1
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
2
|
Yang S, Xu N, Chen N, Qi J, Salam A, Wu J, Liu Y, Huang L, Liu B, Gan Y. OsUGE1 is directly targeted by OsGRF6 to regulate root hair length in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:108. [PMID: 37039968 DOI: 10.1007/s00122-023-04356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Root hairs are required for water and nutrient acquisition in plants. Here, we report a novel mechanism that OsUGE1 is negatively controlled by OsGRF6 to regulate root hair elongation in rice. Root hairs are tubular outgrowths generated by the root epidermal cells. They effectively enlarge the soil-root contact area and play essential roles for nutrient and water absorption. Here, in this study, we demonstrated that the Oryza sativa UDP-glucose 4-epimerase 1-like (OsUGE1) negatively regulated root hair elongation and was directly targeted by Oryza sativa growth regulating factor 6 (OsGRF6). Knockout mutants of OsUGE1 using CRISPR-Cas9 technology showed longer root hairs than those of wild type. In contrast, overexpression lines of OsUGE1 displayed shorter root hair compared with those of wild type. GUS staining showed that it could specifically express in root hair. Subcellular localization analysis indicates that OsUGE1 is located in endoplasmic reticulum, nucleus and plasma membrane. More importantly, ChIP-qPCR, Yeast-one-hybrid and BiFC experiments revealed that OsGRF6 could bind to the promoter of OsUGE1. Furthermore, knockout mutants of OsGRF6 showed shorter root hair than those of wild type, and OsGRF6 dominantly expressed in root. In addition, the expression level of OsUGE1 is significantly downregulated in Osgrf6 mutant. Taken together, our study reveals a novel pathway that OsUGE1 is negatively controlled by OsGRF6 to regulate root hair elongation in rice.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nuo Xu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
4
|
Velasquez SM, Guo X, Gallemi M, Aryal B, Venhuizen P, Barbez E, Dünser KA, Darino M, Pĕnčík A, Novák O, Kalyna M, Mouille G, Benková E, P. Bhalerao R, Mravec J, Kleine-Vehn J. Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. Int J Mol Sci 2021; 22:9222. [PMID: 34502129 PMCID: PMC8430841 DOI: 10.3390/ijms22179222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.
Collapse
Affiliation(s)
- Silvia Melina Velasquez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Marçal Gallemi
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Bibek Aryal
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Peter Venhuizen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
| | - Kai Alexander Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Martin Darino
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Aleš Pĕnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, RD10, CEDEX, 78026 Versailles, France;
| | - Eva Benková
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
6
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
7
|
Castilleux R, Plancot B, Gügi B, Attard A, Loutelier-Bourhis C, Lefranc B, Nguema-Ona E, Arkoun M, Yvin JC, Driouich A, Vicré M. Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. ANNALS OF BOTANY 2020; 125:751-763. [PMID: 31242281 PMCID: PMC7182588 DOI: 10.1093/aob/mcz068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established. METHODS We used Arabidopsis thaliana mutants impaired in extensin arabinosylation to investigate the role of extensin arabinosylation in root-microbe interactions. Mutant and wild-type roots were stimulated to elicit an immune response with flagellin 22 and immunolabelled with a set of anti-extensin antibodies. Roots were also inoculated with a soilborne oomycete, Phytophthora parasitica, to assess the effect of extensin arabinosylation on root colonization. KEY RESULTS A differential distribution of extensin epitopes was observed in wild-type plants in response to elicitation. Elicitation also triggers altered epitope expression in mutant roots compared with wild-type and non-elicited roots. Inoculation with the pathogen P. parasitica resulted in enhanced root colonization for two mutants, specifically xeg113 and rra2. CONCLUSIONS We provide evidence for a link between extensin arabinosylation and root defence, and propose a model to explain the importance of glycosylation in limiting invasion of root cells by pathogenic oomycetes.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Bruno Gügi
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | | | - Corinne Loutelier-Bourhis
- IRCOF COBRA, UMR6014 and FR3038, CNRS, Université de Rouen Normandie, Mont-Saint-Aignan Cedex, France
| | - Benjamin Lefranc
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Mustapha Arkoun
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Groupe Roullier, Saint Malo Cédex, France
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche ‘Normandie Végétal’ FED, Rouen, France
- For correspondence. E-mail
| |
Collapse
|
8
|
Koroney AS, Plasson C, Pawlak B, Sidikou R, Driouich A, Menu-Bouaouiche L, Vicré-Gibouin M. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum. ANNALS OF BOTANY 2016; 118:797-808. [PMID: 27390353 PMCID: PMC5055634 DOI: 10.1093/aob/mcw128] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 05/21/2023]
Abstract
Background and aims Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. Methods In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Key Results Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Conclusions Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root-microbe interactions.
Collapse
Affiliation(s)
- Abdoul Salam Koroney
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Carole Plasson
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Barbara Pawlak
- Laboratoire de Microbiologie Signaux Microenvironnement EA 4312, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Ramatou Sidikou
- Faculté des Sciences, Université A.M. de Niamey, B.P. 12022 Niamey, Niger
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Laurence Menu-Bouaouiche
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI ‘Végétal-Agronomie-Sol et Innovations’ et Plate-Forme d’Imagerie Cellulaire (PRIMACEN) de Haute-Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
- *For correspondence. E-mail
| |
Collapse
|
9
|
Ezquer I, Mizzotti C, Nguema-Ona E, Gotté M, Beauzamy L, Viana VE, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney AS, Boudaoud A, Driouich A, Colombo L. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat. THE PLANT CELL 2016; 28:2478-2492. [PMID: 27624758 PMCID: PMC5134981 DOI: 10.1105/tpc.16.00454] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 05/10/2023]
Abstract
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 20133 Milan, Italy
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, UNIROUEN, Végétal, Agronomie, Sol, et Innovation (VASI), 76821 Mont-Saint-Aignan, France
- Centre Mondial de l'Innovation-Laboratoire de Nutrition Végétale, 35400 Saint Malo, France
| | - Maxime Gotté
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, UNIROUEN, Végétal, Agronomie, Sol, et Innovation (VASI), 76821 Mont-Saint-Aignan, France
| | - Léna Beauzamy
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, Université de Lyon, 69364 Lyon Cedex 07, France
| | - Vivian Ebeling Viana
- Plant Genomics and Breeding Center, Technology Development Center, Federal University of Pelotas, RS 96010-900, Brazil
| | - Nelly Dubrulle
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, Université de Lyon, 69364 Lyon Cedex 07, France
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Technology Development Center, Federal University of Pelotas, RS 96010-900, Brazil
| | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Abdoul-Salam Koroney
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, UNIROUEN, Végétal, Agronomie, Sol, et Innovation (VASI), 76821 Mont-Saint-Aignan, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, Université de Lyon, 69364 Lyon Cedex 07, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire, Normandie Université, UNIROUEN, Végétal, Agronomie, Sol, et Innovation (VASI), 76821 Mont-Saint-Aignan, France
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 20133 Milan, Italy
| |
Collapse
|
10
|
Kim SJ, Brandizzi F. The plant secretory pathway for the trafficking of cell wall polysaccharides and glycoproteins. Glycobiology 2016; 26:940-949. [PMID: 27072815 DOI: 10.1093/glycob/cww044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/03/2016] [Indexed: 01/22/2023] Open
Abstract
Plant endomembranes are required for the biosynthesis and secretion of complex cell wall matrix polysaccharides, glycoproteins and proteoglycans. To define the biochemical roadmap that guides the synthesis and deposition of these cell wall components it is first necessary to outline the localization of the biosynthetic and modifying enzymes involved, as well as the distribution of the intermediate and final constituents of the cell wall. Thus far, a comprehensive understanding of cell wall matrix components has been hampered by the multiplicity of trafficking routes in the secretory pathway, and the diverse biosynthetic roles of the endomembrane organelles, which may exhibit tissue and development specific features. However, the recent identification of protein complexes producing matrix polysaccharides, and those supporting the synthesis and distribution of a grass-specific hemicellulose are advancing our understanding of the functional contribution of the plant secretory pathway in cell wall biosynthesis. In this review, we provide an overview of the plant membrane trafficking routes and report on recent exciting accomplishments in the understanding of the mechanisms underlying secretion with focus on cell wall synthesis in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center Michigan State University-DOE Plant Research Laboratory Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Kong Y, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li X, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1296-306. [PMID: 25673778 PMCID: PMC4378170 DOI: 10.1104/pp.114.255943] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Abstract
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.
Collapse
Affiliation(s)
- Yingzhen Kong
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Maria J Peña
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Luciana Renna
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Utku Avci
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sami T Tuomivaara
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Xuemei Li
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Wolf-Dieter Reiter
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Federica Brandizzi
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Michael G Hahn
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Alan G Darvill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - William S York
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| |
Collapse
|
12
|
Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJM, Loqué D, Scheller HV. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:344. [PMID: 25492673 PMCID: PMC4268804 DOI: 10.1186/s12870-014-0344-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/20/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. RESULTS First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. CONCLUSIONS This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.
Collapse
Affiliation(s)
- Vibe M Gondolf
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
- />Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Rhea Stoppel
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Berit Ebert
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
- />Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Carsten Rautengarten
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - April JM Liwanag
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Dominique Loqué
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Henrik V Scheller
- />Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 USA
| |
Collapse
|
13
|
Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, Driouich A. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. FRONTIERS IN PLANT SCIENCE 2014; 5:499. [PMID: 25324850 PMCID: PMC4183102 DOI: 10.3389/fpls.2014.00499] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 05/18/2023]
Abstract
Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maxime Gotté
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Barbara Plancot
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie, Institut de Recherche et d’Innovation Biomédicale, Faculté des Sciences et Techniques, Normandie UniversitéMont-Saint-Aignan, France
| |
Collapse
|
14
|
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. ANNALS OF BOTANY 2014; 114:1069-85. [PMID: 25139429 PMCID: PMC4195563 DOI: 10.1093/aob/mcu161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. SCOPE AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. CONCLUSIONS The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Peter Varnai
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
15
|
Uehara M, Wang S, Kamiya T, Shigenobu S, Yamaguchi K, Fujiwara T, Naito S, Takano J. Identification and Characterization of an Arabidopsis Mutant with Altered Localization of NIP5;1, a Plasma Membrane Boric Acid Channel, Reveals the Requirement for d-Galactose in Endomembrane Organization. ACTA ACUST UNITED AC 2014; 55:704-14. [DOI: 10.1093/pcp/pct191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Moore JP, Nguema-Ona E, Fangel JU, Willats WGT, Hugo A, Vivier MA. Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods. Carbohydr Polym 2013; 99:190-8. [PMID: 24274496 DOI: 10.1016/j.carbpol.2013.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
Vitis species include Vitis vinifera, the domesticated grapevine, used for wine and grape agricultural production and considered the world's most important fruit crop. A cell wall preparation, isolated from fully expanded photosynthetically active leaves, was fractionated via chemical and enzymatic reagents; and the various extracts obtained were assayed using high-throughput cell wall profiling tools according to a previously optimized and validated workflow. The bulk of the homogalacturonan-rich pectin present was efficiently extracted using CDTA treatment, whereas over half of the grapevine leaf cell wall consisted of vascular veins, comprised of xylans and cellulose. The main hemicellulose component was found to be xyloglucan and an enzymatic oligosaccharide fingerprinting approach was used to analyze the grapevine leaf xyloglucan fraction. When Paenibacillus sp. xyloglucanase was applied the main subunits released were XXFG and XLFG; whereas the less-specific Trichoderma reesei EGII was also able to release the XXXG motif as well as other oligomers likely of mannan and xylan origin. This latter enzyme would thus be useful to screen for xyloglucan, xylan and mannan-linked cell wall alterations in laboratory and field grapevine populations. This methodology is well-suited for high-throughput cell wall profiling of grapevine mutant and transgenic plants for investigating the range of biological processes, specifically plant disease studies and plant-pathogen interactions, where the cell wall plays a crucial role.
Collapse
Affiliation(s)
- John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | | | | | | | | | | |
Collapse
|
17
|
Nguema-Ona E, Moore JP, Fagerström AD, Fangel JU, Willats WGT, Hugo A, Vivier MA. Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC PLANT BIOLOGY 2013; 13:46. [PMID: 23506352 PMCID: PMC3621556 DOI: 10.1186/1471-2229-13-46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/07/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Constitutive expression of Vitis vinifera polygalacturonase-inhibiting protein 1 (Vvpgip1) has been shown to protect tobacco plants against Botrytis cinerea. Evidence points to additional roles for VvPGIP1, beyond the classical endopolygalacturonase (ePG) inhibition mechanism, in providing protection against fungal infection. Gene expression and biochemical datasets previously obtained, in the absence of infection, point to the cell wall, and particularly the xyloglucan component of transgenic VvPGIP1 lines as playing a role in fungal resistance. RESULTS To elucidate the role of wall-associated processes in PGIP-derived resistance pre-infection, a wall profiling analysis, using high-throughput and fractionation techniques, was performed on healthy leaves from wild-type and previously characterized transgenic lines. The cell wall structure profile during development was found to be altered in the transgenic lines assessed versus the wild-type plants. Immunoprofiling revealed subtle changes in pectin and cellulose components and marked changes in the hemicellulose matrix, which showed reduced binding in transgenic leaves of VvPGIP1 expressing plants. Using an enzymatic xyloglucan oligosaccharide fingerprinting technique optimized for tobacco arabinoxyloglucans, we showed that polysaccharides of the XEG-soluble domain were modified in relative abundance for certain oligosaccharide components, although no differences in ion profiles were evident between wild-type and transgenic plants. These changes did not significantly influence plant morphology or normal growth processes compared to wild-type lines. CONCLUSIONS VvPGIP1 overexpression therefore results in cell wall remodeling and reorganization of the cellulose-xyloglucan network in tobacco in advance of potential infection.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
- Current address: Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV). Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université. Université de Rouen, Mont Saint Aignan, 76821 Cedex, France
| | - John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Alexandra D Fagerström
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA, 94720-5230, USA
| | - Jonatan U Fangel
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, DK-, 1001, Denmark
| | - William GT Willats
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, DK-, 1001, Denmark
| | - Annatjie Hugo
- Department of Microbiology, Stellenbosch University, Matieland, 7602, South Africa
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
18
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
19
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
20
|
Hypolipidemic and antioxidative effects of dika nut (Irvingia gabonensis) seeds and nkui (Trimphetta cordifolia) stem bark mucilages in triton WR-1339 induced hyperlipidemic rats. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0228-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Cannesan MA, Durand C, Burel C, Gangneux C, Lerouge P, Ishii T, Laval K, Follet-Gueye ML, Driouich A, Vicré-Gibouin M. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. PLANT PHYSIOLOGY 2012; 159:1658-70. [PMID: 22645070 PMCID: PMC3425204 DOI: 10.1104/pp.112.198507] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/16/2012] [Indexed: 05/03/2023]
Abstract
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.
Collapse
Affiliation(s)
- Marc Antoine Cannesan
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Caroline Durand
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Christophe Gangneux
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Tadashi Ishii
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Karine Laval
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Marie-Laure Follet-Gueye
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | | | | |
Collapse
|
22
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. ANNALS OF BOTANY 2012; 110:383-404. [PMID: 22786747 PMCID: PMC3394660 DOI: 10.1093/aob/mcs143] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Sílvia Coimbra
- Sexual Plant Reproduction and Development Laboratory, Departamento de Biologia, F.C. Universidade do Porto, Rua do Campo Alegre 4169-007 Porto, Portugal
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), http://biofig.fc.ul.pt
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
23
|
Harholt J, Jensen JK, Verhertbruggen Y, Søgaard C, Bernard S, Nafisi M, Poulsen CP, Geshi N, Sakuragi Y, Driouich A, Knox JP, Scheller HV. ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. PLANTA 2012; 236:115-28. [PMID: 22270560 DOI: 10.1007/s00425-012-1592-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.
Collapse
Affiliation(s)
- Jesper Harholt
- Laboratory for Molecular Plant Biology, VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harholt J, Jensen JK, Verhertbruggen Y, Søgaard C, Bernard S, Nafisi M, Poulsen CP, Geshi N, Sakuragi Y, Driouich A, Knox JP, Scheller HV. ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. PLANTA 2012; 236:115-128. [PMID: 22270560 DOI: 10.1007/s00425-012-1592–1593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/09/2012] [Indexed: 05/23/2023]
Abstract
Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.
Collapse
Affiliation(s)
- Jesper Harholt
- Laboratory for Molecular Plant Biology, VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Profiling the main cell wall polysaccharides of tobacco leaves using high-throughput and fractionation techniques. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Chemo-enzymatic synthesis of xylogluco-oligosaccharides and their interactions with cellulose. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L, Vicré-Gibouin M, Lerouxel O. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. FRONTIERS IN PLANT SCIENCE 2012; 3:79. [PMID: 22639665 PMCID: PMC3355623 DOI: 10.3389/fpls.2012.00079] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/09/2012] [Indexed: 05/17/2023]
Abstract
The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire ‶Glycobiologie et Matrice Extracellulaire Végétale″, UPRES EA 4358, Institut Federatif de Recherche Multidisciplinaire sur les Peptides, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de RouenMont Saint Aignan, France
- *Correspondence: Azeddine Driouich, Laboratoire “Glycobiologie et Matrice Extracellulaire Végétale” UPRES EA 4358, Institut Federatif de Recherche Multidisciplinaire sur les Peptides, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, Rue Tesnière, Bâtiment Henri Gadeau de Kerville, 76821. Mont Saint Aignan, Cedex, France. e-mail:
| | - Marie-Laure Follet-Gueye
- Laboratoire ‶Glycobiologie et Matrice Extracellulaire Végétale″, UPRES EA 4358, Institut Federatif de Recherche Multidisciplinaire sur les Peptides, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de RouenMont Saint Aignan, France
| | - Sophie Bernard
- Laboratoire ‶Glycobiologie et Matrice Extracellulaire Végétale″, UPRES EA 4358, Institut Federatif de Recherche Multidisciplinaire sur les Peptides, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de RouenMont Saint Aignan, France
| | - Sumaira Kousar
- Centre de Recherches sur les Macromolécules végétales–CNRS, Université Joseph FourierGrenoble, France
| | - Laurence Chevalier
- Institut des Matériaux/UMR6634/CNRS, Faculté des Sciences et Techniques, Université de RouenSt. Etienne du Rouvray Cedex, France
| | - Maïté Vicré-Gibouin
- Laboratoire ‶Glycobiologie et Matrice Extracellulaire Végétale″, UPRES EA 4358, Institut Federatif de Recherche Multidisciplinaire sur les Peptides, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de RouenMont Saint Aignan, France
| | - Olivier Lerouxel
- Centre de Recherches sur les Macromolécules végétales–CNRS, Université Joseph FourierGrenoble, France
| |
Collapse
|
28
|
Njintang NY, Boudjeko T, Tatsadjieu LN, Nguema-Ona E, Scher J, Mbofung CMF. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. Journal of Food Science and Technology 2011; 51:900-7. [PMID: 24803696 DOI: 10.1007/s13197-011-0580-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/01/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
Abstract
Tropical roots and tubers generally contain mucilage. These mucilages exhibit unique rheological properties with considerable potential as a food thickener and stabilizer. A one-step extraction procedure was used to isolate starch free mucilage and associated proteins from a number of taro (Colocasia esculenta) varieties. The monosaccharide and amino acid composition, the structural and flow properties were investigated. The results showed that yield of mucilage fraction varied from 30 to 190 g.kg(-1). A negative correlation (r = -0.87; p < 0.05) was observed between the crude protein level and the yield. The monosaccharide profiles revealed that galactose, mannose and arabinose were the main monosaccharides in the hydrolysate of the mucilage. From the 17 amino acids analyzed, aspartic acid/asparagine (14.4-17.2%) and glutamic acid/glutamine (10.3-13.6%) were prominent in the mucilage as well as the flour. No significant differences were observed in the FT-IR spectra and in the viscosity behavior of the mucilage dispersions. The greatest difference in the mucilage is based on its monosaccharide profile while the protein composition, which reflects that of the flour, is relatively stable.
Collapse
Affiliation(s)
| | - Thaddee Boudjeko
- Centre de Biotechnologies-Nkolbisson, Université de Yaoundé I, B. P 3851, Messa Yaoundé, Cameroon
| | | | - Eric Nguema-Ona
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X01, Matieland, South Africa
| | - Joel Scher
- Laboratoire d'ingénierie et de Biomolecules(LIBIO), Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172, 54505 Vandœuvre lès Nancy, France
| | - Carl M F Mbofung
- National School of Agro-Industrial Sciences (ENSAI), University of Ngaoundéré, P.O. Box 455, Adamaoua, Cameroon
| |
Collapse
|
29
|
Alexandersson E, Becker JV, Jacobson D, Nguema-Ona E, Steyn C, Denby KJ, Vivier MA. Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes 2011; 4:493. [PMID: 22078230 PMCID: PMC3339426 DOI: 10.1186/1756-0500-4-493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs.
Collapse
Affiliation(s)
- Erik Alexandersson
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang YH, Poudel DD, Hasenstein KH. Identification of SSR markers associated with saccharification yield using pool-based genome-wide association mapping in sorghum. Genome 2011; 54:883-9. [PMID: 21999235 DOI: 10.1139/g11-055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Saccharification describes the conversion of plant biomass by cellulase into glucose. Because plants have never been selected for high saccharification yield, cellulosic ethanol production faces a significant bottleneck. To improve saccharification yield, it is critical to identify the genes that affect this process. In this study, we used pool-based genome-wide association mapping to identify simple sequence repeat (SSR) markers associated with saccharification yield. Screening of 703 SSR markers against the low and high saccharification pools identified two markers on the sorghum chromosomes 2 (23-1062) and 4 (74-508c) associated with saccharification yield. The association was significant at 1% using either general or mixed linear models. Localization of these markers based on the whole genome sequence indicates that 23-1062 is 223 kb from a β-glucanase (Bg) gene and 74-508c is 81 kb from a steroid-binding protein (Sbp) gene. Bg is critical for cell wall assembly and degradation, but Sbp can suppress the expression of Bg as demonstrated in Arabidopsis (Yang et al. 2005). These markers are found physically close to genes encoding plant cell wall synthesis enzymes such as xyloglucan fucosyltransferase (149 kb from 74-508c) and UDP-D-glucose 4-epimerase (46 kb from 23-1062). Genetic transformation of selected candidate genes is in progress to examine their effect on saccharification yield in plants.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | | | | |
Collapse
|
31
|
Bowling AJ, Vaughn KC, Turley RB. Polysaccharide and glycoprotein distribution in the epidermis of cotton ovules during early fiber initiation and growth. PROTOPLASMA 2011; 248:579-590. [PMID: 20878194 DOI: 10.1007/s00709-010-0212-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/14/2010] [Indexed: 05/27/2023]
Abstract
The cotton fiber is a model system to study cell wall biosynthesis because the fiber cell elongates (∼3 cm in ∼20 days) without mitosis. In this study, developing cotton ovules, examined from 1 day before anthesis (DBA) to 2 days post-anthesis (DPA), that would be difficult to investigate via classical carbohydrate biochemistry were probed using a battery of antibodies that recognize a large number of different wall components. In addition, ovules from these same stages were investigated in three fiberless lines. Most antibodies reacted with at least some component of the ovule, and several of the antibodies reacted specifically with the epidermal layer of cells that may give clues as to the nature of the development of the fibers and the neighboring, nonfiber atrichoblasts. Arabinogalactan proteins (AGPs) labeled the epidermal layers more strongly than other ovular tissue, even at 1 DBA. One of the AGP antibodies, CCRC-M7, which recognizes a 1-->6 galactan epitope of AGPs, is lost from the fiber cells by 2 DPA, although labeling in the atrichoblasts remained strong. In contrast, LM5 that recognizes a 1-->4 galactan RGI side chain is unreactive with sections until the fibers are produced and only the fibers are reactive. Dramatic changes also occur in the homogalacturonans (HGs). JIM5, which recognizes highly de-esterified HGs, only weakly labels epidermal cells of 1 DBA and 0 DPA ovules, but labeling increases in fibers cells, where a pectinaceous sheath is produced around the fiber cell and stronger reaction in the internal and external walls of the atrichoblast. In contrast, JIM7-reactive, highly esterifed HGs are present at high levels in the epidermal cells throughout development. Fiberless lines displayed similar patterns of labeling to the fibered lines, except that all of the cells had the labeling pattern of atrichoblasts. That is, CCRC-M7 labeled all cells of the fiberless lines, and LM5 labeled no cells at 2 DPA. These data indicate that a number of polysaccharides are unique in quantity or presence in the epidermal cell layers, and some of these might be critical participants in the early stages of initiation and elongation of cotton fibers.
Collapse
Affiliation(s)
- Andrew J Bowling
- Crop Production Systems Research Unit, US Department of Agriculture, The Agricultural Research Service (USDA-ARS), Stoneville, MS 38776, USA
| | | | | |
Collapse
|
32
|
Zhong J, Ren Y, Yu M, Ma T, Zhang X, Zhao J. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. PROTOPLASMA 2011; 248:551-63. [PMID: 20830495 DOI: 10.1007/s00709-010-0204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/21/2010] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-D-Glc)(3) Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.
Collapse
Affiliation(s)
- Jing Zhong
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
33
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
34
|
Abstract
Biosynthesis of pectin and hemicelluloses occurs in the Golgi apparatus and is thought to involve spatial regulations and complex formation of biosynthetic enzymes and proteins. We have demonstrated that a combination of heterologous expression of recombinant proteins tagged with fluorescent proteins and live cell imaging with confocal laser scanning microscopy (CLSM) allows efficient visualization of biosynthetic enzymes and proteins in subcellular compartments. We have also successfully utilized bimolecular fluorescence complementation (BiFC) for in situ visualization of protein-protein interactions of pectin biosynthetic enzymes and for the determination of their membrane topology in the Golgi apparatus.
Collapse
Affiliation(s)
- Yumiko Sakuragi
- The Department of Plant Biology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Chevalier L, Bernard S, Ramdani Y, Lamour R, Bardor M, Lerouge P, Follet-Gueye ML, Driouich A. Subcompartment localization of the side chain xyloglucan-synthesizing enzymes within Golgi stacks of tobacco suspension-cultured cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:977-89. [PMID: 21143678 DOI: 10.1111/j.1365-313x.2010.04388.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.
Collapse
Affiliation(s)
- Laurence Chevalier
- Laboratoire 'Glycobiologie et Matrice Extracellulaire Végétale,' UPRES EA 4358, Institut Fédératif de Recherche Multidisciplinaire sur les Peptides 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie (PRIMACEN), IBiSA, Université de Rouen, 76821 Mont-Saint Aignan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zeng W, Jiang N, Nadella R, Killen TL, Nadella V, Faik A. A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. PLANT PHYSIOLOGY 2010; 154:78-97. [PMID: 20631319 PMCID: PMC2938142 DOI: 10.1104/pp.110.159749] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/09/2010] [Indexed: 05/17/2023]
Abstract
Glucuronoarabinoxylans (GAXs) are the major hemicelluloses in grass cell walls, but the proteins that synthesize them have previously been uncharacterized. The biosynthesis of GAXs would require at least three glycosyltransferases (GTs): xylosyltransferase (XylT), arabinosyltransferase (AraT), and glucuronosyltransferase (GlcAT). A combination of proteomics and transcriptomics analyses revealed three wheat (Triticum aestivum) glycosyltransferase (TaGT) proteins from the GT43, GT47, and GT75 families as promising candidates involved in GAX synthesis in wheat, namely TaGT43-4, TaGT47-13, and TaGT75-4. Coimmunoprecipitation experiments using specific antibodies produced against TaGT43-4 allowed the immunopurification of a complex containing these three GT proteins. The affinity-purified complex also showed GAX-XylT, GAX-AraT, and GAX-GlcAT activities that work in a cooperative manner. UDP Xyl strongly enhanced both AraT and GlcAT activities. However, while UDP arabinopyranose stimulated the XylT activity, it had only limited effect on GlcAT activity. Similarly, UDP GlcUA stimulated the XylT activity but had only limited effect on AraT activity. The [(14)C]GAX polymer synthesized by the affinity-purified complex contained Xyl, Ara, and GlcUA in a ratio of 45:12:1, respectively. When this product was digested with purified endoxylanase III and analyzed by high-pH anion-exchange chromatography, only two oligosaccharides were obtained, suggesting a regular structure. One of the two oligosaccharides has six Xyls and two Aras, and the second oligosaccharide contains Xyl, Ara, and GlcUA in a ratio of 40:8:1, respectively. Our results provide a direct link of the involvement of TaGT43-4, TaGT47-13, and TaGT75-4 proteins (as a core complex) in the synthesis of GAX polymer in wheat.
Collapse
|
37
|
Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC. Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. PLANT PHYSIOLOGY 2010; 153:1563-76. [PMID: 20547702 PMCID: PMC2923879 DOI: 10.1104/pp.110.158881] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.
Collapse
|
38
|
Angone SA, Nguema-Ona E, Driouich A. La thérapie par les plantes en Afrique: activités immunostimulantes des polysaccharides de la paroi végétale. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s10298-010-0567-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010; 9:2019-33. [PMID: 20525998 DOI: 10.1074/mcp.m110.000349] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Collapse
Affiliation(s)
- Chao-You Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ellis M, Egelund J, Schultz CJ, Bacic A. Arabinogalactan-proteins: key regulators at the cell surface? PLANT PHYSIOLOGY 2010; 153:403-19. [PMID: 20388666 PMCID: PMC2879789 DOI: 10.1104/pp.110.156000] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/01/2010] [Indexed: 05/17/2023]
|
41
|
Harholt J, Suttangkakul A, Vibe Scheller H. Biosynthesis of pectin. PLANT PHYSIOLOGY 2010; 153:384-95. [PMID: 20427466 PMCID: PMC2879803 DOI: 10.1104/pp.110.156588] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/27/2010] [Indexed: 05/17/2023]
|
42
|
Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC. Genetic resources for maize cell wall biology. PLANT PHYSIOLOGY 2009; 151:1703-28. [PMID: 19926802 PMCID: PMC2785990 DOI: 10.1104/pp.109.136804] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.
Collapse
|
43
|
Kotake T, Takata R, Verma R, Takaba M, Yamaguchi D, Orita T, Kaneko S, Matsuoka K, Koyama T, Reiter WD, Tsumuraya Y. Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion between UDP-D-xylose and UDP-L-arabinose in plants. Biochem J 2009; 424:169-77. [PMID: 19754426 DOI: 10.1042/bj20091025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UDP-sugars serve as substrates in the synthesis of cell wall polysaccharides and are themselves generated through sequential interconversion reactions from UDP-Glc (UDP-glucose) as the starting substrate in the cytosol and the Golgi apparatus. For the present study, a soluble enzyme with UDP-Xyl (UDP-xylose) 4-epimerase activity was purified approx. 300-fold from pea (Pisum sativum L.) sprouts by conventional chromatography. The N-terminal amino acid sequence of the enzyme revealed that it is encoded by a predicted UDP-Glc 4-epimerase gene, PsUGE1, and is distinct from the UDP-Xyl 4-epimerase localized in the Golgi apparatus. rPsUGE1 (recombinant P. sativum UGE1) expressed in Escherichia coli exhibited both UDP-Xyl 4-epimerase and UDP-Glc 4-epimerase activities with apparent Km values of 0.31, 0.29, 0.16 and 0.15 mM for UDP-Glc, UDP-Gal (UDP-galactose), UDP-Ara (UDP-L-arabinose) and UDP-Xyl respectively. The apparent equilibrium constant for UDP-Ara formation from UDP-Xyl was 0.89, whereas that for UDP-Gal formation from UDP-Glc was 0.24. Phylogenetic analysis revealed that PsUGE1 forms a group with Arabidopsis UDP-Glc 4-epimerases, AtUGE1 and AtUGE3, apart from a group including AtUGE2, AtUGE4 and AtUGE5. Similar to rPsUGE1, recombinant AtUGE1 and AtUGE3 expressed in E. coli showed high UDP-Xyl 4-epimerase activity in addition to their UDP-Glc 4-epimerase activity. Our results suggest that PsUGE1 and its close homologues catalyse the interconversion between UDP-Xyl and UDP-Ara as the last step in the cytosolic de novo pathway for UDP-Ara generation. Alternatively, the net flux of metabolites may be from UDP-Ara to UDP-Xyl as part of the salvage pathway for Ara.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boudjeko T, Rihouey C, Ndoumou DO, El Hadrami I, Lerouge P, Driouich A. Characterisation of cell wall polysaccharides, arabinogalactans-proteins (AGPs) and phenolics of Cola nitida, Cola acuminata and Garcinia kola seeds. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Aboughe Angone S, Bardor M, Nguema-Ona E, Rihouey C, Ishii T, Lerouge P, Driouich A. Structural characterization of cell wall polysaccharides from two plant species endemic to central Africa, Fleurya aestuans and Phragmenthera capitata. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S. Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. THE NEW PHYTOLOGIST 2009; 182:146-162. [PMID: 19207685 PMCID: PMC2713855 DOI: 10.1111/j.1469-8137.2008.02742.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
* The genomic era facilitates the understanding of how transcriptional networks are interconnected to program seed development and filling. However, to date, little information is available regarding dicot seeds with a transient perisperm and a persistent, copious endosperm. Coffea arabica is the subject of increasing genomic research and is a model for nonorthodox albuminous dicot seeds of tropical origin. * The aim of this study was to reconstruct the metabolic pathways involved in the biosynthesis of the main coffee seed storage compounds, namely cell wall polysaccharides, triacylglycerols, sucrose, and chlorogenic acids. For this purpose, we integrated transcriptomic and metabolite analyses, combining real-time RT-PCR performed on 137 selected genes (of which 79 were uncharacterized in Coffea) and metabolite profiling. * Our map-drawing approach derived from model plants enabled us to propose a rationale for the peculiar traits of the coffee endosperm, such as its unusual fatty acid composition, remarkable accumulation of chlorogenic acid and cell wall polysaccharides. * Comparison with the developmental features of exalbuminous seeds described in the literature revealed that the two seed types share important regulatory mechanisms for reserve biosynthesis, independent of the origin and ploidy level of the storage tissue.
Collapse
Affiliation(s)
- Thierry Joët
- IRD, UMR DIA-PC, Pôle de Protection des Plantes97410, Saint Pierre, La Réunion, France
| | | | - Jordi Salmona
- IRD, UMR DIA-PC, Pôle de Protection des Plantes97410, Saint Pierre, La Réunion, France
| | | | | | | | | | | |
Collapse
|
47
|
Nielsen E. Plant Cell Wall Biogenesis During Tip Growth in Root Hair Cells. PLANT CELL MONOGRAPHS 2009. [DOI: 10.1007/978-3-540-79405-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Driouich A, Baskin TI. Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules. AMERICAN JOURNAL OF BOTANY 2008; 95:1491-7. [PMID: 21628156 DOI: 10.3732/ajb.0800277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
How does a plant cell sense and respond to the status of its cell wall? Intercourse between cell wall and cytoplasm has long been supposed to involve arabinogalactan proteins, in part because many of them are anchored to the plasma membrane. Disrupting arabinogalactan proteins has recently been shown to disrupt the array of cortical microtubules present just inside the plasma membrane, implying that microtubules and arabinogalactan proteins interact. In this article, we assess possibilities for how this interaction might be mediated. First, we consider microdomains in the plasma membrane (lipid rafts), which have been alleged to link internal and external regions of the plasma membrane; however, the characteristics and even the existence of these domains remains controversial. Next, we point out that disrupting the synthesis of cellulose also can disrupt microtubules and consider whether arabinogalactan proteins are part of a network linking microtubules and nascent microfibrils. Finally, we outline several signaling cascades that could transmit information from arabinogalactan proteins to microtubules through channels of cellular communication. These diverse possibilities highlight the work that remains to be done before we can understand how plant cells communicate across their membranes.
Collapse
Affiliation(s)
- Azeddine Driouich
- UMR 6037 CNRS-Institut Fédératif de Recherche Multidisciplinaire des Peptides (IFRMP 23), Plateforme de Recherche en Imagerie Cellulaire de Haute Normandie (PRIMACEN)-Université de Rouen, 76821 Mont Saint Aignan, France
| | | |
Collapse
|
49
|
Zabotina O, Malm E, Drakakaki G, Bulone V, Raikhel N. Identification and preliminary characterization of a new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. MOLECULAR PLANT 2008; 1:977-89. [PMID: 19825597 DOI: 10.1093/mp/ssn055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy or lethality and, in the case of polysaccharide biosynthesis, plant flexibility. Polysaccharide synthetic enzymes are located in two main compartments-the Golgi apparatus and plasma membrane-and can be studied in vitro using membrane fractions. Here, we first developed a high-throughput assay that allowed the screening of a library of chemicals with a potential effect on glycosyltransferase activities. Out of the 4800 chemicals screened for their effect on Golgi glucosyltransferases, 66 compounds from the primary screen had an effect on carbohydrate biosynthesis. Ten of these compounds were confirmed to inhibit glucose incorporation after a second screen. One compound exhibiting a strong inhibition effect (ID 6240780 named chemical A) was selected and further studied. It reversibly inhibits the transfer of glucose from UDP-glucose by Golgi membranes, but activates the plasma membrane-bound callose synthase. The inhibition effect is dependent on the chemical structure of the compound, which does not affect endomembrane morphology of the plant cells, but causes changes in cell wall composition. Chemical A represents a novel drug with a great potential for the study of the mechanisms of Golgi and plasma membrane-bound glucosyltransferases.
Collapse
Affiliation(s)
- Olga Zabotina
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
50
|
Eder M, Lütz-Meindl U. Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 2008; 231:201-14. [PMID: 18778418 DOI: 10.1111/j.1365-2818.2008.02036.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pectins are the major matrix polysaccharides of plant cell walls and are important for controlling growth, wall porosity and regulation of the ionic environment in plant cells. Pectic epitopes recognized by the monoclonal antibodies JIM5, JIM7 and 2F4 could be localized in the primary wall during development of the green alga Micrasterias. As the degree of pectin esterification determines the calcium-binding capacity and thus the physical properties of the cell wall, chemical and enzymatic in situ de-esterification was performed. This resulted in displacement of epitopes recognized by JIM5, JIM7 and 2F4, respectively, in changes in the intensity of the antibody labelling as visualized in CLSM. In addition, calcium-binding capacities of cell walls and components of the secretory apparatus were determined in transmission electron microscopy by electron energy loss spectroscopy and electron spectroscopic imaging. These analyses revealed that pectic polysaccharides are transported to the cell wall in a de-esterified form. At the primary wall, pectins get methyl-esterified at the inner side, thus allowing flexibility of the wall. At the outer side of the wall they become again de-esterified and bind high amounts of calcium which leads to cell wall stiffening. Mucilage vesicles possess the highest calcium-binding capacity of all structures observed in Micrasterias, indicating that the pectic polysaccharides of mucilage are secreted in a de-esterified, compact form. When mucilage is excreted through the cell wall, it loses its ability to bind calcium. The esterification of pectins involved is obviously required for swelling of mucilage by water uptake, which generates the motive force for orientation of this unicellular organism in respect to light. Incubation of Micrasterias in pectin methylesterase (PME), which de-esterifies pectic polymers in higher plants, resulted in growth inhibition, cell shape malformation and primary wall thickening. A PME-like enzyme could be found in Micrasterias by PME activity assays.
Collapse
Affiliation(s)
- M Eder
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | |
Collapse
|