1
|
Venado RE, Wilker J, Pankievicz VCS, Infante V, MacIntyre A, Wolf ESA, Vela S, Robbins F, Fernandes-Júnior PI, Vermerris W, Ané JM. Mucilage produced by aerial roots hosts diazotrophs that provide nitrogen in Sorghum bicolor. PLoS Biol 2025; 23:e3003037. [PMID: 40029899 DOI: 10.1371/journal.pbio.3003037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 01/24/2025] [Indexed: 03/12/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food, feed, and fodder crop worldwide and is gaining popularity as an energy crop due to its high potential for biomass production. Some sorghum accessions develop many aerial roots and produce an abundant carbohydrate-rich mucilage after rain. This aerial root mucilage is similar to that observed in landraces of maize (Zea mays) from southern Mexico, which have been previously shown to host diazotrophs. In this study, we characterized the aerial root development of several sorghum accessions and the impact of humidity on this trait. We conducted a microbiome study of the aerial root mucilage of maize and sorghum and isolated numerous diazotrophs from field sorghum mucilage. We observed that the prevailing phyla in the mucilage were Pseudomonadota, Bacteroidota, and Bacillota. However, bacterial abundances varied based on the genotype and the location. Using acetylene reduction, 15N2 gas feeding, and 15N isotope dilution assays, we confirmed that these sorghum accessions can acquire about 40% of their nitrogen from the atmosphere through these associations on aerial roots. Nitrogen fixation in sorghum aerial root mucilage offers a promising avenue to reduce reliance on synthetic fertilizers and promote sustainable agricultural practices for food, feed, fodder, and bioenergy production.
Collapse
Affiliation(s)
- Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vânia C S Pankievicz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Fletcher Robbins
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paulo Ivan Fernandes-Júnior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Embrapa Semiárido, Petrolina, Pernambuco, Brazil
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Cohen C, Gauci FX, Noblin X, Galiana E, Attard A, Thomen P. Kinetics of zoospores approaching a root using a microfluidic device. Phys Rev E 2025; 111:024411. [PMID: 40103171 DOI: 10.1103/physreve.111.024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025]
Abstract
Phytophthora species are plant pathogens that cause considerable damage to agrosystems and ecosystems, and have a major impact on the economy. Infection occurs when their biflagellate zoospores move and reach a root on which they aggregate. However, the communication between the plant and the zoospores and how this communication modifies the behavior of the swimming zoospores is not fully understood. Here we use a microfluidic device incorporating a growing Arabidopsis thaliana root to study the real-time kinetics of Phytophthora parasitica zoospores approaching the root and accumulating (or aggregating) around a specific area called the elongation zone. We show that zoospore kinetics are modified only below a distance of a few hundred microns from the aggregation center, with a decrease in velocity coupled to an increase in the number of turns taken. Furthermore, we show that the rate of aggregation is constant throughout a one-hour experiment, and is dependent on zoospore density. This rate is consistent with the fact that zoospores randomly encounter the region close to the elongation zone, a result compatible with an absence of attraction beyond a few hundred microns. Finally, we show that in our configuration, this absence of attraction can be explained by a residual flow responsible for limiting the diffusion of the signal supposedly emitted by the root to a boundary layer of a few hundred microns.
Collapse
Affiliation(s)
- C Cohen
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - F X Gauci
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - X Noblin
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| | - E Galiana
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, (ISA), 06903 Sophia-Antipolis, France
| | - A Attard
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, (ISA), 06903 Sophia-Antipolis, France
| | - P Thomen
- Institut de Physique de Nice, Université Côte d'Azur, CNRS UMR 7010, 06000 Nice, France
| |
Collapse
|
3
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1605-1624. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
4
|
Liu Z, Wang P, Goh T, Nakajima K, Kang BH. Mucilage secretion from the root cap requires the NAC family transcription factor BEARSKIN2. PLANT PHYSIOLOGY 2024; 196:1180-1195. [PMID: 39116186 DOI: 10.1093/plphys/kiae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
The root cap secretes mucilage and sheds border cells (border-like cells, BLCs) in Arabidopsis (Arabidopsis thaliana). These mucilage and root cap-derived cells form a defensive barrier against soil pathogens. BEARSKIN1 (BRN1) and BRN2 are 2 homologous NAM, ATAF1/2, and CUC2 (NAC) family transcription factors of Arabidopsis, and mucilage secretion is inhibited in the brn1/2 double mutant. BRN1 and BRN2 are also involved in the expression of a pectin-digesting enzyme, POLYGALACTURONASE (RCPG), that facilitates BLC shedding. To further explore the connection between mucilage secretion and BLC shedding, we examined mucilage production in Arabidopsis lines displaying altered BLC detachment. Inactivation of BRN2 blocked mucilage synthesis and secretion, while inactivation of BRN1 and RCPG did not. Interestingly, RCPG sorted into mucilage-carrying vesicles budding from the Golgi and inhibited mucilage secretion in brn2-delayed BLC detachment. The root cap of a germinating seedling is initially covered with a cuticle, which is replaced by mucilage from BLCs as the seedling begins to shed these cells. Ectopic expression of RCPG in germinating seedlings caused early BLC formation and accelerated the cuticle-to-mucilage transition, indicating that RCPG expression and mucilage secretion are co-regulated. Furthermore, brn2 roots exhibited slower growth and increased cell death when subjected to salt or osmotic stress. Our research suggests that BRN2-mediated mucilage secretion contributes to BLC release to build an extracellular defense zone surrounding the root cap.
Collapse
Affiliation(s)
- Zhongyuan Liu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
5
|
Dai H, Wu B, Zhuang Y, Ren H, Chen Y, Zhang F, Chu C, Lv X, Xu J, Ma B. Dynamic in situ detection in iRhizo-Chip reveals diurnal fluctuations of Bacillus subtilis in the rhizosphere. Proc Natl Acad Sci U S A 2024; 121:e2408711121. [PMID: 39325424 PMCID: PMC11459191 DOI: 10.1073/pnas.2408711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Effective colonization by microbe in the rhizosphere is critical for establishing a beneficial symbiotic relationship with the host plant. Bacillus subtilis, a soil-dwelling bacterium that is commonly found in association with plants and their rhizosphere, has garnered interest for its potential to enhance plant growth, suppress pathogens, and contribute to sustainable agricultural practices. However, research on the dynamic distribution of B. subtilis within the rhizosphere and its interaction mechanisms with plant roots remains insufficient due to limitations in existing in situ detection methodologies. To achieve dynamic in situ detection of the rhizosphere environment, we established iRhizo-Chip, a microfluidics-based platform. Using this device to investigate microbial behavior within the rhizosphere, we found obvious diurnal fluctuations in the growth of B. subtilis in the rhizosphere. Temporal dynamic analysis of rhizosphere dissolved oxygen (DO), pH, dissolved organic carbon, and reactive oxygen species showed that diurnal fluctuations in the growth of B. subtilis are potentially related to a variety of environmental factors. Spatial dynamic analysis also showed that the spatial distribution changes of B. subtilis and DO and pH were similar. Subsequently, through in vitro control experiments, we proved that rhizosphere DO and pH are the main driving forces for diurnal fluctuations in the growth of B. subtilis. Our results show that the growth of B. subtilis is driven by rhizosphere DO and pH, resulting in diurnal fluctuations, and iRhizo-Chip is a valuable tool for studying plant rhizosphere dynamics.
Collapse
Affiliation(s)
- Hengyi Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Binbin Wu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Yajuan Zhuang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Hao Ren
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
| | - Yanbo Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Fangzhou Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou310018, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311215, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
6
|
Serafini CE, Green M, Diering A, Cicerone MT, Cheung LS, Kostka JE, Robles FE. Label-free functional analysis of root-associated microbes with dynamic quantitative oblique back-illumination microscopy. Sci Rep 2024; 14:5812. [PMID: 38461279 PMCID: PMC10925023 DOI: 10.1038/s41598-024-56443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
The increasing global demand for food, coupled with concerns about the environmental impact of synthetic fertilizers, underscores the urgency of developing sustainable agricultural practices. Nitrogen-fixing bacteria, known as diazotrophs, offer a potential solution by converting atmospheric nitrogen into bioavailable forms, reducing the reliance on synthetic fertilizers. However, a deeper understanding of their interactions with plants and other microbes is needed. In this study, we introduce a recently developed label-free 3D quantitative phase imaging technology called dynamic quantitative oblique back-illumination microscopy (DqOBM) to assess the functional dynamic activity of diazotrophs in vitro and in situ. Our experiments involved three different diazotrophs (Sinorhizobium meliloti, Azotobacter vinelandii, and Rahnella aquatilis) cultured on media with amendments of carbon and nitrogen sources. Over 5 days, we observed increased dynamics in nutrient-amended media. These results suggest that the observed bacterial dynamics correlate with their metabolic activity. Furthermore, we applied qOBM to visualize microbial dynamics within the root cap and elongation zone of Arabidopsis thaliana primary roots. This allowed us to identify distinct areas of microbial infiltration in plant roots without the need for fluorescent markers. Our findings demonstrate that DqOBM can effectively characterize microbial dynamics and provide insights into plant-microbe interactions in situ, offering a valuable tool for advancing our understanding of sustainable agriculture.
Collapse
Affiliation(s)
- Caroline E Serafini
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Madison Green
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Abigail Diering
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marcus T Cicerone
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Francisco E Robles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA.
| |
Collapse
|
7
|
Nguyen TNH, Goux D, Follet-Gueye ML, Bernard S, Padel L, Vicré M, Prud'homme MP, Morvan-Bertrand A. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans. Carbohydr Polym 2024; 327:121682. [PMID: 38171691 DOI: 10.1016/j.carbpol.2023.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Fructans are water-soluble polymers of fructose in which fructose units are linked by β-(2 → 1) and/or β-(2 → 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization. We report the production of two monoclonal antibodies (named BTM9H2 and BTM15A6) using mice immunization with antigenic compounds prepared from a mixture of plant inulins and levans conjugated to serum albumin. Their specificity towards fructans with β-(2 → 1) and/or β-(2 → 6) linkage has been demonstrated by immuno-dot blot tests on a wide range of carbohydrates. The two mAbs were used for immunocytolocalization of fructans by epifluorescence microscopy in various plant species. Fructan epitopes were specifically detected in fructan-accumulating plants, inside cells as well as on the surface of root tips, confirming both extracellular and intracellular localizations. The two mAbs provide new tools to identify the mechanism of extracellular fructan secretion and explore the roles of fructans in stress resistance and plant-microorganism interactions.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France; Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Didier Goux
- Normandie Univ, UNICAEN, US EMerode, CMAbio(3), 14032 Caen, France.
| | - Marie-Laure Follet-Gueye
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | | | - Maïté Vicré
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France.
| | - Marie-Pascale Prud'homme
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| | - Annette Morvan-Bertrand
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| |
Collapse
|
8
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
9
|
Shirakawa M, Matsushita N, Fukuda K. Visualization of root extracellular traps in an ectomycorrhizal woody plant (Pinus densiflora) and their interactions with root-associated bacteria. PLANTA 2023; 258:112. [PMID: 37935872 PMCID: PMC10630192 DOI: 10.1007/s00425-023-04274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
MAIN CONCLUSION Extracellular traps in the primary root of Pinus densiflora contribute to root-associated bacterial colonization. Trapped rhizobacteria induce the production of reactive oxygen species in root-associated, cap-derived cells. Ectomycorrhizal (ECM) woody plants, such as members of Pinaceae and Fagaceae, can acquire resistance to biotic and abiotic stresses through the formation of mycorrhiza with ECM fungi. However, germinated tree seedlings do not have mycorrhizae and it takes several weeks for ectomycorrhizae to form on their root tips. Therefore, to confer protection during the early growth stage, bare primary roots require defense mechanisms other than mycorrhization. Here, we attempted to visualize root extracellular traps (RETs), an innate root defense mechanism, in the primary root of Pinus densiflora and investigate the interactions with root-associated bacteria isolated from ECM and fine non-mycorrhizal roots. Histological and histochemical imaging and colony-forming unit assays demonstrated that RETs in P. densiflora, mainly consisting of root-associated, cap-derived cells (AC-DCs) and large amounts of root mucilage, promote bacterial colonization in the rhizosphere, despite also having bactericidal activity via extracellular DNA. Four rhizobacterial strains retarded the mycelial growth of a pathogenic strain belonging to the Fusarium oxysporum species complex in dual culture assay. They also induced the production of reactive oxygen species (ROS) from host tree AC-DCs without being excluded from the rhizosphere of P. densiflora. Applying three Paraburkholderia strains, especially PM O-EM8 and PF T-NM22, showed significant differences in the ROS levels from the control group. These results reveal the indirect contributions of rhizobacteria to host root defense and suggest that root-associated bacteria could be a component of RETs as a first line of defense against root pathogens in the early growth stage of ECM woody plants.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Filan C, Green M, Diering A, Cicerone MT, Cheung LS, Kostka JE, Robles FE. Label-Free Functional Analysis of Root-Associated Microbes with Dynamic Quantitative Oblique Back-illumination Microscopy. RESEARCH SQUARE 2023:rs.3.rs-3517586. [PMID: 37961396 PMCID: PMC10635382 DOI: 10.21203/rs.3.rs-3517586/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The increasing global demand for food, coupled with concerns about the environmental impact of synthetic fertilizers, underscores the urgency of developing sustainable agricultural practices. Nitrogen-fixing bacteria, known as diazotrophs, offer a potential solution by converting atmospheric nitrogen into bioavailable forms, reducing the reliance on synthetic fertilizers. However, a deeper understanding of their interactions with plants and other microbes is needed. In this study, we introduce a recently developed label-free 3D quantitative phase imaging technology called dynamic quantitative oblique back-illumination microscopy (DqOBM) to assess the dynamic activity of diazotrophs in vitro and in situ. Our experiments involved three different diazotrophs (Sinorhizobium meliloti, Azotobacter vinelandii, and Rahnella aquatilis) cultured on media with amendments of carbon and nitrogen sources. Over five days, we observed increased dynamic activity in nutrient-amended media. These results suggest that the observed bacterial dynamics correlate with their metabolic activity. Furthermore, we applied qOBM to visualize bacterial activity within the root cap and elongation zone of Arabidopsis thaliana primary roots. This allowed us to identify distinct areas of microbial infiltration in plant roots without the need for fluorescent markers. Our findings demonstrate that DqOBM can effectively characterize microbial activity and provide insights into plant-microbe interactions in situ, offering a valuable tool for advancing our understanding of sustainable agriculture.
Collapse
Affiliation(s)
- Caroline Filan
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30318, USA
| | - Madison Green
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30318, USA
| | - Abigail Diering
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, 30332, USA
| | - Marcus T. Cicerone
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, 30332, USA
| | - Lily S. Cheung
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, 30332, USA
| | - Joel E. Kostka
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30318, USA
| | - Francisco E. Robles
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30318, USA
| |
Collapse
|
11
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
12
|
Feng Q, Cubría-Radío M, Vavrdová T, De Winter F, Schilling N, Huysmans M, Nanda AK, Melnyk CW, Nowack MK. Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap. PLANT PHYSIOLOGY 2023; 192:1151-1167. [PMID: 36852889 PMCID: PMC10231456 DOI: 10.1093/plphys/kiad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here, we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14-inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out 5 related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized subsection of the dPCD gene regulatory network active in specific root cap tissues.
Collapse
Affiliation(s)
- Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tereza Vavrdová
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam OT Golm, Germany
| | - Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amrit K Nanda
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
14
|
Kumar N, Caldwell C, Iyer-Pascuzzi AS. The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3047-3059. [PMID: 36787214 DOI: 10.1093/jxb/erad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/10/2023] [Indexed: 05/21/2023]
Abstract
The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Chloe Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Toyooka K, Goto Y, Hashimoto K, Wakazaki M, Sato M, Hirai MY. Endoplasmic Reticulum Bodies in the Lateral Root Cap Are Involved in the Direct Transport of Beta-Glucosidase to Vacuoles. PLANT & CELL PHYSIOLOGY 2023; 64:461-473. [PMID: 36617247 DOI: 10.1093/pcp/pcac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD) in lateral root caps (LRCs) is crucial for maintaining root cap functionality. Endoplasmic reticulum (ER) bodies play important roles in plant immunity and PCD. However, the distribution of ER bodies and their communication with vacuoles in the LRC remain elusive. In this study, we investigated the ultrastructure of LRC cells of wild-type and transgenic Arabidopsis lines using an auto-acquisition transmission electron microscope (TEM) system and high-pressure freezing. Gigapixel-scale high-resolution TEM imaging of the transverse and longitudinal sections of roots followed by three-dimensional imaging identified sausage-shaped structures budding from the ER. These were subsequently identified as ER bodies using GFPh transgenic lines expressing green fluorescent protein (GFP) fused with an ER retention signal (HDEL). Immunogold labeling using an anti-GFP antibody detected GFP signals in the ER bodies and vacuoles. The fusion of ER bodies with vacuoles in LRC cells was identified using correlative light and electron microscopy. Imaging of the root tips of a GFPh transgenic line with a PYK10 promoter revealed the localization of PYK10, a member of the β-glucosidase family with an ER retention signal, in the ER bodies in the inner layer along with a fusion of ER bodies with vacuoles in the middle layer and collapse of vacuoles in the outer layer of the LRC. These findings suggest that ER bodies in LRC directly transport β-glucosidases to the vacuoles, and that a subsequent vacuolar collapse triggered by an unknown mechanism releases protective substances to the growing root tip to protect it from the invaders.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Kei Hashimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
16
|
Busont O, Durambur G, Bernard S, Plasson C, Joudiou C, Baude L, Chefdor F, Depierreux C, Héricourt F, Larcher M, Malik S, Boulogne I, Driouich A, Carpin S, Lamblin F. Black Poplar (Populus nigra L.) Root Extracellular Trap, Structural and Molecular Remodeling in Response to Osmotic Stress. Cells 2023; 12:cells12060858. [PMID: 36980198 PMCID: PMC10047092 DOI: 10.3390/cells12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET during droughts, especially for tree species. Morphological and immunocytochemical approaches were used to study the RET of black poplar (Populus nigra L.) seedlings grown in vitro under optimal conditions (on agar-gelled medium) or when polyethylene glycol-mediated (PEG6000—infused agar-gelled medium) was used to mimic drought conditions through osmotic stress. Under optimal conditions, the root cap released three populations of individual AC-DC morphotypes, with a very low proportion of spherical morphotypes, and equivalent proportions of intermediate and elongated morphotypes. Immunolabeling experiments using anti-glycan antibodies specific to cell wall polysaccharide and arabinogalactan protein (AGP) epitopes revealed the presence of homogalacturonan (HG), galactan chains of rhamnogalacturonan-I (RG-I), and AGPs in root AC-DC cell walls. The data also showed the presence of xylogalacturonan (XGA), xylan, AGPs, and low levels of arabinans in the mucilage. The findings also showed that under osmotic stress conditions, both the number of AC-DCs (spherical and intermediate morphotypes) and the total quantity of mucilage per root tip increased, whereas the mucilage was devoid of the epitopes associated with the polysaccharides RG-I, XGA, xylan, and AGPs. Osmotic stress also led to reduced root growth and increased root expression of the P5CS2 gene, which is involved in proline biosynthesis and cellular osmolarity maintenance (or preservation) in aerial parts. Together, our findings show that the RET is a dynamic structure that undergoes pronounced structural and molecular remodeling, which might contribute to the survival of the root tip under osmotic conditions.
Collapse
Affiliation(s)
- Océane Busont
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Gaëlle Durambur
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sophie Bernard
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
- INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, University of Rouen Normandie, F-76000 Rouen, France
| | - Carole Plasson
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Camille Joudiou
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Laura Baude
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Françoise Chefdor
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Christiane Depierreux
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Mélanie Larcher
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Sonia Malik
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Isabelle Boulogne
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Azeddine Driouich
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Correspondence: ; Tel.: +33-(0)2-3841-7127
| |
Collapse
|
17
|
Fortier M, Lemaitre V, Gaudry A, Pawlak B, Driouich A, Follet-Gueye ML, Vicré M. A fine-tuned defense at the pea root caps: Involvement of border cells and arabinogalactan proteins against soilborne diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1132132. [PMID: 36844081 PMCID: PMC9947496 DOI: 10.3389/fpls.2023.1132132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.
Collapse
|
18
|
Oota M, Toyoda S, Kotake T, Wada N, Hashiguchi M, Akashi R, Ishikawa H, Favery B, Tsai AYL, Sawa S. Rhamnogalacturonan-I as a nematode chemoattractant from Lotus corniculatus L. super-growing root culture. FRONTIERS IN PLANT SCIENCE 2023; 13:1008725. [PMID: 36777533 PMCID: PMC9908596 DOI: 10.3389/fpls.2022.1008725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soil houses a tremendous amount of micro-organisms, many of which are plant parasites and pathogens by feeding off plant roots for sustenance. Such root pathogens and parasites often rely on plant-secreted signaling molecules in the rhizosphere as host guidance cues. Here we describe the isolation and characterization of a chemoattractant of plant-parasitic root-knot nematodes (Meloidogyne incognita, RKN). METHODS The Super-growing Root (SR) culture, consisting of excised roots from the legume species Lotus corniculatus L., was found to strongly attract infective RKN juveniles and actively secrete chemoattractants into the liquid culture media. The chemo-attractant in the culture media supernatant was purified using hydrophobicity and anion exchange chromatography, and found to be enriched in carbohydrates. RESULTS Monosaccharide analyses suggest the chemo-attractant contains a wide array of sugars, but is enriched in arabinose, galactose and galacturonic acid. This purified chemoattractant was shown to contain pectin, specifically anti-rhamnogalacturonan-I and anti-arabinogalactan protein epitopes but not anti-homogalacturonan epitopes. More importantly, the arabinose and galactose sidechain groups were found to be essential for RKN-attracting activities. This chemo-attractant appears to be specific to M. incognita, as it wasn't effective in attracting other Meloidogyne species nor Caenorhabditis elegans. DISCUSSION This is the first report to identify the nematode attractant purified from root exudate of L corniculatus L. Our findings re-enforce pectic carbohydrates as important chemicals mediating micro-organism chemotaxis in the soil, and also highlight the unexpected utilities of the SR culture system in root pathogen research.
Collapse
Affiliation(s)
- Morihiro Oota
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Syuuto Toyoda
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Naoki Wada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bruno Favery
- Institut national de recherche pour l'agriculture, l'alimentation et l’environnement (INRAE), Université Côte d’Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Leszczuk A, Zając A, Cybulska J, Stefaniuk D, Zdunek A. Working towards arabinogalactan proteins (AGPs) from fruit: carbohydrate composition and impact on fungal growth. BMC PLANT BIOLOGY 2022; 22:600. [PMID: 36539686 PMCID: PMC9764746 DOI: 10.1186/s12870-022-04009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are extracellular matrix constituents involved in plant response to fungal infection. The aim of the current study was to investigate the antifungal effect of AGPs ex situ and to determine the structural features of AGPs that may have an influence on this activity. The features of AGPs isolated from fruit were investigated with molecular tools based on specific monoclonal antibodies recognizing carbohydrate AGP epitopes. The Antifungal (well-diffusion) Susceptibility Test and the Agar Invasion Test were used to assess the impact of AGPs on Penicillium notatum culture. RESULTS The results definitely ruled out the influence of AGPs on fungal growth. The immunochemical analyses revealed that AGPs consist mainly of carbohydrate chains composed of β-linked glucuronosyl residues recognized by LM2 and GlcA-β(1 → 3)-GalA-α(1 → 2) Rha recognized by JIM13, which do not have the same functional properties outside the plant cell in in vitro experimental conditions. CONCLUSIONS The action of a single cell wall component does not elicit any influence ex situ. The extensive accumulation of glycan chains of AGPs in infected tissue as a result of a complex mechanism occurring in the cell wall emphasizes the importance of dependencies between particular components of the extracellular matrix in response to fungal attack.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-400 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-400 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
20
|
Elicitation of Roots and AC-DC with PEP-13 Peptide Shows Differential Defense Responses in Multi-Omics. Cells 2022; 11:cells11162605. [PMID: 36010682 PMCID: PMC9406913 DOI: 10.3390/cells11162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
The root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET’s contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known. In order to better understand the RET and its defense response, the transcriptomes, proteomes and metabolomes of roots, root AC-DC and mucilage of soybean (Glycine max (L.) Merr, var. Castetis) upon elicitation with the peptide PEP-13 were investigated. This peptide is derived from the pathogenic oomycete Phytophthora sojae. In this study, the root and the RET responses to elicitation were dissected and sequenced using transcriptional, proteomic and metabolomic approaches. The major finding is increased synthesis and secretion of specialized metabolites upon induced defense activation following PEP-13 peptide elicitation. This study provides novel findings related to the pivotal role of the root extracellular trap in root defense.
Collapse
|
21
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
22
|
Goh T, Sakamoto K, Wang P, Kozono S, Ueno K, Miyashima S, Toyokura K, Fukaki H, Kang BH, Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana. Development 2022; 149:275183. [PMID: 35485417 PMCID: PMC9245187 DOI: 10.1242/dev.200593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The root cap is a multilayered tissue covering the tip of a plant root that directs root growth through its unique functions, such as gravity sensing and rhizosphere interaction. To maintain the structure and function of the root cap, its constituent cells are constantly turned over through balanced cell division and cell detachment in the inner and outer cell layers, respectively. Upon displacement toward the outermost layer, columella cells at the central root cap domain functionally transition from gravity-sensing cells to secretory cells, but the mechanisms underlying this drastic cell fate transition are largely unknown. Here, using live-cell tracking microscopy, we show that organelles in the outermost cell layer undergo dramatic rearrangements. This rearrangement depends, at least partially, on spatiotemporally regulated activation of autophagy. Notably, this root cap autophagy does not lead to immediate cell death, but is instead necessary for organized separation of living root cap cells, highlighting a previously undescribed role of developmentally regulated autophagy in plants. This article has an associated ‘The people behind the papers’ interview. Summary: Time-lapse microscopy reveals the spatiotemporal dynamics of intracellular reorganization associated with the functional transition and cell separation in Arabidopsis root caps, and the roles of autophagy in these processes.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kaoru Sakamoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Saki Kozono
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koki Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
23
|
Xiao Z, Liang Y. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:12-22. [PMID: 35158318 DOI: 10.1016/j.plaphy.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Root border cells (RBCs) and their mucilage are considered to play an important role in protecting root tip from aluminum (Al) toxicity, but their interactions with silicon (Si) under Al stress still remain unclear. Here, we investigated the effect of Si on the formation of RBCs under Al stress and the related detoxification mechanism in hydroponically grown rice (Oryza sativa L.). The results showed that Si could prevent the separation of RBCs from each other by increasing the degree of pectin methylesterification in root tip cell wall, thereby keeping more RBCs around the root tip. Also, Si maintained the viability of RBCs, increased the amount of mucilage, and reduced the content of total Al and free Al in root tips. Moreover, the RBCs accumulated more Al and Si simultaneously than root tip in the Al treatments with Si supply. Overall, these results indicated that Si reduced the toxicity of Al to RBCs through formation of Si-Al complex on the RBCs, thereby improving the viability of RBCs and promoting the secretion of mucilage. Concomitantly, Si, RBCs and their mucilage could form a protective sheath at the root tip, which prevented Al from diffusing into the root tip, thereby alleviating Al toxicity in rice root tips.
Collapse
Affiliation(s)
- Zhuoxi Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
24
|
Kud J, Pillai SS, Raber G, Caplan A, Kuhl JC, Xiao F, Dandurand LM. Belowground Chemical Interactions: An Insight Into Host-Specific Behavior of Globodera spp. Hatched in Root Exudates From Potato and Its Wild Relative, Solanum sisymbriifolium. FRONTIERS IN PLANT SCIENCE 2022; 12:802622. [PMID: 35095973 PMCID: PMC8791010 DOI: 10.3389/fpls.2021.802622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Understanding belowground chemical interactions between plant roots and plant-parasitic nematodes is immensely important for sustainable crop production and soilborne pest management. Due to metabolic diversity and ever-changing dynamics of root exudate composition, the impact of only certain molecules, such as nematode hatching factors, repellents, and attractants, has been examined in detail. Root exudates are a rich source of biologically active compounds, which plants use to shape their ecological interactions. However, the impact of these compounds on nematode parasitic behavior is poorly understood. In this study, we specifically address this knowledge gap in two cyst nematodes, Globodera pallida, a potato cyst nematode and the newly described species, Globodera ellingtonae. Globodera pallida is a devastating pest of potato (Solanum tuberosum) worldwide, whereas potato is a host for G. ellingtonae, but its pathogenicity remains to be determined. We compared the behavior of juveniles (J2s) hatched in response to root exudates from a susceptible potato cv. Desirée, a resistant potato cv. Innovator, and an immune trap crop Solanum sisymbriifolium (litchi tomato - a wild potato relative). Root secretions from S. sisymbriifolium greatly reduced the infection rate on a susceptible host for both Globodera spp. Juvenile motility was also significantly influenced in a host-dependent manner. However, reproduction on a susceptible host from juveniles hatched in S. sisymbriifolium root exudates was not affected, nor was the number of encysted eggs from progeny cysts. Transcriptome analysis by using RNA-sequencing (RNA-seq) revealed the molecular basis of root exudate-mediated modulation of nematode behavior. Differentially expressed genes are grouped into two major categories: genes showing characteristics of effectors and genes involved in stress responses and xenobiotic metabolism. To our knowledge, this is the first study that shows genome-wide root exudate-specific transcriptional changes in hatched preparasitic juveniles of plant-parasitic nematodes. This research provides a better understanding of the correlation between exudates from different plants and their impact on nematode behavior prior to the root invasion and supports the hypothesis that root exudates play an important role in plant-nematode interactions.
Collapse
Affiliation(s)
- Joanna Kud
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Gabriel Raber
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
25
|
Liu Y, Patko D, Engelhardt I, George TS, Stanley-Wall NR, Ladmiral V, Ameduri B, Daniell TJ, Holden N, MacDonald MP, Dupuy LX. Plant-environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. Proc Natl Acad Sci U S A 2021; 118:e2109176118. [PMID: 34819371 PMCID: PMC8640753 DOI: 10.1073/pnas.2109176118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Our understanding of plant-microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants' large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant-microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of "first contact," before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant-microbe interactions.
Collapse
Affiliation(s)
- Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Daniel Patko
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Ilonka Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Timothy S George
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Vincent Ladmiral
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Bruno Ameduri
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Tim J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nicola Holden
- Northern Faculty, Scotland's Rural College, Aberdeen AB21 9YA, United Kingdom
| | - Michael P MacDonald
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom;
| | - Lionel X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom;
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
26
|
Laloum Y, Gangneux C, Gügi B, Lanoue A, Munsch T, Blum A, Gauthier A, Trinsoutrot-Gattin I, Boulogne I, Vicré M, Driouich A, Laval K, Follet-Gueye ML. Faba bean root exudates alter pea root colonization by the oomycete Aphanomyces euteiches at early stages of infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111032. [PMID: 34620436 DOI: 10.1016/j.plantsci.2021.111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Aphanomyces euteiches is an oomycete pathogen that causes the pea root rot. We investigated the potential role of early belowground defense in pea (susceptible plant) and faba bean (tolerant plant) at three days after inoculation. Pea and faba bean were inoculated with A. euteiches zoospores. Root colonization was examined. Root exudates from pea and faba bean were harvested and their impact on A. euteiches development were assessed by using in vitro assays. A. euteiches root colonization and the influence of the oomycete inoculation on specialized metabolites patterns and arabinogalactan protein (AGP) concentration of root exudates were also determined. In faba bean root, A. euteiches colonization was very low as compared with that of pea. Whereas infected pea root exudates have a positive chemotaxis index (CI) on zoospores, faba bean exudate CI was negative suggesting a repellent effect. While furanoacetylenic compounds were only detected in faba bean exudates, AGP concentration was specifically increased in pea.This work showed that early in the course of infection, host susceptibility to A. euteiches is involved via a plant-species specific root exudation opening new perspectives in pea root rot disease management.
Collapse
Affiliation(s)
- Yohana Laloum
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France; Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Christophe Gangneux
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Arnaud Lanoue
- Université de Tours, EA 2106 «Biomolécules et Biotechnologies Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France
| | - Thibaut Munsch
- Université de Tours, EA 2106 «Biomolécules et Biotechnologies Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France
| | - Adrien Blum
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Adrien Gauthier
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Isabelle Trinsoutrot-Gattin
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Isabelle Boulogne
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Karine Laval
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| |
Collapse
|
27
|
Driouich A, Gaudry A, Pawlak B, Moore JP. Root cap-derived cells and mucilage: a protective network at the root tip. PROTOPLASMA 2021; 258:1179-1185. [PMID: 34196784 DOI: 10.1007/s00709-021-01660-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 05/06/2023]
Abstract
Root cap-derived cells and mucilage provide the first line of defense of the plant against soil microbial pathogens. These cells form a mucilaginous root extracellular trap (RET), which also harbors a range of molecules including exDNA and defensive peptides and proteins much like the neutrophil extracellular trap (NET) of mammalians. Plant RETs resemble mucus structures found in mammalian systems and are rich in arabinogalactan proteins that have similarities to highly glycosylated human mucins. Human mucus and mucins regulate the intestinal flora microbiome through recruiting certain species of microbes and it is plausible that the arabinogalactan protein-rich mucilage found in plant roots fulfills a similar function by attracting specific microbes to the rhizosphere. The role of RETs in root defense functioning is highlighted.
Collapse
Affiliation(s)
- Azeddine Driouich
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France.
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France.
| | - Alexia Gaudry
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France
| | - Barbara Pawlak
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France
| | - John P Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
28
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
29
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
30
|
Chambard M, Plasson C, Derambure C, Coutant S, Tournier I, Lefranc B, Leprince J, Kiefer-Meyer MC, Driouich A, Follet-Gueye ML, Boulogne I. New Insights into Plant Extracellular DNA. A Study in Soybean Root Extracellular Trap. Cells 2021; 10:69. [PMID: 33466245 PMCID: PMC7824799 DOI: 10.3390/cells10010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
exDNA is found in various organisms, including plants. However, plant exDNA has thus far received little attention related to its origin and role in the RET (root extracellular trap). In this study, we performed the first high-throughput genomic sequencing of plant exDNA from a Fabaceae with worldwide interest: soybean (Glycine max (L.) Merr.). The origin of this exDNA was first investigated in control condition, and the results show high-coverage on organelles (mitochondria/plastid) DNA relative to nuclear DNA, as well as a mix of coding and non-coding sequences. In the second part of this study, we investigated if exDNA release was modified during an elicitation with PEP-13 (a peptide elicitor from oomycete genus Phytophthora). Our results show that treatment of roots with PEP-13 does not affect the composition of exDNA.
Collapse
Affiliation(s)
- Marie Chambard
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Carole Plasson
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Céline Derambure
- Normandy Center for Genomic and Personalized Medicine, 76000 Rouen, France; (C.D.); (S.C.); (I.T.)
| | - Sophie Coutant
- Normandy Center for Genomic and Personalized Medicine, 76000 Rouen, France; (C.D.); (S.C.); (I.T.)
| | - Isabelle Tournier
- Normandy Center for Genomic and Personalized Medicine, 76000 Rouen, France; (C.D.); (S.C.); (I.T.)
| | - Benjamin Lefranc
- Plateforme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), Normandie Université UNIROUEN, INSERM U1239, 76000 Rouen, France; (B.L.); (J.L.)
| | - Jérôme Leprince
- Plateforme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), Normandie Université UNIROUEN, INSERM U1239, 76000 Rouen, France; (B.L.); (J.L.)
| | - Marie-Christine Kiefer-Meyer
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Marie-Laure Follet-Gueye
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Normandie University, UNIROUEN, UFR des Sciences et Techniques, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821 Mont-Saint-Aignan, France; (C.P.); (M.-C.K.-M.); (A.D.); (M.-L.F.-G.); (I.B.)
- Fédération de Recherche Normandie-Végétal, FED 4277, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
31
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
32
|
Jaber R, Planchon A, Mathieu-Rivet E, Kiefer-Meyer MC, Zahid A, Plasson C, Pamlard O, Beaupierre S, Trouvé JP, Guillou C, Driouich A, Follet-Gueye ML, Mollet JC. Identification of two compounds able to improve flax resistance towards Fusarium oxysporum infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110690. [PMID: 33218648 DOI: 10.1016/j.plantsci.2020.110690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Plants are surrounded by a diverse range of microorganisms that causes serious crop losses and requires the use of pesticides. Flax is a major crop in Normandy used for its fibres and is regularly challenged by the pathogenic fungus Fusarium oxysporum (Fo) f. sp. lini. To protect themselves, plants use "innate immunity" as a first line of defense level against pathogens. Activation of plant defense with elicitors could be an alternative for crop plant protection. A previous work was conducted by screening a chemical library and led to the identification of compounds able to activate defense responses in Arabidopsis thaliana. Four compounds were tested for their abilities to improve resistance of two flax varieties against Fo. Two of them, one natural (holaphyllamine or HPA) and one synthetic (M4), neither affected flax nor Fo growth. HPA and M4 induced oxidative burst and callose deposition. Furthermore, HPA and M4 caused changes in the expression patterns of defense-related genes coding a glucanase and a chitinase-like. Finally, plants pre-treated with HPA or M4 exhibited a significant decrease in the disease symptoms. Together, these findings demonstrate that HPA and M4 are able to activate defense responses in flax and improve its resistance against Fo infection.
Collapse
Affiliation(s)
- Rim Jaber
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Aline Planchon
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Elodie Mathieu-Rivet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | | | - Abderrakib Zahid
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Olivier Pamlard
- Unité de catalyse et chimie du solide, UMR CNRS 8181, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | - Sandra Beaupierre
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | | | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France; Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76000, Rouen, France.
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| |
Collapse
|
33
|
Ropitaux M, Bernard S, Schapman D, Follet-Gueye ML, Vicré M, Boulogne I, Driouich A. Root Border Cells and Mucilage Secretions of Soybean, Glycine Max (Merr) L.: Characterization and Role in Interactions with the Oomycete Phytophthora Parasitica. Cells 2020; 9:E2215. [PMID: 33008016 PMCID: PMC7650559 DOI: 10.3390/cells9102215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023] Open
Abstract
Root border cells (BCs) and their associated secretions form a protective structure termed the root extracellular trap (RET) that plays a major role in root interactions with soil borne microorganisms. In this study, we investigated the release and morphology of BCs of Glycine max using light and cryo-scanning electron microscopy (SEM). We also examined the occurrence of cell-wall glycomolecules in BCs and secreted mucilage using immunofluorescence microscopy in conjunction with anti-glycan antibodies. Our data show that root tips released three populations of BCs defined as spherical, intermediate and elongated cells. The mechanism of shedding seemed to be cell morphotype-specific. The data also show that mucilage contained pectin, cellulose, extracellular DNA, histones and two hemicellulosic polysaccharides, xyloglucan and heteromannan. The latter has never been reported previously in any plant root secretions. Both hemicellulosic polysaccharides formed a dense fibrillary network embedding BCs and holding them together within the mucilage. Finally, we investigated the effect of the RET on the interactions of root with the pathogenic oomycete Phytophthora parasitica early during infection. Our findings reveal that the RET prevented zoospores from colonizing root tips by blocking their entry into root tissues and inducing their lysis.
Collapse
Affiliation(s)
- Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Damien Schapman
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| |
Collapse
|
34
|
Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H. Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5024-5038. [PMID: 32255613 DOI: 10.1021/acs.jafc.0c00073] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microorganisms colonizing the plant rhizosphere provide a number of beneficial functions for their host. Although an increasing number of investigations clarified the great functional capabilities of rhizosphere microbial communities, the understanding of the precise mechanisms underlying the impact of rhizosphere microbiome assemblies is still limited. Also, not much is known about the various beneficial functions of the rhizosphere microbiome. In this review, we summarize the current knowledge of biotic and abiotic factors that shape the rhizosphere microbiome as well as the rhizosphere microbiome traits that are beneficial to plants growth and disease-resistance. We give particular emphasis on the impact of plant root metabolites on rhizosphere microbiome assemblies and on how the microbiome contributes to plant growth, yield, and disease-resistance. Finally, we introduce a new perspective and a novel method showing how a synthetic microbial community construction provides an effective approach to unravel the plant-microbes and microbes-microbes interplays.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Wanyue Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
35
|
Castilleux R, Plancot B, Gügi B, Attard A, Loutelier-Bourhis C, Lefranc B, Nguema-Ona E, Arkoun M, Yvin JC, Driouich A, Vicré M. Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. ANNALS OF BOTANY 2020; 125:751-763. [PMID: 31242281 PMCID: PMC7182588 DOI: 10.1093/aob/mcz068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established. METHODS We used Arabidopsis thaliana mutants impaired in extensin arabinosylation to investigate the role of extensin arabinosylation in root-microbe interactions. Mutant and wild-type roots were stimulated to elicit an immune response with flagellin 22 and immunolabelled with a set of anti-extensin antibodies. Roots were also inoculated with a soilborne oomycete, Phytophthora parasitica, to assess the effect of extensin arabinosylation on root colonization. KEY RESULTS A differential distribution of extensin epitopes was observed in wild-type plants in response to elicitation. Elicitation also triggers altered epitope expression in mutant roots compared with wild-type and non-elicited roots. Inoculation with the pathogen P. parasitica resulted in enhanced root colonization for two mutants, specifically xeg113 and rra2. CONCLUSIONS We provide evidence for a link between extensin arabinosylation and root defence, and propose a model to explain the importance of glycosylation in limiting invasion of root cells by pathogenic oomycetes.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Bruno Gügi
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | | | - Corinne Loutelier-Bourhis
- IRCOF COBRA, UMR6014 and FR3038, CNRS, Université de Rouen Normandie, Mont-Saint-Aignan Cedex, France
| | - Benjamin Lefranc
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Mustapha Arkoun
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
- For correspondence. E-mail
| |
Collapse
|
36
|
Tian T, Reverdy A, She Q, Sun B, Chai Y. The role of rhizodeposits in shaping rhizomicrobiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:160-172. [PMID: 31858707 DOI: 10.1111/1758-2229.12816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root-released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Tao Tian
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Alicyn Reverdy
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Bingbing Sun
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
37
|
Kumar N, Iyer-Pascuzzi AS. Shedding the Last Layer: Mechanisms of Root Cap Cell Release. PLANTS 2020; 9:plants9030308. [PMID: 32121604 PMCID: PMC7154840 DOI: 10.3390/plants9030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival.
Collapse
|
38
|
Short-Term Effects of Salt Stress on the Amino Acids of Phragmites australis Root Exudates in Constructed Wetlands. WATER 2020. [DOI: 10.3390/w12020569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the short-term effects of NaCl stress on the free amino acid content and composition of root exudates of Phragmites australis were evaluated. Nineteen amino acid types were detected in all samples. The results indicated that NaCl significantly influenced the total amino acid (TotAA) content. The TotAA content at 6‰ salinity (1098.79 μM g−1 DW) was up to 24 times higher than that in the control group (45.97 μM g−1 DW) but decreased to 106.32 μM g−1 DW at 6‰ salinity in the first hour. The stress period also significantly affected the TotAA content. After 4 h of stress, the TotAA content of the control and 1‰ salinity groups increased by approximately 30- and 14-fold, and those of the 3‰ and 6‰ groups decreased to 60% and 37%, respectively. The increase in TotAA content was primarily caused by the increase in proline content; the proportion of proline accounted for 58.05% of the TotAA content at 3‰ salinity level in 2 h. Most amino acids showed a significant positive correlation with each other, but proline and methionine showed a different trend. Therefore, the proline level is a useful indicator of salt stress in Phragmites australis, especially in saltwater wetlands.
Collapse
|
39
|
Roué J, Chauvet H, Brunel-Michac N, Bizet F, Moulia B, Badel E, Legué V. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:126-137. [PMID: 31682268 DOI: 10.1093/jxb/erz418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
During the progression of root in soil, root cap cells are the first to encounter obstacles and are known to sense environmental cues, thus making the root cap a potential mechanosensing site. In this study, a two-layered growth medium system was developed in order to study root responses to variations in the physical strength of the medium and the importance of the root cap in the establishment of these responses. Root growth and trajectory of primary roots of Arabidopsis seedlings were investigated using in vivo image analysis. After contact with the harder layer of the medium, the root either penetrated it or underwent rapid curvature, thus enabling reorientation of growth. We initially hypothesized that the root-cap structure would affect apex penetration and reorientation, with pointed caps facilitating and domed caps impeding root penetration. This hypothesis was investigated by analysing the responses of Arabidopsis mutants with altered root caps. The primary root of lines of the fez-2 mutant, which has fewer root-cap cell layers and a more pointed root cap than wild-type roots, showed impaired penetration ability. Conversely, smb-3 roots, which display a rectangular-shaped cap, showed enhanced penetration abilities. These results, which contradict our original hypothesis, reveal a role for resistance to buckling in determining root penetration abilities.
Collapse
Affiliation(s)
- J Roué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - H Chauvet
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - N Brunel-Michac
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - F Bizet
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - B Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - E Badel
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - V Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| |
Collapse
|
40
|
Castilleux R, Ropitaux M, Manasfi Y, Bernard S, Vicré-Gibouin M, Driouich A. Contributions to Arabinogalactan Protein Analysis. Methods Mol Biol 2020; 2149:383-402. [PMID: 32617947 DOI: 10.1007/978-1-0716-0621-6_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arabinogalactan proteins (AGPs) are important plant proteoglycans involved in many development processes. In roots, AGPs occur in the cell wall of root cells and root cap-derived cells as well as in the secreted mucilage. Detection, localization , and quantification techniques are therefore essential to unravel the AGP diversity of structures and functions. This chapter details root-adapted immunocytochemical methods using monoclonal antibodies, and a collection of biochemical analysis protocols using β-D-glucosyl Yariv reagent for comprehensive AGP characterization.
Collapse
Affiliation(s)
- Romain Castilleux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Marc Ropitaux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Youssef Manasfi
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Sophie Bernard
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
- UNIROUEN, PRIMACEN, Normandie Université, Rouen, France
| | - Maïté Vicré-Gibouin
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
- Structure Fédérative de Recherche (Normandie-Végétale) FED 4277 - Université de Rouen Normandie, Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France.
- UNIROUEN, PRIMACEN, Normandie Université, Rouen, France.
- Structure Fédérative de Recherche (Normandie-Végétale) FED 4277 - Université de Rouen Normandie, Mont Saint Aignan Cedex, France.
| |
Collapse
|
41
|
Carreras A, Bernard S, Durambur G, Gügi B, Loutelier C, Pawlak B, Boulogne I, Vicré M, Driouich A, Goffner D, Follet-Gueye ML. In vitro characterization of root extracellular trap and exudates of three Sahelian woody plant species. PLANTA 2019; 251:19. [PMID: 31781905 DOI: 10.1007/s00425-019-03302-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Arabinogalactan protein content in both root extracellular trap and root exudates varies in three Sahelian woody plant species that are differentially tolerant to drought. At the root tip, mature root cap cells, mainly border cells (BCs)/border-like cells (BLCs) and their associated mucilage, form a web-like structure known as the "Root Extracellular Trap" (RET). Although the RET along with the entire suite of root exudates are known to influence rhizosphere function, their features in woody species is poorly documented. Here, RET and root exudates were analyzed from three Sahelian woody species with contrasted sensitivity to drought stress (Balanites aegyptiaca, Acacia raddiana and Tamarindus indica) and that have been selected for reforestation along the African Great Green Wall in northern Senegal. Optical and transmission electron microscopy show that Balanites aegyptiaca, the most drought-tolerant species, produces only BC, whereas Acacia raddiana and Tamarindus indica release both BCs and BLCs. Biochemical analyses reveal that RET and root exudates of Balanites aegyptiaca and Acacia raddiana contain significantly more abundant arabinogalactan proteins (AGPs) compared to Tamarindus indica, the most drought-sensitive species. Root exudates of the three woody species also differentially impact the plant soil beneficial bacteria Azospirillum brasilense growth. These results highlight the importance of root secretions for woody species survival under dry conditions.
Collapse
Affiliation(s)
- Alexis Carreras
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France
| | - Gaëlle Durambur
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Corinne Loutelier
- Normandie Univ, UNIROUEN, COBRA CNRS UMR 6014, 76821, Mont-Saint-Aignan, France
| | - Barbara Pawlak
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Maite Vicré
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Deborah Goffner
- CNRS UMI 3189 ESS, Pôle France, 13344, Marseille Cedex 15, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France.
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France.
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
42
|
Maeda K, Kunieda T, Tamura K, Hatano K, Hara-Nishimura I, Shimada T. Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1296-1303. [PMID: 30892660 DOI: 10.1093/pcp/pcz047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Plant roots secrete various substances with diverse functions against both plants and microbes in the rhizosphere. A major secretory substance is root-cap mucilage, whose functions have been well characterized, albeit mainly in crops. However, little is currently known about the developmental mechanisms of root-cap mucilage. Here, we show the accumulation and extrusion of root-cap mucilage in Arabidopsis. We found propidium iodide (PI) stainable structures between the plasma membrane and cell wall in the sixth layer of columella cells (c6) from the quiescent center. Ruthenium red staining and PI staining with calcium ions suggested that the structure comprises in part pectin polysaccharides. Electron microscopy revealed that the structure had a meshwork of electron-dense filaments that resembled periplasmic mucilage in other plants. In the c6 cells, we also observed many large vesicles with denser meshwork filaments to periplasmic mucilage, which likely mediate the transport of mucilage components. Extruded mucilage was observed outside a partially degraded cell wall in the c7 cells. Moreover, we found that the Class IIB NAC transcription factors BEARSKIN1 (BRN1) and BRN2, which are known to regulate the terminal differentiation of columella cells, were required for the efficient accumulation of root-cap mucilage in Arabidopsis. Taken together, our findings reveal the accumulation of and dynamic changes in periplasmic mucilage during columella cell development in Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadashi Kunieda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyoko Hatano
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ikuko Hara-Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
43
|
Ropitaux M, Bernard S, Follet-Gueye ML, Vicré M, Boulogne I, Driouich A. Xyloglucan and cellulose form molecular cross-bridges connecting root border cells in pea (Pisum sativum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:191-196. [PMID: 30904720 DOI: 10.1016/j.plaphy.2019.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Pea (Pisum sativum) root cap releases a large number of living border cells that secrete abundant mucilage into the extracellular medium. Mucilage contains a complex mixture of polysaccharides, proteins and secondary metabolites important for its structure and function in defense. Unlike xyloglucan and cellulose, pectin and arabinogalactan proteins have been investigated in pea root and shown to be major components of border cell walls and mucilage. In this study, we investigated the occurrence of xyloglucan and cellulose in pea border cells and mucilage using cytochemical staining, immunocytochemistry and laser scanning confocal microscopy. Our data show that i) unlike cellulose, xyloglucan is highly present in the released mucilage as a dense fibrillary network enclosing border cells and ii) that xyloglucan and cellulose form molecular cross-bridges that tether cells and maintain them attached together. These findings suggest that secreted xyloglucan is essential for mucilage strengthening and border cell attachment and functioning.
Collapse
Affiliation(s)
- Marc Ropitaux
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| | - Marie-Laure Follet-Gueye
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| | - Maïté Vicré
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| |
Collapse
|
44
|
Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye ML, Vicré M, Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 2019; 94:1685-1700. [PMID: 31134732 DOI: 10.1111/brv.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity. In animals, phagocytes are some of the most abundant white blood cells in circulation and are very important for immunity. These cells combat pathogens through multiple defence mechanisms, including the release of exDNA-containing extracellular traps (ETs). Traps of neutrophil origin are abbreviated herein as NETs. Similar to phagocytes, plant root cap-originating cells actively contribute to frontline defence against pathogens. RETs and NETs are thus components of the plant and animal immune systems, respectively, that exhibit similar compositional and functional properties. Herein, we describe and discuss the formation, molecular composition and functional similarities of these similar but different extracellular traps.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Matieland, 7602, South Africa
| | - Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie Chambard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - John Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
45
|
Pagé AP, Tremblay J, Masson L, Greer CW. Nitrogen- and phosphorus-starved Triticum aestivum show distinct belowground microbiome profiles. PLoS One 2019; 14:e0210538. [PMID: 30785878 PMCID: PMC6382137 DOI: 10.1371/journal.pone.0210538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
Many plants have natural partnerships with microbes that can boost their nitrogen (N) and/or phosphorus (P) acquisition. To assess whether wheat may have undiscovered associations of these types, we tested if N/P-starved Triticum aestivum show microbiome profiles that are simultaneously different from those of N/P-amended plants and those of their own bulk soils. The bacterial and fungal communities of root, rhizosphere, and bulk soil samples from the Historical Dryland Plots (Lethbridge, Canada), which hold T. aestivum that is grown both under N/P fertilization and in conditions of extreme N/P-starvation, were taxonomically described and compared (bacterial 16S rRNA genes and fungal Internal Transcribed Spacers-ITS). As the list may include novel N- and/or P-providing wheat partners, we then identified all the operational taxonomic units (OTUs) that were proportionally enriched in one or more of the nutrient starvation- and plant-specific communities. These analyses revealed: a) distinct N-starvation root and rhizosphere bacterial communities that were proportionally enriched, among others, in OTUs belonging to families Enterobacteriaceae, Chitinophagaceae, Comamonadaceae, Caulobacteraceae, Cytophagaceae, Streptomycetaceae, b) distinct N-starvation root fungal communities that were proportionally enriched in OTUs belonging to taxa Lulworthia, Sordariomycetes, Apodus, Conocybe, Ascomycota, Crocicreas, c) a distinct P-starvation rhizosphere bacterial community that was proportionally enriched in an OTU belonging to genus Agrobacterium, and d) a distinct P-starvation root fungal community that was proportionally enriched in OTUs belonging to genera Parastagonospora and Phaeosphaeriopsis. Our study might have exposed wheat-microbe connections that can form the basis of novel complementary yield-boosting tools.
Collapse
Affiliation(s)
- Antoine P. Pagé
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Julien Tremblay
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Luke Masson
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Charles W. Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| |
Collapse
|
46
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
47
|
Huysmans M, Buono RA, Skorzinski N, Radio MC, De Winter F, Parizot B, Mertens J, Karimi M, Fendrych M, Nowack MK. NAC Transcription Factors ANAC087 and ANAC046 Control Distinct Aspects of Programmed Cell Death in the Arabidopsis Columella and Lateral Root Cap. THE PLANT CELL 2018; 30:2197-2213. [PMID: 30099383 PMCID: PMC6181027 DOI: 10.1105/tpc.18.00293] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
Programmed cell death in plants occurs both during stress responses and as an integral part of regular plant development. Despite the undisputed importance of developmentally controlled cell death processes for plant growth and reproduction, we are only beginning to understand the underlying molecular genetic regulation. Exploiting the Arabidopsis thaliana root cap as a cell death model system, we identified two NAC transcription factors, the little-characterized ANAC087 and the leaf-senescence regulator ANAC046, as being sufficient to activate the expression of cell death-associated genes and to induce ectopic programmed cell death. In the root cap, these transcription factors are involved in the regulation of distinct aspects of programmed cell death. ANAC087 orchestrates postmortem chromatin degradation in the lateral root cap via the nuclease BFN1. In addition, both ANAC087 and ANAC046 redundantly control the onset of cell death execution in the columella root cap during and after its shedding from the root tip. Besides identifying two regulators of developmental programmed cell death, our analyses reveal the existence of an actively controlled cell death program in Arabidopsis columella root cap cells.
Collapse
Affiliation(s)
- Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Noemi Skorzinski
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Marta Cubria Radio
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jan Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matyas Fendrych
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague 2, 128 43, Czech Republic
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGENT Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
48
|
Castilleux R, Plancot B, Ropitaux M, Carreras A, Leprince J, Boulogne I, Follet-Gueye ML, Popper ZA, Driouich A, Vicré M. Cell wall extensins in root-microbe interactions and root secretions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4235-4247. [PMID: 29945246 DOI: 10.1093/jxb/ery238] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 05/27/2023]
Abstract
Extensins are cell wall glycoproteins, belonging to the hydroxyproline-rich glycoprotein (HRGP) family, which are involved in many biological functions, including plant growth and defence. Several reviews have described the involvement of HRGPs in plant immunity but little focus has been given specifically to cell wall extensins. Yet, a large set of recently published data indicates that extensins play an important role in plant protection, especially in root-microbe interactions. Here, we summarise the current knowledge on this topic and discuss the importance of extensins in root defence. We first provide an overview of the distribution of extensin epitopes recognised by different monoclonal antibodies among plants and discuss the relevance of some of these epitopes as markers of the root defence response. We also highlight the implication of extensins in different types of plant interactions elicited by either pathogenic or beneficial micro-organisms. We then present and discuss the specific importance of extensins in root secretions, as these glycoproteins are not only found in the cell walls but are also released into the root mucilage. Finally, we propose a model to illustrate the impact of cell wall extensin on root secretions.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marc Ropitaux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Alexis Carreras
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Jérôme Leprince
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Isabelle Boulogne
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marie-Laure Follet-Gueye
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Zoë A Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| |
Collapse
|
49
|
Dubreuil C, Jin X, Grönlund A, Fischer U. A Local Auxin Gradient Regulates Root Cap Self-Renewal and Size Homeostasis. Curr Biol 2018; 28:2581-2587.e3. [PMID: 30078563 DOI: 10.1016/j.cub.2018.05.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/17/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Organ size homeostasis, compensatory growth to replace lost tissue, requires constant measurement of size and adjustment of growth rates. Morphogen gradients control organ and tissue sizes by regulating stem cell activity, cell differentiation, and removal in animals [1-3]. In plants, control of tissue size is of specific importance in root caps to protect the growing root tip from mechanical damage [4]. New root cap tissue is formed by the columella and lateral root-cap-epidermal stem cells, whose activity is regulated through non-dividing niche-like cells, the quiescent center (QC) [4, 5]. Columella daughter cells in contact with the QC retain the potency to divide, while derivatives oriented toward the mature cap undergo differentiation. The outermost columella layers are sequentially separated from the root body, involving remodeling of cell walls [6]. Factors regulating the balance between cell division, elongation, and separation to keep root cap size constant are currently unknown [4]. Here, we report that stem cell proliferation induced cell separation at the periphery of the root cap, resulting in tissue size homeostasis. An auxin response gradient with a maximum in the QC and a minimum in the detaching layer was established prior to the onset of cell separation. In agreement with a mathematical model, tissue size was positively regulated by the amount of auxin released from the source. Auxin transporters localized non-polarly to plasma membranes of the inner cap, partly isolating separating layers from the auxin source. Together, these results are in support of an auxin gradient measuring and regulating tissue size.
Collapse
Affiliation(s)
- Carole Dubreuil
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Andreas Grönlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå 907 36, Sweden
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden.
| |
Collapse
|
50
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|