Indexed: 02/04/2023] Open
Abstract
The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.
Collapse
Affiliation(s)
- Myoung-Woo Yoo
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - J. Tornos
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - A. Sander
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Ling-Fang Lin
- grid.411461.70000 0001 2315 1184Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA ,grid.263826.b0000 0004 1761 0489School of Physics, Southeast University, Nanjing, China
| | - Narayan Mohanta
- grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - A. Peralta
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - D. Sanchez-Manzano
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - F. Gallego
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - D. Haskel
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - J. W. Freeland
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - D. J. Keavney
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - Y. Choi
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - J. Strempfer
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - X. Wang
- grid.253355.70000 0001 2192 5641Department of Physics, Bryn Mawr College, Bryn Mawr, PA USA
| | - M. Cabero
- grid.5515.40000000119578126IMDEA Nanoscience Campus Universidad Autonoma, Cantoblanco, Spain ,grid.4795.f0000 0001 2157 7667Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain
| | - Hari Babu Vasili
- grid.423639.9CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain
| | - Manuel Valvidares
- grid.423639.9CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain
| | - G. Sanchez-Santolino
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - J. M. Gonzalez-Calbet
- grid.4795.f0000 0001 2157 7667Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department Quimica Inorganica, Facultad de Quimica, Universidad Complutense, Madrid, Spain
| | - A. Rivera
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - C. Leon
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - S. Rosenkranz
- grid.187073.a0000 0001 1939 4845Materials Science Division, Argonne National Laboratory, Lemont, IL USA
| | - M. Bibes
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - A. Barthelemy
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - A. Anane
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Elbio Dagotto
- grid.411461.70000 0001 2315 1184Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA ,grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - S. Okamoto
- grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - S. G. E. te Velthuis
- grid.187073.a0000 0001 1939 4845Materials Science Division, Argonne National Laboratory, Lemont, IL USA
| | - J. Santamaria
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - Javier E. Villegas
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
18
|
Saghayezhian M, Wang Z, Howe D, Siwakoti P, Plummer EW, Zhu Y, Zhang J. Formation of dislocations via misfit strain across interfaces in epitaxial BaTiO 3and SrIrO 3heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:275003. [PMID: 33946062 DOI: 10.1088/1361-648x/abfdf1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Dislocations often occur in thin films with large misfit strain as a result of strain energy accumulation and can drastically change the film properties. Here the structure and dislocations in oxide heterostructures with large misfit strain are investigated on atomic scale. When grown on SrTiO3(001), the dislocations in both the monolithic BaTiO3thin film and its superlattices with SrIrO3appear above a critical thickness around 6 nm. The edge component of the dislocations is seen in both cases with the Burgers vector ofa⟨100⟩. However, compared to monolithic BaTiO3, the dislocation density is slightly lower in BaTiO3/SrIrO3superlattices. In the superlattice, when considering the SrTiO3lattice constant as the reference, BaTiO3has a larger misfit strain comparing with SrIrO3. It is found that in both cases, the formation of dislocation is only affected by the critical thickness of the film with larger lattice misfit (BaTiO3), regardless of the existence of a strong octahedral tilt/rotation mismatch at BaTiO3/SrIrO3interface. Our findings suggest that it is possible to control the position of dislocations, an important step toward defect engineering.
Collapse
Affiliation(s)
- M Saghayezhian
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Z Wang
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - D Howe
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - P Siwakoti
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - E W Plummer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Y Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Jiandi Zhang
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
19
|
Liu Z, Liu W, Zhou R, Cai S, Song Y, Yao Q, Lu X, Liu J, Liu Z, Wang Z, Zheng Y, Wang P, Liu Z, Li G, Shen D. Electron-plasmon interaction induced plasmonic-polaron band replication in epitaxial perovskite SrIrO 3 films. Sci Bull (Beijing) 2021; 66:433-440. [PMID: 36654180 DOI: 10.1016/j.scib.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/20/2023]
Abstract
Electron-boson interaction is fundamental to a thorough understanding of various exotic properties emerging in many-body physics. In photoemission spectroscopy, photoelectron emission due to photon absorption would trigger diverse collective excitations in solids, including the emergence of phonons, magnons, electron-hole pairs, and plasmons, which naturally provides a reliable pathway to study electron-boson couplings. While fingerprints of electron-phonon/-magnon interactions in this state-of-the-art technique have been well investigated, much less is known about electron-plasmon coupling, and direct observation of the band renormalization solely due to electron-plasmon interactions is extremely challenging. Here by utilizing integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy, we discover the long sought-after pure electron-plasmon coupling-induced low-lying plasmonic-polaron replica bands in epitaxial semimetallic SrIrO3 films, in which the characteristic low carrier concentration and narrow bandwidth combine to provide a unique platform where the electron-plasmon interaction can be investigated kinematically in photoemission spectroscopy. This finding enriches the forms of electron band normalization on collective modes in solids and demonstrates that, to obtain a complete understanding of the quasiparticle dynamics in 5d electron systems, the electron-plasmon interaction should be considered on equal footing with the acknowledged electron-electron interaction and spin-orbit coupling.
Collapse
Affiliation(s)
- Zhengtai Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanling Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruixiang Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Songhua Cai
- Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yekai Song
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangle Lu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jishan Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghao Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Zheng
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Peng Wang
- Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Srn+1IrnO3n+1 (n = 1, 2, and ∞). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+U), constrained random phase approximation (cRPA), GW, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard U, spin–orbit coupling (SOC) strength, and dimensionality n, which provide clear evidence for the crucial role played by SOC and U in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr2IrO4 and Sr3Ir2O7. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard U, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing GW and LSDA+U data. We examine the different magnetic ground states of structurally similar n = 1 and n = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr2IrO4 arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr3Ir2O7 is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the GW+BSE level from the the quasi two-dimensional insulating n = 1 and 2 phases to the three-dimensional metallic n=∞ phase.
Collapse
|
21
|
Wan G, Freeland JW, Kloppenburg J, Petretto G, Nelson JN, Kuo DY, Sun CJ, Wen J, Diulus JT, Herman GS, Dong Y, Kou R, Sun J, Chen S, Shen KM, Schlom DG, Rignanese GM, Hautier G, Fong DD, Feng Z, Zhou H, Suntivich J. Amorphization mechanism of SrIrO 3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization. SCIENCE ADVANCES 2021; 7:eabc7323. [PMID: 33523986 PMCID: PMC7793586 DOI: 10.1126/sciadv.abc7323] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/18/2020] [Indexed: 05/19/2023]
Abstract
The use of renewable electricity to prepare materials and fuels from abundant molecules offers a tantalizing opportunity to address concerns over energy and materials sustainability. The oxygen evolution reaction (OER) is integral to nearly all material and fuel electrosyntheses. However, very little is known about the structural evolution of the OER electrocatalyst, especially the amorphous layer that forms from the crystalline structure. Here, we investigate the interfacial transformation of the SrIrO3 OER electrocatalyst. The SrIrO3 amorphization is initiated by the lattice oxygen redox, a step that allows Sr2+ to diffuse and O2- to reorganize the SrIrO3 structure. This activation turns SrIrO3 into a highly disordered Ir octahedral network with Ir square-planar motif. The final Sr y IrO x exhibits a greater degree of disorder than IrO x made from other processing methods. Our results demonstrate that the structural reorganization facilitated by coupled ionic diffusions is essential to the disordered structure of the SrIrO3 electrocatalyst.
Collapse
Affiliation(s)
- Gang Wan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - John W Freeland
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jan Kloppenburg
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Guido Petretto
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Jocienne N Nelson
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Ding-Yuan Kuo
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - J Trey Diulus
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Gregory S Herman
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Yongqi Dong
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronghui Kou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jingying Sun
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Shuo Chen
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Kyle M Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
- Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Geoffroy Hautier
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Bose A, Nelson JN, Zhang XS, Jadaun P, Jain R, Schlom DG, Ralph DC, Muller DA, Shen KM, Buhrman RA. Effects of Anisotropic Strain on Spin-Orbit Torque Produced by the Dirac Nodal Line Semimetal IrO 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55411-55416. [PMID: 33232102 DOI: 10.1021/acsami.0c16485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report spin-torque ferromagnetic resonance studies of the efficiency of the damping-like (ξDL) spin-orbit torque exerted on an adjacent ferromagnet film by current flowing in epitaxial (001) and (110) IrO2 thin films. IrO2 possesses Dirac nodal lines (DNLs) in the band structure that are gapped by spin-orbit coupling, which could enable a very high spin Hall conductivity, σSH. We find that the (001) films do exhibit exceptionally high ξDL ranging from 0.45 at 293 K to 0.65 at 30 K, which sets the lower bounds of σSH to be 1.9 × 105 and 3.75 × 105 Ω-1 m-1, respectively, 10 times higher and of opposite sign than the theoretical prediction. Furthermore, ξDL and σSH are substantially reduced in anisotropically strained (110) films. We suggest that this high sensitivity to anisotropic strain is because of changes in contributions to σSH near the DNLs.
Collapse
Affiliation(s)
- Arnab Bose
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Jocienne N Nelson
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Xiyue S Zhang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Priyamvada Jadaun
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rakshit Jain
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Daniel C Ralph
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Kyle M Shen
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Robert A Buhrman
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Abstract
The interplay of electronic correlations, multi-orbital excitations, and spin-orbit coupling is a fertile ground for new states of matter in quantum materials. Here, we report on a polarized Raman scattering study of semimetallic SrIrO3. The momentum-space selectivity of Raman scattering allows to circumvent the challenge to resolve the dynamics of charges with very different mobilities. The Raman responses of both holes and electrons display an electronic continuum extending far beyond the energies allowed in a regular Fermi liquid. Analyzing this response within a memory function formalism, we extract their frequency dependent scattering rate and mass enhancement, from which we determine their DC-mobilities and electrical resistivities that agree well with transport measurement. We demonstrate that its charge dynamics is well described by a marginal Fermi liquid phenomenology, with a scattering rate close to the Planckian limit. This demonstrates the potential of this approach to investigate the charge dynamics in multi-band systems. It remains challenging to resolve the dynamics of charges with different mobilities in multi-band systems. Here, the authors report a Raman scattering study of the dynamics of holes and electrons in semimetallic SrIrO3, which is well described by a marginal Fermi liquid phenomenology, with frequency dependent scattering rates close to the Planckian limit.
Collapse
|
24
|
Groenendijk DJ, Manca N, de Bruijckere J, Monteiro AMRVL, Gaudenzi R, van der Zant HSJ, Caviglia AD. Anisotropic magnetoresistance in spin-orbit semimetal SrIrO 3. EUROPEAN PHYSICAL JOURNAL PLUS 2020; 135:627. [PMID: 32832318 PMCID: PMC7411514 DOI: 10.1140/epjp/s13360-020-00613-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
SrIrO 3 , the three-dimensional member of the Ruddlesden-Popper iridates, is a paramagnetic semimetal characterised by a the delicate interplay between spin-orbit coupling and Coulomb repulsion. In this work, we study the anisotropic magnetoresistance (AMR) of SrIrO 3 thin films, which is closely linked to spin-orbit coupling and probes correlations between electronic transport, magnetic order and orbital states. We show that the low-temperature negative magnetoresistance is anisotropic with respect to the magnetic field orientation, and its angular dependence reveals the appearance of a fourfold symmetric component above a critical magnetic field. We show that this AMR component is of magnetocrystalline origin, and attribute the observed transition to a field-induced magnetic state in SrIrO 3 .
Collapse
Affiliation(s)
- Dirk J. Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nicola Manca
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Joeri de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | - Rocco Gaudenzi
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Andrea D. Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
25
|
Skoropata E, Nichols J, Ok JM, Chopdekar RV, Choi ES, Rastogi A, Sohn C, Gao X, Yoon S, Farmer T, Desautels RD, Choi Y, Haskel D, Freeland JW, Okamoto S, Brahlek M, Lee HN. Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO 3/SrIrO 3 heterostructures. SCIENCE ADVANCES 2020; 6:eaaz3902. [PMID: 32923583 PMCID: PMC7455502 DOI: 10.1126/sciadv.aaz3902] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/22/2020] [Indexed: 05/23/2023]
Abstract
Chiral interactions in magnetic systems can give rise to rich physics manifested, for example, as nontrivial spin textures. The foremost interaction responsible for chiral magnetism is the Dzyaloshinskii-Moriya interaction (DMI), resulting from inversion symmetry breaking in the presence of strong spin-orbit coupling. However, the atomistic origin of DMIs and their relationship to emergent electrodynamic phenomena, such as topological Hall effect (THE), remain unclear. Here, we investigate the role of interfacial DMIs in 3d-5d transition metal-oxide-based LaMnO3/SrIrO3 superlattices on THE from a chiral spin texture. By additively engineering the interfacial inversion symmetry with atomic-scale precision, we directly link the competition between interfacial collinear ferromagnetic interactions and DMIs to an enhanced THE. The ability to control the DMI and resulting THE points to a pathway for harnessing interfacial structures to maximize the density of chiral spin textures useful for developing high-density information storage and quantum magnets for quantum information science.
Collapse
Affiliation(s)
- Elizabeth Skoropata
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John Nichols
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jong Mok Ok
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rajesh V. Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eun Sang Choi
- National High Field Magnet Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ankur Rastogi
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiang Gao
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sangmoon Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas Farmer
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ryan D. Desautels
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Daniel Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John W. Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew Brahlek
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
26
|
Nelson JN, Parzyck CT, Faeth BD, Kawasaki JK, Schlom DG, Shen KM. Mott gap collapse in lightly hole-doped Sr 2-xK xIrO 4. Nat Commun 2020; 11:2597. [PMID: 32444617 PMCID: PMC7244596 DOI: 10.1038/s41467-020-16425-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
The evolution of Sr2IrO4 upon carrier doping has been a subject of intense interest, due to its similarities to the parent cuprates, yet the intrinsic behaviour of Sr2IrO4 upon hole doping remains enigmatic. Here, we synthesize and investigate hole-doped Sr2-xKxIrO4 utilizing a combination of reactive oxide molecular-beam epitaxy, substitutional diffusion and in-situ angle-resolved photoemission spectroscopy. Upon hole doping, we observe the formation of a coherent, two-band Fermi surface, consisting of both hole pockets centred at (π, 0) and electron pockets centred at (π/2, π/2). In particular, the strong similarities between the Fermi surface topology and quasiparticle band structure of hole- and electron-doped Sr2IrO4 are striking given the different internal structure of doped electrons versus holes.
Collapse
Affiliation(s)
- J N Nelson
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - C T Parzyck
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - B D Faeth
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - J K Kawasaki
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA.,Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA.,Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - D G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA
| | - K M Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York, 14853, USA. .,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York, 14853, USA.
| |
Collapse
|
27
|
Rational design principles for giant spin Hall effect in 5d-transition metal oxides. Proc Natl Acad Sci U S A 2020; 117:11878-11886. [PMID: 32424094 DOI: 10.1073/pnas.1922556117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spin Hall effect (SHE), a mechanism by which materials convert a charge current into a spin current, invokes interesting physics and promises to empower transformative, energy-efficient memory technology. However, fundamental questions remain about the essential factors that determine SHE. Here, we solve this open problem, presenting a comprehensive theory of five rational design principles for achieving giant intrinsic SHE in transition metal oxides. Arising from our key insight regarding the inherently geometric nature of SHE, we demonstrate that two of these design principles are weak crystal fields and the presence of structural distortions. Moreover, we discover that antiperovskites are a highly promising class of materials for achieving giant SHE, reaching SHE values an order of magnitude larger than that reported for any oxide. Additionally, we derive three other design principles for enhancing SHE. Our findings bring deeper insight into the physics driving SHE and could help enhance and externally control SHE values.
Collapse
|
28
|
van Thiel TC, Fowlie J, Autieri C, Manca N, Šiškins M, Afanasiev D, Gariglio S, Caviglia AD. Coupling Lattice Instabilities Across the Interface in Ultrathin Oxide Heterostructures. ACS MATERIALS LETTERS 2020; 2:389-394. [PMID: 32478332 PMCID: PMC7254603 DOI: 10.1021/acsmaterialslett.9b00540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here, we determine the effect of the cubic-tetragonal distortion of SrTiO3 on the electronic properties of thin films of SrIrO3, a topological crystalline metal hosting a delicate interplay between spin-orbit coupling and electronic correlations. We demonstrate that below the transition temperature at 105 K, SrIrO3 orthorhombic domains couple directly to tetragonal domains in SrTiO3. This forces the in-phase rotational axis to lie in-plane and creates a binary domain structure in the SrIrO3 film. The close proximity to the metal-insulator transition in ultrathin SrIrO3 causes the individual domains to have strongly anisotropic transport properties, driven by a reduction of bandwidth along the in-phase axis. The strong structure-property relationships in perovskites make these compounds particularly suitable for static and dynamic coupling at interfaces, providing a promising route towards realizing novel functionalities in oxide heterostructures.
Collapse
Affiliation(s)
- Thierry C. van Thiel
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Jennifer Fowlie
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Carmine Autieri
- International
Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
- Consiglio
Nazionale delle Ricerche, Istituto Superconduttori,
Materiali Innovativi e Dispositivi (CNR-SPIN), c/o Università G. D’Annunzio, I-66100 Chieti, Italy
| | - Nicola Manca
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Makars Šiškins
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Dmytro Afanasiev
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Stefano Gariglio
- Department
of Quantum Matter Physics, University of
Geneva, 24 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Andrea D. Caviglia
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| |
Collapse
|
29
|
Lim ZS, Li C, Chi X, Omar GJ, Ma HH, Huang Z, Zeng S, Yang P, Venkatesan T, Rusydi A, Pennycook SJ, Ariando A. Magnetic Anisotropy of a Quasi Two-Dimensional Canted Antiferromagnet. NANO LETTERS 2020; 20:1890-1895. [PMID: 32004008 DOI: 10.1021/acs.nanolett.9b05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the control of the interplane magnetic exchange coupling in CaIrO3 perovskite thin films and superlattices with SrTiO3. By analyzing the anisotropic magneto-transport data, we demonstrate that a semimetallic paramagnetic CaIrO3 turns into a canted antiferromagnetic Mott insulator at reduced dimensions. The emergence of a biaxial magneto-crystalline anisotropy indicates the canted moment responding to the cubic symmetry. Extending to superlattices and probing oxygen octahedral rotation by half-integer X-ray Braggs diffraction, a more complete picture about the canted moment evolution with interplane coupling can be understood. Remarkably, a rotation of the canted moments' easy axes by 45° is also observed by a sign reversal of the in-plane strain. These results demonstrate the robustness of anisotropic magnetoresistance in revealing quasi two-dimensional canted antiferromagnets, as well as valuable insights about quadrupolar magnetoelastic coupling, relevant for designing future antiferromagnetic spintronic devices.
Collapse
Affiliation(s)
- Zhi Shiuh Lim
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Changjian Li
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore 117542
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Ganesh Ji Omar
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Haijiao Harsan Ma
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Zhen Huang
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
| | - Shengwei Zeng
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Ping Yang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Thirumalai Venkatesan
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Andrivo Rusydi
- Department of Physics, National University of Singapore, Singapore 117542
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077
| | - Ariando Ariando
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
30
|
Yi D, Wang Y, van ʼt Erve OMJ, Xu L, Yuan H, Veit MJ, Balakrishnan PP, Choi Y, N'Diaye AT, Shafer P, Arenholz E, Grutter A, Xu H, Yu P, Jonker BT, Suzuki Y. Emergent electric field control of phase transformation in oxide superlattices. Nat Commun 2020; 11:902. [PMID: 32060300 PMCID: PMC7021769 DOI: 10.1038/s41467-020-14631-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA.
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Olaf M J van ʼt Erve
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Liubin Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hongtao Yuan
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Michael J Veit
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Purnima P Balakrishnan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Haixuan Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
| | - Berend T Jonker
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Yuri Suzuki
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
31
|
Song CW, Suh H, Bak J, Bae HB, Chung SY. Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Yamada R, Fujioka J, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y. Large Variation of Dirac Semimetal State in Perovskite CaIrO_{3} with Pressure-Tuning of Electron Correlation. PHYSICAL REVIEW LETTERS 2019; 123:216601. [PMID: 31809165 DOI: 10.1103/physrevlett.123.216601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The impact of electron correlation on the Dirac semimetal state is investigated for perovskite CaIrO_{3} in terms of the magnetotransport properties under varying pressures. The reduction of electron correlation with a pressure of 1 GPa enhances the Fermi velocity as much as 40%, but it reduces the mobility by an order of magnitude by detuning the Dirac node from the Fermi energy. Moreover, the giant magnetoresistance at the quantum limit due to the one-dimensional confinement of Dirac electrons is critically suppressed under pressure. These results indicate that the electron correlation is a crucial knob for controlling the transport of a correlated Dirac semimetal.
Collapse
Affiliation(s)
- R Yamada
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - J Fujioka
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - M Kawamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - S Sakai
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - M Hirayama
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - R Arita
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - T Okawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - D Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - M Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Y Tokura
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Tokyo College, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
33
|
Interfacial charge-transfer Mott state in iridate-nickelate superlattices. Proc Natl Acad Sci U S A 2019; 116:19863-19868. [PMID: 31527227 DOI: 10.1073/pnas.1907043116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate [Formula: see text]/[Formula: see text] superlattices in which we observe a full electron transfer at the interface from Ir to Ni, triggering a massive structural and electronic reconstruction. Through experimental characterization and first-principles calculations, we determine that a large crystal field splitting from the distorted interfacial [Formula: see text] octahedra surprisingly dominates over the spin-orbit coupling and together with the Hund's coupling results in the high-spin (S = 1) configurations on both the Ir and Ni sites. This demonstrates the power of interfacial charge transfer in coupling lattice, charge, orbital, and spin degrees of freedom, opening fresh avenues of investigation of quantum states in oxide superlattices.
Collapse
|
34
|
Kwon J, Kim M, Song D, Yoshida Y, Denlinger J, Kyung W, Kim C. Lifshitz-Transition-Driven Metal-Insulator Transition in Moderately Spin-Orbit-Coupled Sr_{2-x}La_{x}RhO_{4}. PHYSICAL REVIEW LETTERS 2019; 123:106401. [PMID: 31573315 DOI: 10.1103/physrevlett.123.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Motivated by the novel insulating state of Sr_{2}IrO_{4} from strong spin-orbit coupling (SOC), we investigate, by means of angle resolved photoemission, the metal-insulator transition (MIT) mechanism in Sr_{2-x}La_{x}RhO_{4} whose mother compound is isovalent and isostructural but has smaller SOC strength compared to Sr_{2}IrO_{4}. Transport and angle resolved photoemission results from single crystalline Sr_{2-x}La_{x}RhO_{4} revealed that the MIT occurs coincidentally with a multi- to single-band transition (Lifshitz transition) at x=0.4. Starting from x=0.4, there is a gradual but anomalous enhancement in the band gap size with additional electron doping, suggesting that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is a new type which has been rarely investigated. These results suggest that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is likely induced by the moderate SOC strength and electron doping effect from the La. Our findings not only elucidate the MIT mechanism in Sr_{2-x}La_{x}RhO_{4}, but may also open new avenues for novel MIT research in moderate SOC regimes.
Collapse
Affiliation(s)
- Junyoung Kwon
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Minsoo Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Dongjoon Song
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yoshiyuki Yoshida
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Jonathan Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Wonshik Kyung
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
35
|
Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design. Proc Natl Acad Sci U S A 2019; 116:16186-16191. [PMID: 31350347 DOI: 10.1073/pnas.1812822116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.
Collapse
|
36
|
Lenz B, Martins C, Biermann S. Spectral functions of Sr 2IrO 4: theory versus experiment. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:293001. [PMID: 30921786 DOI: 10.1088/1361-648x/ab146a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spin-orbit Mott insulator Sr2IrO4 has attracted a lot of interest in recent years from theory and experiment due to its close connection to isostructural high-temperature copper oxide superconductors. Despite not being superconductive, its spectral features closely resemble those of the cuprates, including Fermi surface and pseudogap properties. In this article, we review and extend recent work in the theoretical description of the spectral function of pure and electron-doped Sr2IrO4 based on a cluster extension of dynamical mean-field theory ('oriented-cluster DMFT') and compare it to available angle-resolved photoemission data. Current theories provide surprisingly good agreement for pure and electron-doped Sr2IrO4, both in the paramagnetic and antiferromagnetic phases. Most notably, one obtains simple explanations for the experimentally observed steep feature around the M point and the pseudo-gap-like spectral feature in electron-doped Sr2IrO4.
Collapse
Affiliation(s)
- B Lenz
- CPHT, Ecole Polytechnique, CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
| | | | | |
Collapse
|
37
|
Lee K, Osada M, Hwang HY, Hikita Y. Oxygen Evolution Reaction Activity in IrO x/SrIrO 3 Catalysts: Correlations between Structural Parameters and the Catalytic Activity. J Phys Chem Lett 2019; 10:1516-1522. [PMID: 30883127 DOI: 10.1021/acs.jpclett.9b00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding how structural properties affect the oxygen evolution reaction (OER) of a catalyst can reveal important information not only on the catalytic mechanism but also on the general design strategy of OER catalysts. We report a variation of ∼0.15 V in the overpotential of the recently discovered IrO x/SrIrO3 OER catalysts, which directly correlates with the structural parameters of the as-synthesized SrIrO3 epitaxial films. This variation is caused by both extrinsic area enhancement and intrinsic electronic structure modification driven by defect formation. These correlations not only indicate that microscopic film defects play an important role in the activity of the IrO x/SrIrO3 catalyst but also provide readily accessible parameters predictive of the activity post-transformation to IrO x/SrIrO3. Establishing strong associations between the catalytic activity and key structural and electronic parameters, rather than synthetic variables, provides important guidance to control and study these complex catalysts independent of the synthetic technique.
Collapse
Affiliation(s)
- Kyuho Lee
- Department of Physics , Stanford University , Stanford , California 94305 , United States
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
| | - Motoki Osada
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
- Materials Science & Engineering , Stanford University , Stanford , California 94305 , United States
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
- Stanford Institute for Materials & Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Yasuyuki Hikita
- Stanford Institute for Materials & Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
38
|
Nuclear resonant scattering from 193Ir as a probe of the electronic and magnetic properties of iridates. Sci Rep 2019; 9:5097. [PMID: 30911115 PMCID: PMC6433947 DOI: 10.1038/s41598-019-41130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022] Open
Abstract
The high brilliance of modern synchrotron radiation sources facilitates experiments with high-energy x-rays across a range of disciplines, including the study of the electronic and magnetic correlations using elastic and inelastic scattering techniques. Here we report on Nuclear Resonance Scattering at the 73 keV nuclear level in 193Ir. The transitions between the hyperfine split levels show an untypically high E2/M1 multi-polarity mixing ratio combined with an increased sensitivity to certain changes in the hyperfine field direction compared to non-mixing transitions. The method opens a new way for probing local magnetic and electronic properties of correlated materials containing iridium and provides novel insights into anisotropic magnetism in iridates. In particular, unexpected out-of-plane components of magnetic hyperfine fields and non-zero electric field gradients in Sr2IrO4 have been detected and attributed to the strong spin-orbit interaction in this iridate. Due to the high, 62% natural abundance of the 193Ir isotope, no isotopic enrichment of the samples is required, qualifying the method for a broad range of applications.
Collapse
|
39
|
Biswas A, Talha M, Kashir A, Jeong YH. A thin film perspective on quantum functional oxides. CURRENT APPLIED PHYSICS 2019; 19:207-214. [DOI: 10.1016/j.cap.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
40
|
Takayama T, Yaresko AN, Takagi H. Monoclinic SrIrO 3-a Dirac semimetal produced by non-symmorphic symmetry and spin-orbit coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:074001. [PMID: 30523949 DOI: 10.1088/1361-648x/aaf68a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
SrIrO3 crystallizes in a monoclinic structure of distorted hexagonal perovskite at ambient pressure. The transport measurements show that the monoclinic SrIrO3 is a low-carrier density semimetal, as in the orthorhombic perovskite polymorph. The electronic structure calculation indicates a semimetallic band structure with Dirac bands at two high-symmetry points of Brillouin zone only when spin-orbit coupling is incorporated, suggesting that the semimetallic state is produced by the strong spin-orbit coupling. We argue that the Dirac bands are protected by the non-symmorphic symmetry of lattice.
Collapse
Affiliation(s)
- T Takayama
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany. Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
41
|
Fujioka J, Yamada R, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, Tokura Y. Strong-correlation induced high-mobility electrons in Dirac semimetal of perovskite oxide. Nat Commun 2019; 10:362. [PMID: 30664632 PMCID: PMC6341165 DOI: 10.1038/s41467-018-08149-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
Electrons in conventional metals become less mobile under the influence of electron correlation. Contrary to this empirical knowledge, we report here that electrons with the highest mobility ever found in known bulk oxide semiconductors emerge in the strong-correlation regime of the Dirac semimetal of perovskite CaIrO3. The transport measurements reveal that the high mobility exceeding 60,000 cm2V−1s−1 originates from the proximity of the Fermi energy to the Dirac node (ΔE < 10 meV). The calculation based on the density functional theory and the dynamical mean field theory reveals that the energy difference becomes smaller as the system approaches the Mott transition, highlighting a crucial role of correlation effects cooperating with the spin-orbit coupling. The correlation-induced self-tuning of Dirac node enables the quantum limit at a modest magnetic field with a giant magnetoresistance, thus providing an ideal platform to study the novel phenomena of correlated Dirac electron. Electron correlation normally makes electrons less mobile, but it is still not clear when correlation becomes very strong in Dirac semimetals. Here, Fujioka et al. report a very high electron mobility exceeding 60,000 cm2V−1s−1 in correlated Dirac semimetal of perovskite CaIrO3, due to the enhanced electron correlation nearby the Mott transition.
Collapse
Affiliation(s)
- J Fujioka
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan. .,Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - R Yamada
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
| | - M Kawamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - S Sakai
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - M Hirayama
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - R Arita
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - T Okawa
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
| | - D Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - M Hoshino
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Y Tokura
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan. .,RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
| |
Collapse
|
42
|
Fruchter L, Brouet V, Brisset F, Moutaabbid H, Klein Y. Growth facets of SrIrO 3 thin films and single crystals. CrystEngComm 2019. [DOI: 10.1039/c9ce00535h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states.
Collapse
Affiliation(s)
- L. Fruchter
- Laboratoire de Physique des Solides
- C.N.R.S
- Université Paris-Sud
- 91405 Orsay
- France
| | - V. Brouet
- Laboratoire de Physique des Solides
- C.N.R.S
- Université Paris-Sud
- 91405 Orsay
- France
| | - F. Brisset
- SP2M – ICMMO (UMR CNRS 8182)
- Univ. Paris-Sud
- Univ. Paris-Saclay
- F-91405 Orsay
- France
| | - H. Moutaabbid
- Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)
- Sorbonne Université
- CNRS
- IRD
| | - Y. Klein
- Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)
- Sorbonne Université
- CNRS
- IRD
| |
Collapse
|
43
|
Matsuno J, Fujioka J, Okuda T, Ueno K, Mizokawa T, Katsufuji T. Strongly correlated oxides for energy harvesting. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:899-908. [PMID: 31001365 PMCID: PMC6454405 DOI: 10.1080/14686996.2018.1529524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
We review recent advances in strongly correlated oxides as thermoelectric materials in pursuit of energy harvesting. We discuss two topics: one is the enhancement of the ordinary thermoelectric properties by controlling orbital degrees of freedom and orbital fluctuation not only in bulk but also at the interface of correlated oxides. The other topic is the use of new phenomena driven by spin-orbit coupling (SOC) of materials. In 5d electron oxides, we show some SOC-related transport phenomena, which potentially contribute to energy harvesting. We outline the current status and a future perspective of oxides as thermoelectric materials.
Collapse
Affiliation(s)
- Jobu Matsuno
- Department of Physics, Osaka University, Osaka, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Jun Fujioka
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan
| | - Tetsuji Okuda
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kazunori Ueno
- Department of Basic Science, University of Tokyo, Tokyo, Japan
| | | | - Takuro Katsufuji
- Department of Physics, Waseda University, Tokyo, Japan
- Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Tokyo, Japan
| |
Collapse
|
44
|
Kim SY, Lee MC, Han G, Kratochvilova M, Yun S, Moon SJ, Sohn C, Park JG, Kim C, Noh TW. Spectroscopic Studies on the Metal-Insulator Transition Mechanism in Correlated Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704777. [PMID: 29761925 DOI: 10.1002/adma.201704777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/18/2017] [Indexed: 06/08/2023]
Abstract
The metal-insulator transition (MIT) in correlated materials is a novel phenomenon that accompanies a large change in resistivity, often many orders of magnitude. It is important in its own right but its switching behavior in resistivity can be useful for device applications. From the material physics point of view, the starting point of the research on the MIT should be to understand the microscopic mechanism. Here, an overview of recent efforts to unravel the microscopic mechanisms for various types of MITs in correlated materials is provided. Research has focused on transition metal oxides (TMOs), but transition metal chalcogenides have also been studied. Along the way, a new class of MIT materials is discovered, the so-called relativistic Mott insulators in 5d TMOs. Distortions in the MO6 (M = transition metal) octahedron are found to have a large and peculiar effect on the band structure in an orbital dependent way, possibly paving a way to the orbital selective Mott transition. In the final section, the character of the materials suitable for applications is summarized, followed by a brief discussion of some of the efforts to control MITs in correlated materials, including a dynamical approach using light.
Collapse
Affiliation(s)
- So Yeun Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Cheol Lee
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Han
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marie Kratochvilova
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhwan Yun
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Jae Moon
- Department of Physics, Hanyang University, Seoul, Republic of Korea
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, USA
| | - Je-Geun Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
45
|
Cao G, Schlottmann P. The challenge of spin-orbit-tuned ground states in iridates: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:042502. [PMID: 29353815 DOI: 10.1088/1361-6633/aaa979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Effects of spin-orbit interactions in condensed matter are an important and rapidly evolving topic. Strong competition between spin-orbit, on-site Coulomb and crystalline electric field interactions in iridates drives exotic quantum states that are unique to this group of materials. In particular, the 'J eff = ½' Mott state served as an early signal that the combined effect of strong spin-orbit and Coulomb interactions in iridates has unique, intriguing consequences. In this Key Issues Review, we survey some current experimental studies of iridates. In essence, these materials tend to defy conventional wisdom: absence of conventional correlations between magnetic and insulating states, avoidance of metallization at high pressures, 'S-shaped' I-V characteristic, emergence of an odd-parity hidden order, etc. It is particularly intriguing that there exist conspicuous discrepancies between current experimental results and theoretical proposals that address superconducting, topological and quantum spin liquid phases. This class of materials, in which the lattice degrees of freedom play a critical role seldom seen in other materials, evidently presents some profound intellectual challenges that call for more investigations both experimentally and theoretically. Physical properties unique to these materials may help unlock a world of possibilities for functional materials and devices. We emphasize that, given the rapidly developing nature of this field, this Key Issues Review is by no means an exhaustive report of the current state of experimental studies of iridates.
Collapse
Affiliation(s)
- Gang Cao
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | | |
Collapse
|
46
|
Ohuchi Y, Matsuno J, Ogawa N, Kozuka Y, Uchida M, Tokura Y, Kawasaki M. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat Commun 2018; 9:213. [PMID: 29335409 PMCID: PMC5768777 DOI: 10.1038/s41467-017-02629-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 12/14/2017] [Indexed: 12/02/2022] Open
Abstract
One of the key goals in spintronics is to tame the spin-orbit coupling (SOC) that links spin and motion of electrons, giving rise to intriguing magneto-transport properties in itinerant magnets. Prominent examples of such SOC-based phenomena are the anomalous and topological Hall effects. However, controlling them with electric fields has remained unachieved since an electric field tends to be screened in itinerant magnets. Here we demonstrate that both anomalous and topological Hall effects can be modulated by electric fields in oxide heterostructures consisting of ferromagnetic SrRuO3 and nonmagnetic SrIrO3. We observe a clear electric field effect only when SrIrO3 is inserted between SrRuO3 and a gate dielectric. Our results establish that strong SOC of nonmagnetic materials such as SrIrO3 is essential in electrical tuning of these Hall effects and possibly other SOC-related phenomena. Spintronic devices are typically controlled with magnetic fields or current injection but incorporating these mechanisms into high-density devices is difficult. Here the authors present an oxide device where the topological and anomalous Hall effects can instead be modulated using an electric field.
Collapse
Affiliation(s)
- Yuki Ohuchi
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - Jobu Matsuno
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan.
| | - Naoki Ogawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Yusuke Kozuka
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - Masaki Uchida
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - Yoshinori Tokura
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Masashi Kawasaki
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| |
Collapse
|
47
|
Groenendijk DJ, Autieri C, Girovsky J, Martinez-Velarte MC, Manca N, Mattoni G, Monteiro AMRVL, Gauquelin N, Verbeeck J, Otte AF, Gabay M, Picozzi S, Caviglia AD. Spin-Orbit Semimetal SrIrO_{3} in the Two-Dimensional Limit. PHYSICAL REVIEW LETTERS 2017; 119:256403. [PMID: 29303305 DOI: 10.1103/physrevlett.119.256403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 06/07/2023]
Abstract
We investigate the thickness-dependent electronic properties of ultrathin SrIrO_{3} and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO_{3} is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO_{3} requires antiferromagnetic order.
Collapse
Affiliation(s)
- D J Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - C Autieri
- Consiglio Nazionale delle Ricerche CNR-SPIN, UOS L'Aquila, Sede Temporanea di Chieti, 66100 Chieti, Italy
| | - J Girovsky
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - M Carmen Martinez-Velarte
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - N Manca
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - G Mattoni
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - A M R V L Monteiro
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - N Gauquelin
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - J Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - A F Otte
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - M Gabay
- Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud, 91405 Orsay, France
| | - S Picozzi
- Consiglio Nazionale delle Ricerche CNR-SPIN, UOS L'Aquila, Sede Temporanea di Chieti, 66100 Chieti, Italy
| | - A D Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| |
Collapse
|
48
|
Schütz P, Di Sante D, Dudy L, Gabel J, Stübinger M, Kamp M, Huang Y, Capone M, Husanu MA, Strocov VN, Sangiovanni G, Sing M, Claessen R. Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}. PHYSICAL REVIEW LETTERS 2017; 119:256404. [PMID: 29303315 DOI: 10.1103/physrevlett.119.256404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO_{3} ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr_{2}IrO_{4} opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.
Collapse
Affiliation(s)
- P Schütz
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - D Di Sante
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - L Dudy
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - J Gabel
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Stübinger
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Kamp
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Y Huang
- Van der Waals-Zeeman Insitute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Capone
- CNR-IOM-Democritos National Simulation Centre and International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - M-A Husanu
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Sing
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - R Claessen
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
49
|
Yi D, Lu N, Chen X, Shen S, Yu P. Engineering magnetism at functional oxides interfaces: manganites and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443004. [PMID: 28745614 DOI: 10.1088/1361-648x/aa824d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to engineer the magnetism by different routes that manipulate these degrees of freedom. The family of manganites is a model system of strongly correlated magnetic TMOs. In this review, using manganites thin films and the heterostructures in conjunction with other TMOs as model systems, we review the recent progress of engineering magnetism in TMOs. We first discuss the role of the lattice that includes the epitaxial strain and the interface structural coupling. Then we look into the role of charge, focusing on the interface charge modulation. Having demonstrated the static effects, we continue to review the research on dynamical control of magnetism by electric field. Next, we review recent advances in heterostructures comprised of high T c cuprate superconductors and manganites. Following that, we discuss the emergent magnetic phenomena at interfaces between 3d TMOs and 5d TMOs with strong spin-orbit coupling. Finally, we provide our outlook for prospective future directions.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials and Applied Physics Department, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | | | |
Collapse
|
50
|
Pärschke EM, Wohlfeld K, Foyevtsova K, van den Brink J. Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates. Nat Commun 2017; 8:686. [PMID: 28947738 PMCID: PMC5612937 DOI: 10.1038/s41467-017-00818-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/25/2017] [Indexed: 11/09/2022] Open
Abstract
The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba2IrO4 and Sr2IrO4 to La2CuO4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr2IrO4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.
Collapse
Affiliation(s)
| | - Krzysztof Wohlfeld
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
| | - Kateryna Foyevtsova
- University of British Columbia, 6224 Agricultural Road, Vancouver, BC, Canada, V6T 1Z1
| | - Jeroen van den Brink
- IFW Dresden, Helmholtzstr. 20, 01069, Dresden, Germany.,Institute for Theoretical Physics, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|